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Abstract—This paper describes Cola, an object-oriented command
language for Hydra; Hydra is a capability-based operating system that
runs on C.mmp, a tightly coupled multiprocessor. The two primary
aspects of Cola, that it is a command language for Hydra, and that it is
based on the object paradigm, are examined. Cola was designed to
effect a correspondence between capabilities in Hydra and objects that
are supported by the language. Cola is based on Smalltalk in that it
uses message-passing as a control structure to allow syntactic freedom
in the expression of commands to the system. Cola objectsare arranged
in a hierarchy, and the message-passing mechanism was designed to ex-
ploit this structure by automatically forwarding an unanswered message
up the hierarchy. Two ramifications of this mechanism, automatic in-
heritance and shadowing, are discussed. An evaluation of the design
decisions is also given.

Index Terms—Capabilities, command language, knowledge representa-
tion languages, message-passing, multiprocessors, object-based languages,
object hierarchies, Simula, Smalltalk.

I. INTROD UCTION

OLA is an object-oriented command language which grew

out of a need for a comfortable user interface for Hydra
[51], a capability-based operating system that runs on C.mmp
[48], a tightly coupled multiprocessor. Hydra provides a com-
prehensive set of facilities to the user, yet the previous command
language for Hydra (called the CL!) presented these facilities
as an unrelated collection of procedures. The overall character
of the operating system was not reflected in the way that the
user interacted with the command language. In the design of
Cola, much effort was expended to mirror the philosophy of
the operating system in the command language. The incor-
poration of objects, similar to Simula classes, in the command
language was a result of this objective.

That the concept of class might be a valuable addition to
command languages is suggested by an analogy between the
development of command languages and general purpose
languages. When the hardware is first introduced, one programs
in assembly language, due in part to a lack of higher level soft-
ware, an inadequate understanding of what structuring con-
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IThe CL [37] is a general expression-oriented block structured pro-
gramming language. The syntax resembles Bliss [49], the system imple-
mentation language Hydra itself was written in. Some features have
been added (such as a capability data type) or altered (such as a more
versatile assignment statement) to allow access to specific Hydra facilities.

cepts are useful, and a desire to make the most of a scarce
resource. Assembly language programs can be characterized
by their utilization of the full power of the hardware by
building on only the basic facilities available. One command
language analog to assembly languages is the 0S/360 Job Con-
trol Language [31], which shares these same properties. As
with assembly language, anything is possible in JCL, and
almost everything is difficult. The first step toward making
the machine easier to program was Fortran, which provides a
few basic control structures, such as po-loops and subroutines,
as well as a few data structures, such as arrays and COMMON
storage. The George 3 Command Language [33], which in-
cludes conditional and looping statements, as well as user-
defined macros, embodies some of the advances found in
Fortran.

Algol was the next major development in programming
languages; concepts such as data types, block structure, and
recursive procedures first appeared in this language. Similar
ideas can be found in the Burrough’s Work Flow Language [9],
IBM’s CMS language [18], OSL/2 [2], SCL [6], and the CL,
although they have been adapted for a command language
domain.? For example, SCL uses the block structure of a
control program to limit both the scope of variables (as in
Algol) and the scope of operating system resources, and the
CL interprets certain names to refer to objects in the file sys-
tem rather than in main memory. The next major step in pro-
gramming languages (one that is currently still in progress) is
the introduction of abstract data types [39]. The concept of
class first appeared in Simula [3], with Euclid [25], Alphard
[50], and CLU [30] continuing the emphasis on abstraction
and modularization. Despite the advantages inherent in these
developments, the concept of abstract data types has not yet
appeared in command languages.

A similar analogy between general purpose languages and
operating systems also suggests incorporating classes into the
command language. In one sense, an operating system is
merely alarge, complex runtime system for the user’s program.
This was true before multiprocessing, and applies even more
with the advent of operating systems for personal computers,
which are usually single language machines [26], [35]. The
concepts introduced in programming languages tend to be
transfered to the runtime systems, as well as the operating
systems, which support them [20]. Thus, there has been a
flurry of activity in recent years concerning object-based
operating systems [21], [34], [46]. In systems such as these

2Lisp has also been taken as a starting point in the design of a com-
mand language [10], [29].
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where the concept of object pervades the programming lan-
guage, its runtime system, and the operating system itself,
the command language should provide consistency by also
supporting objects.

This paper describes an object-oriented command language
(Cola) for an object-based operating system (Hydra). The
first part examines the correspondence between objects in
Hydra and objects in Cola. The second part considers struc-
turing objects in ways that have been found to be useful in
structuring knowledge. Hence, this paper investigates the two
main aspects of Cola: that it is a command language for Hydra
and that it is based on the object paradigm.

II. CoLA AS A COMMAND LANGUAGE

As indicated above, much progress has been made in provid-
ing more powerful command languages. There are, however,
arguments for eliminating the command language completely,
and instead embedding the functionality previously provided
by the command language in the programming system, result-
ing in a programming environment with a uniform syntax and
semantics [12], [16], [28], [38], [42], [43]. These argu-
ments include not having to learn a different command lan-
guage, being able to utilize the control and data structures
present in the existing language when writing job control
programs, and aiding the standardization task for command
languages.

Despite these advantages, such an approach is not always
appropriate. Each programming environment must be devel-
oped separately for each language that is desired. Also, it is
very difficult to write a system in several different languages
if each is supported by its own environment. Due to these
reasons, plus the lack of existing systems that provide oper-
ating system primitives within the language, it is necessary to
provide some kind of user-level interface that can interact with
all these language systems. Since the operating system is the
one entity shared by the users of the various languages, and it
is the operating system that is providing the services that the
command language refers to, it is appropriate to align the com-
mand language as closely as possible with the operating system
[44].

A. Overview of Hydra

Cola is a command language that was designed for Hydra
[51], a capability-based operating system that runs on C.mmp
[48], a tightly coupled multiprocessor consisting of 16 DEC
PDP-11’s. The two most important attributes of Hydra—sup-
porting a multiprocessor and implementing an object-based
protection scheme—are relatively orthogonal. In Hydra, capa-
bilities are protected pointers that refer to resources, both
physical and virtual, called objects. Each object consists of an
array of capabilities (a clist) and an array of integers (a data-
part). A particular capability is referred to by specifying the
index into a clist; similarly, data are referenced by indexing
into the datapart. Since every resource in Hydra is associated
with an object, all resources can contain data and capabilities.
For instance, the datapart of a procedure object contains infor-
mation relevant for execution and debugging (such as its trap

and interrupt addresses, saved registers, etc.); the clist contains
capabilities used by that procedure, including capabilities for
page objects, which contain the code for the procedure.

In addition to using capabilities to support a very flexible
protection scheme [7], Hydra provides powerful abstraction
mechanisms. Objects are typed, and associated with each type
is a set of procedures that can manipulate the representation
of objects of that type. The user can define new types by
specifying the representation of objects of that type in terms
of types that are already defined, and by providing procedures
that can perform operations on objects of the new type. In
this way, Hydra types are analogous to the abstract data types
of Simula or Alphard. Cola was designed to support this notion
in a uniform manner.

Although capabilities and Hydra objects are quite different
entities, the two terms are often used interchangeably. Hence,
instead of refering to ‘the length of the datapart of the object
pointed at by the capability called “ACapa,” ’ one would refer
to ‘the length of the datapart of “ACapa.”’ Also, the names
of capabilities (and Cola instances, defined later) will be en-
closed in double quotation marks, strings in single quotation
marks, and the names of Cola classes will be in small capitals.
These conventions will be followed in the remainder of this

paper.

B. Objects and Message Passing

Cola is also based on the concept of objects. A Cola object is
a potentially active piece of knowledge that communicates by
sending messages composed of objects [17]. Cola is modeled
closely after Smalltalk [13], [40]. Although it shares many
characteristics with conventional languages incorporating
abstract data types, Cola is unusual in that it uses message
passing as a control structure to allow syntactic freedom in
the expression of commands to the system, an important
consideration in the design of an interactive language.

As an example of message passing, evaluating <object> + 4
means the message ‘ + 4’ is sent to <object>, which interprets
the message, and returns another object as a reply. In the
procedural view, ¢+’ would be an infix operator defined in the
types within which the plus operator was valid. In Cola, the
message ‘ +4’ is interpreted by the <object> itself. For in-
stance, if the <object> were the integer 3, then the ‘+’ in
the message interpreted as ordinary addition, with the integer
7 returned; for the <object> ‘a string,” the plus sign is inter-
preted as string concatenation, with the string ‘a string4’
returned. Each object can interpret a message in any way it
sees fit. Message passing is entirely consistent with, and indeed,
supports, the information hiding aspects inherent in abstract
data types [19].

Every object in Cola belongs to a class, which is analogous
to a type in other languages. The class, also an object, defines
the messages that all its members can accept, as well as the
semantics for each of the messages. It also defines the data
structures that can reside in each member. The code that is
associated with a class is shared by all the members of that
class. Hence, the object 4 is a member of the class INTEGER ;
the object ‘a string’ is a member of the class STRING. The
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class structure is actually much richer than described here;
more will be said when the object hierarchy is discussed in
Section III.

C. The ColafHydra Correspondence

Cola was designed to effect a correspondence between objects
(actually, capabilities) in Hydra and objects that are supported
by the language: every object (capability) in the user’s environ-
ment in Hydra is associated with an object in the user’s envi-
ronment in Cola. A system call embedded in a program can
cause Hydra to perform an operation on an object referred to
by capability mentioned in the system call. In the same way,
a message can be sent to the Cola object associated with that
capability to perform the operation. In responding to the mes-
sage, the Cola object, as a side effect, executes the system call
on that capability. Thus, thereis no distinction between Hydra
objects (capabilities) and Cola objects, resulting in an isomorph-
ism between the two entities.

To illustrate the Cola/Hydra correspondence, it is useful to
examine the Cola equivalents of several object types defined in
Hydra. The (Cola) class cAPA includes the operations which
apply to all (Hydra) capabilities. The syntax for these opera-
tions is similar to record accessing in Pascal (corresponding to
the conceptual view of an object as a record consisting of an
array of capabilities (the clist) and an array of integers (the
datapart), both indexed by integers). In the examples below,
A and C denote instances of the class CAPA, S is a STRING,
and x and y are INTEGERS. In accessing the datapart,

C . data [x toy]

returns a vector of INTEGERS, and

C . data length

returns an INTEGER specifying the length of the datapart.
Similar operations apply to the clist. The operation

C . clist [x to y] vacate

removes the CAPAS in the selected slots of the clist.

A Hydra catalogue [1] is conceptually an array of capabilities
indexed by strings (since it is still a Hydra object, it is imple-
mented as a datapart and a clist). The Cola class CATALOGUE
supports this conceptual view by interpreting a record access
as a lookup operation on the CATALOGUE. So the operation

C [S]

looks up the entry S in CATALOGUE C and returns a CAPA.
To remove an entry, execute

C [S] vacate

This correspondence is qualitatively different from the view
of Hydra presented by the CL. The CL appears to the user as
a set of predefined procedures which can operate on capabili-

3This is not strictly true, since there are Cola objects such as
INTEGER which do not have a Hydra analog. (Ideally, Hydra would
handle integers as objects, but the implementation makes small objects
inefficient.)

ties. These procedures correspond directly to the system calls
available to Bliss programs running on Hydra [8]. Hence the
CL is effectively an interpreted Bliss (indeed, if Bliss were an
interactive language, then the CL as implemented would have
added little functionality.)

Although the use of Bliss as a base for the command language
resulted in a rather powerful user interface, it suffered from
the restriction that communication with the operating system
can occur only via system calls. For example, the conceptual
view of objects as records consisting of arrays is not supported
in the CL. Instead, one retrieves the data of an object by exe-
cuting a system call (actually, in this case an ad hoc extension
was made to the CL to allow array accessing to be done on
Hydra capabilities). Thus the CL does not provide an adequate
conceptualization of the objects defined in the operating sys-
tem. In addition, the CL lacks the ability to dynamically de-
fine new types at the command level, and to define operations
associated with these types which are reflected via system calls
to the Hydra objects that are referred to by the command
objects.

Cola provides this functionality and, as a result, presents to
the user a different perspective on the operating system. Cola
integrates the objects supported by the operating system into
the language itself (due to the Cola-Hydra object isomorphism),
eliminating the cumbersome system call interface. Note that
the implementation still uses system calls, but this detail is
hidden from the user. Instead, the user interacts with the
command language using the abstractions with which he or
she is familiar, namely those supported by the operating sys-
tem.

D. Nonobject-Based Operating Systems

The object concept in Cola can be usefully incorporated into
command languages for operating systems that are not them-
selves based on the object model. The function of an operating
system is to provide resources for user jobs that can be manip-
ulated by the job by executing system calls. These resources
are essentially typed objects (such as files, directories, I/O
ports, memory) with operations defined on them (such as
print, add entry, send a character, reserve), although they are
not always implemented as such in the operating system. It is
this thinking that has motivated research in object-based oper-
ation system, and the use of objects in the command language
is merely an extension of this concept, independent of the use
of objects in the underlying system.

III. THE OBJECT HIERARCHY

Although the main impetus for this research was the design
of a command language for Hydra, the language that evolved
out of this effort is interesting in its own right. Cola objects
are useful not only as command language surrogates for objects
(capabilities), but also have many properties that make them
useful in models of computation [15] and in personal com-
puter languages [14], [22], [45]. Since an object is an active
piece of knowledge, one aspect of this research considered
structuring objects in ways that have been found to be use-
ful in structuring knowledge [32]. Although this aspect does
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not concern user interfaces directly, the mechanisms which
evolved were useful in a command language domain. Cola
uses a hierarchical ordering of classes coupled with an execution
semantics and binding mechanism to represent static and dy-
namic knowledge within the class structure.

A. Simula Subclassing

Simula, the first language to incorporate classes, used a sub-
classing mechanism to structure objects. A subclass is a refine-
ment of a class: it inherits all of the procedures and data
structures of its parent class, and augments these with its own
procedures and data structures. Subclasses can also be refined
further by their own subclasses, resulting in a tree structure.
An instance of a class contains the values of all the data struc-
tures defined in all of its defining classes. The subclassing
mechanism of Simula is a static, compile-time structure that
almost completely disappears in the runnable version of the
program. Smalltalk-76 has a similar mechanism that is partially
interpreted at runtime [19].

There are several advantages inherent in such a scheme. Since
the subclass inherits all of the traits of its defining class (its
superclass), the code for the superclass need not be duplicated.
Instead, the subclassuses all of the code it needs from its super-
class, and adds traits of its own. Thus the mechanism provides
a powerful structuring capability to thelanguage. Other advan-
tages, due to the message passing mechanism, will be discussed
shortly.

The disadvantages of subclasses stem from the decision to
place all of the data structures in the instance. Information
associated with a superclass is replicated in all of the instances
of that class. This arrangement complicates the modification
of data associated with a class located several levels above the
instance, and invokes the traditional consistency problems
associated with redundant data (such as how does one make
sure that all the instances of replicated data have been updated).
There is thus an asymmetry in the distribution of data struc-
tures and procedures in Simula: procedures are shared by all
subclasses of the class containing the procedure; data structures
are not shared at all, but exist separately in every instance
(note, however, that the names of the data structures are shared
in the same manner as procedures). The Cola subclassing
mechanism has been designed to allow the sharing of data
structures while retaining the advantages mentioned above.

The Cola subclassing mechanism orders all objects in a hier-
archical fashion. At the top of the hierarchy is the class (or
object, since all classes are objects) called OBJECT. OBJECT is
associated with a set of classes (called subclasses of OBJECT)
through the relation subclass. Similarly, each of these classes
is associated with oBJECT through the relation superclass.
Subclass is a many-to-one relation—a class can (and usually
does) have many subclasses. Superclass is a one-to-many rela-
tion—a class is restricted to having a unique superclass, but
several classes can have the same superclass. Thus the subclass-
superclass relation produces a tree structure of classes, as in
Simula, with the class OBJECT being the root node.

B. Naming

Associated with every class are three kinds of variables, per-
mitting flexibility in the placement of the values of the vari-
ables within the object hierarchy. These variables are class

variables, instance variables, and temporary variables. Class
variables are named in the class and are associated with values
that reside in the class. They correspond to Own variables, in
that their value is shared by all instantiations of the class. (In
Fig. 1, “B” is a class variable of “Three,” with value <0.05”.)
Instance variables, on the other hand, are named in a class,
but are associated with values that reside in the immediate
subclasses of the class. They correspond to the data structures
defined in Simula classes, except that the values are stored in
the next lower level, rather than in the leaves (i.e., the instances)
as in Simula. (“C” and “D” are instance variables of “Three,”
with values in “Four” and “Five.’’) Values for temporary
variables are created on every invocation of the object they are
associated with using the traditional stack discipline, and are
destroyed when the object returns. They correspond to vari-
ables designated as Local, Var, or Recursive in other languages.
(“E” and “ThisTemp” are temporary variables.) When a class
is defined, the names of these three types of variables are
declared. The name of the superclass must also be declared
when the class is defined.

C. Instances

Instances are objects that differ from classes in only one way:
there is no code associated with instances, whereas there must
be code associated with classes. This distinction is not necessi-
tated by the logical framework developed so far, but occurs
because of the way that classes are defined. The restriction
that results is that instances cannot create subclasses or subin-
stances. Therefore, instances appear as leaf nodes in the hier-
archy produced by the subclass-superclass relation. (In Fig. 1,
“Six” and “Seven” are instances, each containing values for
the instance variables declared in “Five.”)

Instances correspond to values of variables, where the type
of the variable is the superclass of the instance. Hence the
instance 3 has as a superclass the class INTEGER. The name
associated with the instance corresponds to the variable itself.

Since instances do not have any code associated with them,
they also do not have either class variables or temporary vari-
ables associated with them. Instances contain only the values
of instance variables declared in the superclass of the instance.

Most of the statements expressed in the remainder of this
section apply to all objects; where there exists differences for
classes and instances, the differences will be noted.

D. Execution Semantics and the Binding Mechanism

The control flow is tied to the object hierarchy and allows
procedures contained in a class to be shared by its subclasses
(the sharing mechanism will be detailed in the next section).
When an object is sent a message, the code for that object is
invoked. If there is no code associated with the object (i.e.,
the object is an instance), or if the class does not recognize the
message, then the superclass of the object is sent the same mes-
sage (called forwarding the message). This process continues
until some class recognizes the message, or the class OBJECT is
invoked (OBJECT recognizes every message and responds with
some default reply). A class recognizes a message by returning
a reply. As an example, if the instance “Seven” (in Fig. 1)
were sent a message, that message would be forwarded to the
class “Five.” If “Five” did not recognize the message, it would
be forwarded again.
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Class Name:
instance var value

(instance var name)

class var name

class var value (class var name)

instance var name

temp var name

Object:
Code for class
One: {
Template for Classes
A one instance variable named “A”
no code is shown for any of these classes
Two: Three:
False (A) True (A) values for “A"
B one class variable named ‘B’ whose value resides in the class
.05 - (B)
C; D two instance variables named “C"” and “D”
Four: Five:
2 C) 17 C) values for the instance variables declared in “Three"
red (D) blue (D)
F one class variable and its value
2 (F)
G; H two instance variables declared here
E ThisTemp one temporary variable declared here—space will
be allocated when “Five Is sent a message
S Seven h th tai | |
these are instances, hence they contain only values
False © Tr}‘e © for instance variabies declared in their superciass, “Five’
Monday (H) Friday (H)

Fig. 1. A class hierarchy with the data structures shown (the arcs represent the subclass-superclass relation).

The binding mechanism is also tied to the object hierarchy
and allows data structures to be distributed. The binding
mechanism is a combination of static binding (for class and
temporary variables) and dynamic binding (for instance
variables). When a class is defined, the names of the class,
instance, and temporary variables are given, as well as the code
to be associated with the class. The binding mechanism for
class variables appearing in the class code simply binds the
name to the value that residesin the class. Temporary variables
are bound to the storage allocated at the time of invocation.
The binding of temporary variables remains in effect until the
object returns a reply, at that time the storage is recovered and
the binding broken.

The binding mechanism for instance variables is more com-
plicated due to the possible forwarding of a message. If a
message is being forwarded froma subclass or instance, then the
instance variables are bound to the values which reside in that
subclass or instance. If the class was the class that was origi-
nally sent the message, then there are no values to bind to the
instance variables, and an error occurs if they are referenced.
For example, if “Seven” (in Fig. 1) were sent a message which
was forwarded to “Five,” then “Five” would have access to
the instance variable “G” bound to the value residing in
“Seven.” However, if “Five” is sent a message directly, there
is no value to bind to “G.” Cola provides ways to determine
if the current class was the one originally sent the message, and

to name the class that was sent the original message. It is thus
possible to associate different procedures with messages sent
to a class and messages sent to asubclass of the class (analogous
to triggers and traps, respectively, in KRL [4].)

The binding mechanism restricts the set of variables that may
be referenced by the code in any given class. Since definitions
must proceed in a top-down fashion (the superclass must be
specified in the definition of a class), it makes no sense for a
class to refer to a variable declared in one of its subclasses.
Similarly, variables declared in a separate branch of the hier-
archy are also inaccessible. To access a variable that is defined
in a superclass, the class must send a message to its superclass
requesting the value of the variable; this message is forwarded
up to the appropriate superclass, which responds with the
value of the desired variable. This process also applies to infor-
mation contained in classes that are above the object originally
sent the message, yet below the class currently dealing with
the message, since a request for that information can be sent
by a class to the class that was originally sent the message.

E. Automatic Inheritance and Shadowing

One of the ramifications of the execution semantics and the
data structuring is the automatic inheritance by a class of the
ability to respond to all the messages that the successive super-
classes of the class can respond to.

As an example, the class CAPA responds to the message ‘is 7’
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by returning the STRING ‘capability.” When the subclass
CATALOGUE is defined, it automatically inherits the ability
to respond to the message ‘is ?” by simply forwarding the mes-
sage up the capa. The subclasses FILE and TERMINAL also
inherit this ability, as well as all the other operations defined
in cAPA (and in the superclasses of cCAPA , including OBJECT).

The mechanism of automatic inheritance is very useful.
Simula [3] applied a form of automatic inheritance to build
up an entire sublanguage suited to the construction of simula-
tion programs. Most knowledge representation systems incor-
porate the concepts of prototypes (i.e., classes), entities (sub-
classes and instances), and property inheritance [47]. KRL
[4], for example, includes a subclassing mechanism with auto-
matic inheritance through the use of perspectives. However,
sometimes this mechanism is not desired, as in the case of a
subclass that needs to respond differently to a message than its
superclass. In Cola, one can override automatic inheritance
through the use of shadowing.

To illustrate shadowing, suppose that CATALOGUES were to
respond to the message ‘is ?” with the STRING ‘catalogue’
rather than ‘capability’ (the latter is correct, but the former is
more precise). One way to do this is to have CATALOGUE itself
respond to ‘is ?” without forwarding the message up to CAPA.
This enables cAPA to contain the commonality of its subclasses,
and enables any subclass to respond differently to any particu-
lar message if it sees fit to do so. A second example of shad-
owing is the handling of messages containing ‘vacate’. Most
subclasses of caPA do not recognize such messages, resulting
in these messages being forwarded up to cApa. However,
CATALOGUE responds to ‘vacate’ ifself, effecting a separate
system call, since a different semantics is associated with this
message when it is sent to a CATALOGUE.

The general mechanism can be summarized as follows: each
class represents static knowledge (in the form of class and
instance variables) and dynamic knowledge (in the form of the
ability to reply to certain messages). Subclasses and instances
automatically inherit the knowledge that is found higher in
the hierarchical tree, and augment this knowledge with further
knowledge. Through the use of shadowing, it is possible for
a subclass to respond differently to a particular message than
its superclass would have, thus making possible the expression
of exceptions without nullifying the knowledge that exists
higher in the tree.

IV. CONCLUSIONS

Essentially all of Cola has been implemented. The interpreter
is written in Bliss/11 [49], with Cola code augmenting the low
level objects. The static and dynamic structures are very similar
to Smalltalk-76 [19], even though they were designed inde-
pendently. It should be emphasized that Cola is an experi-
mental system and very little effort has gone into tuning the
implementation for efficiency.

There are several conclusions to be drawn from this effort.
A useful correspondence between the entities supported by
the command language (Cola objects) and those supplied by
the operating system (Hydra capabilities) has been achieved.
This correspondence is indeed “‘natural,”” in that there exist
facilities in the language that support typed objects and the
notion of operations (messages) that may be performed on

these objects just as the operating system does. It is argued
that the Cola paradigm can be successfully incorporated into
a command language for a conventional operating system, al-
though this premise has not been demonstrated concretely
with an implementation.

Arguments for the message passing (versus procedure call)
mechanism are less conclusive. At a basic level, this issue does
not apply, since a duality exists between message-oriented
languages and procedure-oriented languages just as it does in
operating systems [29], [36]. As an example, the command

A print

in Cola (which sends the object “A” the message print, causing
“A” to print a representation of itself on the terminal) is
equivalent to the statement

print(A)

in the CL, with the instance (in this case, “A”) passed as a
parameter. The entire message forwarding mechanism can be
simulated in Simula, although it must be done explicitly using
additional procedure calls.

The primary advantage of message passing is that it is simple
and does not impose a strict grammar on the language. The
latter is usually considered to be a disadvantage in general pur-
pose languages, but is convenient for a casual user interacting
with a system at a terminal instead of carefully composing his
or her programs before typing themin. A secondary advantage
of message passing is that the mechanism lends itself naturally
to multiprocess(or) systems [52]. Although C.mmp, on which
Cola runs, is a multiprocessor, this aspect was not dealt with
in the design.

The primary disadvantage of message passing is that it is in-
efficient when implemented in the obvious fashion. This
drawback is not as worrisome as might first be expected, for
several reasons. In a command language, efficiency is not a
primary concern, since, on the average, a relatively small
number of statements are executed as a result of a command
typed by the user [24]. It can be argued that a command
language procedure that is unacceptably slow should be re-
written in one of the languages supported by the operating
system [5]. In addition, the general message passing mech-
anism can be avoided most of the time in the interpreter (the
semantics of the language would, of course, still be defined
in terms of message-passing) by applyinga few relatively simple
transformations to the source before it is interpreted and by
designing the interpreter so that it uses the local state to cir-
cumvent the message assembly mechanism except for special
cases, primarily when an error occurs [23].

The object hierarchy, coupled with the message-passing and
-forwarding mechanism, has been shown to have several useful
attributes concerning the structuring of objects. Static knowl-
edge, in the form of class and instance variables, is stored as
high in the hierarchy as possible, eliminating redundancy at
lower levels. Similarly, dynamic knowledge, encoded in the
ability to respond to certain messages, is shared among many
classes and instances. The mechanism allows flexibility in
the placement of both procedures and data structures within
the hierarchy.

One disadvantage is the restriction that the values of instance
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variables declared in a class must reside in each subclass of the
class. This restriction can be removed by allowing more flexi-
bility in the sharing of names of data structures within the
object hierarchy. The names of class variables, for instance, are
not shared at all, since both the names and the values reside
in the class they were declared in. In Cola, the names (but not
the values) of instance variables are shared by the immediate
subclasses of the class they were declared in. In Simula, the
names of instance variables are shared by all the subclasses.
However, the optimal placement of the value (and the name)
of an instance variable depends to a large extent on the seman-
tics desired for the information contained in that variable (and
the sharing of the name of the variable), and mechanisms for
allowing more variability for the binding and storage of instance
variables need to be developed.

There are several other areas where additional research is
needed. It is not clear how one would incorporate multiple
process(or) concepts into the language. Several possible alter-
natives seem likely, including utilizing the message-passing
mechanism and/or allowing multiple objects to execute con-
currently, but the ramifications these various schemes have on
the language have not been investigated at all. More work is
necessary to make the paradigm of objects communicating via
messages a viable one in terms of efficiency (although much
has been done in this area by the Learning Research Group at
Xerox PARC [19]). Lastly, the techniques used to mirror the
abstractions provided by Hydra in the command language
should be applied to other operating systems, including more
conventional ones, in order to assess the applicability of these
concepts.
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A Symbol Table Abstraction to Implement
Languages with Explicit Scope Control

ROBERT P. COOK anp THOMAS J. LEBLANC

Abstract—We are concerned with languages in which the programmer
has explicit control over the referencing environment of a name. Sev-
eral modern programming languages, including Ada, Euclid, Mesa, and
Modula, implement these control capabilities. This paper describes a
simple technique which uses the traditional concepts of a hashed sym-
bol table and lexical level to solve many of the symbol table implemen-
tation problems associated with explicit scope control. The primary ad-
vantage of this technique is that a single symbol table abstraction can
be used to simply and efficiently solve most problems in scope control.

Index Terms—Lexical level, scope control, symbol table.
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I. INTRODUCTION

HE classical scope rule for block structured languages is

that an identifier is known in the block in which it is
first declared and in all the enclosed blocks in which it is not
redeclared. A block structure which maintains this rule is
referred to as an open scope since the current referencing
environment is automatically inherited by each new block.
The opposite extreme, in which no names are inherited, is
referred to as a closed scope.

Several modern programming languages, including Ada [9],
Euclid [5], Mesa [7], and Modula [11], allow a user to ex-
plicitly control the scope of an identifier. Scope control can
occur in many different forms. In Modula, the programmer
may optionally augment each block heading with a ““define”
or “use” list of symbols. If neither list occurs, the scope
is open; otherwise, the scope is closed, except for the listed
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