TXSchema: Support for Data- and
Schema-Versioned XML Documents

Faiz Currim, Sabah Currim, Curtis E. Dyreson, ShaileshiJésbhard T. Snodgrass,
Stephen W. Thomas, Eric Roeder

September 8, 2009

TR-91

A TIMECENTER Technical Report

Title TXSchema: Support for Data- and Schema-Versioned XML Docusne

Copyright © 2009 Faiz Currim, Sabah Currim, Curtis E. Dyresshailesh
Joshi, Richard T. Snodgrass, Stephen W. Thomas, Eric RoAdeights
reserved.

Author(s) Faiz Currim, Sabah Currim, Curtis E. Dyreson, Shailesh iJdgichard
T. Snodgrass, Stephen W. Thomas, Eric Roeder

Publication History September 2009, aiWie CENTER Technical Report

TIMECENTER Participants

Aalborg University, Denmark 3
Christian S. Jensen (codirector), Simosadtenis, Kristian Torp

University of Arizona, USA
Richard T. Snodgrass (codirector), Sudha Ram

Individual participants

Yun Ae Ahn, Chungbuk National University, Korea; MichaelBbhlen, Free University of Bolzano, Italy;
Curtis E. Dyreson, Utah State University, USA; Dengfeng Gl&M Silicon Valley Lab, USA; Fabio
Grandi, University of Bologna, Italy; Vijay Khatri, Indi@University, USA; Nick Kline, Microsoft, USA;
Gerhard Knolmayer, University of Bern, Switzerland; CarWartin, Technical University of Catalonia,
Spain; Thomas Myrach, University of Bern, Switzerland; KagaV. Nam, Chungbuk National University,
Korea; Mario A. Nascimento, University of Alberta, Canadahn F. Roddick, Flinders University, Aus-
tralia; Keun H. Ryu, Chungbuk National University, Koreagrihis Shasha, New York University, USA,;
Paolo Terenziani, University of Piemonte Orientale “Amed&ogadro,” Alessandria, Italy; Vassilis Tso-
tras, University of California, Riverside, USA; FushengyaSiemens, USA; Jef Wijsen, University of
Mons-Hainaut, Belgium; and Carlo Zaniolo, University ofli@ania, Los Angeles, USA

For additional information, see ThaMeE CENTER Homepage:
URL: <http://www.cs.aau.dk/TimeCenter>

Any software made available viaMe CENTER s provided “as is” and without any express or implied war-
ranties, including, without limitation, the implied wamty of merchantability and fitness for a particular
purpose.

The TIMECENTER icon on the cover combines two “arrows.” These “arrows” attels in the so-called
Runealphabet used one millennium ago by the Vikings, as well athby precedessors and successors.
The Rune alphabet (second phase) has 16 letters, all of whighangular shapes and lack horizontal lines
because the primary storage medium was wood. Runes mayeafsaitd on jewelry, tools, and weapons
and were perceived by many as having magic, hidden powers.

The two Rune arrows in the icon denote “T” and “C,” respedyive

Contents
Table of Contents
List of Figures
List of Tables
Listings

Abstract

1 Introduction

| Supporting Temporal XML Documents
2 Motivation

3 Background

3.1 XML .. e
3.2 TemporalDatabases

4 Design Goals and Design Decisions

4.1 Terminology
42 Desiderata
43 DesignGoals e
4.4 DesignDecisions
441 GeneralDecisions 0.
4.4.2 Temporal DocumentDecisions

4.4.3 Temporal Schema Document Decisions

5 Theoretical Framework

5.1 Snapshot Validation Subsumption
5.2 Content and Existence Variance
53 ltems
5.4 Versions

6 Extending Temporal XML Schema Constraints

6.2 Temporal Augmentations to the XML Schema Constraints

6.1 XML SchemaConstraints.
6.1.1 Identity Constraints
6.1.2 Referential Integrity Constraints
6.1.3 Cardinality Constraints
6.1.4 Datatype Restrictions
6.2.1 ldentityConstraints

4.4.4 Annotation Document Decisions
45 Company Example

4.5.1 |Initial Configuration

45.2 Adding TemporalData

Vii

Xiii

11
11
14

17
17
18
18
20
20
22
22
23
27
29
31

33
33
33

34

36

39
39
39
40
41
41
42

6.2.2 Referential Integrity Constraints 49

6.2.3 Cardinality Constraints e e 50
6.2.4 Datatype Restrictions (Constraints)ocoo oL 55
7 Support for Bitemporal Data 57
8 Architecture 75
9 Tools and Algorithms 81
9.1 Implementation Primitives e e e 81
9.1.1 ThepushUpFunction 81
9.1.2 ThepushDown Function 88
9.1.3 Thecoalesce Function 88
9.2 SCHEMA MAPPER . . . o o i it e e e e e e e e e e 94
9.3 TXMLLINT . . o o 97
9.4 SQUASH o e e 100
9.5 UNSQUASH o o o e 100
9.6 RESQUASH e 100
10 Example Schema and Instance Documents 105
10.1 WinOlympic Example e e 105
10.2 Company Example e e e 109
Il Supporting Schema Versioning of XML Documents 119
11 Introduction 121
12 Motivation 123
12.1 Company Example Extended e 123
12.2 Changing Schemas e 123
12.2.1 Introducing Subschemas e 125
12.2.2 Adding Logical Annotations e 127
12.2.3 Temporal Subschemas e 128
12.2.4 Namespace Changes i i it 129
12.2.5 Multiple Conventional Schemas 131
13 Review of Related Work 135
14 Design Decisions 137
15 Approach 139
15.1 Supporting Versioned Schemas e e 139
15.2 Validating Against a Time-Varying Schema 143
16 Theoretical Framework 149
16.1 Accommodating EvolvingKeys e 149
16.2 Accommodating Gaps e e 151
16.3 Semantics for mixed data and schemachanges 153
16.4 Non-Sequenced Constraints e e 154

17 Implementation
17.1 OVEIVIEW e e
17.2 7XMLL INT . . o e e
17.3 Tool Modifications and EXtensions i e
17.4 Schema\Versioning e e e e
175 Packages e e e i

18 Representations
18.1 Schema Versioning Considerations huw e
18.2 DeSign SPace e e e
18.3 Slice-Based Representation e
18.4 Edit-Based Representation e
18.4.1 Capturing Namespaces o v i i e
18.4.2 SchemaVersioning e e e e
18.5 Item-Based Representation L e
18.5.1 Capturing Namespaces v v v i it e e
18.5.2 Schema\Versioning e e e
18.6 Functionality Placement: Schemavs. Tools
18.6.1 Constraints e e
18.6.2 Sequenced Constraints e e
18.6.3 Non-sequenced Constraints e
18.6.4 Functionality of Other Representation Classes
18.6.5 Placement of Functionality
18.7 Evaluation of Representation Classes
18.7.1 Motivation e
18.7.2 Methodology e
18.7.3 Initial Sensitivity to Parameters o . oo
18.7.4 UASHResUlts e
18.7.5 7TXMLLINTResults
18.7.6 INSQUASHResuUlts e
18.7.7 Representation Conclusions and Recommendations.....

19 Example Schema and Instance Documents
19.1 Conventional Schemas e
19.2 Annotations L e e e
19.3 Conventional Documents e
19.4 Temporal Schema e
19.5 Representational Schemas e
19.6 Temporal Document e e

[Common

20 Overall Conclusions and Future Work

157
157
157
158
159
163

207

209

21 7XSchema Reference 215

21.1 ConventionS e e e e e 215
21.2 TSSchema e e 215
21.3 ASchema e 215
21.4 TDSchema e e 216
21.5 MDSchema e e 216
Acknowledgements 241
Bibliography 243
A Base Schemas 251
A.1 TSSchema: Schema for Temporal Schema 251
A.2 ASchema: Schema for Annotation Schema 251
A.3 SliceSequenceSchema: Schema for Slice Sequences 256
A.4 TDSchema: Schema for Temporal Document 256
B Evaluation Tools 257
B.1 Slice Generator e e 257
B.2 Scenario Tester e e e 261
C Initial Sensitivity to Parameters 263

List of Figures

1

No ok wN

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

An XML document, which references an XML Schema, beingdaéd by XMLLUNT.
The solid lines going into XMLINT indicate that the documents are explicitly input into

thetool. e 19
An overview of the end-state of the Company example. 31
Snapshot Validation Subsumption L 34
ltemsand Versions e 36
Mortgage being handled by other company. No customer 58
Eva purchased the flaton January 10 59

A bitemporal time diagram corresponding to Eva purchasiedlat, performed on January

10 . e 60
Peter buys the flat, performed on January 15 60
Peter buys the flat, performed on January 15 61
Peter sells the flat, performed on January 20 62
Peter sells the flat, performed on January 20 63
Discovered on January 23: Eva actually purchased therfldaiouary 3 64
Discovered on January 26: Eva actually purchased therfldaouary 5 64
Discovered on January 23: Eva actually purchased therfldaouary 3 65
Discovered on January 26: Eva actually purchased therfldaouary5 66
January 28: Peter actually purchased the flat on January.12. 67
January 28: Peter actually purchased the flat on January.12. 68
Transaction TIme Regions e 69
Transaction-time splitting of regions 0. 70
Overall Architecture of XSchema 77
T7XMLL INT: Checkingtheschemas 78
7XMLL INT: Checking theinstance 78
Example opushUp 83
Example opushUp: Continued 83
Example opushUp: Continued 84
Example opushUp: Continued e 84
ExampleopushUp 86
Algorithm:pushUp 87
Algorithm: pushDown e 89
Algorithm: mergeVersions i e e 90
Algorithm:coalesce 90
Example opushDown e 91
Example opushDown: Continued 92
Example opushDown: Continued 92
Example otoalesce e 93
Algorithm: SCHEMA MAPPER o o e e e e e e e e e e e e e e e e 96
Validating a document with Time-VaryingData 97
T7XMLL INT —Checkingthe Schema 98
T7XMLL INT —Checkingthelnstance 98
Algorithm: 7XMLL INT 99
Algorithm: SQUASH L 101
Algorithm: UNSQUASH e e e e e e e 102
Algorithm: RESQUASH e e e e e e e e 103

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68

69

70

71
72

Squash/UnSquash/ReSquash Commutativity Diagram 104
An overview of the end-state of the Company example. e oo 123
Each conventional schema has a separate corresponulipgrt schema 138
Overall Architecture of XSchema 140
Validating a Document with Time-VaryingData 142
T Diagram of Validation e 144
Validating a Document with a Time-Varying Schema 145
Gluingand Bridging e e 149
CrossWallGluing e e 151
Cross-Gap Gluing e e 153
Non-Sequenced Constraints e e 155
Overview class diagram forthetools 158
Detailed class diagram fteu.xml 159
Detailed class diagram ftau.time 160
Algorithm: 7XMLL INT e e e 161
SQUASH before abstract factory methods were added. 162
SQUASH after abstract factory methods were added. 162
Validating a document with Time-Varying Data and a Tineyhg Schema. 162
The overall architecture @fiXSchema. 173
Validating a document with Time-Varying DateX MLL INT. 173
Time required to squash a temporal document. The threg d¢alors correspond to the

different representation types. Each band stretchessaf50$0, 20, 50} elements per slice. 184

Time required to squash a temporal document. Here, the tinrrespond to different doc-
ument sizes, shown in number of elements.o ... 184
The main methods (in terms of time) entered during thewgi@tof SQUASH. 185
Size of the resulting temporal document. Note the diffeseales on thg-axis. 185
Time required to validate the temporal document. Noteliffierent scales on the time axis;

the edit-based scheme takes orders of magnitude longer. 186
Time required to validate the temporal document. Notadtfierent scales on the -axis.

The slice-based scheme can handle roughly four times théewof slices within the same

time period. e 186
The amount of time required to extract all slices from aperal document. Note the
differentz andy axes. e 187
Time required to squash 10 slices, each with about 10 elfisme. 263
Time required to squash 100 slices, each with about 200egits (20 slices with 20 ele-
ments in the case of the item-based scheme) 263

Vi

List of Tables

a s wN Pk

~N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

plisconstant e e e e 27
pl andp2 are “varying without gaps” 28
pl andp2 are “varying withgaps” e 92
The design space of temporal representations and théimgstlasses. 165
The classes of constraints that can be implemented in esepational schema in the gen-
eralcase. e 174
The independent variables considered in the experiments. 182
The dependent variables measured in the experiments. c..... 182

The execution times (in seconds) i@@$ASH for each task, broken up by representatlon

type and shown for three different input sets. In these rlvesamount of change was set to

.32 and the type of change was se{®%, 25%). 185
The overall results of the analysis. TRankcolumns indicate the performance of this rep-
resentation when compared to the other two (e.g., a ra@k@#ans it was the second best).
TheRatiocolumn indicates how much worse this representation peddrcompared to the

top ranking representation, measured as the average etti@én the two representations. 188

TSSchema: Sub-elementstemporalSchema 217
SliceSequence: Sub-elements of multiple elements 218
TSSchema: Sub-elementsitgimidentifierCorrespondence 219
ASchema: sub-elementsarfinotationSet o oL 220
ASchema: Sub-elementslofiical L 221
ASchema: Sub-elementsitdm L 222
ASchema: Sub-elementsitdm ,cont. 223
ASchema: Sub-elementsigmlidentifier L oL oL 224
ASchema: Sub-elements\ddlidTime element withitem 225
ASchema: Sub-elementsattribute o oo oL 226
ASchema: Sub-elementsadfaultTimeFormat 227
ASchema: Attributes and sub-elementsfonSeqUnique 228
ASchema: Attributes and sub-elementsfonSegKey 229
ASchema: Attributes and sub-elementsuoiqueNullRestricted 230
ASchema: Attributes and sub-elementsrfonSegKeyref 231
ASchema: Attributes and sub-elementsdardConstraint 232
ASchema: Attributes and sub-elementstfansitionConstraint 233
ASchema: Sub-elementsgiysical oL 234
ASchema: Sub-elementssiBmp e 235
ASchema: sub-elementsafderBy 236
TDSchema: Sub-elementstemporalDocument 237
MDSchema: Sub-elementsmBppings 238
MDSchema: Sub-element ofdValue andnewValue 239

Vii

viii

Listings

O O ~NOOTHA WN P

el ol
WN RO

A DDA WWWOIUOIWWWWWWWNDNDNDNNMNNNNNRERERRERRERLPRE
OB WOWNPOOONWOUPRMRWNPOOONOUUPA,WNREPOOOWLWNOO O M

A fragment ofwinter.xml on2002-01-01 7
Kjetil won a Silver medal, as a&f002-03-01, 7
Kjetil won a Gold medal, as &f002-07-01 7
Snippet of a Temporal Document e 8
winOlympic.xsd e e e e e 8
Conventional XML Schema syntax to include a portion of ocfeesna into another. 19
7XSchema syntax to include a portion of one temporal schetoaaimother. 19
One way to represent two conventional documents. 19
Another way to represent two conventional documents. K
A temporal schema references an annotation documens titee|f temporal 20
The temporal schema should be as simple as possible. 20
exampleTemporalDocument.xml 22
Company. AXsd 30
data.A.0.xml . . 30
data. A.l.xml .. 31
temporalDocument.0.1.xml . . L 32
Sample Identity Constraint Definition 40
Sample Referential Integrity constraint 40
Cardinality definitions using XML Schema 41
XML Schema data type definition e 42
Initial State forproductNo attribute o oo 44
Changed State f@roductNo attribute L. 44
Conventional Uniqueness constraint for employee emails. 45
Non-sequenced unigueness constraint on employee emails 45
Non-sequenced uniqueness constraint withina singléoge®. 45
Orders with an optionaleliveredOn, 51
Considering Aggregation Levelsforarder 51
property.Xsd e 57
property _logical _annotation.xml L L 58
property _physical _annotation.xml L. 58
Property information, noownerdetails L. 58
Data corresponding to Valid timeofJan1-10 59
Data corresponding to Valid time of Jan10onwards 59
Transaction Timg1-15, UC) ,Valid Time[01-01, 01-10) 61
Transaction Timg1-15, UC) ,Valid Time[01-10, 01-15) 61
Transaction Timg1-15, UC) ,Valid Time[01-15, F) 61
Transaction TIm@1-10, 01-15) 62
Transaction Timg1-20, UC) , Valid Time[01-01, 01-10) 63
Transaction Timg1-20, UC) ,Valid Time[01-10, 01-15) 63
Transaction Timg1-20, UC) , Valid Time[01-15, 01-20) 63
Transaction Timg1-20, UC) ,Valid Time[01-20, F) 63
Transaction Timg1-23, UC) ,Valid Time[01-01, 01-03) 65
Transaction Timg1-23, UC) ,Valid Time[01-03, 01-05) 65
Transaction Time 23rd - UC, Valid Time 15th-20th 65
Transaction Timg1-23, UC) ,Valid Time[01-20, F) 65
Transaction Timg1-26, UC) ,Valid Time[01-01, 01-05) 66

iX

46
47
48
54
49
50
51
52
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Transaction Timg1-26, UC) , Valid Time[01-05, 01-15) 66

Transaction Timg1-26, UC) ,Valid Time[01-15, 01-20) 66
Transaction Timg1-26, UC) ,Valid Time[01-20, F) 66
Transaction TImg1-20, 01-23) e e 67
Transaction Timg1-28, UC) ,Valid Time[01-01, 01-05) 68
Transaction Timg1-28, UC) ,Valid Time[01-05, 01-12) 68
Transaction Timg1-28, UC) , Valid Time[01-12, 01-20) 68
Transaction Timg1-28, UC) ,Valid Time[01-20, F) 68
Transaction TImg1-26, 01-28) e 69
Transaction TIm@1-20, 01-23) 70
Temporal Document along both valid-time and transadime 71
Temporal Document along both valid-time and transagiioe. Continued 72
Temporal Document along both valid-time and transadiime. Continued 73
Sample WinOlympic Logical Annotation 76
Sample WinOlympic Physical Annotation 76
Conventional Schema e 82
Logical Annotation e e e 82
Physical Annotation e e 82
Conventional schema. L e 105
Conventional document on 1 January 2002. 106
Conventional documenton 1 March 2002. 106
Conventional documenton 1 July 2002.o 107
Temporal schema. e e e 107
Annotation document. L e e e 107
Temporal document. e e e 109
Conventional schema. e 109
Conventional document on 29 March 2004. oo 110
Conventional document on 30 March2004. o oo 111
Conventional documenton 31 March2004. 0 oo 112
Temporal schema. e e e 112
Annotation document. L e e 113
Temporal document. e e e e 114
Squashed document. e 114
Company.B.xsd e 124
data.B.1.xml e 124
temporalSchema.0.xml 124
temporalDocument.1.1.xml . . L 125
Company.C.xsd e e 125
Person.C.0.xsd L e 125
Product.C.0.xsd 126
data.C.2.xml . . . e 126
temporalSchema.l.xml 126
temporalDocument.1.2.xml . . L 126
annotations.0.xml . . L 127
temporalSchema.2.xml 127
temporalDocument.2.3.xml . . L e 127
Person.D.1.xsd e 128
Company.D.xsd e e 128

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
139
140
141
142
143
144
146
147

data.D.3.xml . .. e 128
temporalSchema.3.xml 129
temporalDocument.3.3.xml ... L 129
Company.E.xsd e e 130
Product.E.1.xsd 130
data.E.3.xml 130
temporalSchema.4.xml L 131
temporalDocument.4.3.xml . . 131
ProductTemporalSchema.xml 132
PersonTemporalSchema.xml 132
Company.F.xsd e 132
temporalSchema.5.xml 133
temporalDocument.5.3.xml . .. 133
Aschemausinginclude> 137
anno.xml .. e 137
<ExperimentClass> elementinversion3.1 140
A Temporal Schema forHARMGKB: temporalschema.xml 142
An excerpt from the time-varying Temporal Schema fenRMGKB 143
A portion of a temporal documemep.xml) 146
Slice on 2008-01-01. e 166
Slice 0N 2008-03-17. e e 166
Slice-based representation. e 166
Edit-based representation. e 166
ltem-based representation. e 167
Reference-based representation. e e 167
diff OUIPUL. e e 168
Edit-based encoding. e e 168
Original document. e e 168
Parsed and output by DOM. e 168
Original document. e e e 168
After filterand DOM mangling. e 168
Edit-based representation with schema versioning. 169
Slice on 2008-01-01. e e 170
Slice 0N 2008-03-17. e e 170
Item-based representation of Listings 129and 130. 170
Slice on 2008-01-01. o e 171
Slice on 2008-03-17. e e 171
Iltem-based representation of Listings 132and 133. 171
Version 1 of asimple schema. 172
Version 2 of asimple schema. e e 172
XML Schemacunique> e e 175
Uniguecode s (slice 1). o e 175
Slice 2 (invalid). e 175
Slice3(valid). e e e 175
Squashed version of the three slices., 175
XML Schemacunique> with additional fields. 176
Squashed document with multiple changes 176
Areferential constraint. L 177

Xi

148
149
150
151
152
153
154
155
156
157
158
159
137
138
145
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

Squashed document. e 177
Conventional schema 1. L e 178
Representational schema 1. 178
Conventional schema 2. e 178
Representational schema 2. e 178
Datatype conventional schema. aa 178
Datatype rep. schema. e e 178
Squashed version. One day equals one unitoftime. 179
ltem-based temporal representation #1. oL 179
Non-sequenced representational schema#1. 179
ltem-based temporal representation #2. o0 180
Non-sequenced representational schema#2. 180
Representational schema. e e 189
Temporal document. L e 190
Squashed document with multiplechanges 190
Conventional schemaon 1 January 2002. e i i v v v v 191
Conventional schemaon 1 January 2005. 191
Annotation document on 1 January 2002. e e e 192
Annotation document on 1 January 2005. e e o 193
Conventional document on 1 January 2002. 194
Conventional documenton 1 January 2003. 194
Conventional document on 1 January 2005. 195
Conventional document on 1 January 2006. 196
Temporal Schema. e e 196
Representational schema for 2002-01-01 to 2005-01-01.. 197
Representational schema for 2002-01-01 to 2005-01-01.. 199
Final Representational schema.t 201
Temporal Document. e e 202
Squashed document. L e e 202
TSSchema.xsd e 251
ASchema.xsd e 251
SliceSequence.xsd 256
TDSchema.xsd e 256
Slice Generator SCript e e 257
AlIRUNS SCript o e e e e e 261

Xii

Abstract

The W3C XML Schema recommendation defines the structure atadtybes for XML documents.
XML Schema lacks explicit support for time-varying XML daoents or for time-varying schemas. An
XML document evolves as it is updated over time or as it acdatas from a streaming data source. A
temporal document records the entire history of a docunathér than just its current state or snapshot.
Capturing a document’s evolution is vital to providing thelity to recover past versions, track changes
over time, and evaluate temporal queries. Capturing thkigen of a document’s schema is similarly
important. To date, users have to resort to ad hoc, non-atdrmdechanisms to create schemas for
time-varying XML documents and to deal with evolving schema

This report presents a data model and architecture, caf&thema, for constructing and validat-
ing temporal XML documents through the use of a temporal meheA temporal schema guides the
construction of a temporal document and is essential to giagaquerying, and validating temporal
documents. The temporal schema consists of a non-temmpamaléntional) schema, logical annota-
tion(s), and physical annotation(s). The annotationsigpetich portion(s) of an XML document can
vary over time, how the document can change, and where timgst should be placed. These com-
ponents can themselves individually evolve over time. Tiheaatage of using annotations to denote
the time-varying aspects is that logical and physical datkependence for temporal schemas can be
achieved while remaining fully compatible with both exigfiXML Schema documents and the XML
Schema recommendation. This report also describes howsircat a temporal document by “gluing”
individual snapshots into an integrated history.

This technical report is divided into three parts: conaagimstance versioningextending taschema
versioning and reviewing the entireXSchema language. The first two parts have a parallel struc-
ture. Each begins by discussing relevant related work befowviding a motivating example that illus-
trates the challenges of instance and schema versionsmgcetvely, then lists design decisions made in
TXSchema concerning that challenge. Theoretical condidesa(separately for instance and schema
versioning), architectural considerations, and impletation details are discussed in that order in each
of the two parts. Each part ends with full example schemamstdince documents. The third part com-
pletes the picture with a discussion of related work andanes$etopics to be considered in the future.

Xiii

XV

1 Introduction

XML is becoming an increasingly popular language for docot®eand data. XML can be approached
from two quite separate orientations:dacument-centeredrientation (e.g., HTML) and data-centered
orientation(e.g., relational and object-oriented databases). Scheneaimportant in both orientations. A
schema defines the building blocks of an XML document, sudhesgypes of elements and attributes. An
XML document can bealidatedagainst a schema to ensure that the document conforms torthatfing
rules for an XML document (is well-formed) and to the typdengents, and attributes defined in the schema
(is valid). A schema also serves as a valuable guide for quegergnd updating an XML document or
database. For instance, to correctly construct a query, ia.gkQuery, a user will (usually) consult the
schema rather than the data. Finally, a schema can be helgfukry optimization, e.g., in constructing a
path index [54].

Several schema languages have been proposed for XML [49im lemong these languages, XML
Schema is the most widely used. The syntax and semantics &f S¢éhhema 1.0 are W3C recommenda-
tions [80, 78].

Time-varying data naturally arises in both document-aenteind data-centered orientations. Consider
the following wide-ranging scenarios. In a university,d&nts take various courses in different semesters.
At a company, job positions and salaries change. At a wasghaoventories evolve as deliveries are made
and good are shipped. In a hospital, drug treatment regimeeadjusted. And finally at a bank, account
balances are in flux. In each scenario, querying the curtatd & important, e.g., “how much is in my
account right now”, but it also often useful to know how théadhas changed over time, e.g., “when has
my account been below $200".

A temporal document records the evolution of a document tweg, i.e., all of the versions of the
document. Capturing a document’s evolution is vital to suppg time travel queries that delve into a past
version [70] and incremental queries that involve the cleargetween two versions.

In this report we consider how to accommodate time-varyiatadvithin XML Schema. An obvi-
ous approach would have been to propose changes to XML Scteeawommodate time-varying data.
Indeed, that has been the approach taken by many reseafoch#he relational and object-oriented mod-
els [56, 62, 71]. As we will discuss in detall, that approaaherently introduces difficulties with respect to
document validation, data independence, tool supportstamtiardization. So in this report we advocate a
novel approach that retains the non-temporal XML Scheméfdocument, utilizing a series of separate
schema documents to achieve data independence, enabtivdulinent validation, and enable improved
tool support, while not requiring any changes to the XML Sohestandard (nor subsequent extensions of
that standard; XML Schema 1.1 is in development).

We present a system, call@@mporal XML Schemaor 7XSchema, for constructing and validating
temporal documents:XSchema reuses XML Schema while adding the ability to dedggywhich element
types can vary over time. A temporal schema also describgsdassociate time-varying elements across
snapshots and provides some temporal constraints thatlproaaracterize how an element can change
over time.

Coupled with therXSchema schema specification language is an architectdrasmociated tools for
constructing schemas for temporal XML documents. A tempdogument records the evolution of a
document over time, i.e., all of the versions of the documeKiSchema has a three-level architecture for
specifying a schema for time-varying data . The first levéhésschema for an individual version, called the
conventional schemar snapshot schemarlhe snapshot schema is a conventional XML Schema document.
The second level is thiegical annotationsof the conventional schema, which identify which elements
can vary over time. For those elements, the logical anmotsitalso effect a temporal semantics to the
various integrity constraints (such as uniqueness) spddifi the conventional schema. The third level is
the physical annotationsThe physical annotations describe how the time-varyimgets are represented.

The conventional schema and logical and physical annatatioe collected together in an XML document
termed a temporal schema. Similarly, the individual timees are combined into one XML document,
termed the temporal document, which serves as the XML instaA temporal validator takes a temporal
schema and a temporal document and validates both.

Each annotation can be independently changed, so theemriting exhibitsogical and physical data in-
dependencgl4]. Data independence allows XML documents using oneesagrtation to be automatically
converted to a different representation while preserniimgsemantics of the dataXSchema is accompa-
nied with a suite of auxiliary tools to manage temporal doente and schemas. There are tools to convert
a temporal document from one physical representation téferelt representation, to extract a time slice
from that document (yielding a conventional static XML doeent), and to create a temporal document
from a sequence of static documents, in whatever reprdganthe user specifies.

As mentionedy XSchemaeusegather than extends XML SchemaXSchema is consistent and com-
patible with both XML Schema and the XML data model. A1KSchema, a temporal validator augments
a conventional validator to more comprehensively checkvdiiglity constraints of a document, especially
temporal constraints that cannot be checked by a convethiiaviL Schema validator. We describe a means
of validating temporal documents that ensures the desinatdperty of snapshot validation subsumption.
We show in Section 18.7 how a temporal document can be snaaitefaster to validate than the associated
XML snapshots.

TXSchema focuses on bothstance versioningrepresenting a time-varing sequence of XML instance
documents) andchema versionin@representing a time-varying schema document [33, 69]g Sdhema
can describe which aspects of an instance document chaegéroe; this schema can itself be a temporal
(time-varying) document. The temporal schema referencesrgains these annotations. All three compo-
nents, (1) the conventional schema, (2) the logical anioostand (3) the physical annotations, can change
over time. The temporal validator and associated tools laleeta contend with both instance and schema
versioning.

Intensional XML datdalso termed dynamic XML documents [1]), that is, parts of X&bcuments that
consist of programs that generate data [58], are gaininglpdfy. Incorporating intensional XML data is
beyond the scope of this report.

While this report concerns temporal XML Schema, we feel thatgeneral approach of separate log-
ical and physical annotations is applicable for introdgdiemporal aspects to other data models, such as
UML [61]. The contribution of this report is two-fold: (1) iroducing a three-level approach for logical data
models and (2) showing in detail how this approach works felbS&Schema in particular, specifically con-
cerning a theoretical definition of snapshot validationssubption for XML, validation of temporal XML
documents, and implications for tools operating on raalXML schemas and data, thereby exemplify-
ing in a substantial way the approach. While we are confideitthe approach could be applied to other
data models, designing the annotation specifications,idemsg the specifics of data integrity constraint
checking, and ascertaining the impact on particular tamisifdifferent data model remain challenging (and
interesting) tasks.

This technical report is divided into three parts. The fiestt goncernsgnstance versioninghe second
part extends the approach to supmmtiema versioningand the last part summarizes the entikSchema
language.

The first two parts have a parallel structure. Each beginsidgudsing relevant related work before
providing a motivating example that illustrates the chadles of instance and schema versioning, respec-
tively, then lists design decisions maderiiSchema concerning that challenge. Theoretical condidasa
(separately for instance and schema versioning), artchitdcconsiderations, and implementation details
are discussed in that order in each of the two parts. Eactepdd with full example schema and instance
documents.

Part Ill completes the picture with a discussion of relatentknand research topics to be considered in

2

the future. It ends with a summary of thiXSchema language design, detailing all of the new elemerts a
attributes defined in the language or in instance documkatsate instance- or schema-varying.

An appendix gives the four XML schemas that in concert withtibols comprise XSchema. A sum-
mary of these schemas and the semantics of their items ig ird8chema Reference.

Part |
Supporting Temporal XML Documents

In this part, we consider how to suppaldta versioning, that is, a time-varying XML document. The next
part will considerschema versioningn which the schema also varies over time.

We first provide a motivating example, that of the history twé ¥Vinter Olympic games. Such a doc-
ument changes through the adding of new information valia later time and the correction of previous
information.

We then consider prior work in schemas for XML and in tempdegthbases.

Section 4 provides terminology, design desiderata andgaatl comprehensive discussion of the over-
arching design decisions, illustrated with a Company XMktuwoent.

We then turn to a deeper discussion of the language desightHipugh a theoretical framework and
then through a detailed examination of extending conggamXML schemas into temporal constraints.
Section 7 considers adding transaction time to the mix aedfdhowing sections describe the overall
architecture and the various tools that suppoXiSchema and the spectrum of possible representations
of time-varying data.

We end with full listings of the WinOlympic and Company exdes

2 Motivation

Over a decade of work has been invested in the developmenibf Schema. Before we undertake the
task of presenting an approach to extend XML Schema, we fégliinportant to consider its ability to
support temporal data. In this section, we discuss whethrerentional XML Schema is appropriate and
satisfactory for time-varying data. We present an exanipe itlustrates how a time-varying document
differs from a conventional XML document. We then pinpoiaire of the limitations of the XML Schema
in supporting temporal documents and data. This allows usdtivate desired properties of schemas for
time-varying documents. We end with a discussion of somlenedd applications that would benefit from
document and schema versioning supported by-¥X@chema framework.

Assume that the history of the Winter Olympic games is dbscrin an XML document calledinter -
xml . The document has information about the athletes thatjjzate, the events in which they participate,
and the medals that are awarded. Over time the documentésieédiadd information about each new Win-
ter Olympics and to revise incorrect information. Assume thformation about the athletes participating
in the 2002 Winter Olympics in Salt Lake City, USA was added 28602-01-01 . On2002-03-01
the document was further edited to record the medal winnEmsally, a small correction was made on
2002-07-01

To depict some of the changes to the XML in the document, wesan information about the Nor-
wegian skier Kjetil Andre Aamodt. OA002-01-01 it was known that Kjetil would participate in the
games and the information shown in Listing 1 was addeditger.xml . Kjetil won a medal; so on
2002-03-01 the fragment was revised as shown in Listing 2. The edi2002-03-01 incorrectly
recorded that Kjetil won a silver medal in the Men’s Combinkgtil won a gold medal. Listing 3 shows
the correct medal information.

Listing 1: A fragment ofwinter.xml on2002-01-01

<at hl et e>

<at hNanme>Kjetil Andre Aamodt</ at hNane>
</ athl ete>
Listing 2: Kjetil won a Silver medal, as -03-01
m<at hl et e>
<at hName>Kjetil Andre Aamodt</ at hName> won a nedal in_

<medal mtype ="silver">Men _'s Combined </ nedal >
</ athl ete>

Listing 3: Kjetil won a Gold medal, as &002-07-01

<at hl et e>

<at hName>Kjetil Andre Aamodt</ at hName> won a nedal in_
<medal mtype ="gold">Men_'s_ Combined </ nedal >
</ athl ete>

A time-varying document recordsvarsion history, which consists of the data in each versitonc
with the timestamps indicating the lifetime of that versidmsting 4 shows a fragment of the time-varying
document that captures the history of Kjetil. The fragmsgbimpactn the sense that each edit results in a
small, localized change to the document. In Listing 4tthasaction-timdifetimes of each element are rep-
resented with an optionattv:.timestamp _TransExtent> sub-element. If the timestamp is missing,

the element has the same lifetime as its enclosing elememnteXample, there are twoathlete> ele-
ments with different lifetimes since the content of the edatrhas changed. The last versiorathlete>

has two<medal> elements because the medal information is revised. Therenany different ways to
represent the versions in a time-varying document; the odstlliffer in which elements are timestamped,
how the elements are timestamped, and how changes areafec$e.g., perhaps only differences between
versions are represented).

Listing 4: Snippet of a Temporal Document

<athl ete_Repltenr
<at hl et e_Versi on>
<tv :timestanp_TransExtent begin ="2002-01-01" end _ ="2002-03-01"/>
<at hl et e>
<at hNanme>Kjetil Andre Aamodt</ at hName>
</ at hl et e>
</ at hl et e_Versi on>
<at hl et e_Versi on>
<tv :timestanp_TransExtent begin ="2002-03-01" end _ ="9999-12-31"/>
<at hl et e>
<at hNanme>Kjetil Andre Aamodt</ at hName>won a nedal in_
<medal Repltem >
<medal Version >
<tv :tinestanp_TransExtent begin ="2002-03-01" end _ ="2002-07-01"/>
<medal mtype ="silver">Men _'s Combined </ nedal >
<medal Version >
<medal Version >
<tv :tinestanp_TransExt ent begin ="2002-07-01" end ="9999-12-31"/>
<medal mtype ="gold">Men_'s Combined </ nedal >
<medal Version >
</medal Repltem >
</ at hl et e>
</ at hl et e_Versi on>
</ athl ete_Repltenr

Keeping the history in a document or data collection is udedgcause it provides the ability to recover
past versions, track changes over time, and evaluate tatgpegries [36]. But it also changes the nature of
validation against a schema. Assume that thewileOlympic.xsd contains theonventional schema
for winter.xml . The conventional schema is the schema for an individuaimer The conventional
schema is a valuable guide for editing and querying ind&idersions. A fragment of the schema is given
in Listing 5. Note that the schema describes the structutbefragment shown in Listing 1, Listing 2,
and Listing 3. The problem is that although individual versi conform to the schema, the time-varying
document does not. SWnOlympic.xsd cannot be used (directly) to validate the time-varying coent
of Listing 4.

Listing 5: winOlympic.xsd

<el ement name="athlete">
<conpl exType mixed ="true">

<sequence>
<el ement name="athName" type ="string"/>
<el enent ref ="medal" minOccurs ="0" maxOccurs ="unbounded"/>
<el ement name="birthPlace" type ="string" minOccurs ="0"

maxOccurs ="1"/>
</ sequence>
<attribute name="age" type ="nonNegativelnteger" use __ ="optional'/>
</ conpl exType>
</ el ement >

The conventional schema could be ugadirectly for validation by individually reconstituting and val-
idating each version. But validating every version can bgeasive if the changes are frequent or the
document is large (e.g., if the document is a database). eithd Winter Olympics document may not
change often, contrast this with, for instance, a Custonsati®nship Management database for a large
company. Thousands of calls and service interactions magdeeded every day. This would lead to a very
large number of versions, making it expensive to instamtéatd validate each individually. The number of
versions could further be increased by the presence of ladithand transaction time.

To validate a time-varying document, a new, different sché&meeded. The schema for a time-varying
document should take into account the elements (and a#spand their associated timestamps, specify the
kind(s) of time involved, provide hints on how the elemerdsyvover time, and accommodate differences
in version and timestamp representation. Since this schdthexpress how the time-varying information
is representedwe call it therepresentational schemarhe representational schema will be related to the
underlying conventional schema (Listing 5), and will alléle time-varying document to be validated
using a conventional XML Schema validator (though not fudly discussed in the further sections). The
representational schema will also be important in constrgcevaluating, and optimizing temporal queries.
Both the person who is formulating a query and the database tocknow which elements in the document
are time-varying elements since additional operatioks, ttmporal slicing, are applicable to the temporal
elements. Thus the schema language should have some tgplalesignating time-varying elements.

Finally, time-varying elements can have additional caists. For instance, it might be important to
stipulate that an athlete can win only a single medal in ante@dthough the existence and/or type of medal
may change over time (for instance if the athlete is disfjed). Thevalid timecomponent of this constraint
is that only one medal appears in gathlete> element at any point in time. But theansaction time
component of the constraint is that multiple versions caprisent (as the element is modified). A schema
language for a temporal document needs to have some wayafyspg and enforcing such constraints.

The conventional XML Schema validator is aisaapableof fully validating a time-varying document
using the representational schema. First, XML Schema isuiditiently expressive to enfordaemporal
constraints For example, XML Schema cannot specify the following (ddse) schema constraint: the
transaction-time lifetime of @amedal> element should always be contained in the transaction-ifiee
time of its parenkathlete> element. Second, a conventional XML Schema document augoh&vrith
timestamps to denote time-varying data cannot, in geneealised to validate a snapshot of a time-varying
document. A snapshot is an instance of a time-varying doontiraiea single point in time. Consider a
temporal document with timestamps for the lifespan of themaand child elements. If the schema asserts
that a child element is mandatomninOccurs=1), there is no way to ensure that the element is in every
snapshot given that the element’s timestamp may indicateitthas a shorter lifetime than its parent (re-
sulting in times during which the element is not presentlatiog this integrity constraint); XML Schema
provides no mechanism for reasoning about the timestamps.

Even though the representational and conventional schamaslosely related, there are no existing
techniques to automatically derive a representationareehfrom a conventional schema (or vice-versa).
The lack of an automatic technique means that users havedad te ad hoc methods to construct a rep-
resentational schema. Relying on ad hoc methods limits iddgpendence. The designer of a schema
for time-varying data has to make a variety of decisionshagwhich elements should be time-varying,
whether to timestamp with periods or witbmporal element§/6] (which are sets of non-overlapping pe-
riods). By adopting a tiered approach, where the snapshdt Bbvhema, logical annotations, and physical
annotations are separate documents, individual schengnadiecisions can be specified and changed, often
without impacting the other design decisions, or indeed,ptocessing of tools. For example, a tool that
computes a snapshot should be concerned primarily withdheenitional schema; the logical and physical
aspects of time-varying information should only affectrfaos) the efficiency of that tool, not its correct-
ness. With physical data independence, only a few apmicsitthat are concerned with representational

9

details would need to be changed.

To summarize, an improved tool support for representing\aidating time-varying information is
needed. Creating a time-varying XML document and represienial schema for that document is poten-
tially labor-intensive. Currently a user has to manualli #t time-varying document to insert timestamps
indicating when versions of XML data are valid (for valid &jnor are present in the document (for trans-
action time). The user also has to modify the conventionés@a to define the syntax and semantics of
the timestamps. The entire process would be repeated if dim@gtamp representation were desired. It
would be better to have automated tools to create, mairdgahupdate time-varying documents when the
representation of the timestamped elements changes.

10

3 Background

Our work considers XML documents that are validated agansthema, specifically an XML Schema
document. In providing temporal augmentations witht&chema approach, we consider the rich tradi-
tion of research in temporal data management, particularige relational field. This section provides an
introduction to both XML Schema and key concepts from terapdatabases.

3.1 XML

The extensible markup language XML has emerged as a stafatairformation exchange over the In-
ternet. Its usage of plain text provides a platform-indelgern means to represent data. It has gained
popularity across many classes of data including strudtdoeEuments, heterogeneous and semi-structured
records, data from scientific experiments and simulatidigstized images, and protocol exchange for web
services. Since XML data is self-describing, XML is consateone of the most promising means to define
semi-structured data, which is expected to be ubiquitodarge volumes from diverse data sources and
applications on the webh. XML allows users to make up any ngs far descriptive markup for their own
applications. Such user-defined tags on data elements eatifyjdthe semantics of data. The relationships
between elements can be defined by nested structures arehess.

In the relational data model,sthemadefines the structure of each relation in a database. Eatiorel
has a very simple structure: a relation is a list of attributeith each attribute having a specified data type.
The schema also includes integrity constraints, such aspeification of primary and foreign keys. In a
similar manner, an XML Schema document defines the valiatstre for an XML document. But an XML
document has a far more complex structure than a relationocident is a (deeply) nested collection of
elements, with each element potentially having (text) eonhand attributes.

There are various XML schemas that have been proposed iitéretdire and in the commercial arena.
We chose to extend XML Schema [81] itXSchema because it is backed by the W3C and supports most
major features available in other XML schemas [49]. It wob&relatively straightforward to apply the
concepts in this paper to develop time support for other XMhesna languages; less straightforward but
possible would be to apply our approach of temporal and phiannotations to other data models, such as
UML [61] (to produce temporally augmented class diagrammsekample). Previously, we have extended
the Unifying Semantic Model, a conceptual model that exdethé ER Model, to utilize annotations [48],
very similar to what we propose here.

An XML schema is a description of a type of XML document, tygig expressed in terms of con-
straints on the structure and content of documents of tipat fyeyond the basic syntax constraints imposed
by XML itself. Thus an XML schema provides a view of the docurng/pe at a relatively high level of
abstraction. The XML Schema language is also referred toMis chema Definition (XSD). The Docu-
ment Type Definition (DTD) language [83], which is native e tXML specification, was being used as a
schema language before XML Schemas were introduced. XMler8aHanguage was introduced in order
to overcome some of the limitations of DTDs like a differephtsx from that of XML, limited data type
capability, and limited type compatibility with databases

XML Schema has many advancements over DTDs. Schemas aterwiritthe same syntax as the
instance documents. They have more than 44 built-in daestgpailable, compared to only 10 data types
for DTDs. A schema designer can also create his/her own gpés tif required. XML 1.1 introduced
object-oriented data types that support inheritance anexgnd or restrict a type. It also has a support for
different keys like primary key and referenced key as oppasenly ID and IDREF support in DTDs.

The process of checking to see if an XML document conformsstthama is calledalidation, which is
separate from XML's core concept of syntactic well-formests All XML documents must be well-formed,
but it is not required that a document be valid unless the XMLtser is “validating”, in which case the

11

document is also checked for the conformance with its agsmtischema. A well formed document obeys
the basic rules of XML established for the structural desiym document. Moreover a valid document also
respects the rules dictated by its corresponding XML Schema

The parser provides an interface to an XML document, exgogincontents through a well-specified
API. At present, two major API specifications define how XMLrgexs work: SAX [64] and DOM [82].
The DOM specification defines a tree-based approach to risggan XML document. It processes XML
data and creates an object-oriented hierarchical repeggsm of the document that can be navigated at
run-time. The tree-based W3C DOM parser creates an inttne@based on the hierarchical structure of
the XML data. It can be navigated and manipulated from theasoé, and it stays in memory until it is
released. DOM uses functions that return parent and chdd$)aiving programmer full access to the XML
data and providing the ability to interrogate and manigutaese nodes.

The SAX specification defines an event-based approach whergarser scans through XML data,
calling handler functions whenever certain parts of theudzent (e.g., text nodes or processing instructions)
are found. In SAX’s event-based system, the parser doesraatecany internal representation of the
document. Instead, the parser calls handler functions wheain events (defined by the SAX specification)
take place. These events may include the start and the em@ afocument, finding a text node, finding
child elements, or hitting a malformed element.

We now turn to time-varying XML documents.

Methods to represent temporal data and documents on the suebldeen actively researched. This
research has covered a wide range of issues that includéeatahes for collecting document versions [31],
strategies for storing versions [19], studies on the fraqueof data change [19], temporal query lan-
guages [36, 60] and using events to trigger actions [39].hfigies to capture the semantics of variants
(alternatives of an element that can co-exist at a pointne Yiare orthogonal to our work, but have also been
discussed [38, 87, 16]. The logical representation of dddeween the versions and the aspects of physical
storage policy for storing those versions have been prapsseas to maximize the space utilization [53].
Grandi and Mandreoli [42] sketch an infrastructure for addvalid-time timestamps to a web document,
and formatting timeslices from the document using XSLT.yi¢ige an XML Schema definition for the tim-
stamps, as we do inXSchema for our timestamps. Temporal and physical anooatire not discussed,
nor are temporal constraints. Grandi has created a bilaiyr of previous work in this area [40]. More re-
cent papers on version control include [44, 86, 85]. Iwailedtral. [44] discuss a versioned temporal model
in the context of access control. The model represents esdmgtween versions with a “delta graph,” which
logically induces a “version graph” (essentially a timestbased representation). The focus of the paper is
an access control language for versions, untiK&chema, there is no ability to specify which elements are
to be versioned, the time domain of the versioning, or thgi¢kl) representation of the versions. Wond and
Lam [86] present a version management system for XML data.sktem stores a document’s history as a
combination of some complete versions and deltas. Thesdattaedit scripts, and can be used to construct
a version from a nearby complete version. They also presamiopa query language to retrieve desired
versions. The focus of the paper is on efficient storage amigval of versions, whereas our focus is on
fine-grained control of versioning. Wang and Zaniolo [85¢g@nt a comprehensive system for concisely
representing a temporally-grouped XML version historyeylalso give a query language to retrieve past
versions. Their extensions, like ours, require no changesitrent standards to support versioning. Un-
like 7XSchema, everything is versioned and there is no suppotefoporal constraints in the versioning.
Temporal and physical schema annotations are not discussed

In context of time-varying documents, Garcia-Molina ancb@20] provide evidence that some web
resources change frequently (though not specifically XMiotgces). Nguyen et al. [59] describe how to
detect changes in XML documents that are accessible via &e ¥n the Xyleme system [90], the XML
Alerter module periodically (with a periodicity specifie¢ the user) accesses the XML document and
compares it with a cached version of the document. The rissalsequence of static documents, each with

12

an associated existence period. Dyreson [27] describesah@eb server can capture some of the versions
of a time-varying document, by caching the document as rigesl to a client, and comparing the cached
version against subsequent requests to see if anythinghaaged. Amagasa et al. [2] classify the methods
used to access XML documents into two general categoriessi(ig specialized APIs for XML documents,
such as DOM, and (ii) directly editing documents, e.g., veitheditor. In the former case, to access and
modify temporal XML documents, DOM can be extended to autarally capture temporal information
(and indeed, we have implemented such functionalityDx®M). Franceschet et al. [32] have also adopted
this approach, but their approach requires the user tofgpeealid ER schema and it only supports limited
temporal data validation. It is also possible to captunedaation time information in the documents through
change analysis, as discussed above and elsewhere [7,]22n&insistencies arise when the documents
can be edited directly and methods need to be designed toedbem [15]. Issues related to checking the
validity of temporal documents (e.g., not allowing a childreent or attribute to exist outside the lifespan
of its parent) have been brought up [67]. We address this irerdepth in Section 4 where we lay out our
design goal regarding document validity.

Most previous approaches, irrespective of their methodstess XML documents, assume that time-
stamps are present on every time-varying element [51, JAwtBreas our approach enables the schema
designer to specify the physical location of the timestgmipsere has been a lot of interest in the repre-
sentation schemes for time-varying documents. Some vecsiotrol tools have been developed for data
varying XML documents (e.g., [53, 52]). Chien, Tsotras amhidlo [19] have researched techniques for
compactly storing multiple versions of an evolving XML docent. Chawathe et al. [18] described a model
for representing changes in semi-structured data and adgegfor querying over these changes. A related
option, the diff based approach [7, 22] focuses on an efficigy to store time-varying data and can be
used to help detect transaction time changes in the docusthéme physical level. Buneman et al. [12, 13]
provide another means to store a single copy of an elemehbttars in many snapshots. Grandi and
Mandreoli [41] propose avalid > tag to define a validity context that is used to timestamp phe
document. Mandreoli et al. [51] utilize native support, ihigh an XML document is encoded using in-
verted lists of tuples with additional position and levehmers. Assuming a data document were stored in
this representation, their slicing implementation coutdused to implement unsquash efficiently. Finally,
Chawathe et al. [18], Dyreson et al. [30], Mendelzon et al] gind Tang et al. [75] discuss timestamps on
edges (instead of document nodes) in a semi-structurechuatal.

Recently there has been interest in incremental validatfoKML documents [5, 63, 9, 4]. These
consider validating a snapshot that is the result of updatethe previous snapshot, which has already
been validated. In a sense, this is the dual to the problemowsider, which is validating a (compressed)
temporal document all at once, rather than once per snafisbogmentally or otherwise).

None of the approaches above focus on the extensions régni¥éML Schema to adequately specify
the nature of changes permissible in an XML document oveg,temnd the corresponding validation of the
extended schema. In fact, some of the previous approacaeattempt to identify or characterize changes
in documents do not consider a schema. As our emphasis isg@aland physical data modeling, we
assume that a schema is available from the start, and thdegiee is for that schema to capture both the
static and time-varying aspects of the document. If no sehexists, tools can derive the schema from the
base documents [6], but the details of that is beyond theesobthis paper. Our research applies at the
logical view of the data, while also being able to specify phgsical representation. Since our approach is
independent of the physical representation of the data gbssible to incorporate the diff-based approach
and other representational approaches [13] in our phyaigadtations.

13

3.2 Temporal Databases

Most applications of database technology are temporal fureg46]. Some examples include financial
applications such as banking and accounting; record-kgeggplications such as personnel, and inventory
management; scheduling applications such as airlinay, teeid hotel reservations; and scientific applica-
tions such as weather monitoring and forecasting. Apptinatsuch as these rely on temporal databases,
which record time-referenced data.

A temporal database is a database with built-in supporirfte aispects, e.g., a temporal data model and
a temporal version of a structured query language. In a aeglatabase, there is no concept of time. The
database has a current state, and that’s all that can bedubria temporal database, the database includes
information about when things happened.

More specifically the temporal aspects usually include twbagonal time dimensions: valid time and
transaction time. These two kinds together fditemporal datg45].

Valid Time: Valid time associates with a fact the time period during ahhihe fact is true with respect
to the real world. Valid time thus captures the time-varystgtes of the mini-world. All facts have
a valid time by definition. However, the valid time of a factynaot necessarily be recorded in the
database, for any of a number of reasons.

Transaction Time: Transaction time associates with the fact the time periadnhg which the fact is
stored in the database. This enables queries that shovatkeo$the database at a given time. Unlike
valid time, transaction time may be associated with anyldea entity, not only with facts. Thus,
all database entities have a transaction-time aspect. agpiect may or may not, at the database
designers discretion, be captured in the database. Thsatton-time aspect of a database entity has
a duration: from insertion to deletion, with multiple in8ens and deletions being possible for the
same entity. Transaction time captures the time-varyiatgstof the database, and applications that
demand accountability or "traceability” rely on databases record transaction time.

Bitemporal Relation: A bi-temporal relation contains both valid and transactione. Thus, it provides
both temporal rollback and historical information.

Consider the following example emphasizing the use of batlid\time and transaction time in a
database table:

Name || ValidBegin | ValidEnd || TransactionStart | TransactionStop
Joe || 1/1/2002 | Forever || 1/2/2002 | UntilChanged

Joe was born on Jari®1 2002. His father happily registered his son’s birth-datdan 2¢, 2002. In the Cit-
izen table, two column¥alidBegin andValidEnd would be present to record the date when a citizen
is alive. Although the registration was done on Ja# he database states that the information is valid since
Jan F'. SoValidBegin contains Jan“l. Joe’s record is valid while he is alive. SéalidEnd contains
an infinity value. To keep a track of the date when the recorslingerted into the table two more fields are
added to the Citizen tabl&ransactionStart andTransactionStop . TransactionStart is
the time a transaction inserted that data, @rehsactionStop is the time that a transacti@uperseded
that data (or “until changed” if it has not yet been superdideor this record, th&ransactionStart
would contain Jan"2 while TransactionStop would contain “until changed”.

What happens if the data entry operator enters Joe’s bitthadalan I, 2001 instead of Jan*4, 2002?
When this is realized e.g., on Jant1,02002, the old transaction that started on J&h 2002 containing
ValidBegin date as Jan®l, 2001 would be terminated and a new record containing cobigth date in

14

ValidBegin column would be inserted. ThEansactionStop column for this record would have a
value Jan 1%, 2002.

Name || ValidBegin | ValidEnd || TransactionStart | TransactionStop
Joe 1/1/2001 Forever 1/2/2002 1/10/2002
Joe 1/1/2002 Forever 1/10/2002 UntilChanged

In the above example, the Citizen table is a bitemporal fatee it maintains both valid and transaction
times for a every record. Thus, it is possible to rollback dipalar record to a past date. In addition, it
also provides all historical information about a record. di&uss bitemporal support feiXSchema in
Section 7.

15

16

4 Design Goals and Design Decisions

This section provides the overarching design decisioraeaglto time-varying data within thexSchema
system, and the desiderata and design goals that motivaise tlecisions.

We start out with some terminology that will be used througribis document, including conventional
and temporal (XML) documents, and conventional and temp@islL) schemas (which are also XML
documents themselves). Also defined is the annotation decuand slice (which are also XML docu-
ments themselves). We then present some high level desgighedata and goals that motivate the specific
decisions listed in Section 4.4. This includes decisiofevent to the temporal schema, annotations, and the
temporal document. We conclude by presenting a brief examapillustrates the usage of thXSchema
language.

4.1 Terminology

This section defines terms relevantt§Schema.

Conventional Document A standard XML document that has no temporal aspects.

Temporal Document A standard XML document that represents a sequence of ctiomahdocuments
(i.e., slices). It may be user-created or the result of sh@AsH tool and has the root element
<temporalRoot>

Conventional Schemd A standard XML Schema document that describes the structutee conven-
tional document(s). The root element4schema>.

Temporal Schemd A standard XML document that ties together the conventisohkemas and the anno-
tations. In our temporal system, the temporal schema iotfied! equivalent to the XML Schema of
the conventional world; it describes the rules and form#éhetemporal documents. The root element
is <temporalSchema>

Annotation Document A standard XML document that specifies a variety of charésttes (e.g., logical,
physical, etc.) of a conventional document. For exambgjcal characteristics specify whether an
element or attribute varies over valid time or transactioret whether its lifetime is described as a
continuous state or a single event, whether the elemetit sy appear at certain times (and not
at others), and whether its content chang#sysicalcharacteristics specify the timestamp options
for the representation, such as where the timestamps aredplnd their kind (e.g., valid time or
transaction time) and the kind of representation.

Slice A version of a temporal document at a given point in time. Baneple, if a temporal document is
comprised of two conventional documedrtsandds, which occur at time; andt,, respectively, then
the slice at timé is ds.

1We also considered the terms “non-temporal document” (@i since this term focuses only on the absence of onetaspec
(temporal), but it could lack other aspects), “slice docath@lismissed since the term “slice” could refer to any tgbeocument),
and “base document” (dismissed since the term “base” caltbbfused with other contexts.

2\We also considered “time-varying document,” but dismisiseihce the term “temporal” is more consistent with the iafst
the terminology.

3We also considered the terms “non-temporal schema” (diedifor the same reason as non-temporal document) and “base
schema” (dismissed since a schema could really be compdsestaral base schemas.

“We also considered “temporal bundle” but dismissed siniset¢hm doesn’t capture as cleanly the idea that this doctias
as the schema for a temporal document.

17

4.2

Desiderata

In augmenting XML Schema to accommodate time-varying dat,had several goals in mind. At a
minimum, we desired that our approach exhibit the followlagpefits.

Simplify the representation of time for the user.

Support a three-level architecture to provide data inddpece, so that changes in the logical and
physical level are isolated.

Retain full upward compatibly with existing standards antirequire any changes to these standards.

Augment existing tools such as validating parsers for XMLsuch a way that those tools are also
upward compatible. Ideally, any off-the-shelf validatipgrser (for XML Schema) can be used for
(partial) validation.

Support both valid time and transaction time.
Accommodate a variety of physical representations foetirarying data.

Accommodate different kinds of time, such as indeterna@righes, unknown times, the current time,
and times at a variety of temporal granularities.

Support instance versioning.

Support schema versioning. Different versions of a doaunmeay conform to different versions of a
schema, as both a document and schema are modified over tipgor$for schema versioning will
ensure that the schema’s history can be kept and corredizedt

Note that while ad hoc representational schemas may mekisiiése desiderata, they certainly don’t meet
the first four.
In the following sections, we refine these desideratadetsign goalsnd then intalesign decisions.

4.3

Design Goals

This section defines a set of high-level goals for the strecand organization of the documents and
TXSchema language.

(@)

(b)

(©

Upward compatibilitywith established XML designs, techniques, and tools is tlestnmportant
goal that drives the rest of the design. Conventional docaisnand conventional schemas should
work within 7XSchema. As an example, Figure 1 shows a conventional dodusnel conventional
schema being validated by XMUNT [50]. 7XMLL INT should be able to produce the same output
as the conventional tool given the same input.

No changeshould be required for conventional documents. That isyeaiional documents and
schemas should not be aware of the fact that they are beingiusXSchema,; instead, they should
have standard syntax and be valid with conventional todloligh this goal is just an expansion of
goal (a), it is worth mentioning specifically for emphasis.

Conveniencandintuition should be stressed. It is important to make migrating frorareventional
system torXSchema as easy as possible. Whenever possible, we shapldexdsting XML formats,
naming schemes, and methodologies; see Listings 6 and Xdormes.

18

XML
Document

——r

y

XMLLINT — Valid?

h 4

XML
Schema

Figure 1: An XML document, which references an XML Scheméadealidated by XMLLUNT. The solid
lines going into XMLLNT indicate that the documents are explicitly input into thel.to

Listing 6: Conventional XML Schema syntax to include a pmrtof one schema into another.
‘ <i ncl ude schemalocation ="otherSchema.xsd"> ‘

Listing 7: 7XSchema syntax to include a portion of one temporal schetoaaimother.

‘ <i ncl ude schemalocation ="otherTemporalSchema.xml"> ‘

(d) Adding temporal documents and schemas shoulddsy Specifying that one or more documents
vary over time should require little effort from the user.rifer, the impact to the entire design and
organization should be small.

(e) Substitutabilityof the various artifacts of the system is another primaryl.gtighere is more than
one way to describe a temporal artifact, then each way shmufgermitted anywhere any other way
is permitted. For example, both Listings 8 and 9 below corniia¢ same information; the former lists
a sequence of conventional documents and their lifetimeke e latter is the squashed version of
these same documents.

Listing 8: One way to represent two conventional documents.

<t enpor al Root >
<sl i ceSequence>
<slice location ="versionl.xml" begin ="2008-01-02">
<slice location ="version2.xml" begin ="2008-03-17">
</ sl i ceSequence>
</ t enpor al Root >

Listing 9: Another way to represent two conventional docotae
<t enpor al Root begin ="2008-01-02">

<Conpany_Repl t em isltem ="y" originalElement ="Company">
<Conpany_Ver si on>
<Conpany name="International Business Machines" />

</ Conpany_\Ver si on>
<Conpany_\Ver si on>
<Conpany name="IBM" />

</ Conpany_\Ver si on>
</ Conpany_Repl t en»

</ t enpor al Root >

Thus, either method should be allowed to appear in placeeodtther.

19

()

(9)

(h)

Temporal data can occur ay levelof the system. This includes the temporal schema and aiorotat
document. For example, temporal schemas should be allawvexference other temporal schemas,
which in turn reference other temporal (or conventionahjestas. The schemas for these schemas
should be allowed to be temporal or conventional. Eventumttonventional document or schema is
reached, and the process completes; however, no limitsstraints should be placed on the amount
or location of temporal data. As another example, Listingli@ws a temporal schema that references
an annotation document that itself is temporal.

Listing 10: A temporal schema references an annotationrdeatithat is itself temporal.

<t enpor al Schema>

<annot at i onSet >
<l-- Note: annotations.xml is a time-varying document (e.g
<i ncl ude schemalocation ="annotations.xml" />

</ annot at i onSet >

., it has several slices) -->

</ t enpor al Schenma>

Namespaceshould be preserved in the validation. If more than one npaeesis used throughout
the conventional schemas and in the conventional docum#rdgs the validation should use this
information in the validation process.

Simple cases should tsmplefor the user to create. For example, if only one conventischbma
is present, then the temporal schema is only required tthiistURI for this schema, and no further
markup is needed for the tools to work correctly. Listing hibws such a temporal schema.

Listing 11: The temporal schema should be as simple as pessib

<t enpor al Schema>
<conventi onal Schema>
<i ncl ude schemalocation ="Company.xsd" />
</ conventi onal Schema>
</ t enpor al Schema>

Even more simply, if a temporal document references a schéraaschema can be a conventional
schema, interpreted by the tools as a temporal schema,tagjogssed.

4.4 Design Decisions

This section outlines the design decisions that resultech fihe design goals. We first describe general
decisions that apply to all afXSchema, and then discuss the decisions that apply spégiticaemporal
schemas, temporal documents, and annotation documergs{Mh Schema schemas that define the sytax

of these documents are provided in Appendix A.

4.4.1 General Decisions

(1) 7XMLL INT will use XMLLINT (a conventional parser) as its internal engine for valigpton-
ventional documents. This decision fulfills gaal) in that we can use a conventional parser on
conventional documents, thus achieving full upward coibpiy. It also fulfills (in fact, requires)
goal (b) in that in order for the conventional parser to work corsgatlb changes can be introduced

into the conventional documents.

(2) The characterization of a temporal document will be acliléwe using a<sliceSequence> ele-
ment; each individual conventional document’s URI and $isogiated lifetime will be directly listed

20

in this element via axslice> element and itdocation , begin , and optionalend attributes. See
Listing 8 for a simple example. This decision fulfills gdl because the<sliceSequence> el-
ement can occur anywhere; thus allowing temporal data taraaeywhere. It also fulfills goa(d)
because this method allows a simple way to add new versiotganiments to the system.

(3) The schema of a conventional document must be a conventchama. This satisfies go@) by
promoting consistency with existing XML designs and praedi and goafb) by not requiring any
changes to the conventional documents or schemas.

(4) In all cases, the default logical annotation is “anything change” and the default physical annota-
tion is “timestamp is located at root.” This decision sagisfgoal(h) by supplying a useful default
annotation set if the user doesn't supply one. See Listingldve for an example of a schema that
does not specify any annotations.

(5) When given a temporal document and temporal schetd&JLL INT will by default only validate
the current version of the document; the user must supplitiadal parameters/arguments to invoke
validation over time.

(6) Implicit constraints on well-formedness apply to eachesieparately of atemporal document. Specif-
ically, each slice of a temporal document must satisfy theddrd XMLwell-formednessonstraints.
Well-formedness constraints specify the logical and ptajstructure of an XML document and re-
quire that entities are properly nested: no start-tag,tagdempty-element tag, element, comment,
processing instruction, character reference, or entitgreace can begin in one entity and end in
another.

As a comparison, Rizzolo and Vaisman'’s temporal extengoXML [67] specifies (in Definition 3
on page 1184) six conditions for a valid temporal documerih@r model. It is useful to see how
these conditions translate to our model.

Their first condition is “The union of the temporal labels bétcontainment edges outgoing from a
node is contained in the lifespan of that node.” Containneeigies represent time-varying subnodes,
attribute values, or textual components of elements. Tifeste/ely says that a contained component
cannot exist outside of its container within any snapshdte $econd, “The temporal labels of the
containment edges incoming to a node are consecutive,’eisifgpto their encoding. The third is
“For any time instant, the sub-graph composed by all containment edgesich that € 7, is a
tree with rootr. We call this subgraph snapshobf the document at timg¢ denotedD(¢).” This is
equivalent to “each snapshot is a tree.” The fourth says, Ithof a node remains constant for all the
snapshots of a document.” However, the ID of a node is not eléfiit seems that this is specific to
their encoding.

The fifth of Rizzolo and Vaisman’s conditions says, “For aoptainment edge.(n;,n;, Tt), if n;

is an attribute of type REF, such that there exists a referenlgee, (n;, ny, T,), thenT,, = T¢,
holds.” As discussed in Section 6.1.2, in our model a norptanad referential integrity constraint is
mapped in a temporal document to one that applies in eactsisoapHere we differ with Rizzolo
and Vaisman, as what they define is what in our designmisrasequenced referential integrity con-
straint (also discussed in Section 6.1.2). Our design is more uniforthat we utilize a per-snapshot
semantics foall non-temporal constraints when applied to a temporal doatime

The last of their conditions states, “Let(n;, n;, T¢,) be a reference edge. Théh, C lifespann;)
holds.” This states that a reference edge applies in a sobgbe snapshots in which the desti-
nation node exists, which is a quite specific kind of non-seged constraint. Again, we prefer a

21

per-snapshot semantics for referential integrity, as wiitother explicit non-temporal integrity con-
straints.

(7) A given conventional XML Schema constraint for a slice irepliasequencectonstraint for the
temporal document. See Section 6.2 for more informatiofis iEha logical extension of the previous
design decision.

4.4.2 Temporal Document Decisions

(8) The data stored in a temporal document may change over tilreetwilo ways that a node in an XML
document can vary with time are (1) in its content or (2) ingtéstence. Some nodes, especially
those containing loose text, will change their content. 8omdes will exist in one version of an
XML instance document but will not be present in another ieersOther nodes will have both their
content and existence change over time.

(9) A temporal document is defined as a document that has the leroest <temporalRoot> and
references a temporal schema&Schema tools will look for both of these conditions to detgre if
a document is temporal.

(10) Atemporal document will have an attributgemporalSchemalocation> within temporalRoot
that will specify the URI of the temporal schema. See Listi@gor an example.

(11) The root element may have asliceSequence> element to list a sequence of conventional docu-
ments (i.e., slices). We choose the term “sequence” hece $iire ordering of the slices is important;
they must be listed from earliest to latest. See Listing 12.

Listing 12: exampleTemporalDocument.xml

1| <t enpor al Root >

2| <tenporal SchenaSet >

3 <t enpor al Schema location ="temporalSchemal.xml"/>

4 <t enpor al Schena location ="temporalSchema2.xml"/>

5| </ tenporal SchenaSet >

6| <sliceSequence>

7 <slice location ="versionl.xml" begin ="2008-01-03" />
8 <slice location ="version2.xml" begin ="2008-06-27" />
9 <slice location ="version3.xml" begin ="2008-08-11" />

=
o

</ sl i ceSequence>
</ t enpor al Root >

i
=

This decision satisfies go@t) by providing an easy way to@AsH the documents, goétl) by pro-
viding a simple mechanism for adding slices, and gegby allowing either the<sliceSequence>
element or the SUASH representation to appear in the temporal document. Notehisdast point
implies that a temporal document may have many differemesgmtations of the same information—
it can have a<sliceSequence> to list the slices individually or it can be squashed into latfee
that represents the temporal data. We discuss represastétirther in Section 18.

4.4.3 Temporal Schema Document Decisions

(12) The root element of a temporal schema document wikteenporalSchema>

(13) The child elements will be a single requiredonventionalSchema> and a single (optional)
<annotationSet>

22

4.4.4 Annotation Document Decisions

(14)

(15)

(16)

(17)

(18)

The root element of an annotation document will ennotationSet> . We choose the term “Set”
here since the ordering of the annotations within the docriseunimportant. The root element can
then have a number of subelements; one for each aspectlposSilrrently we concentrate on the
logical and physical aspects, and thus have defidledical> and <physical> subelements.

An itemis a collection of XML elements that represent the samew@ald entity. Items are in the
temporal schema and elements are in the temporal document.

The <logical> subelement will contain a set ofitem> subelements (one for each logical con-
straint). Each<item> element specifies whether an element or attribute varies\ahel time or
transaction time, whether its lifetime is described as d@icoous state or a single event, whether the
element itself may appear at certain times (and not at gthemsl whether its content changes. The
following shows an example logical annotation that spexifisingle element.

<| ogi cal >
<i t em target ="Company/Person/FirstName">
<transactionTi me existence ="constant'/>
<item dentifier name="personID" timeDimension ="transactionTime">
<field path ="/text()"/>
</item dentifier>
</itemp
</ | ogi cal >

Section 8 provides a complete specification of logical aznmts.

The <physical> subelement will contain a set okstamp> subelements (one for each desired
timestamp). These<physical> elements specify the timestamp options for the representat
such as where the timestamps are placed and their kind yeligl time or transaction time) and the
kind of representation. The following shows an example @aysnnotation that specifies a single
timestamp.

<physi cal >
<stanp target ="Company/Person" datalnclusion ="expandedVersion">
<st anpKi nd timeDimension _="transactionTime" stampBounds ="step"/>
</ st anp>
</ physi cal >

Section 8 provides a complete specification of physical ttioms.

Previously we introduced a language, which we caBedemaPattor locating element definitions in
a snapshot schema [25, 28]. Recently, the W3C extended XNkr8a to support element definition
inheritance and introduced a new, simpler mechanism farifyireg which element definitions can
be annotated, i.e., a subclass needs to specify its superiment definition. In the interest of re-
using as much of XML Schema as possible, we decided to cdagphew method, though it is less
expressive than SchemaPath since only named element ideiniian be annotated. This decision
satisfies goalc) by adopting an XML methodology.

In the new scheme an annotation is attached to an elemenitidefiirough an element that names
the “target” element definition as follows. Suppose thatim Company schema there is an element
defintion for “company.”

<xs:el ement name="Company">
<xs:conpl exType mixed ="true">

</xs _: el enent>

23

To annotate the company element definition, a physical atioatwould specify the name of the
definition as its target, as illustrated below.

<physi cal >
<stanp target ="Company" ...>

</ st anp>

</ physi cal >

Note that for this scheme to work the target must be unambiglyaefined. Hence, every element
definition name must be unique and only named elements cannoteded.

(19) An item specifies how an element in the temporal document ragyiw its content and its existence.
For the former, there are three possible alternatives. T$tadi‘varying with gaps”, which means that
each of its corresponding data nodes may be present in sasiengof the XML instance document
and absent in others. A second, more restrictive form isylagrwithout gaps.” The data node is not
required to always be present. When itis present there miglyenany gaps in its existence. The third
value is constant. Then the corresponding data node ig @itlvays present or never present.

(20) The content may change in an element in the temporal docuifrié&etcorresponding item specifies
content as varying. There are restrictions on how a datasiedatent may change over time when
the corresponding item specifies content as constant. Blrectns are different for each of the type
of content (e.g., elements, attributes and loose text).

(21) Comments provide a way for a programmer to communicate viliergorogrammers who use the
XML document. Processing instructions provide a way for phegrammer to communicate with
XML-aware applications. Comments and processing instmstare not considered part of the XML
document’s content. XML Schema does not validate commemtpeocessing instructions. Hence
T7XSchema does not validate them either. This design decgatisfies goa(c) by utilizing XML
Schema directly.

Comments and processing instructions are always perntitedry in content and existence. There
are no annotations for comments and processing instrgcéiod they are not considered to be part of
an element’s content.

Comments and processing instructions may appear outsidedh of an XML document. To solve
this, 7XSchema introduces a node calketnporalRoot that wraps the entire temporal document.
Any comments or processing instructions that appear autsfithe roots of individual snapshots will
be wrapped byemporalRoot

(22) Text is the simplest type of content. In XML, text content antained in an element. Text cannot
exist without an enclosing data element. When an item spsdffext) content as varying, the text
content in the corresponding data element may change toeamyjitped value. The text may disappear
(be empty) in one snapshot and return in a later one. For anthat specifies content as constant,
the text content in each version must remain the same.

Text content is often distributed in several text nodes. \Wendt concatenate the text in the text
nodes to consider changes in text content. If the distobutif the text changes, then the content is
considered to have changed even if the concatenated valloe same. A node’s content is only its

own loose text, not that of its children (if any).

(23) The content of a data element consists of all of its loose tktibutes and direct child elements.
A data element’s content is considered for our purpose tanoiide any comment or processing
instruction nodes, descendants of its direct children @ictimtent of its direct children.

24

(24)

(25)

(26)

Suppose an item specifies content as varying. Its correggpidéta element’s content may change
over time. On the other hand, if the item specifies contentoastant, the corresponding data ele-
ment’'s content must remain constant. The content and egistdimensions are orthogonal, so an
item that specifies content as constant could have a chitdtitat specifies existence as varying. In
this case, the data element corresponding to the child ismvary in its existence, but must always
appear in the same position when it exists.

When an item specifies existence as constant, the correaggodata element must either always be
present or never be present. If the item specifies existenteasgying without gaps” the correspond-

ing data element does not have to always exist overtime,tlisiréquired to not have any gaps in

its existence. When the defining element specifies existaacwarying with gaps”, there are no

restrictions on the existence of the corresponding dataei¢

Data elements exist within the context of an XML documentangt have a parent element. The data
element’s parent may vary with time. The scope of a data elésexistence is limited to the time
when its parent exists. An element and it child can both $pexistence behavior independently.
However, the behavior of the data element correspondirttetottild-defining element will be affected
by both the parent and child defining elements. Within theoeaaf the parent’s existence, the child
data element is affected by only the child-defining elemiioivever, from above the parent, the child
data element’s existence behavior is affected by both trenpand child-defining element.

When the parent’s existence is specified as constant thecegect on the child. However, we need
to consider the case where an item is specified as constatitdparent(s) of its constituent data
element(s) is not. There are three possibilities for contstaistence:

(a) Any item so designated must exist in every document $wps

(b) Any element associated with an item so designated miust iexevery snapshot in which its
parent element exists (i.e., the parent cannot exist wittfwichild). The child can however
switch parents over time.

(c) The third option is like the second, but the child canwateh parents.

A root node is a special data element node. There can only deca node in an XML document
and it is the node that contains all other nodes. When a rdimbé&varying, then the entire document
is time-varying. A root node follows the same rules for vagycontent as any other node and may
be specified as an item. A root node may have varying existegiteer with or without gaps. The
document can only exist when the root exists. When the ra®algap in its existence, the document
also has a gap in its existence.

Any well-formed document has a root. The root may be diffefezm one snapshot to the next. The
root has no special restrictions when specified as an item.

Attributes can vary over time but cannot be specified as iteknsattribute’s enclosing data element
can be part of an item. There are two ways to specify how aibatier may change over time. The
first is with current XML Schema constraints. The second ispgcifying how the enclosing data
element may vary with time.

Attributes will be specified as either required or constdifie attribute may be specified as required,
optional or prohibited. The default is optional. If requirét must always be present. If prohibited,
it can never be present. If specified as fixed, the attributst @ways have the same value when it is
present. An attribute cannot be both fixed and requiredipiteld. The only two things that can't be
specified with conventional XML Schema are existence asy/imgrwith gaps” and both existence as
constant and content as constant.

25

(27) All attributes exist within a data element and are part ofciegtent. This places two additional
constraints on the attribute. First, the attribute cantexity when the data element is present. Second,
when the item corresponding to the data element specifigertioas constant, the attribute’s existence
cannot change. The attribute is part of the data elementigeng and the data element’s content
cannot change. The attribute’s value may change if the ifmnies content as varying.

(28) If no logical annotations are specified for a given elemdm@ntwe are agnostic to the content of the
element over time—it may or may not vary. Adding logical amations to some elements does not
affect this default behavior for other elements; it only de§ the behavior for the specified elements.

(29) The default timestamp is placed at the root, and this timgstalways remains present. Specify-
ing physical annotations only adds additional timestangations; it does not remove the default
timestamp at the root. This approach is necessary in ordengement decisior{28) above, since
we must capture all varying elements whether or not therste®n associated logical or physical
timestamp for that element.

(30) We extend the notion of DOM equivalence by also ensuringttteathildren of a given node are also
DOM equivalent, and their children are DOM equivilant, .recursively. This “deep” versioning
allows us to capture all changes to a subtree, whereas theéasthDOM equivalence might miss
changes that occur lower in the tree.

The rest of this section presents examples that comparé&rtbe methods and justify the method that
we chose. The rule for “varying without gaps” is consistenthvihe rule for constant. In other words,
during the time when the data element exists it follows tHe for constant. The difference being that it
does not always have to exist. “Varying with gaps” has noriggin. Such a data element may always
switch parents.

The following three tables contain a series of examples. hEEa@mple snapshot is a simple XML
document with elements®”, “B” and “C’, each of which are designated as items in the logical atioota
for all three tables and all use attributeas their item identifier.

The examples vary the values of existence forGleement and the element that encloses it to highlight
the differences between the three possibilities. Aleement,|BM, is constant in every example. Table 1
shows snapshots when tBeslement is constant. Table 2 HAglements that are “varying with gaps.” The
Monday and Tuesday snapshots p&eand the Wednesday and Thursday snapshotp2is&his is done to
illustrate the difference between possibilities 2 and ld& has botlpl andp2 as “varying with gaps.”

In Table 1 all the examples are valid no matter which possibite use for constant. Table 2 illustrates the
difference between the three possibilities. Cells wither(@) are invalid using possibility 1 because element
C, that isBob, does not exist. They are valid using the other possitsliti€ells with note (2) are invalid
with possibility 3 sinceBob now has a different enclosing element. There are cells whdoes not matter
whether Bob exists. Some of these are labeled with note (Baemnthe same for all three possibilities. Cell
(5) is valid since an item can change enclosing elements vihiefivarying with gaps.” All the examples
are valid only when using possibility 2. The definition of fyang without gaps” is illustrated by example
1 and example 2. In example 1 it doesn’'t matteBdb exists on Friday. Either way there isn’'t a gap. In
example 2Bob does not exist in cell (4a). Therefore, Bob cannot exist énakll labeled (4b) as this would
create a gap in its existence.

In Table 3 cells with note (1) are invalid using possibilitypat are valid using the other possibilities.
Cells with note (2) are invalid with possibility 3 sin@ob now has a different parent. The cell with note
(6) is an error with possibility 1 since there is a gafBiob’s existence. This is because the rule for “varying
with gaps” is kept consistent with the rule for constant. I@&) is valid for possibilities 2 and 3. Again,
only with possibility 2 are all examples valid. Possibilitynakes constant too restrictive. Possibilities 2
and 3 are similar, but 2 gives a bit more flexibility. Thus, we@ase to adopt 2 as the semantics for constant.

26

Bob’s XML Snapshots
Existence Monday | Tuesday | Wednesday | Thursday | Friday

constant <B n="pl"> <B n="pl"> <B n="pl"> <B n="pl"> <B n="pl">
<C n="Bob"> <C n="Bob"> <C n="Bob"> <C n="Bob"> <C n="Bob">

i
Varylng <B n:npln> <B n:"pl"> <B n:npln> <B n:"pl"> <B n:npln>
Wlthout gaps <C n="Bob"> <C n="Bob"™> <C n="Bob">

. i
Vary|ng W|th <B n="p1l"> <B n="pl"> <B n="pl"> <B n="pl"> <B n="pl">
<C n="Bob"> <C n="Bob"> <C n="Bob">
gaps

Table 1:p1 is constant

4.5 Company Example

This section walks through in detail an example that illatgts the usage afXSchema. Explanations of a
user’s actions are given in sequence and the corresponditigtxt is provided via disting. In effort to
make the example as clear as possible, a few conventionslinedd. Note that each convention is used
only for clarity and is not a requirement #fXSchema.

» Only transaction time is considered.

» The example does not use default namespacesX8chema files (e.g., temporal schemas) in order
to emphasize which namespace is being used. However, donamdocuments make use of default
namespaces for brevity.

* As file contents are changed over time, a version number eédeokin the name will also change so
that the reader can more easily keep track of the changesversien number for each file begins at
0 and is constructed as follows.

— Company. S.xsd for conventional schemas, whefe= {A, B, C,
sion of the schema, e.gcompany.A.xsd

— data. S. D.xml for conventional documents, whesandicates the version of the schema be-
ing used and indicates the version number of the conventional docuneegtdata.A.0.xml

...} indicates the ver-

— temporalDocument. S. D.xml for temporal documents, whefgindicates the version of
the temporal schema being used dndndicates the version number of the latest conventional
document, e.gtemporalDocument.0.3.xml

— temporalSchema. D.xml for temporal schemas, whefeindicates the version number of
the temporal schema, e.¢emporalSchema.0.xml

27

Bob’s XML Snapshots
Existence Monday Tuesday | Wednesday | Thursday Friday

constant <B n="pl"> <B n="pl"> <B n="p2"> <B n="p2">
<C n="Bob"> <C n="Bob"> <C n="Bob"> <C n="Bob"> 1)
 (2) (2)

.
varying <B n="pl"> (3) <B n="pl"> <B n="p2"> <B n="p2">
without gaps <C n="Bob"> <C n="Bob"> <C n="Bob"> 3)
 (2) (2)

.
varying <B n="pl"> (3) <B n="p1"> <B n="p2"> <B n="p2">
without gaps <C n="Bob"> <C n="Bob"> (4a) (4b)
 (2)

. .
varying with <B n="p1l"> <B n="p1"> <B n="p2"> <B n="p2">
gaps <C n="Bob"> <C n="Bob">
 (5)

Table 2:p1 andp2 are

28

“varying without gaps”

Bob’s XML Snapshots
Existence Monday | Tuesday | Wednesday | Thursday | Friday

constant <B n="pl"> <B n="p2"> <B n="pl"> <B n="p2">
<C n="Bobh"> <C n="Bob"> <C n="Bobh"> 1) <C n="Bob">
 (2) (2)

.
Varylng <B n:npln> <B n:up2u> <B n:np2n> <B n:np2n>
without gaps ©6) <C n="Bob™
 (2)

. .
varying with <B n="pl"> <B n="p2"> <B n="pl"> <B n="p2">
gaps <C n="Bob"> <C n="Bob">

Table 3:p1 andp2 are “varying with gaps”

— annotations. A.xml for annotation documents, whereindicates the version of the anno-
tation document, e.gannotations.0.xml

— Person. S. E.xsd for the Person subschemas, whétendicates the first version of the
conventional schema that references this subschemaraimdicates the version number of
the subschema itself, e.g2erson.A.0.xml

— Product. S. F.xsd for the Product subschemas, wheténdicates the first version of the
conventional schema that references this subschem# amdicates the version number of the
subschema itself, e.g?roduct.A.0.xml

In this example, each time the user modifies the conventexiama, a new file is created. He must then
modify the conventional document to reference this new,ifreatischema. In practice, this is awkward and
would rarely happen. In a more realistic situation, the wsmirld reuse the same filename by just modifying
the file in place, and editors would be responsible for autmalyy retaining previous versions. Also, in
practice the conventional document would change much nreuéntly than the conventional schema.
Figure 2 depicts the overall scenario.

4.5.1 Initial Configuration

Consider the following scenario which begins on 2008-01-Die user has a conventional schema which
defines a<Person> element, which itself has aName>element, an<SSN>element, and anD attribute
(see Listing 13).
He also has a conventional document conforming to the scliesealisting 14).

Together, these documents form a conventional system vdaictbe validated with conventional val-
idation tools (e.g., XMLLNT). Of course,rXMLL INT will also validate this conventional system. In

29

Listing 13: Company.A.xsd

<?xm version ="1.0"?>

<xsd:schena
xmlins :xsd ="http://www.w3.0rg/2001/XMLSchema"
targetNamespace ="http://www.company.org"
xmlins ="http://www.company.org"
elementFormDefault ="qualified">

<xsd: el enent name="Company">
<xsd: conpl exType>
<xsd :sequence>
<xsd: el ement ref ="Person"/>
</xsd :sequence>
</xsd : conpl exType>
</xsd : el enent >

<xsd: el enent name="Person">
<xsd : conpl exType>
<xsd : sequence>
<xsd: el ement name="Name" type ="xsd:string"/>
<xsd: el ement name="SSN" type ="xsd:string"/>
</xsd :sequence>
<xsd:attribute name="ID" type ="xsd:string"/>
</xsd : conpl exType>
</xsd : el enent >

</xsd : schema>

Listing 14: data.A.0.xml

<?xm version ="1.0" encoding ="UTF-8"?>
<Conpany xmins ="http://www.company.org">

<Person ID="1">

<Nane>Steve </ Nane>
<SSN>111-22-3333</ SSN>
</ Per son>

</ Conpany>

30

Data T 077 Temporal Data
- : Legend of File Types
I
! : Conventional | 1 XSchema
v v
Company e] Company
Schema Temporal Schema

Figure 2: An overview of the end-state of the Company example

the following sections, we will add new versions of the cami@al document, add new versions of the
conventional schema, break up the conventional schemanuliiple subschemas, and specify logical an-
notations. Figure 2 shows the relationship between all twichents in the system. Note that Company
schema (for details on this schema and example documeetsepsee Section 10) will import and include
two subschemasPerson andProduct . In this example, both the Person and Product schemas will
change over time. Each time there is a new slice created, ahg@ny schema must be updated to refer-
ence the new slice. There are other mechanisms availalfie teser for handling this scenario, as described
in the document beginning at Section 11

4.5.2 Adding Temporal Data

On 2008-03-17, the user corrects theSSN>element in the conventional document to produce a new
version (see Listing 15). The user can now ug€Schema to create temporal documents and use the
TXSchema tools to validate these documents.

Listing 15: data.A.1.xml

<?xm version ="1.0" encoding ="UTF-8"?>
<Conpany xmlns ="http://www.company.org">

<Person ID="1">
<Nane>Steve </ Nane>
<SSN>123-45-6789</ SSN>
</ Per son>

</ Conpany>

The user creates a temporal document that lists both slicdseaconventional document with their
associated timestamps (see Listing 16).

The user uses the conventional schema as the temporal scfidragis, the user does not explicitly
create a temporal schema. Note that since no logical or gddyannotations have been specified, the
defaults will take effect.

Section 12 continues this example when multiple conveatisnhemas are employed as well as when
each individual schema varies over time.

31

Listing 16: temporalDocument.0.1.xml

<?xm version ="1.0" encoding ="UTF-8"?>
<td : t enpor al Root xmlns :td ="http://www.cs.arizona.edu/tau/tauXSchema/TD">
<td : t enpor al SchenaSet >
<td :t enporal Schena location ="./Company.A.xsd"/>
</td_:tenporal SchenaSet >

<td : sl i ceSequence>
<td : slice location ="data.A.0.xml" begin ="2008-01-01" />
<td : slice location ="data.A.1.xml" begin ="2008-03-17" />
</ftd :sliceSequence>

</td :tenporal Root >

32

5 Theoretical Framework

This section sketches the process of constructing a schmmadifme-varying document from a conventional
schema. The goal of the construction process is to creatbearscthat satisfies the snapshot validation
subsumption property, which is described in detail belowthle relational data model, a schema defines
the structure of each relation in a database. Each relatieralvery simple structure: a relation is a list of
attributes, with each attribute having a specified data.tylfee schema also includes integrity constraints,
such as the specification of primary and foreign keys. In dl@mmanner, an XML Schema document
defines the valid structure for an XML document. But an XML aloent has a far more complex structure
than a relation. A document is a nested collection of elemenith each element potentially having (text)
content and attributes.

5.1 Snapshot Validation Subsumption

Let DT be an XML document that contains timestamped elements. Astiamped element is an element
that has an associated timestamp. (A timestamped attrifautdoe modeled as a special case of a times-
tamped element.) Logically, the timestamp is a collectibtiroes (usually periods) chosen from one or
more temporal dimensions (e.g., valid time, transactiore}i Without loss of generality, we will restrict
the discussion in this section to lifetimes that consist sfrgle period in one temporal dimension. The
timestamp records (part of) the lifetime of an element. W wsie the notation:” to signify that element

x has been timestamped. Let the lifetimexdf be denoted abifetime(z”). One constraint on the lifetime

is that the lifetime of an element must be contained in thetifife of each element that encloses it.

The snapshot operation extracts a complete snapshot otavinging document at a particular instant.
Timestamps are not represented in the snapshot. A snagditoea replaces each timestamped element
xT with its non-timestamped copyif ¢ is in lifetime(z”) or with the empty string, otherwise. The snapshot
operation is denoted as

snpt,DT) =D

whereD is the snapshot at timeof the time-varying documenf)™".

Let ST be a representational schema for a time-varying docurf®nt The snapshot validation sub-
sumption property captures the idea that, at the very I¢astrepresentational schema must ensure that
every snapshot of the document is valid with respect to theerttional schema. Letdt(S, D) represents
the validation status of documehtwith respect to schemé. The status isrue if the document is valid but
false otherwise. Validation also applies to time-varying docuatsge.g.vidt! (S”, DT) is the validation
status ofD™ with respect to a representational schesa, using a temporal validator.

Property [Snapshot Validation Subsumption] L&tbe an XML Schema documenf)” be a time-
varying XML document, and” be a representational schema, also an XML Schema docusiei.said
to have shapshot validation subsumption with respesgtito

vidt! (ST, D) < Vit € lifetime(DT) = vidt(S, snp(t, DT)]

Intuitively, the property asserts that a good represemiatischema will validate only those time-varying
documents for which every snapshot conforms to the corseaitischema. The subsumption property is
depicted in Figure 3.

5.2 Content and Existence Variance

The data stored in XML documents may change over time. Itéfuliso be able to validate the way data

can change. The XML Schema standard provides a way to valXisil. documents, but does not define

33

vidt™ (87,0)

V—= W

snp(t,DT)

vidi(S,D)

Figure 3: Snapshot Validation Subsumption

how an XML document is allowed to change with time. To meet tieed,rXSchema was created as an
extension of the XML standard that validates time-varyinglXdocuments.

The two ways that a node in an XML document can vary with time (4) in its content or (2) in its
existence. The content of an item includes the entire sé+toted at a node. Each branch in the sub-tree
terminates at the first item on the branch, or at a leaf (telteyaattribute, empty element). Some nodes,
especially those containing loose text, will change theittent. Some nodes will exist in one version of an
XML instance document but will not be present in anotherieer.sOther nodes will have both their content
and existence change over time.

An item definition specifies how a data node may vary in its eohiind its existence. Let’s first
consider how an item specifies existence. There are thregbpoalternatives. The first is “varying with
gaps”, which means that each of its corresponding data nodgde present in some versions of the XML
instance document and absent in others. A second, moreetigstform is “varying without gaps.” The data
node is not required to always be present. When it is preberg tnay not be any gaps in its existence. The
third value is “constant”. Then the corresponding data ris@éther always present or never present. Again
the existence-constant can have many different semanfieshave identified three of them and provide
support for the first two in our implementation.

» Existence is constant over all time (exists in every insiatifetime of universe).
» Existence is constant over document lifetime (documéetitne may have gaps).
» Existence is constant over the lifetime of the immediateeator’s item.

The other aspect an item may specify is content. The confemtlata node depends on its node type.
The content may change in the data node at any time if thespwneling item specifies content as varying.
There are restrictions on how a data node’s content may ehamgr time when the corresponding item
specifies content as constant. The restrictions are difféoe each of the type of content (e.g., elements,
attributes and loose text). The detailed explanation oféls&rictions can be found in Section 8.

Content-varying and existence-varying are orthogonatepts. The only restriction is that, when an
item is content-constant, the item’s immediate descesdsimuld be existence-content, but switching of
parents is allowed. When an item specifies content or existas varying, the corresponding data node
may vary with time, but is not required to.

5.3 ltems

In order to create a temporal document it is important to tiflemvhich elements persist across various
transformations of the document. This section discussestbdind and associate elements in different

34

snapshots of a temporal XML document. When elements aredeaiiyassociated, aitemis created. An
item is a collection of XML elements that represent the saead-world entity. An item is a logical entity
that evolves over time through various versions.

In a temporal database, a pair of value-equivalent tuplesbeacoalesced, or replaced by a single
tuple that has a lifespan equivalent to the union of the pé#iféspans.Coalescings an important process
in reducing the size of a data collection (since the two wiglan be replaced by a single tuple) and in
computing the maximal temporal extent of value-equivateptes. In a similar manner, elements in two
snapshots of a temporal XML document carntémmporally-associatedA temporal association between the
elements is possible when the element has the stemeidentifierin both snapshots. We will sometimes
refer to the process of associating a pair of elementguasg the elements. When two or more elements is
glued, an item is created.

Only time-varying elements (that is, elements of types liaae a logical annotation) are candidates for
gluing. Determining which pairs should be glued dependsaanfactors: the type of the element, and the
item identifier for the element’s type. The type of an elemeiite element’s definition in the schema. Only
elements of the same type can be glued. An item identifiereseity semantically identify elements of a
particular type. The identifier is a list of XPath expressidmuch like a key in XML Schema) so we first
define what it means to evaluate an XPath expression.

Definition [XPath evaluation] LetEval(n, E') denote the result of evaluating an XPath expression
E from a context node:. Given a list of XPath expressiond, = (F1,..., E), thenEvaln, L) =
(Evd(n, E1),...,Eval(n, Ey)).

Since an XPath expression evaluates to a list of ndglesl(n, L) evaluates to a list of lists.

Definition [Item identifier] An item identifier for a typel’, is a list of XPath expressiong,, such that
the evaluation of. partitions the set of typ& elements in a (temporal) document. Each partition is an.item

An item identifier has a target and at least one field, an iteorra keyref. A target is an XPath expres-
sion that specifies an element’s location in the snapshelatifre to the item under which it is defined). A
field, itemref and a keyref can each specify part of an itemtiéler. A field contains an XPath expression
that specifies an element or attribute that is part of the itemtifier. A keyref references a snapshot key
and an itemref references an item identifier. This way an iteag be specified in terms of an existing item
or schema key. An itemref and keyref use the name of an itgndke are not XPath expressions. The
item identifier may consist of any combination of field(sgnitref(s) and keyref(s). Each field expression
specifies either an attribute or an element. If an attribsit@dicated, then the item identifier uses the at-
tribute’s value. If an element is indicated, then the itesmiifier uses the element’s loose text. The current
implementation supports only fields.

A schema designer specifies the item identifiers for the tiarging elements. As an example, a de-
signer might specify the following item identifiers for thee-varying elementsathlete> and<medal> .

» <athlete> = [athName/ =*]
* <medal> = [../athName/ *, ./ =]

The item identifier for arcathlete> is the name of the athlete, while the item identifierfonedal>
is the athlete’s name (the parent’s item identifier) comébiwéh the description of the event (the text within
the medal element). An item identifier is similar to a (tengbpkey in that it is used for identification.
Unlike a key however, an item identifier is not a constraiather it is a helpful tool in the complex process
of computing versions.

Over time, many elements in a temporal document may belorigetsame item as the item evolves.
The association of these elements in an item is defined below.

Definition [Temporal association] Let be an element of typ&’ in the it snapshot of a temporal

document. Lety be an element of typ& in the jth shapshot of the document. Finally Iétbe the

35

2002-01-01 2002-03-01 2002-07-01

doc doc doc

athlete = athlete > m= athlete

| ARSI

text athName text

athName athName
Kjetil Kjetil Kjetil
silver gold

Figure 4: ltems and Versions

item identifier for elements of typ&. Thenz is temporally-associatedo y if and only if Eval(xz, L) =
Eval(y, L) and it is not the case that there exists an elemaittype 7" in a snapshot between i and
jth snapshots such thewal(z, L) = Eval(z, L).

A temporal association relates elements that are adjaceimié and that belong to the same item. For
instance, thecathlete> element in Listing 1 on page 7 is temporally associated vhigh<athlete>
element in Listing 2 but not theathlete> element in Listing 3 (though theathlete> element in
Listing 2 is temporally related to the one in Listing 3).

5.4 \ersions

When an element in a new snapshot is temporally-associatacaw item, the association either creates a
new version of the item or extends the lifetime of the latession within the item. A version is extended
when “no difference” is detected in the associated elemeifterences are observed within the context of
the Document Object Model (DOM).

Definition [DOM equivalence] A pair of elements is DOM equivalent if thair meets the following
conditions.

» Their parents are the same item or their parents are nawarying elements.
» They have the same number of children.

» For each child that is a time-varying element, the childhessame item as the corresponding child of
the other (in a lexical ordering of the children).

 For each child that is something other than a time-varylagent the child’s children are each DOM-
equivalent to the corresponding children of the other cfifida lexical ordering of the children and
grandchildren), and the childigalue type(e.g., element or text), anthme(e.g., tag hame) are also
the same.

» They have the same set of attributes (an attribute is a naathe pair).

The third bullet in the above definition applies to non-temapahildren of a node. The idea is that the
“value” of a non-temporal child is the entire subtree roocé¢dhe child. The subtree terminates at either
(non-temporal) leaves or (temporal) items.

36

As an aside, we observe that DOM equivalence in a temporal XMitext is akin to value equivalence
in a temporal relational database context [45]. DOM eqene¢ is used to determine versions of an item,
as follows.

Definition [Version] Letx be an item of typel” in a temporal document, with a lifetime that ends at
timet. Lety be an element of typ# in a snapshot at time+ k that is temporally associated to the latest
version ofz, v;. If v, is DOM equivalent tg, then the lifetime ofy; is extended to include+ k. Otherwise,
versionwv, 1, consisting ofy, is added to itenx.

A version’s lifetime is extended when the element from the saapshot (or a future snapshot) is DOM
equivalent (the lifetime can have gaps or holes, althouginbaa gap may violate a schema constraint as
described in Section 5.2). A new version is created when paeshassociation is not DOM equivalent.

Figure 4 depicts the items and versions in the example. Atraftsepresentation of the DOM for
each snapshot of the document is shown. The items in the seewé snapshots are connected within
each shaded region. There is one athlete item and one meuwfal Tthe athlete item has two versions; the
transition between versions is shown as a black stripe lestilee regions.

37

38

6 Extending Temporal XML Schema Constraints

In this section we discuss XML Schema constraints and theipbral extensions. XML Schema provides
four types of constraints.

* |dentity constraints
» Referential Integrity constraints

 Cardinality constraints (in the form afinOccurs andmaxOccurs for sub-elements aneéquired
andoptional for attributes)

 Datatype restrictions (which constrain the content ofdbeesponding element or attribute)

XML Schema constraints are conventional constraints dimeg restrict a specific conventional docu-
ment. We briefly explain each of these XML Schema constrairtigrn, and then proceed to their temporal
extensions.

6.1 XML Schema Constraints

We give the syntax and semantics of constraints in convegiti¥ML Schema, using theompany ex-
ample. The root of this schema is tbempany entity. Under that, there aggroducts andsupplier
elements. Aproduct is a sub-element gbroducts and anorder is considered a sub-element of
supplier s (with a reference fromarder to productNumber (within product) for data integrity).

6.1.1 Identity Constraints

Identity constraints restrict uniqueness of elements ént@tes in a given document. As with the relational
model, XML Schema allows users to define bty andunique constraints (we use the tenaentity
constraintto refer to the union of thkey andunique constraint types. The distinction between these two
constraint types is that the evaluation of #&y constraint should always yield a valid tuple (value) for all
of the component fields (none of the fields should be emptyjlewhe fields in aunique constraint are
allowed to be absent.

Identity constraints are defined in the schema documeng @astombination of gelector and one or
morefield elements. These are sub-elements withitxgtkey> or <xs:unique> container element.
Bothselector andfield contain an XPath expression (the evaluation of which in anbtdcument
yields the value of the constrained element or attributee sElector is used to define a contextual node
in the XML document (e.g.product), relative to which the (combination ofjeld values is unique
(e.g.,@productNo).

An identity constraint may be named, and this nhame can tharséé when defining a referential in-
tegrity constraint (similar to foreign keys in the rela@model). A sample XML Schema identity con-
straint is in Listing 17.

Formally, we can defingnique andkey constraints as follows. Let be the context node being vali-
dated (under which the identity constraint is defined). deétbe the element named by tkelector of
the identity constraintselis an XPath expression for the selector relativeowith the list of correspond-
ing field expression$” = (f1, ..., fm). Using the example in Listing 17, corresponds tproducts and
selector corresponds tproduct . Then aunique constraint can be formally defined as follows.

unique(n, sel) = Vi, j € Eval(n, sel) [Eval(i, F') = Eval(j, F') = i = j]

For a key constraint, the only change is that no field can atalto the empty list.

39

Listing 17: Sample Identity Constraint Definition

<xs: el ement name="products">

<xs:el ement name="product" minOccurs ="0" maxOccurs ="unbounded">

</xs : el enent >

<xs:key name="productKey">
<xs:sel ector xpath ="product" />
<xs:field xpath ="@productNo" />
</xs _: key>

</xs : el enent >

There are some similarities between the functionalitigegf andunique constraints and the XML 1.0
ID definitions (and the equivalefid simple type in XML Schema). However, the XML Schekey and
unique constraints have a number of advantages over uie of he advantages allow us to define more
powerful constraints at a temporal level (in Section 6.2.1)

Advantages of XML Schemkey over the XMLID are as follows. For context, XML 1.0 provides
a mechanism for ensuring uniqueness usinglbheattribute (and referential integrity using the associ-
atedIDREF andIDREFS attributes). An equivalent mechanism is provided in XML &ula through the
ID, IDREF, andIDREFS simple types, which can be used for declaring XML 1.0-stytalates. XML
Schema also introduces two other mechanisms to ensureamagsi using thieey andkeyref constraints
that are more flexible and powerful in the following ways.

» XML Schema keys can be applied to both elements and atsb@&incdD is an attribute (in DTDs;
in XML Schema an element’s type can be definedsatD), it cannot be applied to other attributes.

» Usingkey andkeyref allows the specification of the scope within which uniqueregsplies (done
by theselector element; i.e., it is “contextual uniqgueness”) while thegeof an XML ID is the
whole document. Thus usingkey constraint one can enforce: “within each order, the partimens
should be unique”, to ensure that each order line has a eliffgzart number. This cannot be done
using XML ID s.

» Finally, XML Schema enables the creation okey or akeyref constraint from combinations of
element and attribute content and does not restrict thelpestatatypes for valid keys. XMID s
consist of single attribute content, and must be oflhedatatype.

6.1.2 Referential Integrity Constraints

Referential integrity constraints (defined using Keyref element in an XML Schema document) are
similar to the corresponding constraints in the relationadel. Each referential integrity constraint refers
to a validkey orunique constraint and ensures that the corresponding key valsésarithe document.
For example, &eyref can be defined to ensure that only valid product numbers tfi@se that exist for
a<product> element) are entered for an order.

A sample definition of a referential integrity constraint{ML Schema to specify that particular con-
straint follows. Note that &eyref uses a key viaefer . Eachfield in thekeyref must have a
correspondindield in the associatelley named byrefer

40

Listing 18: Sample Referential Integrity constraint

<xs: el ement name="supplier" minOccurs ="0" maxOccurs ="unbounded">
<xs:el enent name="order minOccurs="0" maxOccurs="unbounded ">
<xs:keyref name="ordersProductRef " refer="productKey ">
<xs:selector xpath=" order" />
<xs:field xpath=" oProduct No" />

</xs:keyref>
</xs:element> % end order

</xs:element> % end supplier

Formally, we can define thkeyref constraint as follows. Let, be the context node being eval-
uated with akeyref constraint defined within it. Lef, be the a list of XPath expressions defined by
[sel./ fr1,sel./fr2,...,sel./f.n], where theselector element of th&eyref constraint is represented
by sel,., and the correspondirfield expressions by,.n.

Let Eval(n,, L) denote the result of evaluating the list relative to acontext noden,. Lete, be
an element from the list defined Wyval(n,, L,) (e.g., one of the products listed in an order). Similarly,
let Eval(nk, L) (see Section 6.1.1) denote the result of evaluating theeneéedkey constraint, and
er € Fval(ng, Li). Thekeyref constraint is satisfied where, there exists @, (in the document) such
thate, = e,.

6.1.3 Cardinality Constraints

The cardinality of elements in XML documents is restrictgttiiee use oiminOccurs andmaxOccurs
in the XML Schema document. For example, to state that tiseadimit of from zero to four website URLs
for each supplier, theinOccurs of <sURL>is set to0 and themaxOccurs to 4.

While there can be multiple sub-elements with the same ndraee can be a maximum of one attribute
(for examplesupplierNo) with a given name. The cardinality for attributes is therefrestricted using
eitheroptional orrequired . An example of cardinality definitions in XML Schema follows

Listing 19: Cardinality definitions using XML Schema

<xs: el ement name="supplier" minOccurs ="0" maxOccurs ="unbounded">
<xs:conpl exType mixed ="true">
<xs:sequence>
<xs:el ement name="sURL" type ="xs:anyURI" minOccurs ="0" maxOccurs ="4" />

</xs _:sequence>

<xs:attribute name="supplierNo" type ="xs:integer" use ="required" />
<xs:attribute name="supplierName" type ="xs:string" use ="required" />
<xs:attribute name="supplierPhone" type ="xs:string" use ="optional" />

</xs_:conpl exType>
</xs : el enent >

Let (n, ¢) be the list of child elements within noden. We use|(n, ¢)| to represent the cardinality of
the list(n, ¢). ThenminOccurs(c) < |(n,c)| < maxOccurs(c).

6.1.4 Datatype Restrictions

Datatype definitions in XML Schema can restrict the struetand content of elements, and the content
of attributes. We currently consider datatypes definedgugie XML SchemaimpleType element. A

41

simple type is used to specify a value range. In the simpkest,ca built-in XML Schema datatype (e.g.,
integer) imposes a value range. For more complicated requiremasisyple type can be derived from
one of the built-in datatypes.

An example of an XML Schema datatype definition follows.

Listing 20: XML Schema data type definition

<xs:si npl eType name="supplierRating">
<xs:restriction base="xs:string">
<xs:enuneration value ="A" />
<xs:enuneration value ="B" />
<xs:enuneration value ="C" />
<Ixs :restriction>
<Ixs :sinpl eType>

Formally, lettype(n) be the set of values that the dataype assigned to node (elematiribute)n
allows. Then, in any given document instance, the XML exgicesn /text() € type(n).

6.2 Temporal Augmentations to the XML Schema Constraints

Thus far we have considered conventional XML Schema cdngtraVe now proceed to discuss temporal
augmentations to these constraints.

There are two flavors of temporal constrairgsquence@ndnon-sequencedA temporal constraint is
sequenced with respect to a similar conventional constirathe schema document, if the semantics of the
temporal constraint can be expressed as the semantics cbilientional constraint applied at each point
in time. A constraint is non-sequenced if it is evaluatedr@&emporal element as a whole (including the
lifetime of the data entity) rather than at each point in teeparately.

As discussed in Section 4.4, given a conventional XML Scheamstraint, the corresponding seman-
tics in 7XSchema for a temporal document implieseguencedonstraint. For example, a conventional
(cardinality) constraint, “There should be between zerd fur website URLs for each supplier,” has a
sequenced equivalent of: “There should be between zerocamdvebsite URLSs for each suppliat each
point in time” We also allow the user to add a new sequenced constragt (e&th specificapplicability
bound$ in the logical annotation document.

The applicability bound,B C T, allow the user to restrict their consideration from thetlihe of
the document to some desired subset they are interestedirexmple, a constraint may only be valid
between 1999-2005, at which time it is replaced by a new cainst Applicability bounds are relevant for
both sequenced and non-sequenced constraints. Whileféloe @fan applicability bound (for a sequenced
constraint) can be simulated by “removing” the constraiotf the schema document (during some time
slice), this restricts it to cases where the transactioe &md valid time are identical.

A special kind of sequenced constraint iswarent constraint. A current constraint is applicable (and
evaluated) at the current point in time,mow[21]. We support current constraints by allowing the user to
set the applicability bound of the sequenced constrainbta

For the non-sequenced extension to constraints, we corsidédow of evaluatiomo, which can be
a temporal element. The user specifies the window of evalu#ét.g., a day, or a Gregorian month). The
user can also specify a slide sizg, and applicability boundB [26]. The default length fogs is a single
granule interval corresponding to the granularityan, of the item within which it is defined. The default
for B is the lifetime of the temporal document. We have estaldighe following relationship among the
components of a non-sequenced constraintn < ss < w < B.

Non-sequenced constraints are evaluated over a timeahtather than at a point in time. The window
of evaluation must be within the applicability bound. So fmm-sequenced constraints, we replace the

42

evaluation point, wheret € T, with w € P(B). Whensize(w) is the same asize(B), we term it

a “fixed-window” constraint. For example, suppose the aairst requires there to be between 0 and 4
supplier URLs in the temporal document over a period of amgnciar month. Let’s say this constraint is
applicable from 2009-03-01 to 2009-03-31. Hareand B have the same size. If instead the applicability
were (2009-03-01 to 2009-06-31), then we see a case of aiglidindow” constraint (since the evaluation
would take place duringachmonth from March through June. Here, we see the the size dilithe is
implicitly a calendar monthas well. Let's say instead, the constraint evaluation wingaere a period of
30 days. Then the user may wish to restrict how this evalnatiodow would slide. For example, one may
choose to evaluate it from March 1-30, then from March 2—8dl,s® on. Here, the size of the slids)is

a single day.

Non-sequenced constraints are listed in the logical atinotadocument. In a few cases (when we
extend a particular XML Schema constraint for additionaidiionality), sequenced constraints are also
listed in the logical annotation document.

In the case where schema versioning is permitted (we distigsna versioning in detail in Part Il), the
constraints are evaluated only within a single schematanhperiod. For example, let us take a cardinality
constraint that restricts a maximum of 50 orders from a sap@h any calendar month. Let us further
assume that on July 12, the schema for orders changed anddiérekey now was anorderNumber
(instead of a combination of supplier number and date). Therevaluation for the 50-order limit will be
done separately for the first eleven days of July, and Julg11.2-

We now proceed to discuss temporal enhancements to eacd ¥Mh Schema constraints described
in Section 6.1. The general approach is to add non-sequeasxtedsions to each constraint (though for
sequenced cardinality constraints, we add new semantieglgs

6.2.1 Identity Constraints

Conventional identity constraints restrict uniqueness given XML document and induce sequenced iden-
tity constraints in the temporal document. Non-sequencgensions may further be defined for these
constraints.

We have shown in Section 6.1.1 the advantages of XML Scheardiig constraints over defining an
element or attribute to have a type I&f . This motivates the following design decision: we extene th
semantics of XML Schema identity constraints to support-segquenced semantics, but do not do so for
ID types. If an element or attribute in an XML Schema documestid to have a type dD, then that
only translates to a sequenced constraint.

Formally, we define a sequenckdy constraint as follows. L€eL be the set of time points associated
with a temporal XML document over its lifetime. At all timegwheret € T), we can extract a snapshot
of the document. As with the conventional case,ldie a context node enclosing the associated identity
constraint in the conventional schema. We represergelector by sel and corresponding field XPath
expressiond’ = (fi,..., fm). We defineL as the list of XPath expressiofsel fi,sel fa,...,sel f,].
Correspondingly, letFval(n, L) denote the result of evaluating the list of XPath expressibrfrom
the context node: for the snapshot at poirit We denote the!” element of Eval(n, L) by e;. Then
Vi,j : e; = e; = i = j. This predicate must be true for every snapshot of the dootime

The definition of a sequencenhique constraint is similar (but allows null values).

For bothkey andunique constraints we consider non-sequenced extensions. A ewuwesced
unique (or key) constraint requires that the constrained element (abat&) is unique over time (not
just at a point in time). For example, if we wished to requirattan employee’SSNwere unique in a single
conventional document as well as the temporal document,ontel wise a non-sequenced constraint. We
will explain the sub-elements and attributes of these remusnced constraints shortly.

A time-invariantrestriction specifies that the value of the given convemtionique orkey constraint

43

should not change over time. Without this restriction, @ntionaluniqgue andkey constraints simply
say that the values must not have duplicates in any assockdt. document. However, this does not
preclude the values from changing as long as the new value mueappear elsewhere in the conventional
XML document. For example, given the (nontemponalpductKey definition in Listing 17 for the
product element, the following snippets (Listings 21 and 22) refeegterfectly legal change from one
state to another for theroductNo attribute (from500 to 599) within the first<product> element.

Listing 21: Initial State foproductNo attribute

<product productNo ="500">
<pr oduct Nane>17 inch LCD Model 350</ product Name>
<qgt yOnHand>25</ gt yOnHand>

</ pr oduct >

<product productNo ="501">
<pr oduct Nane>19 inch LCD Model 370</ product Name>
<gt yOnHand>10</ gt yOnHand>

</ pr oduct >

Listing 22: Changed State f@roductNo attribute

<product productNo ="599">
<pr oduct Nane>17 inch LCD Model 350</ product Name>
<gt yOnHand>25</ gt yOnHand>

</ pr oduct >

<product productNo ="501">
<product Nane>19 inch LCD Model 370</ product Name>
<gt yOnHand>10</ gt yOnHand>

</ pr oduct >

A non-sequenced identity constraint states that a fieldevatumbination is unique across time. This is
both within and between nodes. Consider the conventionigjue constraint defined in Listing 23. Sup-
pose a non-sequenced uniqueness constraint is placed emé#ieaddress of an employee, with an evalua-
tion window of a year (Listing 24). Then, no two employees lktave the email addregfoe@arizona.edu
(for example) in any year, nor can the same employee (e g, Doe) switch fronjdoe@arizona.edu
to john.doe@arizona.edu and back tgdoe@arizona.edu in a year. To specify a uniqueness
constraint solely within a node, i.e., if we wished to only faat the same employee (e.g., John Doe) cannot
switch fromjdoe@arizona.edu to john.doe@arizona.edu and back tgdoe@arizona.edu
in a single year, we would need to define an item at the levekaigle employee (Listing 25). In this case,
we do not re-use the conventional uniqueness constraite ggselector is different (and it is defined under
employees , while we want it to be defined at the level@inployee for a constraint at thevithin level).

We leave for future work a discussion of (and specifying treax and semantics for) unique constraints
that apply solely between nodes.

As seen in the example in Listing 22, a conventional iderdd@igstraint does not imply non-sequenced
uniqueness. Thus, the sampeoductNo (a conventional key) can bee-usedfor another product or
changed between snapshots (for the same product, as lohgeasains unique). To place non-sequenced
restrictions on elements or attributes, we us®-sequenced uniguend non-sequenced kegonstraints.
These allow us to designate an element or attribute valuee@mple, gproductNo) as unique across a
temporal document (with snapshots coalesced across tliwiof evaluation).

Depending on how a non-sequenced identity constraint isifigey, we may end up with two or more
products with the samproductNo over time. We would like to clarify that an attribute or elemhe
annotated with a non-sequenced unique (or key) constraied mot be used as tltemldentifierfor the

44

Listing 23: Conventional Uniqueness constraint for empgmails

<xs:el enent name="employees">
<xs:el enent name="employee">
<xs:attribute name="email" type ="xs:string" use ="optional" />
</xs : el enent >
<XS:uni que name="unique_employee_email">
<xs:sel ector xpath ="employee" />
<xs:field xpath ="@email" />

</xs :uni que>

</xs : el enent >

Listing 24: Non-sequenced uniqueness constraint on erapleynails

<i t em target ="company/employees">

<nonSeqUnique name="nsu_employee_email" conventionalldentifier ="unique_employee_email"
evaluationWindow ="year" slideSize ="day" />

</itenpr

Listing 25: Non-sequenced uniqueness constraint withinglesemployee

<i t em target ="company/employees/employee">

<nonSeqUnique name="nsu_employee_email" evaluationWindow ="year" slideSize ="day" >
<applicability begin ="2007-01-01" />
<sel ector xpath ="" />

<field xpath ="@email" />
</nonSeqUnique >

</itenr

45

correspondingtem (introduced in Part Il for schema versioning). Aem may have multiple (non-
sequenced) unique and key constraints defined under it.

By specifyingproductNo as non-temporal, no change can be made to its value. A diffdce
new) productNo value indicates an instance of a distinct product. The @Biplvay to designate a
time-invariant key is by specifying the item as non-tempgmmntent="constant") in the logical
annotations and combining this wittkay constraint on the element or attribute.

A non-sequenced unique constragmtecifies that a value (of an element or attribute) shouldbaat-
used at a later time within an evaluation window. This is gt in the logical annotations through one
of the following elements:<nonSeqUnique> , <nonSegKey> or <uniqueNullRestricted> (a
sub-element oftem). We adopt the usual distinction in semantics betwleeyn andunique (i.e., the
permissibility ofnull values).

With the refinements introduced in Section 6.2, we defimoaSeqKey constraint as follows. Let
theitem containing thenonSeqgKey definition be denoted by. Let L be the list of XPath expressions
[sel f1,sel fa,...,sel f,] wheresel is theselector — andf; are thefield expressions.

Definen® to be a version of. whose timestamp overlaps. Evaluating the expression ligt with
respect to* returns a list of versions.

The union of all such versions overlapping the window of eatibnw is denoted by: For each window
(atime periodyw, Vi, j, e; € Unionyw (Eval(n®, L)) ande; € Union,w(Eval(n®,L)),e; = e; =i = j.

The effect of the slide size is to determine the start poinefch successive.

The next kind of constraint we discussuriqueNullRestricted . Since the XML Schema def-
inition of unique allows a NULL value at each point in timeettefault semantics faronSeqUnique
allows for multiple NULL values across time (one in each @nmtional document). A non-sequenced
uniqueNull -Restricted constraint restricts the appearance of the number of NU lilegaby allow-
ing the user to specify a finite number (one or more) across;tie default number being one. Setting the
number of nulls allowed across time to 0 is equivalent to ifgieg a non-sequencekley constraint. A
non-sequenced key constraint, as might be expected,aisaNlULL values in any of the key fields at any
time.

Using the ternmode to refer to a constrained attribute or element, anbto a specific value (including
null) that we are interested in. Létmp(D?,w,node,val) evaluate to the set of maximally coalesced
temporal elements associated withvanle within the documenD, during the evaluation window (appli-
cability bound ofB), where the value ofiode = val. Then settingyal to null, returns the sete where the
node is null. The cardinality,|te|, of the set is the number of timesill appears (counting each contiguous
appearance as a single blockjliCountMin < |te| < nullCountMax

A more powerful version of theonSeqUnique (or nonSegKey) constraint would permit the user
to specify exactly how many times akgy (or unique) value other than NULL can appear across time.
The default is 1—in which case it is identical to a non-segeérunique or a non-sequenced key constraint.
We term this constraint asvalue cardinality constraintbut do not explore it for now since it has no XML
Schema equivalent.

We now proceed to discuss the different attributes and krents for theuniqueConstraint
(summarized in Table 21; the sub-elements are indented).

name: This allows the user to name the constraint and is useful e tdae constraint is referenced else-
where (e.g., in a referential integrity constraint).

conventionalldentifier . Specifies the name of the identifier in the conventional sehdotu-

ment. If this is not specified, then it implies a new constrabeing defined and theelector and
field sub-elements should not be empty.

46

nullCountMin : Used only in conjunction with thaniqueNullRestricted constraint to specify
how many nulls are allowed over the non-sequenced time eftt@nimum).

nullCountMax : Used in conjunction with theniqueNullRestricted constraint to specify how
many nulls are allowed over the non-sequenced time extesti(num).

dimension : Specifies the dimension in which the unique constraint ep@ind is one ofalidTime ,
transactionTime , or bitemporal . The default is assumed to balidTime since that is
closely related to capturing real world restrictions, eatthan restrictions on data entry.

evaluationWindow : Specifies the time window over which the constraint shoulchecked. The
purpose is to allow uniqueness to be specified for an inteevgl, year. This is useful when, for
example, a particular key value should not be re-used forriagef a year. The value then must
be “unique over any period of a year”. By default the evatuativindow is the lifetime of the time
varying XML document. Assuming we use XML Schema to spedify datatypes for time intervals,
we can extend that with a union of the stridifetime . This will allow us to set the time interval
for evaluationWindow (and other attributes) to a value lifetime (indicating a temporal
element equivalent to the lifetime of the XML document). lhe tconstraint examples that follow,
we assume this datatype extension is done and use the kelifedirde when needed. Strictly
speaking, the evaluation window could be defined as a uniamerdvals. For example, a constraint
could requireno more than ten orders are placed each month, in the firstaind weeks of the month
For simplicity we use ams:string datatype and specify only a single attribute for the evadnat
window (rather than sub-elements). The window corresptmes interval. Thus, if just a granularity
is given, such as "year”, this is interpreted as the intet¥alear”. If slideSize is not provided, then
it is assumed to be one granule, or the temporal granuldrityeounderlying item being constrained.

slideSize : Specifies the size of the slide (an interval); must be usedmjuaction with an evaluation
window. By default, it takes the temporal granularity of thederlying item being constrained.

applicability : The applicability of a constraint specifies when it wasdia{Note: theapplicability
attribute applies to the valid time dimension; transactiore applicability would concern when a
constraint exists in the schema document.) Thus a key @dnistnay be enforced between 2005 and
2010. Strictly, the applicability need not be a single rareyad may be a temporal element, which
is why we specify the applicability abégin , end) attribute pairs within a wrapping sub-element
called applicability . If nothing is specified, the default is assumed to be théirife of the
document. The applicability and evaluation window of thestcaint are related. Defining an eval-
uation window that exceeds the applicability of the constris not really meaningful, as it cannot
be checked beyond the constraint applicability. In suchse,ca warning should be returned and the
evaluation window should be shortened to the maximum alsvevithin the constraint applicability
limits.

selector andfield : Theselector specifies the context within which the combinationfiefd
XPath expressions should evaluate to uniqusekector can have one of two attributes specified.
If the xpath attribute it specified, it is evaluated relative to the paihtlefinition (of the constraint)
within the document. The other option is to uséeanref attribute. This provides schema ver-
sioning support by allowing theelector reference to have flexibility across versions. The only
other requirement for schema versioning, is that the elésnamd attributes picked bijeld , do
not change across schemas (or if they do, the constraindé$ined). Multiplefield sub-elements
may be listed. The combination of these are taken for thetwins specification. Thdield
sub-elements have a usage identical to their conventiodMil $chema counterparts, and have a

a7

singlexpath attribute. selector andfield are needed to specify a new constraint (i.e., those
that were not defined as identifiers in the conventional sefenf a new constraint is defined, the
conventionalldentifier attribute should not be used. A new constraint can be eitbfEmed

as either &ey or aunique constraint.

We now describe some non-sequenced identity constraint@eas.

1. The combination of supplier name and city is unique. Howetex later point in time we may have
a different supplier with a name and city combination thaswaen previously. To avoid any problem
in a given business (calendar) year, we require that reusellshnot occur for at least one year after
discontinuation. Part numbers on the other hand may not basexl later. These constraints are
applicable between 2005 and 2009.

<i t em target ="company/suppliers">

<nonSegKey name="idSupplierNo" dimension ="validTime" evaluationWindow ="year"
slideSize ="day">

<applicability begin ="2005-01-01" end ="2009-12-31">
<sel ect or xpath ="supplier" />
<field xpath ="supplierName" />
<field xpath ="supplierCity" />
</nonSegKey >

<litemr
<i t em target ="company/products">
<nonSegKey name="idPartNo" dimension ="validTime" evaluationWindow ="lifetime">
<applicability begin ="2005-01-01" end ="2009-12-31" />
<sel ect or xpath ="product" />

<field xpath ="productNo" />
</nonSeqgKey >

<litemr

2. A product’s key (in both valid and transaction time) is itsiIRFiumber. The constraint is applicable
from 2007 onwards.

<i t em target ="company/products">

<nonSegKey name="product_RFID" dimension ="bitemporal"
evaluationWindow _ ="lifetime">

<applicability begin ="2007-01-01" />

<sel ect or xpath ="product" />

<field xpath ="@RFID" />
</nonSeqgKey >

</itenp

3. Employee email addresses are optional. If they do exisg,gheuld be unique and should not be re-
used for a two-year period. An existing unique constraioin(@ntional) exists on employee emails
with an name ofinique_employee_email . The assumption is that it is defined under employees,
i.e., has the same context as the definition of the item witingeet of company/employees. Employee
pager numbers are also unique; but not all employees have.thid more than fifty employees should
be without a pager in any given calendar year.

48

<i t em target ="company/employees">

<nonSeqUnique name="nsu_employee_email" conventionalldentifier ="unique_employee_email"
evaluationWindow ="2 years" slideSize ="day" />
<unigueNullRestricted name="unr_employee_pager"
nullCountMax ="50" dimension ="bitemporal"
evaluationWindow ="year" slideSize ="year" >
<applicability begin ="2007-01-01" />
<sel ect or xpath ="employee" />
<field xpath ="@pager" />
</unigueNullRestricted >

<litemr

6.2.2 Referential Integrity Constraints

Each referential integritykeyref) constraint for a conventional document leads to a seqaecoenter-
part in a temporal document. Thus, each conventional kejeys referential integrity.

A non-sequenced referential integrity constraint is usefgpecify a reference to some past state of the
XML document. Suppose, for example, the “largest order'd@tar terms) placed by a customer is stored
with the customer data (withkeyref toorderNo). A non-sequenced referential the integrity constraint
could state, “The largest order the customer has placeddsbeuor an order that existed in the document
at some time.”

Formally, we can define the sequendexyref constraint as follows. LeEwval(sel,, F,.) denote the
result of evaluating the lisk). of keyref XPathfield expressions relative to treelector element
sel, at any timet, t € B, during the applicability bound. Let e, be an element from the list defined
by Eval(sel,, F,). Similarly, let Eval(sely, Fy,) denote the result of evaluating the referen&eg (or
unique) constraint at time, ande, € Eval(sely, Fi). Thekeyref constraint is satisfied whetfe, (in
the document) such that = e,.

One might think that there should be a limitation preventigfgrential integrity constraints within state
data referring to event data. However, for XML, there doesneed to be such a limitation. Consider the
following example: Scientists take readings about the szatpre and humidity levels at an observation
post. Each observation can be considered an event. Infamat the scientists on the other hand is state
data. Depending on the structure of the documestientist> can be the enclosing element with
keyref sto the appropriateobservation> or <observation> can be the enclosing element with
a reference to the scientist(s) who were responsible f&ath options can be defined using XML Schema
and should be allowed.

Intuitively, a non-sequencekkyref constraint should refer to the definition of an identifiertthaes
not permit re-use. Without the restriction of not permitire-use, the semantics of the referential integrity
may not be well defined. For example, if the order number cbalde-used, then a customer’s largest order
may end up referencing an order that was not originally mldnethat customer. Not permitting re-use of
order numbers however is a strict constraint that can betednitthelargestOrderNo has a valid-time
timestamp. Then, the non-sequential reference can besioddrto be for a specific order number that was
valid at the begin time of thiargestOrderNo

We represent a non-sequenced referential integrity @instusing anonSegKeyref element in
the logical annotations. Next, we proceed to discuss therdiit attributes and sub-elements for the
nonSegKeyref (summarized in Table 24; the sub-elements are indented).

name: This allows the user to name the constraint and is useful Se tae constraint is referred to else-
where. In a managed environment, this would also aid in a@tiguconstraints to be disabled or

49

dropped.

refer : Denotes a referenced constraint (either conventionalnopseal), i.e., the name of the constraint,
that the non-sequenced referential integrity constraimtssociated with. If the constraint being re-
ferred tois a convention&kyref |, thenitis in effect just extending the semantics of the eotional
constraint (e.g., with an applicability bound). In this eas inherits the referreley constraint in-
formation. If this is a new constraint, then we need to refebath an existing identity constraint
(either conventional or temporal), and define $kéector andfield properties.

applicability : A non-sequenced keyref can be associated with a partiaplalicability that
specifies when it was in effect. If the applicability is noesified, the default is assumed to be the
lifetime of the document. As with uniqueness constraithis,applicability can be a temporal element.

selector andfield : These two sub-elements have a usage identical to timégueConstraint
counterparts, but are needed to specify a new constranttfiose that were not defined as referential
integrity constraints in the conventional schema).

New non-sequenced referential integrity constraints neagiddined (i.e., those that were not defined as
akeyref in the conventional schema).

4. A non-sequenced referential integrity constraint is to leéireed for the product number in orders.
We assume a referential integrity constraint exists in tbaventional schema. The name of the
corresponding keyref isrdersProductRef which references a valid part number. The constraint
is applicable from 2005-2009.

<nonSeqgKeyr ef name="ordersProductRef_NS" refer ="ordersProductRef">
<applicability begin ="2005-01-01" end _ ="2009-12-31" />
</ nonSeqgKeyr ef >

5. A non-sequenced referential integrity constraint is to leéireed for the customer email in orders.
It should reference a valid email address. The correspandinique constraint within customers is
defined agustEmailsUnique . The referential integrity constraint is applicable frora@8—2012,
and no corresponding conventional constraint exists.

<nonSegKeyr ef name="ordersCustEmailRef" refer ="custEmailsUnique">
<applicability begin ="2008-01-01" end _ ="2012-12-31" />
<sel ector xpath ="order" />
<field xpath ="oCustEmail" />

</ nonSegKeyr ef >

6.2.3 Cardinality Constraints

As discussed in Section 6.1.3, the cardinality of elememtsonventional documents is restricted by us-
ing minOccurs andmaxOccurs , and that of attributes by usingptional andrequired . These
automatically induce sequenced constraints in the terhdocaiment.

Non-sequenced constraints can be used to restrict thenaditgiover time. Consider the example of
anorder element in Listing 26. We see that tdeliveredOn element may not always be present in
a specific document snapshot. Let us further say, that whiteay be empty at the time the order was
placed, we require it to be appear at some point (say withieetimonths of the order being placed). So,

50

even thoughminOccurs="0" is satisfactory for a conventional document, we may debigesfjuivalent
minOccurs="1" for a temporal document.

Listing 26: Orders with an optionaleliveredOn

<xsd: schema xmlns :xsd ="http://www.w3.0rg/2001/XMLSchema">

<xsd: el enent name="order">
<xsd : conpl exType>
<xsd: sequence>

<xsd: el enent name="orderNo" type ="xsd:string" />

<xsd: el ement name="orderDate" type ="xsd:date" />

<xsd: el enent name="deliveredOn" minOccurs ="0" maxOccurs ="1" type ="xsd:date" />
<xsd: el ement ref ="product® minOccurs ="1" maxOccurs ="unbounded" />

</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >

For attributes, a similar requirement may be placed (i.esnapshotoptional attribute, may be
required over some evaluation window).

Another refinement that may be desired for a non-sequenaelihahty constraint is theggregation
level at which the count is being performed. Let's consider thees@hnin Listing 27. A non-sequenced
cardinality constraint can be used to place a limit of onedned orders from a supplier in any given
year. In this casegrder s the direct child of suppliers, and the conventiomelxOccurs constraint (on
order) would be used to restrict the number of chiicder elements aupplier can have. Suppose,
we wished to further constrain the number of orders fordbipany across the all suppliers to 1500 per
month. In other words, the number ofder elements that were descendantscompany) should be
< 1500 in any calendar month. The conventional cardinality camsts are not designed to handle this.
This is our motivation behind introducing tlaggLevel option for a cardinality constraint.

Listing 27: Considering Aggregation Levels for arder

<xsd: el enent name="company">

<xsd: el ement name="supplier" minOccurs ="1" maxOccurs ="unbounded">

<xsd: el enent ref ="order" minOccurs ="0" maxOccurs ="unbounded" />

</xsd : el enent >

</xsd : el enent >

We represent temporal cardinality constraints usiegraConstraint element in the logical anno-
tation document. Formally, we define tbardConstraint (of typechildList) as follows. Let:

* sel be a context node (defined bglector in a cardinality constraint), with the list of correspond-
ing field expressiond” = (f1,..., fm).

* ancestorO f(n,a) returntrue if a is an ancestor of node, andfalse otherwise.
» Fortwo lists,; and Ly, let L1 W Lo return the result of appending the memberd.oto L.

* Fwval®(sel, F') be the result returned by the evaluationfofelative tosel (over the evaluation win-
doww). There may be many nodes corresponding to a givée.g., manysupplier nodes), and
each suchqupplier) node can have many children. Therefetel" (sel, F') returns a list of lists.

51

s childList; € eval® (sel, F) be thei'® member (also a list) of the result.

e childListAggr = aggr(childlist;,aggLevel) be the aggregation of the variouhildList; at the
ancestor level ofggLevel; i.e.,childList Aggr = (childList1W. . .WchildList;®. . .WchildListy,),
whereVi, ancestorO f(sel, aggLevel) istrue .

Then thecardConstraint restricts:min < |childListAggr| < max, if an aggLevel is defined. If
theaggLevel is empty, thenmin < |childList| < max. Here|list| is the count of members in thést.

The definition forchildList can be modified for set semantichildSet |, by only considering dis-
tinct elements (i.e., duplicates are not considered). Bitingys up the issue of how to determine if two nodes
are duplicates. One option is to go with the understandiig@-equivalence defined in Section 5.4. An-
other option is to consider two nodes equivalent if the \&lietheir corresponding item identifiers match.
When defining thetemldentifierRef attribute incardConstraint , theselector XPath for
the cardinality constraint (i.e., thfeeld ~ XPath expression in cardinality) should be compatible it
referred item identifier.

Formally, we let:

* childSet; € eval”(sel, F') be the set of child nodes returned by the evaluation of thettX@epres-
sionsF relative tosel (over the evaluation window).

* childSetAggr = aggr(childSet;,aggLevel) be the aggregation of thewildSet; result at the an-
cestor level oluggLevel; i.e., childSet Aggr = (childSet, U ... U childSet; U ... U childSety,),
whereVi, ancestorO f(sel, aggLevel) istrue .

Then thecardConstraint restricts: min < |childSetAggr| < max, if an aggLevel is defined.
If the aggLevel is empty, then:min < |childSet| < max. As can be seen, the definitions for the
restriction type ofchildSet are very similar to the definition for the type ofiildList

6. There should be no more than fifty active suppliers (i.e.hé“database”) in any year. This con-
straint is true between 2007 and 200eh[ldList constraint]

<cardConstrai nt name="supplierCardYear"
restrictionTarget ="childList" dimension ="validTime" evaluationWindow ="year"
slideSize ="day" max ="50">
<sel ect or xpath ="company" />
<field xpath ="supplier" />
<applicability begin ="2007-01-01" end _ ="2009-12-31" />
</ cardConstrai nt>

7. No supplier should be given more than one hundred orders alendar month. These orders should
not be for more than five hundred different productéote: we do not do SUM type constraints here,
since they are not an extension of minOccurs or maxOccuffte(Pnt kinds of aggregation).

<car dConstrai nt name="supOrders" restrictionTarget ="childList" dimension ="validTime"
evaluationWindow ="month" slideSize ="month" max_ ="100">
<sel ect or xpath ="company/supplier" />
<field xpath ="order" />
</ cardConst rai nt >

<cardConstrai nt name="supParts" restrictionTarget ="childList" dimension ="validTime"
evaluationWindow ="month" slideSize ="month" aggLevel ="company/supplier" max ="500">

<sel ect or xpath ="company/supplier/order" />
<field xpath ="product" />
</ cardConst rai nt >

52

8. There should be a maximum of 250 potential suppliers for tiapany across all products. We
assume there exists an item identifie— on the potentiallsujspsupplierNo attribute. This
constraint is to be enforced during 2009. [Sequenced caimgfruse ofchildSet |

This is a sequenced constraint. However it cannot be erddrgea combination of aninOccurs
andmaxOccurs .

<car dConstrai nt name="potential_suppliers_seq" restrictionTarget ="childSet"
itemldentifierRef ="potential_supplierNo" dimension ="validTime"
sequenced ="true" aggLevel ="company" max_="250">
<sel ect or xpath ="company/product" />
<field xpath ="potential_supplier" />
<applicability begin ="2009-01-01" end ="2009-12-31" />
</ cardConstrai nt >

Another kind of constraint we consider is restricting thedgaality of thevalueList ,i.e., the min/-
max number of “values” that an element or attribute can haxer a specific evaluation window. This
constraint does not have an XML Schema equivalent. So it dogsit into a strict extension of XML
Schema semantics.

A valueList restriction is related to the datatype of the item (whichc#pes the possible values
an item can take). For example, suppose an osthius attribute can have one of the five following
values:placed , underReview ,being _processed ,shipped , andreturned . Itis possible that
changes to the order can have it swap back and forth betue#erReview andbeing _processed
Therefore over a period of a month, it can potentially hawese/alues. However the number dibtinct
values that status can have is five or fewer. In this sensealnelList andvalueSet restriction kinds
are analogous to the SQL notion@OUNT @ttribute) andCOUNT(distinct attribute) .

For both of the twovalueList restrictions, child elements (or attributes) are not be&ognted. In-
stead itis the value of the element (or attribute) itself, t8e semantics of theardConstraint/selector
element is different from that fochildList or childSet . In the latter, theselector is used to
set up the context node, relative to which the child itemsdesd by thefield nodes are counted.
With valueList constraints, theselector is used to decide the item for which the values will be
counted. Typically for thealueList cardinality constraints, thigeld expression will contain a termi-
nal /text() function.

The formal definition fovalueList andvalueSet constraints are similar to those fdnildList
andchildSet . The main difference being in th@al" (sel, F') function, which instead of returning a list
(or set) of nodes (element or attribute), returns va&ie or content of those nodes. An example of a
valueList andvalueSet cardinality constraints follows.

9. A product should have only one name in any month, but can hat@three distinct names in a year.

This is in force during 2008—2010vélueList andvalueSet constraints; different evaluation
window sizes used]

53

<cardConstrai nt name="prodNameMonth" restrictionTarget ="valueList"
dimension ="validTime" evaluationWindow ="month" slideSize ="day" min_="1" max ="1">
<sel ect or xpath ="product" />
<field xpath ="@productNamef/text()" />
<applicability begin ="2008-01-01" end _ ="2010-12-31" />
</ cardConstraint>
<car dConstrai nt name="prodNameYear" restrictionTarget ="valueSet"
dimension ="validTime" evaluationWindow ="year" slideSize ="day" min ="1" max ="3">
<sel ect or xpath ="product" />
<field xpath ="@productName/text()" />
<applicability begin ="2008-01-01" end _ ="2010-12-31" />
</ cardConstraint>

We now proceed to discuss the different attributes and mrents for theeardConstraint (sum-
marized in Table 25; the sub-elements are indented).

name: This allows the user to name the constraint and is usefulda t@e constraint is referenced later.

restrictionTarget : Cardinality constraints can restrict tbleildList ~ ,childSet ,valueList
andvalueSet counts of elements and attributes.

childList refers to the actual number of sub-elements that can appeartime, and is analo-
gous to the conventional minOccurs and maxOccurs for segaeoonstraints. The difference be-
tweenchildList andchildSet is similar, in that duplicate sub-elements are not counted f
childSet . Duplication is determined using by referencing an appleainiqueness constraint
(which in terms specifies the fields to be evaluated).

itemldentifierRef : The name of the item identifier. Used along withildSet to eliminate du-
plicates.

dimension : Specifies the dimension in which the cardinality constrapplies and is one ofalidTime
transactionTime , or bitemporal

evaluationWindow : Associated with a non-sequenced cardinality constraititedime window over
which the constraint should be checked. This allows calitirrainimum and maximum ranges to be
specified for an interval, e.g., year. This is useful, forregle, when a restriction needs to be put on
how many orders suppliers can handle in any given period.aiguit the time window is the lifetime
of the XML document.

slideSize : Associated with the time window of evaluation. By defaulsithe granularity of the under-
lying data type.

sequenced : Denotes if the constraint is sequenced or not (using efither orfalse). This is allowed
in the constraint specification since XML Schema only allemisOccurs andmaxOccurs to be
aggregated at the target parent level. Allowing a diffeegggregation level is useful, for example, if
instead of restricting the number of potential suppliersafproduct (assumingpotential_suppliers>
is a child element okproduct>), we wish to restrict the total number of potential supglidre
company maintains relationships with at any time. If a c@ast is specified as sequenced, the
evaluationWindow attribute must not be used.

agglLevel : Specifies the level at which the aggregation is performeddatinality constraints; by default
it is at the level of the target’s parent. This is also the seashy we allow sequenced cardinality

54

specifications. For a sequenced constraint to be usefudgipegation level should not be the target’s
parent.

min andmax: Specify the minimum and maximum cardinality respectively.

selector andfield : These two sub-elements have a usage identical to XML Scheageuor con-
ventional constraints.

applicability . The constraint applicability specifies when it was in effetft the applicability is
not specified, the default is assumed to be the lifetime ofitiment. The applicability can be a
temporal element.

6.2.4 Datatype Restrictions (Constraints)

As mentioned in Section 6.1.4, we currently consider najusaced augmentations to the XML Schema
simpleType element. A simple type is used to specify a value range anttesla sequenced constraint
that ensures conventional document values conform toahige:.

A non-sequenced equivalent of this type of constraint cacobsidered either at the schema level (i.e.,
datatype evolution—within schema evolution) or at thednst level (transition constraints). Schema-level
constraints restrict the kinds of changes possible to thetygze of an item. However, we do not see much
need for this type of a constraint.

At the instance level (i.e., conforming to a particular tygmecification), a temporal constraint could
restrict discrete and continuous changes. Discrete caceyebe handled by defining a set of value tran-
sitions for the data. For example, it could be specified tHatensupplier ratings can change over time,
the changes can only occur in single-step increments B.¢o, either A or C). Continuous changes are
handled by defining a restriction on the direction of the gearf-or a transition constraint to be applicable,
a corresponding datatype should be defined at the convahsohema level.

We now proceed to discuss the different attributes and krhents for théransitionConstraint
(summarized in Table 26; the sub-elements are indented).

name: This allows the user to name the constraint and is useful e tae constraint is referenced else-
where.

dimension : Specifies the dimension in which the unique constraint ap@ind is one ofalidTime
transactionTime , or bitemporal . The default isvalidTime since a cardinality constraint
on transaction time is akin to specifying how many “datajentranges” can be made to an element
or attribute.

selector andfield : These two sub-elements have a usage identical to their othomal XML Schema
counterparts.

valuePair : Thisis used to list possible pairs for discrete changes.pHirs themselves are specified as
<old> and<new> sub-elements. valuePair cannot be used simultaneousdiyalite Evolution
The values listed here should be within the range of valuisetefor the conventionaimpleType
datatype.

valueEvolution . This sub-element lists the direction for continuous chan@mnly one ovaluePair
andvalueEvolution should be used. The values listed here should be within tigeraf values
defined for the conventiongimpleType datatype. Continuous changes of the following direction
are currently supported:

55

strictlylncreasing : the value should be strictly increasing

strictlyDecreasing : the value should be strictly decreasing
* nonincreasing : the value should be non-increasing

» nonDecreasing : the value should be non-decreasing

e equal :the value should be equal, i.e., no change allowed.

The last typeequal , should only be used in conjunction with the applicabiliggin and applicabil-
ity end to restrict when the value of a particular elementtitaite (e.g., salary) should not change.
This allows us flexibility over annotating salary to be nemporal since the user may wish to place
this restriction only between “March 2009 and June 2009”.

applicability . The constraint applicability specifies when it was in effetft the applicability is
not specified, the default is assumed to be the lifetime ofiteiment. The applicability can be a
temporal element.

10. Supplier Ratings can move up or down a single step at a timesg@ample, from A to B, or B to A;
but not from A to C) in valid time but no restrictions are pldda transaction time (since a data entry
error might be made). This is applicable between 2008 an@®201

<transitionConstraint name="supplierRating"
dimension ="validTime">
<sel ect or xpath ="supplier" />
<field xpath ="supplierRatingType" />
<val uePai r> <old >A</old > <new>B</new > </ val uePai r>
<val uePai r> <old >B</old > <new>A</new > </ val uePai r>
<val uePai r> <old >B</old > <new>C</new > </ val uePai r>
<val uePai r> <old >C</old > <new>B</new > </ val uePai r>
<applicability begin ="2008-01-01" end _ ="2010-12-31" />
</transitionConstraint>

11. Employee Salaries should not go down, but may increase bat2@08 and 2009. However, a salary
freeze is in place between January and June 2009 due to edofextors.

<transi ti onConstrai nt name="employeeSalaryl"
dimension ="validTime">
<sel ect or xpath ="employee" />
<field xpath ="salary" />
<valueEvolution direction =">=" />
<applicability begin ="2008-01-01" end _ ="2009-12-31" />
</transitionConstraint>

<transi tionConstrai nt name="employeeSalary2"
dimension ="validTime">
<sel ect or xpath ="employee" />
<field xpath ="salary" />
<valueEvolution direction ="=" />
<applicability begin ="2009-01-01" end ="2009-06-30" />
</transitionConstraint>

56

7 Support for Bitemporal Data

Up to this point, all the examples we have seen consider osiggle dimension of time. But as explained
in Section 3.2, both transaction and valid time play an irtgourrole in modeling entities which need to
maintain the historical information. If an entity needs taimain both the historical information as well as
the history of changes, bitemporal support is needed. &nsiiagtion, we consider a conceptual extension of
TXSchema to provide support for bitemporal data and proeefiursquashing the conventional documents
along both time dimensions.

For illustration, we consider a modified example from Chafdi@ of the bookDeveloping Time-
Oriented Database Applications in SQL[72].

Nykredit is a major Danish mortgage bank. It maintains tliermation about properties and customers
into bitemporal tables for historical information and tayide tracking support. Traditionally, its been
using relational database tables to maintain this infaomatlif this information needs to be migrated to
XML, 7XSchema with the support for bitemporal data would be useful

In their database, the information about Property, Custsraed their relationship is maintained in the
following three tables.

Property (property _number, address, VT _Begin, VT _End, TT _Start,
TT_End)
Customer (name, VT _Begin, VT _End, TT _Start, TT _End)
Prop _Owner (customer _number, property _number, VT _Begin, VT _End,
TT_Start, TT _End)

Let us assume that, the information about the property iesgmted in XML using the schema given
in Listing 28. For simplicity, onlyproperty _number andaddress attributes of theProperty are
considered. Property is associated with a owner byothieer _name attribute of the<property> ele-
ment. To simplify the things a little, we assume that the avimeniquely represented by tlhevner _-name
attribute.

Corresponding logical and physical annotations are ginénstings 29 and 30. As can be seen from the
temporal annotation, theproperty> element is content varying both in transaction-time andiviiine.

To illustrate the process of gluing in two dimensions, westder the history, over both valid time and
transaction time, of a flat (apartment) in Aalborg, at Sk¢\a@ for the month of January 2008. All its
transactions are listed below in the chronological orddrasfsaction-time. The corresponding bitemporal-
time diagrams and shippets of conventional XML documergsaéso given for understanding.

Assume that, initially, the mortgage for the flat was beingdiad by some other company. So, although
Nykredit maintained the property information, no inforimatabout the owner is stored in the database. We

Listing 28: property.xsd

<el enent name="property">
<conpl exType mixed ="true">
<sequence>
<el ement name="address" type
</ sequence>
<attri bute name="property_number" type ="nonNegativelnteger" use __ ="required"/>
<attribute name="owner_name" type ="string" use___ ="optional'/>
</ conpl exType>
</ el ement >

="string" minOccurs ="1" maxOccurs ="1" />

57

Listing 29: property _logical _annotation.xml

<i t em target ="property">

<transactionTi me content ="varying" existence ="constant" />
<val i dTi me content ="varying" existence ="constant" />
<item dentifier name="property_number" timeDimension ="bitemporal">

<field path ="@property_number"/>
</item dentifier>
</itenr

Listing 30: property _physical _annotation.xml

<stanp target ="property">
<st anpKi nd timeDimension ="bitemporal" stampBounds ="extent"/>
</ st anp>

also assume that the flat exists in Nykredit's database framualy 1. The snippet of the conventional
document corresponding to this period is shown in Figure 5.

Transaction Time [01-01, UC) (Will be altered to [01-01, 01t0))
e Valid Time [01-01, Forever)

Listing 31: Property information, no owner details

<property property number ="7797">
<addr ess> Skowvvej 30, Alborg </ address>

</ property>

Figure 5: Mortgage being handled by other company. No custom

OnJanuary 10, this flat was purchased by Eva Nielsen. Wed¢agrinformation at a current valid-time
(01-10), current transaction-timé{-10). The snippets of the conventional documents correspgrtdin
this transaction period starting @-10 are shown in Figure 6.

This information is valid starting now, and was inserted ndWe will see that the transaction-time
extent ofall modifications is “now” to “until changed,” which we encode ‘dsrever” and express as
9999-12-31 in the XML document.

The interplay between valid time and transaction time candrgusing, so it is useful to have a visu-
alization of the information content of a bitemporal talffégure 7 shows theitemporal time diagramor
simply time diagram corresponding to the above insertion.

In this figure, the horizontal axis tracks transaction timd the vertical axis tracks the valid time. In-
formation about the owners associated with the propertgepécted as two-dimensional polygonal regions
in the diagram. Arrows extending rightward denote “untidnged” in transaction time; arrows extending
upward denote “forever” in valid time. Here we have but ongioe, associated with Eva Nielsen, that
starts at time 10 (January 10) in transaction time and estemtuntil changed,” and begins also at time 10
in valid time and extends to “forever.” The arrow pointingwgrd extends to the largest valid time value
(“forever”); the arrow pointing to the right extends to “n@uhat is, it advances day by day to the right (a

58

Transaction Time [01-10, UC) (Will be altered to [01-10, 0115))
 Valid Time [01-01, 01-10)

Listing 32: Data corresponding to Valid time of Jan 1 - 10

<property property number ="7797">
<addr ess> Skowvve] 30, Alborg </ addr ess>

</ property>

e Valid Time [01-10, Forever)

Listing 33: Data corresponding to Valid time of Jan 10 onvgard

<property property number ="7797" owner name ="Eva">
<address> Skovvej 30, Alborg </ address>
</ property>

Figure 6: Eva purchased the flat on January 10

transaction time in the future is meaningless).

On January 15 Peter Olsen buys this flat; this legal trarmattansfers ownership from Eva to him.
Figure 8 illustrates how this update impacts the time diagrahe valid-time extent of this modification
is always “now” to “forever,” so from time 15 on, the propeityowned by Peter; at the rest of the time,
from time 10 to 15, the property was owned by Eva. Both regmxiend to the right to “until changed.”
This time diagram captures two facts: Eva owning the flat agteéPowning the flat, each associated with a
bitemporal region.

The snippets of the conventional documents corresponditigg transaction are shown in Figure 9.

On January 20, we find out that Peter has sold the propertyneaoe else, with the mortgage again
being handled by another mortgage company. From Nykregahist of view, the property no longer has a
owner as of (a valid time of) January 20.

Figure 10 shows the resulting time diagram. If we now reqtlestvalid-time history as best known,
we will learn that Eva owned the flat from January 10 to Jandaryand Peter owned the flat from January
15 to January 20. All prior states are retained. We can stik ttravel back to January 18 and request the
valid-time history, which will state that on that day we tightithat Peter still owned the flat.

The snippets of the conventional documents corresponditigg transaction are shown in Figure 11.

On January 23, we find out that Eva had purchased the flat n@mrady 10, but on January 3, a week
earlier. So we insert those additional days, to obtain tihe tliagram shown in Figure 12. Corresponding
snippets of the conventional documents are given in Figdre 1

We learn on January 26 that Eva bought the flat not on Januagslifitially thought, nor on January
3, as later corrected, but on January 5. We specify a periagfcability of January 3 through 5, with the
result shown in the time diagram in Figure 13. Correspondmgyentional snippets are given in Figure 15

Finally, we learn on January 28 that Peter bought the flat onalg 12, not on January 15 as previously
thought. This change requires a period of applicabilityasfulry 12 through 15, setting tbevner _name
to Peter, which results in the time diagram in Figure 16. &ffely, the ownership must be transferred from
Eva to Peter for those three days, resulting in the conveaitidocuments given in Figure 17.

Gluing elements in two dimensions involves gluing them glome dimension (e.g., valid-time) fol-
lowed by their gluing along the other dimension (e.g., temtion-time). The last timing diagram on January

59

Valid
Time
30

25

20

15

10

5 10 15 20 25 30

Transaction
Time

Figure 7: A bitemporal time diagram corresponding to Evapasing the flat, performed on January 10

Valid
Time
30

25
20

15
Eva

10 —

5 10 15 20 25 30

Transaction
Time

Figure 8: Peter buys the flat, performed on January 15

28 in Figure 16 could be divided into 7 time-periods alongttaesaction time dimension as shown in Fig-
ure 18, i.e.[01-01 - 01-10) ,[01-10 - O1-15) ,[01-15 - 01-20) ,[01-20 - 01-23)
[01-23 - 01-26) ,[01-26 - 01-28) ,[01-28 - UC)

All the above conventional documents are first squashedjalalid-time dimension as explained soon
to give seven temporal documents corresponding to eacle afttbve periods. The sample sample represen-
tation of these documents corresponding to per[6ds10, 01-15) ,[01-20, 01-23) , [01-26,

01-28) are given below in Listings 53, 54, and 55, respectively. sEldocuments are temporal documents
themselves.

Other representations are also possible for these docam&siin example, the document in Figure 54
could also be represented as shown in Figure 56. In thisseptation, multiple DOM-equivalent versions
of the <property> are merged into a single version and their time periods greesented as a single
time-varying element, i.e., a set of periods.

These temporal documents then act as conventional docsmviilé performing squashing along transaction-
time dimension. When squashed along transaction-timerdimome, they give the final temporal document

60

Transaction Time [01-15, UC) (Will be altered to [01-15, 0120))
 Valid Time [01-01, 01-10)

Listing 34: Transaction Timf1-15, UC) , Valid Time[01-01, 01-10)

<property property number ="7797">
<addr ess> Skowvve] 30, Alborg </ addr ess>

</ property>

e Valid Time [01-10,01-15)

Listing 35: Transaction Timf1-15, UC) , Valid Time[01-10, 01-15)

<property property number ="7797" owner name ="Eva">
<address> Skovvej 30, Alborg </ address>
</ property>

e Valid Time [01-15, Forever)

Listing 36: Transaction Timg01-15, UC) , Valid Time[01-15, F)

<property property number ="7797" owner name ="Peter">
<address> Skovvej 30, Alborg </ address>
</ property>

Figure 9: Peter buys the flat, performed on January 15

shown in Listings 57, 58 and 59.

When we were concerned with only valid-time or only trangactime in earlier examples, the coalesc-
ing of content-constant versions was done by lengtheniagébhsion periods. But when the interplay of two
dimensions comes into picture, the periods in a single deo@generalize teegionsin the time diagram,
which are considerably more involved than one-dimensipeabds. In terms of time diagram, an item ver-
sion with two valid-time instantsyT_Begin andVT_End, and two transaction-time instanfs] _Start
andTT_Stop , encodes a@ectanglein bitemporal space. Such two rectangle can be coalescend eiter
their valid-time instantd/T_Begin andVT_End match or their transaction-time instarft$_Start and
TT_Stop match.

While representing these regions in the XML document, theyic be split with the vertical lines
(termed agransaction-time splittinghown in Figure 19) or horizontal lines (termedvasid-time splitting.
Due to the semantics of transaction time, regions are ofirvath vertical lines in the timing diagram.

The temporal document in Figures 57-59 uses the first apprsatce it minimizes the representation
of the document.

61

Valid
Time
30

25

20

15
Eva

10

5 10 15 20 25 30

Transaction
Time

Figure 10: Peter sells the flat, performed on January 20

Listing 53: Transaction Timf1-10, 01-15)

<property_Repltenr
<property_Version>
<timestanp_Val i dExt ent begin ="2008-01-01" end _ ="2008-01-10" />
<property property number ="7797">
<address> Skovve] 30, Alborg </ address>
</ property>
</ property_Version>

<property_Version>
<ti mest anp_Val i dExt ent begin ="2008-01-10" end ="9999-12-31" />
<property property number ="7797" owner name ="Eva">
<address> Skowvvej 30, Alborg </ address>
</ property>
</ property_Version>
</ property_Repltenr

62

Transaction Time [01-20, UC) (Will be altered to [01-20, 0123))
Valid Time [01-01, 01-10)

Listing 37: Transaction Tim1-20, UC) , Valid Time[01-01, 01-10)

<property property number ="7797">
<addr ess> Skowvve] 30, Alborg </ addr ess>

</ property>

Valid Time [01-10, 01-15)

Listing 38: Transaction Tim1-20, UC) , Valid Time[01-10, 01-15)

<property property number ="7797" owner name ="Eva">
<address> Skovvej 30, Alborg </ address>
</ property>

Valid Time [01-15, 01-20)

Listing 39: Transaction Timg1-20, UC) , Valid Time[01-15, 01-20)

<property property number ="7797" owner name ="Peter">
<address> Skovvej 30, Alborg </ address>
</ property>

Valid Time [01-20, Forever)

Listing 40: Transaction Timf1-20, UC) , Valid Time[01-20, F)

<property property number ="7797">
<addr ess> Skowvve] 30, Alborg </ addr ess>

</ property>

Figure 11: Peter sells the flat, performed on January 20

63

Valid
Time
30

25

20,

15

Eva

10

5 10 15 20 25 30

Transaction
Time

Figure 12: Discovered on January 23: Eva actually purchdszflat on January 3

Valid
Time
30

25

20

15

Eva
10
5 | I—»

5 10 15 20 25 30

Transaction
Time

Figure 13: Discovered on January 26: Eva actually purchdszflat on January 5

64

Transaction Time [01-23, UC) (Will be altered to [01-23, 0126))
Valid Time [01-01, 01-03)

Listing 41: Transaction Tim1-23, UC) , Valid Time[01-01, 01-03)

<property property number ="7797">
<addr ess> Skowvve] 30, Alborg </ addr ess>

</ property>

Valid Time [01-03, 01-15)

Listing 42: Transaction Tim1-23, UC) , Valid Time[01-03, 01-05)

<property property number ="7797" owner name ="Eva">
<address> Skovvej 30, Alborg </ address>
</ property>

Valid Time [01-15, 01-20)

Listing 43: Transaction Time 23rd - UC, Valid Time 15th - 20th

<property property number ="7797" owner name ="Peter">
<address> Skovvej 30, Alborg </ address>
</ property>

Valid Time [01-20, Forever)

Listing 44: Transaction Timf1-23, UC) , Valid Time[01-20, F)

<property property number ="7797">
<addr ess> Skowvve] 30, Alborg </ addr ess>

</ property>

Figure 14: Discovered on January 23: Eva actually purchtésetlat on January 3

65

Transaction Time [01-26, UC) (Will be altered to [01-26, 0128))
Valid Time [01-01, 01-05)

Listing 45: Transaction Tim1-26, UC) , Valid Time[01-01, 01-05)

<property property number ="7797">
<addr ess> Skowvve] 30, Alborg </ addr ess>

</ property>

Valid Time [01-05, 01-15)

Listing 46: Transaction Tim1-26, UC) , Valid Time[01-05, 01-15)

<property property number ="7797" owner name ="Eva">
<address> Skovvej 30, Alborg </ address>
</ property>

Valid Time [01-15, 01-20)

Listing 47: Transaction Timf1-26, UC) , Valid Time[01-15, 01-20)

<property property number ="7797" owner name ="Peter">
<address> Skovvej 30, Alborg </ address>
</ property>

Valid Time [01-20, Forever)

Listing 48: Transaction Timf1-26, UC) , Valid Time[01-20, F)

<property property number ="7797">
<addr ess> Skowvve] 30, Alborg </ addr ess>

</ property>

Figure 15: Discovered on January 26: Eva actually purchtésetlat on January 5

66

Valid
Time
30

25

20

15

10

Transaction
Time

Figure 16: January 28: Peter actually purchased the flatraragga 12

Listing 54: Transaction Timf1-20, 01-23)

<pr operty_Repltenr

<property_\Version>
<ti mest anp_Val i dExt ent begin ="2008-01-01" end _ ="2008-01-10" />
<property property number ="7797">
<address> Skovvej 30, Alborg </ address>
</ property>
</ property_Version>

<property_Version>
<ti mest anp_Val i dExt ent begin ="2008-01-10" end _ ="2008-01-15" />
<property property number ="7797" owner name ="Eva">
<address> Skovvej 30, Alborg </ address>
</ property>
</ property_Version>

<property_\Version>
<ti mest anp_Val i dExt ent begin ="2008-01-15" end _ ="2008-01-20" />
<property property number ="7797" owner name ="Peter">
<address> Skovvej 30, Alborg </ address>
</ property>
</ property_Version>

<property_\Version>
<ti mest anp_Val i dExt ent begin ="2008-01-20" end ="9999-12-31" />
<property property number ="7797">
<addr ess> Skovvej 30, Alborg </ address>
</ property>
</ property_Version>

</ property_Repltenr

67

Transaction Time [01-28, UC)
Valid Time [01-01, 01-05)

Listing 49: Transaction Tim1-28, UC) , Valid Time[01-01, 01-05)

<property property number ="7797">
<addr ess> Skowvve] 30, Alborg </ addr ess>

</ property>

Valid Time [01-05, 01-12)

Listing 50: Transaction Timf1-28, UC) , Valid Time[01-05, 01-12)

<property property number ="7797" owner name ="Eva">
<address> Skovvej 30, Alborg </ address>
</ property>

Valid Time [01-12,01-20)

Listing 51: Transaction Timg1-28, UC) , Valid Time[01-12, 01-20)

<property property number ="7797" owner name ="Peter">
<address> Skovvej 30, Alborg </ address>
</ property>

Valid Time [01-20, Forever)

Listing 52: Transaction Timf1-28, UC) , Valid Time[01-20, F)

<property property number ="7797">
<addr ess> Skowvve] 30, Alborg </ addr ess>

</ property>

Figure 17: January 28: Peter actually purchased the flatramadga 12

68

Valid
Time
35

30

25

20

15

10

5 10 15 20 25 30 35

Transaction
Time

Figure 18: Transaction Time Regions

Listing 55: Transaction Timf1-26, 01-28)

<pr operty_Repltenr

<property_Version>
<timestanp_Val i dExt ent begin ="2008-01-01" end _ ="2008-01-05" />
<property property number ="7797">
<addr ess> Skovve] 30, Alborg </ addr ess>
</ property>
</ property_Version>

<property_Version>
<timestanp_Val i dExt ent begin ="2008-01-05" end _ ="2008-01-12" />
<property property number ="7797" owner name ="Eva">
<address> Skowvej 30, Alborg </ address>
</ property>
</ property_Version>

<property_\Version>
<ti mest anp_Val i dExt ent begin ="2008-01-12" end _ ="2008-01-20" />
<property property number ="7797" owner_name ="Peter">
<addr ess> Skovve] 30, Alborg </ address>
</ property>
</ property_Version>

<property_Version>
<ti mest anp_Val i dExt ent begin ="2008-01-20" end ="9999-12-31" />
<property property number ="7797">
<address> Skovve] 30, Alborg </ address>
</ property>
</ property_Version>

</ property_Repltenr

69

Listing 56: Transaction Timf1-20, 01-23)

<property_Repltenr

<property_Version>
<timestanp_Val i dExt ent begin ="2008-01-01" end _ ="2008-01-10" />
<ti mest anp_Val i dExt ent begin ="2008-01-20" end ="9999-12-31" />
<property property number ="7797">
<address> Skovve] 30, Alborg </ address>
</ property>
</ property_Version>

<property_\Version>
<ti mest anp_Val i dExt ent begin ="2008-01-10" end _ ="2008-01-15" />
<property property number ="7797" owner name ="Eva">
<addr ess> Skowvvej 30, Alborg </ address>
</ property>
</ property_Version>

<property_\Version>
<ti mest anp_Val i dExt ent begin ="2008-01-15" end _ ="2008-01-20" />
<property property number ="7797" owner name ="Peter">
<address> Skovvej 30, Alborg </ address>
</ property>
</ property_Version>

</ property_Repltenr

valid
Time 35
30
4 6
25
1 2
20 _—
Peter, 7
15 ‘ ! — 12
10 ‘ 1 810
| P13
5 i 3
! 11

Transaction
Time

Figure 19: Transaction-time splitting of regions

70

Listing 57: Temporal Document along both valid-time andh&action-time

<pr operty_Repltenr

<property_Version>
<timestanp_TransExt ent start ="2008-01-01" stop ="2008-01-10" />
<ti mest anp_Val i dExt ent begin ="2008-01-01" end ="9999-12-31" />
<property property number ="7797">
<address> Skovvej 30, Alborg </ address>
</ property>
</ property_Version>

<property_Version>
<timestanp_TransExtent start ="2008-01-10" stop ="2008-01-15" />
<timestanp_Val i dExt ent begin ="2008-01-10" end _ ="9999-12-31" />
<property property number ="7797" owner name ="Eva">
<address> Skovve] 30, Alborg </ address>
</ property>
</ property_Version>

<property_\Version>
<timestanp_TransExtent start ="2008-01-10" stop ="2008-01-23" />
<ti mest anp_Val i dExt ent begin ="2008-01-01" end _ ="2008-01-10" />
<property property number ="7797">
<address> Skovvej 30, Alborg </ address>
</ property>
</ property_Version>

<property_Version>
<timestanp_TransExt ent start ="2008-01-15" stop ="2008-01-20" />
<timestanp_Val i dExt ent begin ="2008-01-15" end _ ="9999-12-31" />
<property property number ="7797" owner name ="Peter">
<addr ess> Skovve] 30, Alborg </ address>
</ property>
</ property_Version>

<property_\Version>
<timestanp_TransExtent start ="2008-01-15" stop ="2008-01-23" />
<ti mest anp_Val i dExt ent begin ="2008-01-10" end _ ="2008-01-15" />
<property property number ="7797" owner name ="Eva">
<address> Skovvej 30, Alborg </ address>
</ property>
</ property_Version>

71

Listing 58: Temporal Document along both valid-time andh&action-time Continued

<property_Version>
<timestanp_TransExtent start ="2008-01-20" stop ="9999-12-31" />
<ti mest anp_Val i dExt ent begin ="2008-01-20" end ="9999-12-31" />
<property property number ="7797">
<address> Skovvej 30, Alborg </ address>
</ property>
</ property_Version>

<property_Version>
<timestanp_TransExt ent start ="2008-01-20" stop ="2008-01-28" />
<timestanp_Val i dExt ent begin ="2008-01-15" end _ ="2008-01-20" />
<property property number ="7797" owner name ="Peter">
<addr ess> Skovve] 30, Alborg </ address>
</ property>
</ property_Version>

<property_Version>
<timestanp_TransExtent start ="2008-01-23" stop ="2008-01-26" />
<ti mest anp_Val i dExt ent begin ="2008-01-03" end _ ="2008-01-15" />
<property property number ="7797" owner name ="Eva">
<addr ess> Skovvej 30, Alborg </ address>
</ property>
</ property_Version>

<property_Version>
<timestanp_TransExt ent start ="2008-01-23" stop ="2008-01-26" />
<timestanp_Val i dExt ent begin ="2008-01-01" end _ ="2008-01-03" />
<property property number ="7797">
<addr ess> Skovve] 30, Alborg </ addr ess>
</ property>
</ property_Version>

<property_Version>
<timestanp_TransExtent start ="2008-01-26" stop ="2008-01-28" />
<ti mest anp_Val i dExt ent begin ="2008-01-05" end _ ="2008-01-15" />
<property property number ="7797" owner name ="Eva">
<address> Skowvvej 30, Alborg </ address>
</ property>
</ property_Version>

72

Listing 59: Temporal Document along both valid-time andsaction-time Continued

<property_Version>
<timestanp_TransExtent start ="2008-01-26" stop ="9999-12-31" />
<ti mest anp_Val i dExt ent begin ="2008-01-01" end _ ="2008-01-05" />
<property property number ="7797">
<address> Skovvej 30, Alborg </ address>
</ property>
</ property_Version>

<property_Version>
<timestanp_TransExt ent start ="2008-01-28" stop ="9999-12-31" />
<timestanp_Val i dExt ent begin ="2008-01-12" end _ ="2008-01-20" />
<property property number ="7797" owner_name ="Peter">
<addr ess> Skovve] 30, Alborg </ addr ess>
</ property>
</ property_Version>

<property_Version>
<timestanp_TransExtent start ="2008-01-28" stop ="9999-12-31" />
<ti mest anp_Val i dExt ent begin ="2008-01-05" end _ ="2008-01-12" />
<property property number ="7797" owner name ="Eva">
<address> Skovvej 30, Alborg </ address>
</ property>
</ property_Version>

</ property_Repltenr

73

In order to support bitemporal data, we anticipate follaydmchitectural and implementational changes
to the existing tools.

SCHEMAMAPPER : SCHEMAMAPPERWoOUId need very little change. As the representation of gteal
document is going to remain the same, it needs to add botsattdion and valid-time elements from
the TVSchema for the elements from physical annotation which are timedwmg along both the
dimensions.

T7XMLL INT : 7XMLL INT would also need little change to support bitemporal datacesthe representa-
tion of items in a XML document is not going to change, the mguprocedure, which is the first part
of the 7~XMLL INT algorithm, would remain the same. Next step is to validageilividual items
identified during gluing. In the existingem class, the validation procedure for the item needs to be
extended to perform the validation of items varying alonthb@lid and transaction time.

SQUASH : To perform squashing of bitemporal data we anticipate a mée wrapper class, e.d>0Bi -
temporalSquashing ,tothe existing architecture. This class would use thdiegi®oSquashing
class to perform the squashing of documents along valid-fonidentified transaction-time periods.
This will generate the series of temporal documents, whithaet as conventional documents for
squash along transaction-time. The existbwSquashing class and other primitive functions will
not be able to handle these temporal documents, since theyneé designed anticipating the ex-
istence of items in the conventional documents. Thustb8quashing class would need some
changes to handle these documents. Also, although the poiat@lgorithms for the primitive func-
tions remains the same, some implementation level changa&ivwe needed. The existingem
class has the support for bitemporal time. But the coalgsaigorithm handles only time-periods. It
does not handle regions. The currenglesce function needs an extension to perform coalescing of
regions.

UNSQUASH : UNSQUASH tool would also need some changes similar to tlpe)/&sH tool. A new wrap-
per class (e.gDoBitemporalunSquashing) could be added. This class would first unsquash
the given bitemporal document along the transaction-timeedsion to give multiple temporal docu-
ments along valid-time. Each of these documents need todmpiashed along the valid-time dimen-
sion giving multiple conventional documents. ExistidgSquash would work without any changes
for performing unsquashing along the valid-time dimens®ome modifications would be needed to
UnSquash class to perform the unsquashing along the transactioa-tiimension.

Thus, although the tools would be based on the existing etassddition of some new classes and

modifications to the primitive functions would be necessargrder to provide the support for bitemporal
data.

74

8 Architecture

In this section we describe the overall architectureX%chema and illustrate with an example. The design
and implementation details of the tools are explained &irith Section 9.

A visual depiction of the architecture aXSchema is illustrated in Figure 20. This figure is central
to our approach, so we describe it in detail and illustrateiibh examples. We note that although the
architecture has many components, only those componesdedtin the figure are specific to an individual
time-varying document and need to be supplied by a user. Megstarying schemas can be quickly and
easily developed and deployed. We also note that the repedgmal schema, instead of being the only
schema in an ad hoc approach, is merely an artifact in ouoappr with the conventional schema, logical
annotations, and physical annotations being the crucetiipations to be created by the designer.

The designer annotates the conventional schema with lagicentations (box 5). The logical annota-
tions together with the conventional schema form the Idgichema. Listing 60 provides an extract of the
logical annotations on th&inOlympic schema. The logical annotations specify a varétcharacteristics
such as whether an element or attribute varies over valid timtransaction time, whether its lifetime is
described as a continuous state or a single event, whethéeth itself may appear at certain times (and
not at others), and whether its content changes. For exargielete> is described as a state element,
indicating that the<athlete> will be valid over a period (continuous) of time rather thasirgle in-
stant. Annotations can be nested, enabling the target telagve to that of its parent, and inheriting as
defaults the kindcontentVarying , andexistenceVarying attribute values specified in the par-
ent. The attributeexistenceVarying indicates whether the element can be absent at some times and
present at others. As an example, the presenexistenceVarying for an athlete’s phone indicates
that an athlete may have a phone at some points in time andt dher points in time. The attribute
contentVarying indicates whether the element’s content can change over thn element’s content
is a string representation of iimmediate content.e., text, sub-element names, and sub-element order.

As discussed in Sectiof#), if no annotationsare provided whatsoever, the default annotation is that
anything can changeHowever, once we begin to annotate the conventional schibeaemantics we adopt
are that elements that are not described as time-varyingtatie. Thus, they must have the same content
and existence across every XML document in box 7. For exgmysehave assumed that the birthplace
of an athlete will not change with time, so there is no anmaafor <birthPlace> among the logical
annotations. The schema for the logical annotation doctiaejiven by ASchema (box 2).

The next design step is to create the physical annotatians@p In general, the physical annotations
specify the timestamp representation options chosen bysbe An excerpt of the physical annotations
for the winOlympic schema is given in Listing 61. Physical annotagionay also be nested, inheriting the
specified attributes from their parent; these values carvegidden in the child element.

Physical annotations play two important roles.

» They help to define where the physical timestamps will begaa(versioning level). The location
of the timestamps is independent of which components vagy tine (as specified by the logical
annotations). Two documents with the same logical infoiomawill look very different if we change
the location of the physical timestamp. For example, altinahe elementghone andathName are
time-varying, the user may choose to place the physicalstiamep at thathlete level. Whenever
any element below athlete changes, the emtindete element is repeated.

» The physical annotations also define the type of timestdan(th valid time and transaction time).
A timestamp can be one of two typestep or extent . An extent timestamp specifies both the
start and end instants in the timestamp’s period. In con&rasgep-wise constant (step) timestamp
represents only the start instant. The end instant is ittiglessumed to be just prior to the start of

75

Listing 60: Sample WinOlympic Logical Annotation

<?xm version ="1.0" encoding ="UTF-8"?>
<l ogi cal
xmins ="http://www.cs.arizona.edu/tau/tauXSchema/ASchema"
xmlns :xsi__="http://www.w3.0rg/2001/XMLSchema-instance"
xsi_:schemalocation ="http://www.cs.arizona.edu/tau/tauXSchema/ASchema
ASchema.xsd">
<def aul t Ti meFor mat >

<format plugin ="XMLSchema" granularity ="gDay"/>
</ def aul t Ti neFor mat >

<i t em target ="winOlympic/country/athleteTeam">
<val i dTi me content ="constant" existence ="varyingWithGaps">
<mexi mal Exi st ence begin ="1924-01-01" />
</ val i dTi ne>
<item dentifier name="teamName" timeDimension ="transactionTime">
<field path ="./teamName"/>
</item dentifier>
</itenr

<i t em target ="winOlympic/country/athlete Team/athlete/medal">
<val i dTi me/>
<transactionTi nme/>
<item dentifier name="medalld1l" timeDimension ="bitemporal">
<field path ="/text()"/>
<field path ="../athName"/>
</item dentifier>
</[itenpr

</l ogi cal >

Listing 61: Sample WinOlympic Physical Annotation

<?xm version ="1.0" encoding ="UTF-8"?>
<physi cal xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/ASchema"
xmlins :xsi__="http://www.w3.0rg/2001/XMLSchema-instance"
xsi_:schemalocation ="http://www.cs.arizona.edu/tau/tauXSchema/ASchema
ASchema.xsd">
<def aul t Ti mreFor mat >
<format plugin ="XMLSchema" granularity ="days"/>
</ def aul t Ti neFor mat >

<stanp target ="winOlympic/country">

<st anpKi nd timeDimension ="transactionTime" stampBounds ="extent"/>
</ st anp>
<stanp target ="winOlympic/country/athleteTeam/athlete">

<st anpKi nd timeDimension ="transactionTime" stampBounds ="step"/>
</ st anp>

</ physi cal >

76

v

0. XML Schema

h

1. TSSchema 2. ASchema

3. Base Schema T y y

4 4. Temporal Schema- - - - - | ‘

,,,,,,,,,,,,

l 5. Logical Annotation 6. Physical Annotatia

SCHEMA
MAPPER
7. Non-Temporal Data 9. Representational
8. Temporal Data >
\ Schema
\

Legend of Arrows

Input/Output References Namespace

Figure 20: Overall Architecture afXSchema

the next version, onow for the current version. However, one cannot g timestamps when
there might be “gaps” in time between successive versiexsent timestamps do not have this
limitation. Changing even one timestamp fratep to extent can make a big difference in the
representation.

The schema for the physical annotations is also containgdnvSchema (box 2)rXSchema supplies
a default set of physical annotations, which is to timestémegoot element with valid and transaction time
using step timestamps, so the physical annotations arengti However, adding them can lead to more
compact representations.

We emphasize that our focus is on capturing relevant aspégihlysical representations, not on the
specific representations themselves (the design of whicha#lenging in itself). Also, since the logical
and physical annotations are orthogonal and serve two aepgoals, we choose to maintain them inde-
pendently. A user can change where the timestamps are dpdatiependently of specifying the temporal
characteristics of that particular element. In the futwikeen software environments for managing changes
to XML files over time are available, the user could specifyi¢al and physical annotations for an element
together (by annotating a particular element to be temgordlalso specifying that a timestamp should be
located at that element), but these would remain two diséiapects from a conceptual standpoint.

The temporal schema (box 4) ties the schema, logical anoesaand physical annotations together.
This document contains sub-elements that associate a séigenventional schema with logical and phys-
ical annotations, along with the time span during which tbgoaiation was in effect. The schema for the
temporal schema document is TSSchema (box 1).

77

4. Conventional Schema («-------------

6. Logical Annotations < ----- 5. Temporal Schema Error Messages

7. Physical Annotations |[<*-------------

Figure 21:7XMLL INT: Checking the schemas

5. Temporal Schema i

» = Messages

9. Temporal Document

Figure 22:7XMLL INT: Checking the instance

At this point, the designer is finished. She has written omweotional XML schema (box 3), specified
two sets of annotations (boxes 5 and 6), and provided thénfinikanformation via the temporal schema
document (box 4). We provide boxes 1 and 2; XML Schema (bos 0f course provided by W3C. Thus
new time-varying schemas can be quickly and easily devdlape deployed.

Let's now turn our attention to the tools that operate onéhearious specifications. The temporal
schema document (box 4) is passed throuMLL INT (see Figure 21) which checks to ensure that the
temporal and physical annotations are consistent with tmgentional schema. The temporal validator
(rXMLL INT) utilizes the conventional validator (e.g., XMIuT) for many of its checks. For instance, it
validates the logical annotations against the ASchemait Blgo checks that the logical annotations are not
inconsistent. Similarly, the physical annotation docutrigpassed throughXMLL INT to ensure consis-
tency of the physical annotations. The temporal constcdietker then evaluates the temporal constraints
expressed in the schema (see Section 15 for more detaitglly-ithe temporal validator reports whether
the temporal document was valid or invalid.

Once the annotations are found to be consistentSttieema Mappefsoftware oval, Figure 20) gener-
ates thaepresentational schen{aox 9) from the original conventional schema and the |dgica physical
annotations. The representational schema is needed agtire schema for a time-varying document/data
(box 8). The time-varying data can be created in four ways:

1. automatically from the non-temporal data (box 7) usiXgchema’ssquash tool (described in Sec-
tion 9.4),

2. automatically from the data stored in a database, i.¢heasesult of a “temporal” query or view,
3. automatically from a third-party tool, or

4. manually.

78

The time-varying data is validated against the representdtschema in two stages. First, a conven-
tional XML Schema validating parser is used to parse andiatdithe time-varying data since the represen-
tational schema is an XML Schema document that satisfiesndyeshot validation subsumption property.
But as emphasized in Section 2, using a conventional XML @ehealidating parser is not sufficient due to
the limitations of XML Schema in checking temporal consttai For example, a regular XML Schema val-
idating parser has no way of checking something as basihas/dlid time boundaries of a parent element
must encompass those of its child”. These types of checkisnglemented inrXMLL INT. So the second
step is to pass the temporal datar®dMLL INT as shown in Figure 22. A temporal XML data file (box 8)
is essentially a timestamped representation of a sequdnuenetemporal XML data files (box 7). The
namespace is set to its associated XML Schema documentépeesentational schema). The timestamps
are based on the characteristics defined in the logical ayglgath annotations (boxes 5 and 6). The tempo-
ral validator,7XMLL INT, by checking the temporal data, effectively checks the teomporal constraints
specified by the conventional schema simultaneously ohaeliristances of the non-temporal data (box 7),
as well as the constraints between snapshots, which caare{dressed in a conventional schema.

To reiterate, the conventional approach to storing tirmeptd data would require the user start with
a representational schema (box 9) and use it to validateethpdral data (box 8). Both these documents
become very complex if time varying data and schema are t@abéléd, and are non-intuitive to work with
directly. Our proposed approach is to have the user designwentional schema, add logical and physical
annotations (boxes 5 and 6), leading to the representhchama (and temporal data) being automatically
generated. In the second part of this technical report i@etfl onwards), we discuss the user specification
of the temporal schema (box 4), which is only needed if theventional schema (box 3) and annotation
documents (boxes 5 and 6) themselves can vary.

79

80

9 Tools and Algorithms

Our three-level schema specification approach enablegeadduiools operating both on the schemas and
the data they describe. This section gives an overview dduite of tools and the algorithms used by them.

The tools are open-source and beta versions are availabje The tools have been implemented in
Java using the DOM API [82]. The DOM API was chosen over SAX AlBé to its ability to create an
object-oriented hierarchical representation of the XMlcwoent that can be navigated and manipulated
at run-time. The primitives explained below use this apitf the DOM API to easily manipulate the
document-tree.

We first describe the details of the implementation primregipushUp, pushDown and coalesce.
These primitives are used BYXMLL INT, SQUASH, UNSQUASH, and RESQUASH tools for manipulat-
ing XML trees. SSHEMA MAPPER a logical-to-representational mapper, is introducedt.né&his tool
takes as input the conventional schema, logical and pHyesiceotations, and generates a representational
schema. This representational schema is usedXMLL INT to validate the given temporal document
using a conventional XML Schema validatetXMLL INT does the actual temporal schema and data vali-
dation. Temporal data validation is a several-step pro@assjor part of this process being gluing elements
to form items. The items are then validated individually.

Other tools in the suite squash, unsquash and resquash d¢hmeots. Given a temporal schema and
a set of conventional documentsQ$sH combines all of the conventional documents into a single tem
poral document. NSQUASH performs the opposite operation, breaking the single teatpglmocument into
multiple conventional documents. ERQUASH is just a combination of NSQUASH and SQUASH; given
a temporal document, an old physical annotation and a newigdiyannotation, RSQUASH changes the
representation of the given document as per the new phyasiceltation.

9.1 Implementation Primitives

As mentioned earlier, the logical and physical annotatemesorthogonal in nature; a user can change the
location of timestamps, independent of specifying the malpcharacteristics of a particular element. The
representation of the temporal document will change adeghd Thus, two documents having a single
logical annotation can have different physical annotatiand hence different representations.

While processing a temporal document, one of the most fretyureeded operations on the temporal
document moves the timestamgg or downin the hierarchy of XML elements defined by original snap-
shot schema. Another operation needed by B&IMLL INT and SQUASH utilities coalescs the adjacent
versions from a given item. We decided to write primitive dtions for these operations so that they could
be reused for building the tools with minimum efforts.We ni@scribe the primitive functions representing
these operations.

9.1.1 ThepushUp Function

Although logical and physical annotations are orthogonahature, one restriction on the physical anno-
tation is that, at least a single timestamp should be locatext above the topmost time-varying element
in the XML schema hierarchy. If a given physical annotati@s tlimestamps at locations other than the
time-varying elements, theushUp function moves the timestamps up in the hierarchy afteresuahg the
items.

Consider the conventional schema in Listing 62 and cormdipg logical annotation (Listing 63) and
physical annotation (Listing 64). Figures 23-26 depigp $¢ step working of theushUp function when
applied to a temporal document having timestamps at the\angng elements.

81

© 0 N OO 0B WN -

P
[N

0 ~N O O A W NP

a h W N -

The first tree representation in Figure 23 represents tiginatidocument before applying tipeishUp
function. The timestamps are present at elem@&a3, which is temporal in nature (i.e., present in the logical
annotation). TheushUp function moves the timestamp to eleme#>, which is present in the physical
annotation. It results in the three copies of elemeft corresponding to the three versions of item B.
Elements<A>, <C> and<D> are non-temporal in nature. Thus their contents are the sathdrience are
duplicated in all the three versions.

Listing 62: Conventional Schema

<el ement name="A">
<conpl exType mixed ="true">
<sequence>
<el enment name="B" type ="string"/>
<el enent name="C" type ="string"/>
<el enent name="D" type ="string"/>
</ sequence>
</ conpl exType>
</ el ement >

Listing 63: Logical Annotation

<i tem target ="/A/B">
<transactionTi me/>
<item dentifier name="A_id" timeDimension ="transactionTime">
<field path ="/text"/>
</item dentifier>
</itenp

Listing 64: Physical Annotation

<stanp target ="/A" datalnclusion ="expandedVersion">
<st anpKi nd timeDimension _="transactionTime" stampBounds ="extent"/>
</ st anp>

82

A

item

[t1-t5)

Aversionl

D D
E"versionl B version B version3
[t1-t2) [t2—-t3) [t4—t5))
O Bversionl B version B version3
Bl B2 B3 [t1-t2) [t2-t3) [t4-t5)
B1 B2 B3
Original Document Before callpushUp (Ajtemn PhysicalAnnotation

Figure 23: Example gbushUp

A

versionl A

versionl version2
[t1-t5)
[t1-t2) [t2—t5)
A A

Bitem Ditem ‘ \
C. D
t t
)) Cversionl) Dversionl B1 “fem ttem
t1-t5 t1-t5
Byersion1 B version2B version3 :) :) Cverl Dyeri Bversion Bversion3
[t1-t2) [t2-t3) | [t4-t5) (-2 [ti-t [t2-t3) [t4—t5)
O O O z BT 3
C D
B1 B2 B3 c D
Before call to functiorsplitChildVersions (Ajiey, , PhysicalAnnotation After first iteration of thirdfor loop in functionsplitChildVersions

Figure 24: Example gbushUp: Continued

83

[t2-t3) [t4—t5)

Aversionl Aversionz Aversionz
A
|tem |tem tem
C
verl er
[t2-t3) [t2—t3 [t4 t5) [t 4— 15
C

After seconditeration of thirdfor loop in functionsplitChildVersions

Figure 25: Example gbushUp: Continued

[t2-t3) [t4-t5)

Aversionl Aversionz Aversionz
Bl C D B2 C D B3 C D

Final Result

Figure 26: Example gbushUp: Continued

84

ThepushUp function is used in UASH and RESQUASH tools. These tools first construct the temporal
document with the timestamps located at the time-varyiegiehts. The timestamps are then moved up in
the hierarchy to the elements present in the physical atioota

The recursive algorithm fquushUp is given in Figure 28. The function accepts an item repregemnt
of an XML element as one of its parameters. The algorithmlisd¢@n the root item in the temporal XML
document. If the root element is not an item, it is converted an item usingreateltem function before
pushUp is called. ThepushUp function recurses until it reaches the bottom of the XML tré that
point, it moves timestamps up in the hierarchy by using tmetion splitChildVersions. The nestedor
loop in the functionsplitChildVersions may multiply the existing versions of the item by splittifgem
depending upon its versions’s overlap with its child itemafsions. The child items from the versions of
the parent item are replaced by the child items’ versionsokeng the child items not present in the physical
annotation. The timestamp is thus pushed one level up initinarbhy, closer to the elements present in the
physical annotation.

Other helper functions used in the algorithm are as follows.

* isltem (e): The function checks whether the given XML elemethias a representation of an item.

* createltem (e, timePeriod: The function creates a new XML element with the repregantaof an
item and adds the given elemearas the (single) version of newly create item with the timaqueof
the version beingimePeriod

* replace (src, targef): The function replaces thsc element with theéargetelement.

» getTimePeriod (itm): The function returns the complete time-period of an item, The time-period
with start time equal to the start time of the first version and time equal to the end time of the last
version of an item.

Figure 27 shows a slightly more complicated case, where ime-varying elements are siblings of
each other. In this case, movement of timestakipsn the hierarchy could result in the multiplication of
the total number of versions depending upon the time ovefamdividual versions from the sibling items.
In this case, two versions &B> and two versions o£C> give six versions okA> after the application of
pushUp function.

85

Gersion2
[t6-t8)

Gersion
[t2-t4)

Rersion1 Rlersion
[t1-t3) [t5-t7)

Bl B2

tl<t2<t3<t4 & t5<t6<t7<t8

Aversion
[t1-t2)

Aversioné
[t7-t8)

Aversions
[t6-t7)

A

Bl

Figure 27: Example gbushUp

86

Figure 28: Algorithm:pushUp

/lInputs
/[itm - An element from a temporal document which is an item
I/l physicalAnnotation Parsed physical annotation document
/[Output
/I Modified itm element
function pushUp (itm, physicalAnnotation
for each versionv of itm do
for each child element of vdo
if isltem(c)
replace(c, pushUp(c, physicalAnnotatio))
else
ci < createltem(c, getTimePeriod(itm))
replace(c, pushUp(ci, physicalAnnotatio))
splitChildVersions(itm, physicalAnnotation
return itm

/lInputs
/l itm - An element from a temporal document which is an item
/I physicalAnnotation Parsed physical annotation document
function splitChildVersions (itm, physicalAnnotation
for each versionv of itm do
for each child elementi of vdo
if ci notin physicalAnnotation
for each versioncv of ci do
tpChild < timePeriod(cv)
for each versionv’ of itm do
tp < timePeriod(v")
if tpChild coincides withtp
ci’ « the child item ofv’ corresponding tav
replace(ci’, cv)
else iftpChild andtp overlap
partitiontp andtpChild
tp’ andtpChild’ < the partitions that coincide
V" «— the version corresponding tp’
ci’ « the child item ofv” corresponding tav
replace(ci’, cv)

87

9.1.2 ThepushDown Function

ThepushDown function behaves exactly opposite of gkeshUp function. If a given physical annotation
has timestamps at locations above the time-varying elesndmpushDown function moves these time-
stamps down the hierarchy. After executing this functiontloe temporal document, timestamps will be
located at the time-varying elements. At this point, sifeetemporal characteristics and the representation
coincide, it becomes easier to perform coalescing on thétaes temporal document.

Consider the example in Figures 23—-26. According to the iphlyannotation in Figure 64, the tree-
structured representation of the temporal document isgivéigure 26. AlthoughB> is a time-varying
element, timestamp is present at the elems@kit higher up in the hierarchy. This results in the duplication
of elements<A>, <C> and <D>. WhenpushDown function is applied to the above document, the
timestamps are moved down the hierarchy, the redundandimmated and the final document looks as
shown in the first tree of Figure 23. At this point, the usermige wondering, what if the elemert€>
and<D> are not the same in three different versionsé& in the given temporal document. This would
not happen, since the elemeriS>and<D> are not defined to be time-varying in the temporal annotation
so they better be the same. If they are different, the alyorivould report this as an error.

The recursive algorithm for theushDown function is given in Figure 29. The algorithm is called on
the root element in the temporal XML document. If the roonsat is not an item, it is first converted
to an item element using functiccreateltem function. The algorithm moves the timestamps down the
hierarchy one level at a time. If an item is not a time-varyadgment and if it has multiple versions (e.g.,
elemeniA> of Figure 25), it is converted into a single version by usingrhergeVersions function. The
function groups corresponding child elements having tmeesdem-identifier from its different versions
into the same child item. The child element from the firstiggr$s then replaced by its corresponding child
item XML element. After merging, since the parent item haly single version, the item is replaced by its
single version.

Other helper functions used in the algorithm are as follows.

* isTimeVarying (itm, temporalAnnotation The function returngrue if itm definition is present in
the logical annotation.

* versionCount (itm): The function returns the number of versions present irgthenitm element.

» GetVersion (itm, n): The function returns theth version of the givelitm element.

Figures 32, 33 and 34 depict the stepwise working of fungiieshDown. For the given tree, element
<D>is temporal in nature but the timestamp is present at theeziesA> which is two levels up in the
hierarchy. In the first step, the timestamp is moved to elémBr, while in the next step, the timestamps
are moved to elemertD>, which is actually a time-varying element.

9.1.3 Thecoalesce Function

As explained in Section 5, elements in two snapshots of adeshXML document can be temporally-
associated. If the elements are DOM-equivalent and thesbioaperiods are contiguous, those two elements
could be replaced by a single element with the time periodradihg from the start time of the first element
to the stop time of the last element. This process is tercoatkscingand is an integral part of @UASH to
compact the document.

After the snapshots are glued and the items are forowalesce is called for each item. The algorithm
for coalesce is given in Figure 31. The algorithm compares the time-pkriof the two contiguous ver-
sions. If they meet, and if the contents of the two versioegslae same (i.e., if they are DOM-Equivalent as

88

Figure 29: Algorithm:pushDown

/lInputs
/[itm - An element from a temporal document which is an item
/I temporalAnnotation Parsed logical annotation document
/[Output
/I Modified itm element
function pushDown (itm, temporalAnnotation
if isTimeVarying(itm, temporalAnnotation
processChildElements(itm)
return itm
else
if versionCount(itm) = 1
processChildElements(itm)
return GetVersion(itm, 1)
else
mergeVersions(itm, temporalAnnotation
processChildElements(itm)
return GetVersion(itm, 1)

/lInput
/[itm - An element from a temporal document which is an item
function processChildElements (itm):
for each versionv of itm do
childElementList— {}
for each child element of vdo
if isltem(c)
¢’ «— pushDown(c, temporalAnnotation
else
ci — createltem(c, getTimePeriod(itm))
¢’ « pushDown(ci, temporalAnnotatiojp
childElementList— childElementListJ ¢’
for each child element of vdo
replace(c, ¢')

89

Figure 30: Algorithm:mergeVersions

/lInputs
/[itm - An element from a temporal document which is an item
/I temporalAnnotation Parsed logical annotation document
function mergeVersions (itm, temporalAnnotatioj
let vl +— GetVersion(itm, 1)
for each child c of vido
if isTimeVarying(c, temporalAnnotation
ci — createltem(c, getTimePeriod(itm))
replace(c, ci)
else
retainc
for each versionv of itm starting from GetVersion(itm, 2) do
for each child c of vdo
if isTimeVarying(c, temporalAnnotation
evaluate item-identifier foc
addc as a version to iterni from v1
remove versiow from itm

Figure 31: Algorithm:coalesce

/lInput
// itm - An element from a temporal document which is an item.
function coalesce(itm):
let v1 «— GetVersion(itm, 1)
for each versionv of itm starting GetVersion(itm, 2) do
V2V
if (vltime-periodmeetsv2time-periodand DOM-Equivalent(vl, v2))
vltime.end— v2time.end
remove versiow2 from itm
else
vl—v2

90

A

versionl A

version2

[t3-t4)

D1 E FQ G b2 E FQ G

Original Document

Ajtem
Aversion
[t1-t4)

After return from mergeVersions (Ajiem)

Bversionl/ \ B version2

[t1-t2) [t3-t4)

Figure 32: Example gbushDown

91

Aversion
[t1-t4)

item
Ditem
Bersion1
[t1-t4)
Reersion
[t1-t2)
D1

After return from functiopushDown (Bjiapy)

After return from functionmergeVersions (Bjie)

Figure 33: Example gbushDown: Continued

Reersion1
[t1-t2)

D1

Final Document
(After return from functionpushDown (Ajtem))

Figure 34: Example gbushDown: Continued

92

Aversion3

(13-t4)

versionl version2

A

version3
(t3-t4)

versionl
(t1-t3)

Figure 35: Example ofoalesce

explained in Section 5.4), the stop time of the first versothen extended to the stop time of the second
version.

Figure 35 shows the process of applying coalescing on Iterim ghe tree-representation of the doc-
ument, version®\l [t1-t2) andA2 [t2-t3) are contiguous. They are also DOM-Equivalent (Sec-
tion 5.4). Thus the two versions are replaced by a singléorergith time period(t1-t3) . After merging
Al andA2, although the resulting version is contiguous with the mexsionA3 [t3-t4) |, they are not
merged, as they are not DOM-Equivalent. Thus, in the reguifiocument, there remain two versiohs
andA2.

93

9.2 SCHEMA MAPPER

Once the annotations are found to be consistent, the leffie@presentational mapper generates the rep-
resentational schema from the original conventional sehand the logical and physical annotations. The
representational schema is needed to serve as the scheananfie-varying document.

Every time-varying element is given a timestamp for thedséiline and/or the transaction time as ap-
propriate. Non-time-varying elements and attributes emeslated as is. The process of converting a con-
ventional schema into the representational schema isiagplén the next few paragraphs.

An XML Schema specification defines the types of elements #riliges that could appear in a docu-
ment instance. More generally, the specification can beedeas a (tree) grammar. The grammar consists
of productions of the following form for each element type.

S=<Sa</ S

In the above productiony’ describes the contents of elements of type

A temporal schema denotes that some of the element typeisna@arying. To construct a representa-
tional schema, several productions are added to the caomahschema for each time-varying element. No
productions are removed from the non-temporal schema theame are modified. Since only elements
can be temporal, this section focuses on the element-det@mponents of a schema. The construction
process consists of several steps. We will illustrate tliegss by describing what is done for a single,
representative time-varying element tyge,

The first step is to add a production to indicate that the eferypeSis time varying, i.e., an item. The
production has following form:

Sltem=- <Sltemitemld=" n" > SVersion </Slten»

An item has a uniquétemld value, and consists of a list of versions. The third step iadd a
production to specify each version of tyBeThe production for a version of an element of typkas the
following form:

SVersion=- <SVersior t S</ SVersiox

wheret is the definition of timestamp element a8 the non-temporal definition of the element’s type.
We do not impose a particular schema for a timestamp, ratee@saume that the schema is given separately
and adopted by the temporal document’'s schema. Each timgstan have either or both of the following
forms.

t = <transactionTime start="..." stop="..."/>
OR
t = <validTime begin="..." end="..."/>

The next step is to modify the context in which a time-varyaigment appears. For each time-varying
element typeS that appears in the left-hand-side of a production, repfwith Sltem For example,
assume that the schema has a production of the following: form

X=<X>[3Svy</ X>

where and~ describe arbitrary content before and afBerespectively. The production is replaced by
the following production.

94

X = <X> g Sltenry </ X>

Only the element type is replaced, any other constraint®@element are kept (e.gninOccurs and
maxOccurs are unaffected).

The final step is to relax the uniqueness constraint impogel DTD identifier or XML Schema key
definition. Since the same identifiers and key values canaagpanultiple versions of an element, such
values are no longer unique in a temporal document, evergththey are unique within each snapshot.
In temporal relational databases, the concept of a tempesalwhich combines a snapshot key with a
time, has been introduced. Temporal keys can be enforcedtéyporal validating parser, but not by a
conventional parser. So constraints that impose unigsemgkin a snapshot must be relaxed or redefined
as follows. The value of each id type attribute in a time-iregyelement is rewritten to be a unique value.
Finally, schema keys are rewritten to include itemlds andiva start and end times, creating a temporal
key.

The algorithm for 8HEMA MAPPER is shown in Figure 36. The algorithm uses the same procedure
explained in the above paragraphs to create the represaialetchema from the conventional schema. The
helper functionisConsistent checks whether the physical annotation is consistent \Wwétgiven conven-
tional schema. As part of consistency, it checks whethdhaltargets in the physical annotation are present
in the conventional schema.

95

Figure 36: Algorithm: SHEMA MAPPER

/lInputs
/I conventionalSchemaParsed snapshot schema document
/I physicalAnnotation Parsed physical annotation document
/[Output
/l Modified conventionalSchemdocument
function doSchemaMapping (conventionalSchemahysicalAnnotation

if isConsistent(conventionalSchemahysicalAnnotation

for each elementein physicalAnnotatiordo
add following definitions ta@onventionalSchema

<xs:element name=" eltem">
<xs:complexType>
<xs:sequence>
<xs:element name=" eVersion">
<xs:complexType>
<xs:sequence>
<tv:element ref="timeStamp"/>
<xs:element ref=" e />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="itemID" type="ID"/>
</xs:complexType>
</xs:element>

for eachreferenceof edo
replace<xs:element ref=" €' /> with <xs:element ref=" eltem” />

add following definition to theonventionalSchema
<xs:element name="temporalRoot">
<xs:complexType>
<xs:element ref=" currentRoot />
</xs:complexType>
</xs:element>

return modifiedconventionalSchema
else
display error

96

Temporal

Schema SCHEMA Representational
MAPPER Schema
Temporal
Document Conventional Error
Validator Message

Temporal
Constraint
Validator

Figure 37: Validating a document with Time-Varying Data

9.3 7XMLL INT

In Section 8, we introduced the various components of-k&chema architecture, including the validator.
In this section, we explaimXMLL INT component in detail. Figure 37 provides the validation proc
dure used byrXMLL INT . The temporal schema document (box 4 of Figure 20) is passedgh the
7XMLL INT which first checks to ensure that the logical and physicabtations are consistent with the
conventional schema and with each other. Once the annmatice found to be consistent, the logical-
to-representational Mapper €@EMA MAPPER generates the representational schema (box 9) from the
original conventional schema and the logical and physioalotations. The representational schema is
needed to serve as the schema for a time-varying documerns asdd to validate the temporal document
using conventional validator.

Once the representational schema is ready, a conventialidator is used to parse and validate the
time-varying datas-XMLL INT utilizes the conventional validator for many of its check®r instance, it
validates the logical and physical annotations againsAtBehema. However, using a conventional XML
Schema validating parser is not sufficient due to the linotest of XML Schema in checking temporal
constraints. So the second step is to pass the temporalodBtanporal Constraint Validator Modulelhe
module, by checking the temporal data, effectively cheblesrton-temporal constraints specified by the
conventional schema simultaneously on all the instancélseohon-temporal data (box 7), as well as the
(non-sequenced temporal) constraints between snapglots cannot be expressed in a snapshot schema.

Figures 38 and 39 depict the two tasks performed byriMLL INT: (i) validating the consistency
of a temporal schema and (ii) validating the instance of gtaad document against the temporal schema.
Section 8 describes further details of how time-varyin@datalidated against the representational schema.

7XMLL INT has agluing componenthat creates all the items and their item identifiers. Twonelets
with the same item identifiers should be glued together. ntatenates all of the fields together. It creates
one string that is the schema for all the fields and a secoimdydtrat is the value of all the fields. Ele-
ment and attribute names cannot contain tHesymbol since it is used to separate each field string in the
concatenated string. The fields are concatenated in the spdeified in the item identifier.

7XMLL INT maintains a hash map to hold all the items. Each item contane$erence to each of its
constituent elements. Two elements are glued if their igentifiers match exactly. Both the schema and
instance strings must be equal. Even the amount and loaaftihite spaces in a field elements loose text
must be identical. For every time-varying element, thergjutomponent determines whether to create a
new item or to glue this element to an existing item.

97

4. Conventional Schema («-------------

6. Logical Annotations < ----- 5. Temporal Schema Error Messages

7. Physical Annotations |[<*-------------

Figure 38:7XMLL INT — Checking the Schema

5. Temporal Schema i

» = Messages

9. Temporal Document

Figure 39:7XMLL INT — Checking the Instance

Once the items are created, ffemporal Constraint Validator Modubalidates individual item to check
whether it satisfies the following constraints, if applilato that item.

Content Constant: Content of an element cannot vary over time.
Existence Constant: The element cannot disappear and reappear again.

Content Varying Applicability: The contents of an item cannot change beyond the periodfiguioy the
contentVaryingApplicability element in the logical annotation.

Valid Time Frequency: The element cannot change more than specified number of sipeeffied by the
frequency element.

Maximal Existence Period: The element can exist only within the period specified by the
maximalExistence element.

By checking the constraints on all the items, the modulec@ffely checks for all the sequenced and non-
sequenced constraints on the entire temporal document.

The algorithm forrXMLL INT is given in Figure 40. The algorithm uses a hash-map to maiatmap-
ping between item-identifier and the corresponding itemteAthecking the consistency of the schemas,
the function creates a representational schema usingdhea MAPPER The given temporal document
is parsed against this schema using the conventional @liddhe for loop creates the items by gluing
together the elements with the same item-identifier. Eaah is then validated for sequenced and non-
sequenced constraints explained in Section 6.

98

Figure 40: Algorithm:7XMLL INT

/lInputs
/I conventionalSchemaParsed snapshot schema document
/I temporalAnnotation Parsed logical annotation document
I/l physicalAnnotation Parsed physical annotation document
/I temporalDocument Parsed temporal document
function doTemporalValidation (conventionalSchem&mporalAnnotationphysicalAnnotation
temporalDocumennt
initialize ahash-tablewith item-identifier as key and item as hash value
if Consistent(conventionalSchem&mporalAnnotationphysicalAnnotatiop
repSchema— doSchemaMapping(conventionalSchemahysicalAnnotation
if conventionalValidator(temporalDocumentepSchemg
for each elementein thetemporalDocumento
if isTimeVarying(e, temporalAnnotatiohp
evaluate the item-identifier
if item-identifierin hash-table
if the element is DOM-equivalent to some version in the item
coalesce the metadata with the version
else
create a new version
else
create a new item ihash-table with one version
for eachitemin hash-tabledo
for each sequenced and non-sequenced constmaitgmporalAnnotatiordo
if the constraint is not satisfied
display errors
else
display errors generated by the conventional validator
else
display errors

99

9.4 SQUASH

The sQUASH utility takes a sequence of XML documents, a logical anmataind a physical annotation as
input and generates a temporal XML document consistenttivélphysical annotation.

The algorithm for UASH tool is given in Figure 41. It cleverly reusgaishUp, pushDown and
coalesce primitives to create a compressed document from a set ofecional documents as per the
given temporal schema.

The algorithm first checks for the consistency of the logarad the physical annotations with the con-
ventional schema. It then creates a new XML document wigmporalRoot> as its root and attaches
root elements of the conventional documents as its versiondig\pbint, the timestamps are present at the
root level elementpushDown function then moves these timestamps down the hierarchyetelements
present in the logical annotation. Every item is then cas@lédo create its compact representation. The
pushUp function then moves the timestamps up in the hierarchy updcetements present in the actual
physical annotation.

9.5 UNSQUASH

The UNSQUASH utility performs the opposite operation oQBAsH. It takes a temporal XML document
and a temporal schema and generates multiple non-tempdtalddcuments. It also provides the func-
tionality of extracting a particular snapshot from the gitemporal document usingNBQUASH ultility.
The algorithm for WSQUASH is given in Figure 42.

The algorithm first checks for the consistency of the logeradl physical annotations with the snap-
shot schema. It then constructs the representational scheimg £HEMA MAPPERand parses the given
temporal document against the representational schemg te@ conventional validator. ThmushDown
function is first called on the given document to move the stamps to the time-varying elements. A new
physical annotation, containing only the root elementréated and passed to the functipmshUp. The
purpose is to move all the timestamps to thet element. At this moment every version of tioot item
element is a conventional document. These individual gassare then written to the separate files.

9.6 RESQUASH

The RESQUASH utility takes the temporal XML data and the two physical aated schemas (the original
schema and the target one) and converts the temporal XMLnaleicbased on the target physical annotated
schema. The algorithm forESQUASH is given in Figure 43.

The algorithm first checks for the consistency of the logaraiotation and the source and target physical
annotations with the conventional schema. It then perfahaperatiorpushDown on the given tempo-
ral document. The given temporal document has the repeggantas per thercPhysicalAnnotationThe
pushDown function moves all the timestamps to the actual time-vayyglements as per themporalAn-
notation The functionpushUp is then called with théargetPhysicalAnnotatioms its parameter, which
then moves the timestamps up in the hierarchy to the elemsgrtsioned in the new physical annotation.

100

Figure 41: Algorithm: QUASH

/lInputs

/I conventionalSchemaParsed snapshot schema document
/l'logicalAnnotation- Parsed logical annotation document

I/l physicalAnnotation Parsed physical annotation document

/] snapshotSetSet of snapshot documents

/[Output

/I temporalDocument Temporal document created from snapshotSet

function doSquash (conventionalSchemé#ogicalAnnotation physicalAnnotationsnapshotSgt

if Consistent(conventionalSchem#ogicalAnnotation physicalAnnotation
repSchema— doSchemaMapping(conventionalSchemahysicalAnnotation
create elementtemporalRoot
beginDate=" beginDate of first snapshot document
endDate=" endDate of last snapshot docunient
create elemenbotltm corresponding to root level elemenibt
for each snapshotin the setof snapshotSedo
add root elemeniot of snapshot as a version fotltm
root «— pushDown(rootltm, logicalAnnotation
for eachitemitm in temporalDocdo
coalesce(itm)
if isltem(root)
rootltm « root
else
rootltm «— createltem(root)
rootltm < pushUp(rootltm, physicalAnnotation
if rootltm not in physicalAnnotation
replace(rootltm, getVersion(rootltm, 1))
return temporalDoc
else
display errors.

101

Figure 42: Algorithm: WWSQUASH

/lInputs
/I conventionalSchemaParsed snapshot schema document
/I logicalAnnotation- Parsed logical annotation document
/I physicalAnnotation Parsed physical annotation document
// temporalDocumert Temporal document created from above
/[Output
/Il snapshotSetsSet of snapshots extracted from temporalDocument
function doUnSquash(conventionalSchemémporalAnnotationphysicalAnnotation
conventionalDocumept
if Consistent(conventionalSchemé#ogicalAnnotationphysicalAnnotation
repSchema— doSchemaMapping(conventionalSchemghysicalAnnotation
if conventionalValidator(temporalDocumentepSchempg
newPhysicalAnnotatior- root element definition of theonventionalSchema
root < temporalDocumerrbotElement
if isltem(root)
rootltm « root
else
rootltm < createltem(root)
root «— pushDown(rootltm, logicalAnnotation
if isltem(root)
rootltem+« pushUp(root, newPhysicalAnnotatign
else
rootltem«— newltem(root)
replace (root, pushUp(rootltem newPhysicalAnnotatigh
snapshotSet- {}
for each versionrootVer of rootltemdo
add elementootVeras a snapshot documentsioapshotSet
return snapshotSet
else
display errors generated by the conventional validator
else
display errors

102

Figure 43: Algorithm: RESQUASH

/lInputs
/I conventionalSchemaParsed snapshot schema document
/l'logicalAnnotation- Parsed logical annotation document
// temporalDocumert Temporal document to be resquashed
I/l srcPhysicalAnnotation Parsed physical annotation document used for creating
temporalDocument
I/ targetPhysicalAnnotation Parsed physical annotation document to be used
for creating new temporalDocument
/[Output
/I temporalDocumentresquashed temporal document
function doReSquashing (conventionalSchem&mporalAnnotationsrcPhysicalAnnotatian
targetPhysicalAnnotatigtemporalDocument
if Consistent(conventionalSchemaéogicalAnnotation srcPhysicalAnnotatignand
Consistent(conventionalSchem&mporalAnnotationtargetPhysicalAnnotatign
root < temporalDocumerrbotElement
if isltem(root)
rootltem+«— pushDown(root, logicalAnnotation
else
rootltem+«— newltem(root)
replace(root, pushDown(rootltem logicalAnnotation))
rootltem«— pushUp(rootltem targetPhysicalAnnotatign
if rootltm not in physicalAnnotation
replace(rootltm, getVersion(rootitm, 1))
return temporalDocument
else
display errors

103

Squash Temporal
Sequence of Document
Non-temporal
Documents

ReSqguash

UnSquash

Temporal
Document
(New
Representation

Figure 44: Squash/UnSquash/ReSquash Commutativity &iagr

It is also possible to work with two logical annotation docmis (the original one and the target one)
instead of physical ones, and convert the temporal XML danirbased on the target logical annotations.
The only restriction with the logical annotations is tha ttata needs to be consistent with both sets of logi-
cal annotations. This constraint does not exist with thesjaay annotations because only the representation
of a temporal document changes. This could be easily aahieyaising the combination of USQUASH
and HUASH tools. The given temporal document will be unsquashed t@vet the original conventional
documents. These snhapshot documents will then be squashegthe target logical annotation and the
original physical annotation. Since the physical annotatemains the same, the new document will be the
same as the original one. Although, while performing theasfiing using the target logical annotation, the
SQUASH tool would find out any violations of the sequenced and nauseced constraints enforced by
the target logical annotation.

SQUASH, UNSQUASH and RESQUASH tools retain snapshot reducibility [8] in that the commivigt
diagram in Figure 44 is maintained. Specifically, if we talfgadicular sequence of static XML documents,
each associated with a time slice, and squash them into aotaimyML document, then resquash that
into a separate temporal XML document, with a different jitaisschema, and then unsquash it again,
we will get exactly the same sequence of static XML documefitss of course assumes that the static
documents corresponding to the non-temporal schema mwedd that the temporal XML documents are
valid instances of the schema produced by the schema mapper.

104

10 Example Schema and Instance Documents

10.1 WinOlympic Example

Listing 65: Conventional schema.

1| <?xm version ="1.0" encoding ="UTF-8"?>

2| <xs:schema

3 xmins :xs ="http://www.w3.0rg/2001/XMLSchema"

4 elementFormDefault ="qualified"

5 attributeFormDefault ="unqualified">

6

71 <xs:el enent name="winOlympic">

8 <xs:conpl exType mixed ="true">

9 <xs:sequence>

10 <xs:el ement name="numEvents" type ="xs:nonNegativelnteger'/>
11 <xs:el ement ref ="country" minOccurs ="0" maxOccurs ="unbounded"/>
12 </xs_: sequence>

13 </xs : conpl exType>

14| </xs_:el enent>

15| <xs:el enent name="country">

16 <xs:conpl exType mixed ="false">

17 <xs:sequence>

18 <xs: el enment ref ="athleteTeam"/>

19 </xs_: sequence>

20 <xs:attribute name="countryName" type ="xs:string" use __ ="required"/>
21 </xs_: conpl exType>

22 </xs :el ement>

23 <xs:el ement name="athleteTeam">

24 <xs:conpl exType mixed ="true">

25 <xs:sequence>

26 <xs:el ement ref ="athlete" maxOccurs ="unbounded"/>

27 </xs :sequence>

28 <xs:attribute name="numAthletes" type ="xs:positivelnteger" use __ ="optional'/>
29 </xs :conpl exType>

30 </xs _: el enent>

31 <xs: el ement name="athlete">

32 <xs:conpl exType mixed ="true">

33 <xs:sequence>

34 <xs:el ement name="athName" type ="xs:string"/>

35 <xs:elenment ref ="medal" minOccurs ="0" maxOccurs ="unbounded"/>
36 <xs:el ement name="phone" type ="phoneNumType" minOccurs ="0" maxOccurs ="unbounded"/>
37 </xs_: sequence>

38 </xs :conpl exType>

39 </xs _: el enent >

40| <xs:el enent name="medal">

41 <xs:conpl exType mixed ="true">

42 <xs:attribute name="mtype" type ="medalType" use ="required"/>
43 </xs :conpl exType>

44| <Ixs :el ement >

45| <xs:sinpl eType name="medalType">

46 <xs:restriction base="xs:string">

47 <xs:pattern value ="bronze|silver|gold"/>

48 </xs :restriction>

49| </xs :sinpleType>

50 <xs:si npl eType name="phoneNumType">

51 <xs:restriction base="xs:string">

52 <xs: | ength value ="12"/>

53 <xs:pattern value ="\d{3}-\d{3}-\d{4}'/>

54 </xs :restriction>

55 </xs_:sinpleType>

56| </xs_: schenma>

105

© 0 N O 0 Bh W NP

NN NNRNNNNRERRRRR B B B
N o 0 S WN P O ©®mNOoOOSWNERE O

28

© 0 ~N O 0 bh W N P

NNRNNNNNNNNEREERRERERRBPB B P
© ® N O 0N WNEP OO ®NO U MWNERE O

30

Listing 66: Conventional document on 1 January 2002.

<?xm version ="1.0" encoding ="UTF-8"?>
<wi nd ynpi ¢ xmlns :xsi _="http://www.w3.0rg/2001/XMLSchema-instance"
xsi_:noNamespaceSchemalocation ="winOlympic.xsd">

There are <nunEvent s>11</ nunEvents> events in the Olympics .
<country countryName ="Norway">
<at hl et eTeam numAthletes ="95">
Athletes will take part in various events . The
athletes participating are listed below
<at hl et e>
<at hNanme>
Kjetil Andre Aamodt
</ at hNanme>
</ at hl et e>
<at hl et e>
<at hNanme>
Trine Bakke -Rognmo
</ at hNanme>
His telephone numbers are :
<phone>123-402-0340</ phone>
<phone>123-402-0000</ phone>
</ athl et e>
<at hl et e>
<at hName>
Lasse Kijus
</ at hNanme>
</ at hl et e>
</ at hl et eTeanr
</ country>
</wi nQA ynpi c>

Listing 67: Conventional document on 1 March 2002.

<?xm version ="1.0" encoding ="UTF-8"?>
<wi nd ynpi ¢ xmlns :xsi _="http://www.w3.0rg/2001/XMLSchema-instance"
xsi_:noNamespaceSchemalocation ="winOlympic.xsd">

There are <nunEvents>11</ nunEvents> events in the Olympics .
<country countryName ="Norway">

<at hl et eTeam numAthletes ="95">
Athletes will take part in various events . The
athletes participating are listed below
<at hl et e>
<at hNanme>
Kjetil Andre Aamodt
</ at hNanme>
was the recipient of the
<medal mtype ="silver">Men _'s Combined </ nedal >
</ at hl et e>
<at hl et e>
<at hNanme>
Trine Bakke -Rognmo
</ at hNanme>

His telephone numbers are :
<phone>123-402-0430</ phone>
<phone>123-402-0000</ phone>

</ at hl et e>

<at hl et e>
<at hName>

Lasse Kijus

</ at hNanme>

</ at hl et e>

</ at hl et eTean®
</ country>
</ wi nd ynpi c>

106

© 0 N O B W NP

NN NN NNNNNNEREERRRR R P P R R
© © N O U0 B8 WNEP O O ® N UM wNPEOo

30

© 0 ~N O U1 A W N P

N e
> W N P O

© 0 N O 0 Bh W NP

PR R e
W N P O

Listing 68: Conventional document on 1 July 2002.

<?xm version ="1.0" encoding ="UTF-8"?>
<wi nd ynpi ¢ xmlns :xsi__="http://www.w3.0rg/2001/XMLSchema-instance"
xsi_:noNamespaceSchemalocation ="winOlympic.xsd">

There are <nunEvents>11</ nunEvents> events in the Olympics .
<country countryName ="Norway">
<at hl et eTeam numAthletes ="95">
Athletes will take part in various events . The
athletes participating are listed below
<at hl et e>
<at hName>
Kjetil Andre Aamodt
</ at hNanme>
was the recipient of the
<medal mtype ="gold">Men 's Combined </ nedal >
</ at hl et e>
<at hl et e>
<at hName>
Trine Bakke -Rognmo
</ at hName>
His telephone numbers are :
<phone>123-402-0430</ phone>
<phone>123-402-0000</ phone>
</ at hl et e>
<at hl et e>
<at hName>
Lasse Kijus
</ at hNanme>
</ at hl et e>
</ at hl et eTean®
</ country>
</ wi nd ynpi c>

Listing 69: Temporal schema.

<?xm version ="1.0" encoding ="UTF-8"?>
<t enpor al Schema xmlIns ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema ">

<convent i onal Schema>
<sl i ceSequence>
<slice location ="winOlympic.xsd" begin ="2002-01-01" />
</ sl i ceSequence>
</ convent i onal Schena>

<annot at i onSet >
<i ncl ude schemalocation ="annotations.xml"/>
</ annot ati onSet >

</ t enpor al Schema>

Listing 70: Annotation document.

<?xm version ="1.0" encoding ="UTF-8"?>
<annot ati onSet xmins ="http://www.cs.arizona.edu/tau/tauXSchema/ASchema" >

<physi cal >

<stanp target ="/winOlympic" datalnclusion ="expandedVersion">
<st anpKi nd timeDimension ="transactionTime" stampBounds ="step"/>
</ st anp>
<stanp target ="/winOlympic/country" datalnclusion ="expandedVersion">
<st anpKi nd timeDimension ="validTime" stampBounds ="extent"/>
</ st anp>
<stanp target ="/winOlympic/country/athleteTeam/@numAthletes"
datalnclusion ="expandedVersion">
<st anpKi nd timeDimension ="validTime" stampBounds ="extent">

107

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

<format plugin ="XMLSchema" granularity ="gMonth"/>
</ st anpKi nd>
</ st anp>
<stanp target ="/winOlympic/country/athleteTeam/athlete"
datalnclusion ="expandedVersion">
<st anpKi nd timeDimension ="bitemporal" stampBounds ="extent" />
</ st anp>
<stanp target ="/winOlympic/country/athleteTeam/athlete/medal"
datalnclusion ="expandedVersion">
<st anpKi nd timeDimension ="bitemporal" stampBounds ="extent" />
</ st anp>
<stanp target ="/winOlympic/country/athleteTeam/athlete/medal/med alType"
datalnclusion ="expandedVersion">
<st anpKi nd timeDimension _="transactionTime" stampBounds ="extent" />
</ st anp>
<stanp target ="/winOlympic/country/athleteTeam/athlete/phone"
datalnclusion ="expandedVersion">
<st anpKi nd timeDimension _="bitemporal" stampBounds ="extent" />
</ st anp>
</ physi cal >

<l ogi cal >
<i t em target ="/winOlympic">
<transactionTi me/>
<item dentifier name="olympicldl" timeDimension ="transactionTime">
<field path ="//text"/>
</item dentifier>

<litemnp
<i t em target ="/winOlympic/country">
<val i dTi me kind ="state" content ="constant" existence ="varyingWithGaps">

<maxi mal Exi st ence begin ="1924-01-01" />
</val i dTi me>
<item dentifier name="countryldl" timeDimension ="validTime">
<field path ="@countryName"/>
</item dentifier>
</itenp
<i t em target ="/winOlympic/country/athleteTeam">
<attribute name="numAthletes">

<val i dTi me kind ="state" content ="varying"/>
</attribute>
<litemnp

<i tem target ="/winOlympic/country/athleteTeam/athlete">
<val i dTi me kind ="state"/>
<transactionTi me/>
<item dentifier name="atheleteld1l" timeDimension ="bitemporal">
<field path ="athName"/>
</item dentifier>
<litemnp
<i tem target ="/winOlympic/country/athleteTeam/athlete/medal">
<val i dTi me kind ="event'/>
<transactionTi me/>
<item dentifier name="medalld1l" timeDimension ="bitemporal">
<field path ="/text"/>
<field path ="../athname"/>
<l-- Should not glue across winOlympic elements (i.e., acro ss validTime). -->
<l-- Could have Kjetil winning the gold in Men's combined in 2 002 and 2006. -->
</item dentifier>
<attribute name="medalType">
<transactionTi me />
</ attribute>

</itenp
<i t em target ="/winOlympic/country/athleteTeam/athlete/phone">
<val i dTi me kind ="state" content ="varying" existence ="varyingWithGaps"/>
<transactionTi me/>
<item dentifier name="phoneldl" timeDimension ="bitemporal">

<field path ="//text"/>
</item dentifier>
<litemr

108

© 0 N OO 0 W N -

e
w N P O

© 0 N OO Oh W N

BOD DWW WWWWWWWWNNRNDNNDNDNNNDINERERERRR P P B PP
NP OO ®N B8 KW®®NERPROO©®NODUUBSWNERERPO®©®NODTODMWNLERE O

</ | ogi cal >
</ annot at i onSet >

Listing 71: Temporal document.

<?xm version ="1.0" encoding ="UTF-8"?>
<temporalDocument xmlins ="http://www.cs.arizona.edu/tau/tauXSchema/TD">
<t enpor al SchemaSet >
<t enpor al Schema location ="temporalSchema.xml"/>
</ t enpor al SchemaSet >

<sl i ceSequence>

<slice location ="slicel.xml" begin ="2002-01-01" end _ ="2002-03-01" />
<sl i ce location ="slice2.xml" begin ="2002-03-01" end ="2002-07-01" />
<slice location ="slice3.xml" begin ="2002-07-01"/>

</ sl i ceSequence>

</temporalDocument >

10.2 Company Example

Listing 72: Conventional schema.

<?xm version ="1.0" encoding ="UTF-8"?>
<xs:schem
xmlins :xs ="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault ="qualified"
attributeFormDefault ="unqualified">

<xs:el enent name="company">
<xs:conpl exType mixed ="true">
<xs:sequence>
<xs:el ement ref ="companyData"/>
<xs: el ement ref ="supplier" minOccurs ="1" maxOccurs ="unbounded"/>
<xs:el ement ref ="product" minOccurs ="1" maxOccurs ="unbounded"/>
</xs :sequence>
</xs : conpl exType>
<xs: key name="productKey">
<xs:sel ector xpath ="company/product"'/>
<xs:field xpath ="@productNo"/>
</xs :key>
<xs: keyref name="oProductKey" refer
<xs:sel ector xpath ="company/order"/>
<xs:field xpath ="oProductNo"/>
</xs _: keyref>
</xs : el enent >
<xs: el ement name="companyData">
<xs:conpl exType mixed ="true">

="productKey">

<xs:all>
<xs:el ement name="companyName" type ="xs:string" minOccurs ="1"
maxOccurs ="1"/>
<xs:el ement name="cURL" type ="xs:string" minOccurs ="0"
maxOccurs ="1"/>
</xs :all>

</xs :conpl exType>
</xs _: el enent>
<xs:el enent name="supplier">
<xs:conpl exType mixed ="true">
<xs:sequence>

<xs:el ement name="sURL" type ="xs:string" minOccurs ="0"
maxOccurs ="unbounded"/>

<xs:el ement name="sRating" type ="xs:string" minOccurs ="0"
maxOccurs ="1"/>

<xs: el ement name="order" minOccurs ="0" maxOccurs ="unbounded">

<xs:conpl exType mixed ="true">

109

43
a4
45
46
a7
48
49
50
51
52
53
54
55
56

58
59
60
61
62
63
64
65
66
67
68
69
70

72
73
74
75

© 0 N O 0 Bh W NP

WWNRNNNNRNRNNNRDERRR R B B B B
P O © ® N0 0 WNRLOO®NO®O ™ ®WNERE O

<xs:sequence>
<l-- orderNo is unigue within a supplier -->

<xs:el enent name="orderNo" type ="xs:integer" minOccurs ="1"/>
<xs: el enment name="oProductNo" minOccurs ="1" maxOccurs ="unbounded"/>
<xs: el ement name="oQty" type ="xs:integer" minQOccurs ="1" maxOccurs ="1"/>
</xs :sequence>
<xs:attribute name="orderType" type ="orderType" use __ ="required"/>
</xs : conpl exType>
</xs : el enent>
</xs :sequence>
<xs:attribute name="supplierNo" type ="xs:integer" use ___ ="required"/>
<xs:attribute name="supplierName" type ="xs:string" use ___ ="required"/>
</xs : conpl exType>
</xs _: el enent >
<xs: el enent name="product">
<xs:conpl exType mixed ="true">
<xs:sequence>
<xs: choi ce>
<xs:el ement name="priceinDollars" type ="xs:float" minOccurs ="1" maxOccurs ="1"/>
<xs: el ement name="priceinPounds" type ="xs:float" minOccurs ="1" maxOccurs ="1"/>
<xs:el ement name="priceinEuros" type ="xs:float" minOccurs ="1" maxOccurs ="1"/>
</xs : choi ce>
<xs:el ement name="qtyOnHand" type ="xs:integer" minOccurs ="1" maxOccurs ="1"/>
</xs :sequence>
<xs:attribute name="productNo" type ="xs:integer" use ___ ="required"/>
<xs:attribute name="productName" type ="xs:string" use __ ="required"/>

</xs : conpl exType>

</xs _: el enent>

<xs: si npl eType name="orderType">
<xs:restriction base="xs:string">

<xs:pattern value ="normallrush"/>

</xs :restriction>

</xs :sinpl eType>

</xs :schenma>

Listing 73: Conventional document on 29 March 2004.

<?xm version ="1.0" encoding ="UTF-8"?>

<conpany
xmins :xsi _="http://www.w3.0rg/2001/XMLSchema-instance"
xsi_:noNamespaceSchemalocation ="company.xsd">

<conpanyDat a>
<conpanyNane>IBM</ conpanyNane>
<cURL>http ://www .ibm .com </ cURL>
</ conpanyDat a>

<suppl i er supplierNo ="1" supplierName ="Seagate" >
<sURL>http ://seagate .com </ sURL>
<sRat i ng>AAA/ sRat i ng>
<order orderType ="normal">
<or der No>1</ or der No>
<oPr oduct No>2</ oPr oduct No>
<oQt y>50</ oQt y>
</ order>
</ supplier>

<suppl i er supplierNo ="2" supplierName ="Wistron Corporation" >
<sURL>http ://www _.wistron .com </ sURL>
<sRat i ng>AA</ sRat i ng>

</ suppl i er>

<suppl i er supplierNo ="3" supplierName ="small_supplier_1" >
</ supplier>

<product productNo ="1" product Name="hard disk 73 GB 7200rpm">
<pri cei nDol | ar s>100</ pri cei nDol | ar s>
<qt yOnHand>100</ gt yOnHand>

110

© 0 N O U1 A W N P

B A A DN DN BN DN DB DD WEWWWWWWWWNNRNRNRNDNDNNNDNEREERRERR B B B B
© ® N O b ®NP OO ®NO® TN WNEOO©®NOASWNERPRO®©®NODTUDNMWNRE O

</ pr oduct >

<product productNo ="2" product Name="SCSI hard disk 147 GB 10000rpm">
<pri cei nDol | ar s>150</ pri cei nDol | ar s>
<qt yOnHand>100</ gt yOnHand>

</ pr oduct >

</ conpany>

Listing 74: Conventional document on 30 March 2004.
<?xm version ="1.0" encoding ="UTF-8"?>
<conpany

xmlns :xsi__="http://www.w3.0rg/2001/XMLSchema-instance"
xsi_:noNamespaceSchemalocation ="company.xsd">

<conpanyDat a>
<conpanyNane>IBM</ conpanyNamnme>
<cURL>http ://www .ibm .com </ cURL>
</ conpanyDat a>

<suppl i er supplierNo ="1" supplierName ="Seagate" >
<sURL>http :/seagate .com </ SURL>
<sRat i ng>AAA</ sRat i ng>
<order orderType ="normal">
<or der No>1</ or der No>
<oPr oduct No>2</ oPr oduct No>
<oQt y>50</ oQt y>
</ order>
<order orderType ="rush">
<or der No>2</ or der No>
<oPr oduct No>1</ oPr oduct No>
<oQ y>100</ oQt y>
</ order >
</ supplier>

<suppl i er supplierNo ="2" supplierName ="Wistron Corporation" >
<sURL>http ://www .wistron .com </ sURL>
<sRat i ng>AA</ sRat i ng>
<order orderType ="normal">
<or der No>1</ or der No>
<oPr oduct No>2</ oPr oduct No>
<oQt y>10</ oQt y>
</ order >
</ suppl i er>

<suppl i er supplierNo ="3" supplierName ="small_supplier_1" >
</ supplier>

<product productNo ="1" product Name="hard disk 73 GB 7200rpm">
<pri cei nDol | ar s>100</ pri cei nDol | ar s>
<gt yOnHand>40</ gt yOnHand>

</ pr oduct >

<product productNo ="2" product Name="SCSI| hard disk 147 GB 10000rpm">
<pri cei nDol | ar s>125</ pri cei nDol | ar s>
<gt yOnHand>80</ gt yOnHand>

</ pr oduct >

</ conpany>

111

© 0 N OO OB W N -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
a7
48
49
50
51
52
53

© 0 N O U1 A W NP

Listing 75: Conventional document on 31 March 2004.

<?xm version ="1.0" encoding ="UTF-8"?>

<conpany
xmlins :xsi__="http://www.w3.0rg/2001/XMLSchema-instance"
xsi_:noNamespaceSchemalocation ="company.xsd">

<conpanyDat a>
<conpanyNane>IBM</ conpanyNane>
<cURL>http ://www _.ibm .com </ cURL>
</ conpanyDat a>

<suppl i er supplierNo ="1" supplierName ="Seagate" >
<sURL>http :/seagate .com </ SURL>
<sRat i ng>AAA/ sRat i ng>
<order orderType ="normal">
<or der No>1</ or der No>
<oPr oduct No>2</ oPr oduct No>
<oQt y>50</ oQt y>
</ order>
<order orderType ="rush">
<or der No>2</ or der No>
<oPr oduct No>1</ oPr oduct No>
<oQt y>100</ oQt y>
</ order>
<order orderType ="normal">
<or der No>3</ or der No>
<oPr oduct No>2</ oPr oduct No>
<oQ y>25</ oQty>
</ order>
</ supplier>

<suppl i er supplierNo ="2" supplierName ="Wistron Corporation" >
<sURL>http ://www .wistron .com/indexNew .html </ sURL>
<sRat i ng>AA</ sRat i ng>
<order orderType ="normal">
<or der No>1</ or der No>
<oPr oduct No>2</ oPr oduct No>
<oQ y>10</ oQt y>
</ order>
</ suppl i er>

<suppl i er supplierNo ="3" supplierName ="small_supplier_1" >
</ supplier>

<product productNo ="1" product Name="hard disk 73 GB 7200rpm">
<pricei nDol | ar s>105</ pri cei nDol | ar s>
<gt yOnHand>120</ qt yOnHand>

</ pr oduct >

<product productNo ="2" product Name="SCSI| hard disk 147 GB 10000rpm">
<pri cei nDol | ar s>125</ pri cei nDol | ar s>
<gt yOnHand>70</ qt yOnHand>

</ pr oduct >

</ conpany>

Listing 76: Temporal schema.

<?xm version ="1.0" encoding ="UTF-8"?>
<t enpor al Schema xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/TS">

<convent i onal Schema>
<sl i ceSequence>
<slice location ="company.xsd" begin ="2004-03-29" />
</ sl i ceSequence>
</ convent i onal Schena>

112

© 0 N O 00 B W N -

@ 0o o goggg oo gs S BR DD BN DNBRDNDD WL WWWWWWWWNNNRNRNNDNRNNDNERERRRRERE R PP
O © ® N O O P WNPOO®MNODAOM®WNEOO©®NO®ABS®WNREROO©O®NOU S WNE O O©®NODODMWNE O

<annot at i onSet >
<i ncl ude schemalocation ="annotations.xml" />
</ annot ati onSet >

</ t enpor al Schema>

Listing 77: Annotation document.

<?xm version ="1.0" encoding ="UTF-8"?>
<annot at i onSet xmlins ="http://www.cs.arizona.edu/tau/tauXSchema/ASchema" >
<physi cal >
<stanp target ="//company" datalnclusion ="expandedVersion">
<st anpKi nd timeDimension ="transactionTime" stampBounds ="step"/>
</ st anp>
<stanp target ="/company/product” datalnclusion ="expandedVersion">
<st anpKi nd timeDimension ="validTime" stampBounds ="step"/>
</ st anp>
<stanp target ="/company/supplier" datalnclusion ="expandedVersion">
<st anpKi nd timeDimension ="validTime" stampBounds ="extent">
<format plugin ="XMLSchema" granularity ="gMonth"/>
</ st anpKi nd>
</ st anp>
<stanp target ="//order" datalnclusion ="expandedVersion">
<st anpKi nd timeDimension ="validTime" stampBounds ="extent" />
</ st anp>
</ physi cal >
<l ogi cal >
<i t em target ="/company/supplier'>
<val i dTi me kind ="state" content ="varying" existence ="varyingWithGaps"/>
<transactionTi me/>
<item dentifier name="Supplierld1" timeDimension ="bitemporal">

<field path ="@supplierNo"/>
</item dentifier>
<attri bute name="supplierName">

<val i dTi me kind ="state" content ="varying"/>
</attribute>
<litemnp
<i tem target ="/company/product">
<val i dTi me kind ="state" content ="varying" existence ="varyingWithGaps"/>
<transactionTi me/>
<item dentifier name="Productld1" timeDimension ="bitemporal">

<keyref refName ="productkey" refType ="snapshot"/>
</item dentifier>
<attri bute name="productName">
<val i dTi me kind ="state" content ="varying"/>
<transactionTi me/>
</attribute>
<litemnp
<i t em target ="/company/supplier/order">
<val i dTi me kind ="event"/>
<transactionTi me/>
<item dentifier name="Orderld1l" timeDimension ="bitemporal">
<field path ="orderNo"/>
</item dentifier>
<attribute name="otype">
<val i dTi me kind ="state" content ="varying"/>
</ attribute>
</itenp
<i t em target ="/company/supplier/sURL">
<val i dTi me kind ="state" existence ="varyingWithGaps"/>
<item dentifier timeDimension ="validTime">
<field path ="."/>
</item dentifier>

<litemnp
<i tem target ="/company/supplier/sRating">
<val i dTi me kind ="state" content ="varying" existence ="varyingWithoutGaps"/>

113

61 <transacti onTi ne/>

62 <item dentifier timeDimension ="validTime">
63 <field path ="."/>

64 </item dentifier>

65 <litemp

66 <i t em target ="/company/product/qtyOnHand">

67 <val i dTi me kind ="state" content ="varying"/>
68 <transactionTi me/>

69 <item dentifier timeDimension ="bitemporal'>
70 <field path ="."/>

71 </item dentifier>

72 <litemp

73 <i t em target ="/company/product/priceinDollars">

74 <val i dTi me kind ="state" content ="varying"/>
75 <item dentifier timeDimension ="validTime">
76 <field path =""/>

77 </item dentifier>

78 <litemp

79 <i t em target ="/company/product/priceinPounds">

80 <val i dTi me kind ="state" content ="varying"/>
81 <item dentifier timeDimension ="validTime">
82 <field path ="."/>

83 </item dentifier>

84 <litemr

85 <i t em target ="/company/product/priceinEuros">

86 <val i dTi me kind ="state" content ="varying"/>
87 <item dentifier timeDimension ="validTime">
88 <field path =""/>

89 </item dentifier>

90 <litemp

91| </l ogi cal >
92| <annot at i onSet >

Listing 78: Temporal document.

1| <?xm version ="1.0" encoding ="UTF-8"?>
2| <t enpor al Root xmlins ="http://www.cs.arizona.edu/tau/tauXSchema/TD">
3| <tenporal SchenaSet >
4 <t enpor al Schema location ="temporalSchema.xml"/>
5| </ tenporal SchenaSet >
6
71 <sliceSequence>
8 <slice location ="slicel.xml" begin ="2004-03-29" end _ ="2002-03-30" />
9 <slice location ="slice2.xml" begin ="2004-03-30" end _ ="2002-03-31" />
10 <slice location ="slice3.xml" begin ="2004-03-31"/>
11| </ sliceSequence>
12
13| </ t enpor al Root >
Listing 79: Squashed document.
1| <?xm version ="1.0" encoding ="UTF-8"?>
2| <tv_root
3| xmins :xsi__="http://www.w3.0rg/2001/XMLSchema-instance"
4| xmins :tv_="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema "
5| xsi_:noNamespaceSchemalocation ="repCompany.xsd">
6
7 <rep : conpany_Repl tenr
8 <l-- Version 1 of 1 for company -->
9 <rep : conpany_Ver si on begin ="2004-03-29">
10 <rep : conpany>
11 <rep : conpanyDat a>
12 <rep : conpanyName>|BM</rep : conpanyNane>
13 <rep : cURL>http ://www .ibm .com</rep : cURL>
14 </rep_: conpanyDat a>

[
3

[
o

<rep :supplier_Repltenr

114

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

<l-- Version 1 of 1 for supplier 1 (Seagate) -->
<rep : supplier_Version begin ="2004-03-29">
<rep : supplier supplierNo ="1" supplierName ="Seagate">
<rep : SURL>http ://seagate .com</rep :SURL>
<rep : sRati ng>AAA</rep :sRating>

<rep : order _Repl tenv
<l-- Version 1 of 1 for order 1 -->
<rep : order _Versi on begin ="2004-03-29">
<rep : order orderType ="normal">
<rep : or der No>1</rep : or der No>
<rep : oProduct No>2</rep : oProduct No>
<rep : 0Q y>50</rep :oQy>
</rep :order>
</rep :order_Version>
</rep_:order_Repltenr

<rep : order _Repl tenr
<l-- Version 1 of 1 for order 2 -->
<rep : order _Versi on begin ="2004-03-30">
<rep : order orderType ="rush">
<rep : or der No>2</rep : or der No>
<rep : oProduct No>1</rep : oProduct No>
<rep : 0Qx y>100</rep : oQy>
</rep :order>
</rep :order_Version>
</rep :order_Repltenr

<rep : order_Repltenr
<l-- Version 1 of 1 for order 3 -->
<rep : order _Versi on begin ="2004-03-31">
<rep : order orderType ="normal">
<rep : or der No>3</rep : or der No>
<rep : oProduct No>2</rep : oProduct No>
<rep : oQ y>25</rep _: oQty>
</rep :order>
</rep :order_Version>
</rep :order_Repltenr

</rep :supplier_Version>
</rep_:supplier_Repltenr

<rep :supplier_Repltenr

<l-- Version 1 of 2 for supplier 2 (Wistron) -->
<rep : supplier_Version begin ="2004-03-29" end _ ="2004-03-31">
<rep : supplier supplierNo ="2" supplierName ="Wistron Corporation">
<rep : SURL>http ://www_.wistron .com </rep : SURL>
<rep : sRati ng>AA</rep :sRati ng>

<rep : order _Repl tenr
<l-- Version 1 of 1 for order 3 -->
<rep : order _Versi on begin ="2004-03-30">
<rep : order orderType ="normal">
<rep : or der No>1</rep : or der No>
<rep : oProduct No>2</rep : oProduct No>
<rep : oQ y>10</rep _: oQty>
</rep :order>
</rep :order_Version>
</rep_:order_Repltenr

</rep_:supplier_Version>

<!-- Version 2 of 2 for supplier 2 (Wistron) -->
<rep : suppl i er _Versi on begin ="2004-03-31">
<rep : supplier supplierNo ="2" supplierName ="Wistron Corporation">
<rep : SURL>http ://www _.wistron _.com /indexNew .html </rep : sURL>
<rep : sRati ng>AA</rep :sRati ng>

115

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

<rep : order _Repl tenr
<l-- Version 1 of 1 for order 3 -->
<rep : order _Versi on begin ="2004-03-30">
<rep : order orderType ="normal">
<rep : or der No>1</rep : or der No>
<rep : oProduct No>2</rep : oProduct No>
<rep : 0Q y>10</rep :oQy>
</rep :order>
</rep :order_Version>
</rep_:order_Repltenr
</rep_:supplier_Version>

</rep :supplier_Repltenr

<rep :supplier_Repltenr
<l-- Version 1 of 1 for supplier 3 (small supplier) -->
<rep : suppl i er_Version begin ="2004-03-29">

<rep : suppl i er supplierNo ="3" supplierName ="small_supplier_1"/>
</rep_:supplier_Version>

</rep :supplier_Repltenr

<rep : product _Repltenr

<l-- Version 1 of 3 for product 1 (7200rpm hard disk) -->
<rep : product _Versi on begin ="2004-03-29" end ="2004-03-30">
<rep : product productNo ="1" product Nane="hard disk 73 GB 7200rpm">
<rep : pri cei nDol | ar s>100</ pri cei nDol | ar s>
<rep : qt yOnHand>100</ qt yOnHand>
</rep : product >
</rep _: product _Version>

<l-- Version 2 of 3 for product 1 (7200rpm hard disk) -->
<rep : product _Versi on begin ="2004-03-30" end _ ="2004-03-31">
<rep : product productNo ="1" product Nane="hard disk 73 GB 7200rpm">
<rep : pri cei nDol | ar s>100</ pri cei nDol | ar s>
<rep : qt yOnHand>40</ gt yOnHand>
</rep_: product>
</rep _: product _Version>

<l-- Version 3 of 3 for product 1 (7200rpm hard disk) -->
<rep : product _Versi on begin ="2004-03-31">
<rep : product productNo ="1" product Nane="hard disk 73 GB 7200rpm">
<rep : pri cei nDol | ar s>105</ pri cei nDol | ar s>
<rep : qt yOnHand>20</ gt yOnHand>
</rep : product >
</rep _: product _Version>

</rep : product_Repltenr

<rep : product _Repl tenr

<l-- Version 1 of 3 for product 2 (SCSI 10000rpm hard disk) -->
<rep : product _Versi on begin ="2004-03-29" end _ ="2004-03-30">
<rep : product productNo ="2" product Nanme="SCSI| hard disk 147 GB 10000rpm">
<rep : pri cei nDol | ar s>150</rep : pri cei nDol | ar s>
<rep : qt yOnHand>100</rep : qt yOnHand>
</rep_: product>
</rep _: product _Version>

<l-- Version 2 of 3 for product 2 (SCSI 10000rpm hard disk) -->
<rep : product _Versi on begin ="2004-03-30" end ="2004-03-31">
<rep : product productNo ="2" product Name="SCSI| hard disk 147 GB 10000rpm">
<rep : priceinDol | ar s>125</rep : pri cei nDol | ar s>

116

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

<rep : qt yOnHand>80</rep_: qt yOnHand>
</rep_: product>
</rep _: product _Version>

<l-- Version 3 of 3 for product 2 (SCSI 10000rpm hard disk) -->

<rep : product _Versi on begin ="2004-03-31">

<rep : product productNo ="2" product Name="SCSI| hard disk 147 GB 10000rpm">
<rep : priceinDol | ars>125</rep : pri cei nDol | ar s>

<rep : qt yOnHand>70</rep _: gt yOnHand>
</rep : product >
</rep _: product _Version>

</rep : product_Repltenr

</rep :
</rep :co

</tv_root>

conpany_\Ver si on>
npany_Repl t en»

117

118

Part Il
Supporting Schema Versioning of XML Documents

The previous part concernelhta versioning; this part concerrschemaversioning, and follows a similar
structure: motivation (including an extension of the Compaxample), review of related work, further
design decisions, architecture, theoretical framewariplémentation details, and the full WinOlympic
example.

119

120

11 Introduction

Schema designers often edit their schemas, refining andgdbtiment and attribute types. As an example,
in 2003-01-01 , the designers of Winter Olympic schema realize that theg aked the name of the
sport in which the athlete has won the medal. And they decidedtl that as a “required” attribute of the
<medal> element. As new release of this schema is developed, all Xbtuchents that were instances
of its earlier version will be rendered invalid, with the miiners responsible for updating their XML
documents.

One challenge with schema versioning is that, in this p@kqticksand, anything can change, and thus
must be versioned: the conventional documents, the basenschthe annotations, the schema documents
included by these documents, even the schemas of these adoenponents. And, because the physical
annotations can change, the concrete representatiomveittémporal XML document can vary. Thus, it
becomes even more difficult to even define validation in suithiéienvironment.

Schema versioning should offer a solution to the above prolidy enabling intelligent handling of any
temporal mismatch between data and its schemas. A framawoseded that would retain past data and
past schemas, while allowing the current data and schemadatbacted.

This work has many real-world applications. As an example Botanic Garden and Botanical Museum
in Berlin-Dahlem (BGBM) maintains a repository of XML Schenfagelated to index terms, keywords,
biodiversity data about specimens and observations, feeth-data about collections, organizations, and
networks, and various wrapper and configuration files. Méshese XML schemas have had multiple
versions over the last two to three years. The BioCASE Citledrofile is up to version 1.24; the Access
to Biological Collection Data is up to version 2.06.

As another example, tHegharmacogenetics Knowledge BgBdarmGKB) “contains genomic, pheno-
type and clinical information collected from ongoing phacugenetic studies.” Its schema is up to version
4.0; its evolution is documentédThe PHARMGKB XML schema was designed conventionally, not uti-
lizing an architecture that supports schema versioning.nég releases of this schema were developed
(for example, on May 26, 2004 Version 4.0, the latest versieas released), all XML documents that
were instances of this schema were rendered invalid, wéhrhintainers responsible for updating their
XML documents. The architecture proposed in this repodinstpast data and past schemas, while always
allowing the current data and schema to be extracted, ftg that are not schema-versioning aware.

*http://www.bgbm.org
Shttp://www.bgbm.org/biodivinf/schema/default.asp
"http://www.pharmgkb.org/
8http://www.pharmgkb.org/schema/history.html

121

122

12 Motivation

We now extend our design in Section 4.3 to include schemaoveng. Here we must focus on the intri-
cacies of changing namespaces from slice to slice, vergjarfisubschemas that are included or imported
into the main schema, and versioning multiple main scheimasbriefly cover each in turn.

12.1 Company Example Extended

We now extend our example presented in Figure 2 in Sectiotodrizlude schema versioning. We use the
same conventions and naming schemes as before. Figure &fsdbpe scenario. Here, in addition to the
Company Data document varying over time, the Company Schearaon Schema, Product Schema, and
Company Annotation documents will also vary over time. Nbt# those documents are depicted here as
multiple slices.

Company Company _
Data ~T T Temporal Data Legend of File Types
\ ‘ : Conventional | { xschema
I
| |
v v
Company - Company I Company
Schema Temporal Schema Annotations
\
I
|
|
T T T T oo |
v v
Person Product
Schema Schema

Figure 45: An overview of the end-state of the Company exampl

12.2 Changing Schemas

On 2008-05-22, the user decides to make a change to the ¢mmadrschema. He changes tkdlame>el-
ement to<FirstName> , resulting in a new version of the schema (Listing 80, ling 19
The user must therefore update the conventional documerdnimrm to the new schema (see Listing 81
line 5).

The user now creates an explicit temporal schema to refrésznhanges to the conventional schema.
He chooses to use method (a) as described in design def3dipim Section 14 (see Listing 82). Note that
since the user has yet to specify any annotations, the defand still in effect.

The user must also update the temporal document to incledeetl slice of the conventional document
(Listing 83, line 11).

123

© 0 N O 0B~ W NP

© 0 N O 00 W N -

B e
[N

Listing 80: Company.B.xsd

<?xm version ="1.0"?>

<xsd: schema
xmlins :xsd ="http://www.w3.0rg/2001/XMLSchema"
targetNamespace ="http://www.company.org"
xmins ="http://www.company.org"
elementFormDefault ="qualified">

<xsd: el ement name="Company">
<xsd : conpl exType>
<xsd : sequence>
<xsd: el ement ref ="Person"/>
</xsd :sequence>
</xsd : conpl exType>
</xsd : el ement >

<xsd: el enent name="Person">
<xsd: conpl exType>
<xsd : sequence>
<xsd: el ement name="FirstName" type ="xsd:string"/>
<xsd: el ement name="SSN" type ="xsd:string"/>
</xsd :sequence>
<xsd:attribute name="ID" type ="xsd:string"/>
</xsd : conpl exType>
</xsd : el enent >

</xsd :schema>

Listing 81: data.B.1.xml

<?xm version ="1.0" encoding ="UTF-8"?>
<Conpany xmlns ="http://www.company.org">
<Person ID="1">
<Fi r st Name>Steve </ Fi r st Nane>
<SSN>123-45-6789</ SSN>
</ Per son>
</ Conpany>
Listing 82: temporalSchema.0.xml
<?xm version ="1.0" encoding ="UTF-8"?>
<ts :tenporal Schema xmins :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema ">

<ts : conventi onal Schena>
<ts :sliceSequence>
<ts :slice location ="Company.A.xsd" begin ="2008-01-01" />
<ts :slice location ="Company.B.xsd" begin ="2008-05-22" />
</ts_:sliceSequence>
</ts :conventional Schema>

</ts_:tenporal Schema>

124

© 0 N O B W NP

P
[N

© 0 N O 00 W N -

NN B B R R B R R B B
NP O © ® N o 0~ WN B O

© 0 ~N O U1 A W N P

e o
o b W N P O

Listing 83:temporalDocument.1.1.xml

<?xm version ="1.0" encoding ="UTF-8"?>
<td : t enpor al Root xmins :td ="http://www.cs.arizona.edu/tau/tauXSchema/TD"
temporalSchemalocation ="./temporalSchema.0.xml"/>
<td : sl i ceSequence>
<td : slice location ="data.A.0.xml" begin ="2008-01-01" />
<td : slice location ="data.A.1.xml" begin ="2008-03-17" />
<td : slice location ="data.B.1.xml" begin ="2008-05-22" />
<id :sliceSequence>
</td :tenporal Root >

12.2.1 Introducing Subschemas

On 2008-07-11, the user decides to split the schema intoaesmaller subschemas while also adding a
new element. Thenainschema (see Listing 84) no longer defines any elements, itsetlfnstead uses the

XML Schema <import> (line 9) and <include>

(line 10) elements to reference two subschemas (see

Listings 85 and 86).
Listing 84: Company.C.xsd

<?xm version ="1.0"?>

<xsd: schema
xmlins :xsd ="http://www.w3.0rg/2001/XMLSchema"
targetNamespace ="http://www.company.org"
xmlins ="http://www.company.org"
elementFormDefault ="qualified"
xmins :per ="http://www.person.org" >

<xsd:i nport namespace ="http://www.person.org" schemaLocation ="./Person.C.0.xsd" />

<xsd: i ncl ude schemalocation ="./Product.C.0.xsd" />

<xsd: el enent name="Company">
<xsd : conpl exType>
<xsd : sequence>

<xsd: el ement name="Person" type ="per:PersonType" maxOccurs
<xsd: el ement name="Product" type ="ProductType" maxOccurs

</xsd :sequence>
</xsd : conpl exType>
</xsd : el enent >

</xsd :schema>

="unbounded"/>
="unbounded"/>

Listing 85: Person.C.0.xsd

<?xm version ="1.0"?>

<xsd:schena
xmins :xsd ="http://www.w3.0rg/2001/XMLSchema"
targetNamespace ="http://www.person.org"
xmlins ="http://www.person.org"
elementFormDefault ="qualified">

<xsd: conpl exType name="PersonType">
<xsd : sequence>
<xsd: el ement name="FirstName" type ="xsd:string"/>
<xsd: el ement name="SSN" type ="xsd:string"/>
</xsd :sequence>
<xsd:attribute name="ID" type ="xsd:string"/>
</xsd :conpl exType>

</xsd :schema>

125

© 0 N OO 0Bh WN -

© 0 N O O W N -

© 0 N OO Oh W N

bR e
N B o

Listing 86: Product.C.0.xsd

<?xm version ="1.0"?>

<xsd: schema
xmins :xsd ="http://www.w3.0rg/2001/XMLSchema"
targetNamespace _="http://www.company.org"
xmins ="http://www.company.org"
elementFormDefault ="qualified">

<xsd: conpl exType name="ProductType">
<xsd : sequence>
<xsd: el ement name="Type" type ="xsd:string" minOccurs ="1" maxOccurs ="1"/>
</xsd :sequence>
<Ixsd :conpl exType>

</xsd :schema>

The user updates the instance document to conform to the ¢tems paradigm and adds<droduct>
element (see Listing 87, lines 10-12).

Listing 87:data.C.2.xml

<?xm version ="1.0" encoding ="UTF-8"?>
<Conpany xmins ="http://www.company.org" xmins :per_="http://www.person.org">
<Person ID="1">
<per : Fi r st Name>Steve </per : Fi r st Nane>
<per : SSN>111-22-3333</per ___: SSN>
</ Per son>
<Pr oduct >
<Type>Widget </ Type>
</ Pr oduct >
</ Conpany>

Note that in this example, thEompany schema is taking the so-called “heterogeneous” and “homoge

neous” namespace approaches for Bregson and Product subschemas, respectively [23]. That is,
the Person subschema’s namespace is exposed Q@atmpany schema, while th@roduct subschema
defines the same target namespace a€tmpany schema.

The user then changes the temporal schema (Listing 88, JiaedBthe temporal document (Listing 89,
lines 4 and 11) to reflect these modifications. Note that thgpteal schema only references thempany
schema, because that schema directly imgéetson and includesroduct

Listing 88:temporalSchema.1.xml

<?xm version ="1.0" encoding ="UTF-8"?>
<ts :tenporal Schema xmins :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema ">

<ts : conventi onal Schema>
<ts :sliceSequence>
<ts :slice location ="Company.A.xsd" begin ="2008-01-01" />
<ts :slice location ="Company.B.xsd" begin ="2008-05-22" />
<ts :slice location ="Company.C.xsd" begin ="2008-07-11" />
</ts :sliceSequence>
</ts_:conventi onal Schena>

</ts_:tenporal Schema>

Listing 89:temporalDocument.1.2.xml

N

<?xm version ="1.0" encoding ="UTF-8"?>
<td : t enpor al Root xmins :td ="http://www.cs.arizona.edu/tau/tauXSchema/TD"

126

© 0 N O 00 b W

© 0 ~N O B W NP

el
W N P O

© 0 N O 0 Bh W N P

R
© N o 0N W N B O

temporalSchemalocation ="./temporalSchema.1.xml"/>

<td : sl i ceSequence>
<td : slice location ="data.A.0.xml" begin ="2008-01-01" />
<td : slice location ="data.A.1.xml" begin ="2008-03-17" />
<td : slice location ="data.B.1.xml" begin ="2008-05-22" />
<td : slice location ="data.C.2.xml" begin ="2008-07-11" />

</ftd :sliceSequence>

</td :tenporal Root >

12.2.2 Adding Logical Annotations

On 2008-08-04, the user decides to construct an annotationntent. Here, the user creates a logical
annotation (via the<item> element) that specifies that only therirstName> element can change (see
Listing 90).

Listing 90: annotations.0.xml

<?xm version ="1.0" encoding ="UTF-8"?>
<as:annot ationSet xmlins :as ="http://www.cs.arizona.edu/tau/tauXSchema/AS">

<as: | ogi cal >
<as:item target ="Company/Person/FirstName">
<as:transactionTi ne existence ="constant'/>
<as:itemldentifier name="personID" timeDimension ="transactionTime">
<as:field path ="/text()'/>
</as :item dentifier>
</as :itenp
</as : | ogi cal >

</as : annot at i onSet >

The user must then update the temporal schema to includenttedation document (see Listing 91,
lines 12—-16) and the temporal document to point to the negiaeiof the temporal schema (see Listing 92,
line 4). ~XMLL INT will now check this constraint between conventional docotstices over time.

Listing 91: temporalSchema.2.xml

<?xm version ="1.0" encoding ="UTF-8"?>
<ts : tenporal Schema xmlns :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema ">
<ts : conventi onal Schema>
<ts :sliceSequence>
<ts :slice location ="Company.A.xsd" begin ="2008-01-01" />
<ts :slice location ="Company.B.xsd" begin ="2008-05-22" />
<ts :slice location ="Company.C.xsd" begin ="2008-07-11" />
</ts_:sliceSequence>

</ts :conventional Schema>

<ts : annot at i onSet >
<ts :sliceSequence>
<ts : sl ice location ="annotations.0.xml" begin ="2008-08-04" />
</ts :sliceSequence>
</ts_:annot ati onSet >

</ts _:tenporal Schema>

Listing 92: temporalDocument.2.3.xml

1| <?xm version ="1.0" encoding ="UTF-8"?>
2| <td : t enpor al Root xmlins :td ="http://www.cs.arizona.edu/tau/tauXSchema/TD"

3

temporalSchemal.ocation ="./temporalSchema.2.xml"/>

127

4

5/ <td:sliceSequence>

6 <td : slice location ="data.A.0.xml" begin ="2008-01-01" />
7 <td : slice location ="data.A.1.xml" begin ="2008-03-17" />
8 <td : slice location ="data.B.1.xml" begin ="2008-05-22" />
9 <td : slice location ="data.C.2.xml" begin ="2008-07-11" />

10| </td_:sliceSequence>

12| </td_:t enpor al Root >

12.2.3 Temporal Subschemas

On 2008-09-10, the user changesBeEson subschema (see Listing 93, line 11) to includelastName> element.

Listing 93: Person.D.1.xsd

<?xm version ="1.0"?>

<xsd: schema
xmlins :xsd ="http://www.w3.0rg/2001/XMLSchema"
targetNamespace ="http://www.person.org"
xmlins ="http://www.person.org"
elementFormDefault ="qualified">

<xsd: conpl exType name="PersonType">
<xsd : sequence>
<xsd: el ement name="FirstName" type ="xsd:string"/>
<xsd: el ement name="LastName" type ="xsd:string"/>
<xsd: el ement name="SSN" type ="xsd:string"/>
</xsd :sequence>
<xsd:attribute name="ID" type ="xsd:string"/>
</xsd :conpl exType>

© 0 ~N O U1 A W NP

[
o

I
N P

PR R e e
N o o~ W

</xsd : schema>

The user must update tli@ompany schema (Listing 94, line 9) to reference the new version efsb-
schema.

Listing 94: Company.D.xsd

1| <?xm version ="1.0"?>

2| <xsd: schema

3| xmins :xsd ="http://www.w3.0rg/2001/XMLSchema"

4| targetNamespace ="http://www.company.org"

5| xmins ="http://www.company.org"

6| elementFormDefault ="qualified"

7| xmins :per ="http://www.person.org" >

8

9| <xsd:inport namespace ="http://www.person.org" schemalocation ="./Person.D.1.xsd" />
10

11| <xsd:incl ude schemalocation ="./Product.C.0.xsd" />

B
w N

<xsd: el ement name="Company">
<xsd : conpl exType>
<xsd :sequence>
<xsd: el ement name="Person" type ="per:PersonType" maxOccurs ="unbounded"/>
<xsd: el ement name="Product" type ="ProductType" maxOccurs ="unbounded"/>
</xsd :sequence>
</xsd : conpl exType>
</xsd : el enent >

NN N B B RP R
N P O © ®~N o a b

</xsd :schema>

The user must also update the conventional document (§i86nline 7) to include aLastName> element.

128

Listing 95: data.D.3.xml

1| <?xm version ="1.0" encoding ="UTF-8"?>

2| <Conpany xmins ="http://www.company.org" xmins :per_="http://www.person.org">
3

4 <Person ID="1">

5

6 <per : Fi r st Name>Steve </per : Fi r st Nane>
7 <per : Last Nane>Thomas</per : Last Nane>
8 <per : SSN>111-22-3333</per___: SSN>

9 </ Per son>

10

11| <Product >

12 <Type>Widget </ Type>

13 </ Pr oduct >

14

15

16| </ Conpany>

The user then changes the temporal schema (Listing 96, Jiard®temporal document (Listing 97, lines 4
and 12) to reflect these modifications.

Listing 96: temporalSchema.3.xml

1| <?xm version ="1.0" encoding ="UTF-8"?>

2| <ts : tenpor al Schema xmins :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema ">
3

4 <ts : conventi onal Schema>

5 <ts :sliceSequence>

6 <ts :slice location ="Company.A.xsd" begin ="2008-01-01" />

7 <ts :slice location ="Company.B.xsd" begin ="2008-05-22" />

8 <ts :slice location ="Company.C.xsd" begin ="2008-07-11" />

9 <ts :slice location ="Company.D.xsd" begin ="2008-09-10" />

[
o

</ts_:sliceSequence>
</ts_:conventi onal Schena>

PR e
W N e

<ts : annot ati onSet >
<ts :sliceSequence>
<ts :slice location ="annotations.0.xml" begin ="2008-08-04" />
</ts :sliceSequence>
</ts_:annot ati onSet >

P
© ©® N o a b

N
o

</ts_:tenporal Schema>

Listing 97: temporalDocument.3.3.xml

1| <?xm version ="1.0" encoding ="UTF-8"?>

2| <td : t enpor al Root xmlns :td ="http://www.cs.arizona.edu/tau/tauXSchema/TD"
3 temporalSchemalocation ="./temporalSchema.3.xml"/>

4

5/ <td:sliceSequence>

6 <td : slice location ="data.A.0.xml" begin ="2008-01-01" />
7 <td : slice location ="data.A.1.xml" begin ="2008-03-17" />
8 <td : slice location ="data.B.1.xml" begin ="2008-05-22" />
9 <td : slice location ="data.C.2.xml" begin ="2008-07-11" />
10 <td : slice location ="data.D.3.xml" begin ="2008-09-10" />
11| </td_:sliceSequence>

12

13| </td_:t enpor al Root >

12.2.4 Namespace Changes

One month later (2008-11-13), the user changes the targe¢sgace of the main schema'sieves -
company.org” (see Listing 98, lines 4 and 5). Since tReoduct subschema uses the homogeneous

129

© 00 N O 0B W NP

© 0 N O OB W N -

R T
o s W N B O

namespace paradigm, it also must be updated to the new naceefgee Listing 99, lines 4 and 5).

course, the user must also update the conventional docysemntisting 100, line 2).

Listing 98: Company.E.xsd

of

<?xm version ="1.0"?>

<xsd: schema
xmlins :xsd ="http://www.w3.0rg/2001/XMLSchema"
targetNamespace _="http://www.stevescompany.org"
xmins ="http://www.stevescompany.org"
elementFormDefault ="qualified"
xmins :per ="http://www.person.org" >

<xsd:i nport namespace ="http://www.person.org" schemaLocation ="./Person.D.1.xsd" />
<xsd: i ncl ude schemalocation ="./Product.E.1.xsd" />

<xsd: el ement name="Company">
<xsd : conpl exType>
<xsd :sequence>
<xsd: el ement name="Person" type ="per:PersonType" maxOccurs ="unbounded"/>
<xsd: el ement name="Product" type ="ProductType" maxOccurs ="unbounded"/>
</xsd :sequence>
</xsd : conpl exType>
</xsd : el enent >

</xsd :schema>

Listing 99: Product.E.1.xsd

<?xm version ="1.0"?>

<xsd: schema
xmlins :xsd ="http://www.w3.0rg/2001/XMLSchema"
targetNamespace ="http://www.stevescompany.org"
xmlins ="http://www.stevescompany.org"
elementFormDefault ="qualified">

<xsd: conpl exType name="ProductType">
<xsd : sequence>
<xsd: el ement name="Type" type ="xsd:string" minOccurs ="1" maxOccurs ="1"/>
</xsd :sequence>
</xsd :conpl exType>

</xsd :schema>

Listing 100: data.E.3.xml

<?xm version ="1.0" encoding ="UTF-8"?>
<Conpany xmins ="http://www.stevescompany.org" xmins :per_="http://www.person.org">
<Person ID="1">
<per : Fi r st Name>Steve </per : Fi r st Nane>
<per : Last Name>Thomas</per : Last Nane>
<per : SSN>111-22-3333</per___: SSN>
</ Per son>
<Product >

<Type>Widget </ Type>
</ Product >

</ Conpany>

The user then changes the temporal schema (see Listingit®11d) and temporal document (see List-

ing 102, lines 4 and 13) to reflect his modifications.

130

© 0 N OO OB W NP

N e e e
S © ™ N o ;s WNRE O

© 0 N OO s W N

N
5 W N P O

Listing 101:temporalSchema.4.xml

<?xm version ="1.0" encoding ="UTF-8"?>
<ts : tenporal Schema xmins :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema

<ts : conventi onal Schema>
<ts :sliceSequence>
<ts :slice location ="Company.A.xsd" begin ="2008-01-01" />
<ts :slice location ="Company.B.xsd" begin ="2008-05-22" />
<ts :slice location ="Company.C.xsd" begin ="2008-07-11" />
<ts :slice location ="Company.D.xsd" begin ="2008-09-10" />
<ts :slice location ="Company.E.xsd" begin ="2008-11-13" />
</ts_:sliceSequence>
</ts :conventional Schema>

<ts : annot at i onSet >
<ts :sliceSequence>
<ts : sl ice location ="annotations.0.xml" begin ="2008-08-04" />
</ts :sliceSequence>
</ts_:annot ati onSet >

</ts _:tenporal Schema>

Listing 102:temporalDocument.4.3.xml

<?xm version ="1.0" encoding ="UTF-8"?>
<td : t enpor al Root xmlns :td ="http://www.cs.arizona.edu/tau/tauXSchema/TD"
temporalSchemal.ocation ="./temporalSchema.4.xml"/>
<td : sl i ceSequence>
<td : slice location ="data.A.0.xml" begin ="2008-01-01" />
<td : slice location ="data.A.1.xml" begin ="2008-03-17" />
<td : slice location ="data.B.1.xml" begin ="2008-05-22" />
<td : slice location ="data.C.2.xml" begin ="2008-07-11" />
<td : slice location ="data.D.3.xml" begin ="2008-09-10" />
<td : slice location ="data.E.3.xml" begin ="2008-11-13" />

</ftd :sliceSequence>

</td :tenporal Root >

12.2.5 Multiple Conventional Schemas

The user now (2008-11-27) wants to create a level of indegresel between each of the conventional
schemas: when a subschema changes, he does not want to bheage the main schema. To do this, he
creates a temporal schema for each of the conventional sshand in the main conventional schema he

references the temporal schema (as opposed to the comadrgidoschema).

Listings 103 and 104 show the new temporal schemas for trduBtr@and Person subschemas, respec-
tively. Listing 105, lines 9 and 12, shows the main converdgloschema referencing the new temporal
schemas while Listing 106 shows the new temporal schemallyihisting 102 shows the temporal docu-

ment for this new configuration.

131

© 0 N O 00 W N -

NNNNERRRRRRB R B
W NP O ©®mNOOS WNE O

Listing 103: ProductTemporalSchema.xml

<?xm version ="1.0" encoding ="UTF-8"?>

<ts : tenporal Schema xmlns :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema ">
<ts : conventi onal Schema>
<ts :sliceSequence>
<ts :slice filename ="Product.C.0.xsd" begin ="2008-07-11" />
<ts :slice filename ="Product.E.1.xsd" begin ="2008-11-13" />
</ts :sliceSequence>
</ts_:conventi onal Schena>
</ts _:tenporal Schema>
Listing 104: PersonTemporalSchema.xml
<?xm version ="1.0" encoding ="UTF-8"?>
<ts :tenporal Schema xmins :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema ">

<ts : conventi onal Schema>
<ts :sliceSequence>
<ts :slice filename ="Person.C.0.xsd" begin ="2008-07-11" />
<ts :slice filename ="Person.D.1.xsd" begin ="2008-09-10" />
</ts_:sliceSequence>
</ts :conventional Schema>

</ts_:tenporal Schema>

Listing 105: Company.F.xsd

<?xm version ="1.0"?>

<xsd: schema
xmlins :xsd ="http://www.w3.0rg/2001/XMLSchema"
targetNamespace ="http://www.stevescompany.org"
xmlins ="http://www.stevescompany.org"
elementFormDefault ="qualified"
xmlins :per_="http://www.person.org" >

<xsd:i nport namespace ="http://www.person.org"
schemalocation _="./PersonTemporalSchema.xml" />

<xsd: i ncl ude schemalocation ="./ProductTemporalSchema.xml" />
<xsd: el ement name="Company">

<xsd : conpl exType>
<xsd : sequence>

<xsd: el ement name="Person" type ="per:PersonType" maxOccurs ="unbounded"/>
<xsd: el ement name="Product" type ="ProductType" maxOccurs ="unbounded"/>

</xsd :sequence>
</xsd : conpl exType>
</xsd : el enent >

</xsd :schema>

132

© 0 N O 00 W NP

NN B R B R B B B R R
B O © NS ®WNEO

© 0 N OO b~ W N P

N
5 W N P O

Listing 106:temporalSchema.5.xml

<?xm version ="1.0" encoding ="UTF-8"?>
<ts :tenporal Schema xmins :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema

<ts : conventi onal Schena>
<ts :sliceSequence>
<ts :slice location ="Company.A.xsd" begin ="2008-01-01" />
<ts :slice location ="Company.B.xsd" begin ="2008-05-22" />
<ts :slice location ="Company.C.xsd" begin ="2008-07-11" />
<ts :slice location ="Company.D.xsd" begin ="2008-09-10" />
<ts :slice location ="Company.E.xsd" begin ="2008-11-13" />
<ts :slice location ="Company.F.xsd" begin ="2008-11-27" />
</ts_:sliceSequence>
</ts :conventional Schema>

<ts : annot ati onSet >
<ts :sliceSequence>
<ts :slice location ="annotations.0.xml" begin ="2008-08-04" />
</ts :sliceSequence>
</ts_:annot ati onSet >

</ts_:tenporal Schena>

Listing 107:temporalDocument.5.3.xml

<?xm version ="1.0" encoding ="UTF-8"?>
<td : t enpor al Root xmins :td ="http://www.cs.arizona.edu/tau/tauXSchema/TD"
temporalSchemalocation ="./temporalSchema.5.xml"/>

<td : sl i ceSequence>

<td : slice location ="data.A.0.xml" begin ="2008-01-01" />
<td : slice location ="data.A.1.xml" begin ="2008-03-17" />
<td : slice location ="data.B.1.xml" begin ="2008-05-22" />
<td : slice location ="data.C.2.xml" begin ="2008-07-11" />
<td : sl i ce location ="data.D.3.xml" begin ="2008-09-10" />
<td : slice location ="data.E.3.xml" begin ="2008-11-13" />

</ftd :sliceSequence>

</td :tenporal Root >

133

134

13 Review of Related Work

In this section, we review prior related work in the area ¢fesna versioning. Version and source control for
schemas and schema objects is needed, especially in commpléiikenterprise development environments.
The XML Schema working group at W3C has discussed desiradih@viors for use cases that involve
schema versioning in XML [16]. Various techniques to supgwolution of XML schemas, where they
allow for extensibility in the original design have also bgwoposed [34]. The emphasis of the paper is
to avoid changes to the existing applications, like [24]@mporal databases, by anticipating changes to
the schemas and then designing them for evolution. Thispiedlly achieved through a careful use of
wildcards, allowing extensions through namespaces, alpapplications to ignore unknown objects, and
forcing applications to understand unknown objects whenther option is available. This approach does
not address the whole problem, as many schema changes tenexgiressed in their limited notations.

Schema versioning has been previously researched in thextaid temporal databases [68, 24]. But
an XML schema is a grammar specification, unlike a (relatjodatabase schema, so new techniques are
required. Although various XML schema languages have begpoged in the literature and in the com-
mercial arena, none model schema changes nor provide megidNe chose to base our research on XML
Schema because it is backed by the W3C and is the most widely-achema language.

Brahmia et al. propose a six-component taxonomy of scheragehoperations for use in supporting
schema versioning across both valid and transaction tirtfeXWLSchema [10].

Raghavachari and Shmueli consider a problem different ffmhconsidered in the present paper: can
a nontemporal XML documenb that is known to be valid according to nontemporal XML sche$niae
efficiently validated against a different sches{g66]. However, their problem and proposed solutions are
relevant to the validation for a temporal document agairtetvgoral schema as considered in the present
paper. As the schema evolves over time, the data is requirgldd evolve so that he data timestamped with
a transaction time at the new time is consistent with therseht@mestamped with that transaction time. Itis
possible for the tool constructing that temporal documentor the SQUASH tool as it considers a schema
change, to efficiently revalidate the data document cugré@mforce against the new schema.

135

136

14 Design Decisions

In this section we outline the design decisions relatingtoforal schemas. We use the same terminology
and consider the same goals as presented in Section 4.

(31) Atemporal schema will have the root elememémporalSchema> which belongs to theXSchema
namespace. The root element will have two subelements toalfrst of which is required.

e <conventionalSchema> . In this element, the user will specify the conventionalesoh(s)
that belongs to the system.

» <annotationSet> . In this element, the user will specify the annotation(s tielongs to the
system, if any.

Within each of the two elements there will be four separatgswa specify schemas and annotations.

(a) Listing the URI of each conventional document witksliceSequence> element (see Listing
8)

(b) Including a (conventional or temporal) document witkiaclude> element (see Listing 6 for
an example and decisidB4) for more information)

(c) Placing the text of a document directly in the elemeng (ssting 9)

(d) Omitting the element altogether. In this case, defaefttavior will be assumed (see, e.g., design
decision(4)). Default behavior would only apply to annotation docunsemts a default con-
ventional schema (by perhaps automatically detecting egmting a schema based on the first
conventional document) would be dangerous and might peavidntended semantics.

Providing these different mechanisms allows for substitility (satisfying design godlf) in Sec-
tion 4.3), convenience (satisfying gqal)), and simplicity (satisfying gogd)).

(32) An <include> element will be used to include a document into the tempariaéa; it has the
same semantics of placing the entire actual text of the deatiinto the schema<include> can
reference any kind of document, including a conventionaésta, a temporal schema, and annotation
documents. This element has the effect of removing the roibisoincluded document; see Listings
108 and 109 for an example.

Listing 108: A schema usinginclude> . Listing 109:anno.xml
<t enpor al Schema> <annot ati onSet >
;.annot ati onSet > <I ogi cal >
<i ncl ude schemalocation ="anno.xml"/>
</ annot at i onSet > </l ogi cal >
</ t enpor al Schenma> </ annot ati onSet >

This decision satisfies goé) by allowing both the<include> element and the actual text of the
document to have the exact same semantics andg)dat keeping consistent syntax as XML Schema
<include> elements.

(33) Both conventional and temporal schemas gamclude> any number of conventional and temporal
schemas. See Listing 10 for an example. This decision satighal(f) by permitting temporal data
to occur at any level in the system.

137

(34) There can be one temporal schema for each independent tiomarschema present in the system.
In this way, each conventional schema can vary over timepieid@ently, as well as have their own
logical and physical annotations. See Figure 46 for an el@rapd Section 4.5 for more information.

Document

\ 4

XMLLINT

—Valid?

\ 4 \ 4
XML XML
Schema 1 Schema 2
1 1
Temporal Temporal
Schema 1 Schema 2

Figure 46: Each conventional schema has a separate candésgdgemporal schema.

138

15 Approach

There are several key ideas to our solution. Firdgeraporal schemaerves the analogous purpose of an
XML Schema document for a static document. So we have a spuig of reference for the schema of
a temporal document. Of course, the temporal schema mdfydtsgain versions within it. That means
that the temporal documernitseferences must also have associated temporal schetmgiraschemas. The
temporal schema is all the user needs for describing thedexhgocument, just as the conventional XML
Schema is all the user needs for describing an XML document.

Second, as with quicksand, as you venture outward, evént@l reach solid ground. So eventually
you reach a temporal schema containing no versions, or elsesach a static XML Schema document.

The third key idea, which we cafichema-constant periodfirst appeared in a paper by one of the au-
thors on temporal aggregation [74]. We introduced the goihiteSection 18, and explain how we use it.
It is possible, even with versioned schemas having theraselersioned schemas, to identify contiguous
periods of time when there are no schema charg@gyhere Now, during such schema-constant periods
the data may be (and probably is) versioned, but at least ywa & fixed base schema and fixed logical
annotations, each of which has a fixed schema. And since ffsgahannotations are fixed, the representa-
tion is also fixed, so it is possible to read and interpret ¢éimegoral document during that schema-constant
period, and even to validate that portion of the documenrtig(s just the situation discussed in our Part I,
of a single schema and versions of the data.) So a generabtahgmcument can be viewed as a sequence
of data-varying documents, each over a single schemaartnseriod. Since we can validate within each
schema-constant period, given the approaches elaboratedrber, all we have to do is validateross
schema changes.

The final key idea first appeared in the original presentatibnXSchema [25]: the representational
schema (@) is derivable solely from information in the terapschema, (b) can be designed to enable some
of the temporal integrity constraints to be checked by a eotignal validator, and (c) can be computed and
cached withinr XMLL INT, completely unbeknown to the user.

Of course, there are lots of interesting alleys and excoss@uring this trip, but these four key ideas
capture most of the approach.

In the remainder of this section, we introduce the archirecthrough a running example, then describe
how the validator can be extended to validate documentdsrsgéemingly precarious situation of data that
changes over time, while its schema and even its repregantat also changing over time.

All times mentioned in this paper are from ttiansaction timedimension [73], though XSchema also
supportsvalid time for data versioning. While schema versioning has been dereil in the context of
valid time [17], doing so is quite complex and in our opiniast worth this complexity. Thus inXSchema
schemas vary and are versioned only over transaction time.

We also note that the emphasis here is on capturing a tinygagaschema and validating documents
against such a schema. Our approach appliesteanagednvironments, where each schema is originally
in a separate document paired with one or more data docurigmdsticular points of time. We also support
managedenvironments, where a schema editor would be used to nraihi@ischema(s), which the schema
changes captured in a temporal documetibw the schema changes are made, or what kinds of schema
evolution operations are provided, are beyond the scogasfork.

15.1 Supporting Versioned Schemas

For convenience, we review some architectural diagranmm fBection 8. Figure 47 illustrates the archi-
tecture ofrXSchema. We now generalize the architecture to also suppostoned schemas. As noted
previously, the RARMGKB schema has undergone a series of changes. (Our emphtsschapter is on

139

Legend of Arrows

> 0. XML Schema

— e - > —— — >
i Input/Output References Namespace,
1. TSSchema 2. ASchema 3. ASchema
4. Conventional
Schema) 1 1
‘ \
] 5. Temporal Schema- - - - -, | !
v Y

6. Logical Annotation 7. Physical Annotatior

Y

8. Conventional
Document

9. Temporal N 10. Representational

SCHEMA
MAPPER
Document ’ Schema

11. Error Messages

Figure 47: Overall Architecture afXSchema

how to validate a time-varying document against a timeingrgchema. For more discussionrofSchema
architecture per se, please consult Part I, Section 8).

This implies that box 3 is actually sequencef base schemas, three of which are excerpted in List-
ings 110-112. Not only do these base schemas change oveibtitie schemas included by them (e.qg.,
sequence.xsd , experiment.xsd) can vary over time. Similarly, the temporal annotationsx(b)
and those annotations included by them and the physicatatioms (box 6) and those annotations included
by themall can vary over time, resulting in multiple versions.

Listing 110:<ExperimentClass> element in version 3.1

<xsc : conpl exType name="ExperimentClass">
<xsd : conpl exCont ent >
<xsd : ext ensi on base ="AccessionObjectClass">
<xsd : sequence>
<xsd: el enent name="name"
type ="NonEmptyTokenType"

<xsd : conpl exType>
<xsd: conpl exCont ent >
<xsd: ext ensi on
base ="AccessionObjectClass">
<xsd: sequence>
<xsd: el enent name="name"

140

type ="NonEmptyTokenType"
minOccurs ="0" maxOccurs ="1"/>

</xsd :sequence>
</xsd : extensi on>
</xsd : conpl exCont ent >
</xsd : conpl exType>
</xsd : el enent >

</xsd :sequence>
</xsd : extension>
</xsd : conpl exCont ent >
</xsd :conpl exType>

Listing 111:<ExperimentClass>

element in version 3.1

<xsc : conpl exType name="ExperimentClass">
<xsd : conpl exCont ent >
<xsd : ext ensi on base ="AccessionObjectClass">
<xsd : sequence>
<xsd: el enent name="name"
type ="NonEmptyTokenType"
minOccurs ="0" maxOccurs ="1" />

<xsd: el ement name="sampleSetXref"
type ="XrefClass"
minOccurs ="0" maxOccurs ="1" />

</xsd :sequence>
</xsd : extension>
</xsd : conpl exCont ent >
</xsd :conpl exType>

<xsd: el ement name="sampleSet" />
<xsd: conpl exType>
<xsd : conpl exCont ent >
<xsd : ext ensi on base ="AccessionObjectClass">
<xsd : sequence>
<xsd: el enent name="name"
type ="NonEmptyTokenType"
minOccurs ="0" maxOccurs ="1" />

</xsd :sequence>
</xsd : extension>
</xsd : conpl exCont ent >
</xsd :conpl exType>
</xsd : el enent >

Listing 112:<ExperimentClass>

element in version 4

<xsc : conpl exType name="ExperimentClass">
<xsd : conpl exCont ent >
<xsd : ext ensi on
base ="AccessionObjectClass">
<xsd : sequence>

<xsd : el ement name="sampleSetXref"
type ="XrefClass"
minOccurs ="0" maxOccurs ="unbounded"/>

</xsd :sequence>
</xsd :extension>
</xsd : conpl exCont ent >
</xsd :conpl exType>

141

© 00 N O 0B W NP

B R R R R R R R
© N o 0 A W N B O

Temporal

Schema SCHEMA Representational
MAPPER Schema
Temporal
Document Conventional Error

Validator Message

Temporal
Constraint
Validator

Figure 48: Validating a Document with Time-Varying Data

This versioning is handled by timestamping #emporalRoot> element, and adding periods to
specify when that annotation element became applicabl@uS®HARMGKB schema would have many
annotation elements, with version 3.1 becoming applicabl@pril 25, 2003, version 3.2 on May 21, 2003,
and version 4.0 on May 12, 2004.

The schema annotation elements reference individual lzhsess. One approach is to have a differ-
ent document (file) for each version, similar to what is shawiox 7. So we might have files named
root.4.25.03.xsd , etc., or perhapsoot.3.1.xsd . etc. Each of these files would reference sub-
sidiary schemas, such asquence.v3.1.xml.xsd or experiment.4.25.03.xsd . As one can
imagine, this becomes rather cumbersome. The problem highapproach is that whenever a subsidiary
schema changes, a new version is produced, with its own Uikthwequires the referencing schema docu-
ment to be changed. So a new versioexperiment.xsd requires a new version gequence.xsd
which requires a new version odot.xsd

Listing 113: A Temporal Schema foHARMGKB: temporalschema.xml

<?xm version ="1.0" encoding ="UTF-8"?>
<t enpor al Schema
xmins ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema
xmins :tv_="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema ">

<conventi onal Schena>
<sl i ceSequence>
<sl i ce location ="root.xsd" />
</ sl i ceSequence>
</ conventi onal Schema>

<annot at i onSet >
<sl i ceSequence>
<sli ce location ="annotations.xml" />
</ sl i ceSequence>
</ annot at i onSet >

</ t enpor al Schema>

While this approach is allowedXSchema also permitemporal schemasn place of multiple versions
of conventional schemas. Consider the sequence of rootssheoot.1.0.xsd ,root.2.0.xsd e
We write a simple temporal schema for these and invoke theaSH utility, which produces a single tem-
poral documentiv _snapshot.xml which is then referenced by multiple schema annotation efhtsn
Similarly, we use ®UASH to generate temporal schemas $equence.xsd andexperiment.xsd

142

~N O 0B W N

This rather involved state of affairs, with time-varyingadonents and time-varying schemas, is illus-
trated with a T Diagram in Figure 49. In this notation, firssdebed over forty years ago [11], the input
of a translator is given on the left arm of the “T” (for exampler SCHEMAMAPPER in the upper right-
hand-side of the figure, the input is the temporal schemardeatjtemp _schema.xml), the name of
the translator is given at the base of the “T” (here, “Schenzgppér”’), and the output of the translator is
given on the right arm of the “T” (here, a representationékscarep.xsd). The name of these diagrams
was to the best of our knowledge given by McKeeman, Hornimgl, \&ortman in their classic compiler
book [55].

We extend these diagrams to allow multiple inputs, whictottohately complicates them somewhat.
As shown in Figure 49, QUASH takes both a temporal schema and a sequence of conventmnahdnts
and produces a temporal document, amsQuASHdoes just the opposite (this is illustrated for the logical
annotations, which are@AsHed into a singlédv _anno.xml document, then NSQUASHed back into
their constituent time slices).

In this figure we show a temporal schentenip _schema.xml , right in the middle of the figure, with
the arrows pointing left) referencing two temporal schemas of the base schema and one of the physical
annotations; the temporal schema also references sewgiedll annotation documents. Note that the base
schema for the base schema (!) XSchematemporalschema.xml , which has as its base schema
XMLSchema.xsd .

15.2 Validating Against a Time-Varying Schema

To validate a time-varying document associated with a waging schemar XMLL INT applies the con-
ventional validator to the document, using the represiemialt schema produced bycCBEMAMAPPER(See
Figure 50). It then determines the times when the schemagelsathus determining the periods when the
schema is constant, termed g&hema-constant period$hese periods will be non-overlapping and contin-
uous; between the periods are schema charadls. For each such period, the time-varying data checker is
invoked to check the temporal integrity constraints overttine-varying data, with theinglebase schema,
logical annotation, and physical annotation.

During this process; XMLL INT treats each URI it encounters as the specification of a teahpiores-
lice operation to select the appropriate version. The timeslies of the time of the document or context
that contains the URI. For example, consider the excerptstirig 114.root.xsd is a time-varying doc-
ument, containing several schema versions. In this cantétLL INT will utilize the temporal context of
“May 21, 2003 to extract aingleversion of theroot schema. To do so, it callsSNSQUASH, passing it (a)
the temporal schema, (b) the temporal document, and (c)estamp. It passes the same information for
all the schemas included by that schema, suckegsience andExperimentClass . The underlying
semantics ensures that at any point in time, there is a sragle schema, a single logical annotation, and a
single physical annotation.

Listing 114: An excerpt from the time-varying Temporal Scizefor HARMGKB

<convent i onal Schema>
<i ncl ude schemalocation ="root.xsd"/>
</ conventi onal Schena>

<annot at i onSet >
<i ncl ude schemalocation ="anno.xml"/>
</ annot at i onSet >

Of course, one can carry this further. Because the base sclsewersioned, it is associated with a
temporal schema which could itself have multiple schemattion elements-XMLL INT recursively
calls UNSQUASH so that at any point in time, there is a single schema in effect

143

144’

uolneplfeA Jo welbelq | 6t 21nbiq

XSchema.xml

tv_snapshot.xm

]

root.1.0.xsd
root.3.0.xsd
root.3.1.xsd
root.3.2.xsd
root.4.0.xsd

SQUASH

tv_anno.xml

]

ASchema.xml

anno_mon.xm|
anno_wed.xm
anno_fri.xml

UNSQUASH

ASchema.xml

A

tv_anno.xml

]

anno_1.0.xml
anno_2.0.xml
anno_4.0.xml

SQUASH

temp_schema.xml rep.xsd

SCHEMA

MAPPER
temp_schema.xmlrep.xml| | rep.xml Mirsoa:ge
1.0.xml temp_schema.xml
2.0.xml
3.1.xml
3.2.xml TXMLLint
4.0.xml

SQUASH

Temporal

Schema SCHEMA Representational
MAPPER Schema
Temporal
Document Conventional Error

Validator

Message

Temporal
Data
Validator

Temporal
Schema

Temporal
Constraint
Validator

Figure 50: Validating a Document with a Time-Varying Schema

Let's examine howr XMLL INT depicted in Figure 50 could handle the versioned schemaHarP
MGKB. Recall that prior to Version 3.2, theExperimentClass> element of RARMGKB contained
nestecksampleSet> elements (Listing 110). In Version 3.2, this was replaceithaksampleSetXref>
element (Listing 111), that just mentioned the unique idientof the sample set, which was moved to the
top of the document, with pharmgkbld attribute.

This change is reflected in two versionsexXperiment.xsd , one for version 3.1 and one for ver-
sion 3.2, as well as moving the definition of theampleSet> element to a newampleset.xsd sub-
schema document and changnogt.xsd to also include the new sampleset subschema. We could write a
very shortexperimentTemporalSchema.xml ,then use BuAsHto create a temporalkperiment.xml
schema, and do the same for the root schema.

What do we do with an actual XML document (suclBak.xml , version 3.1 of RARMGKB), whose
schema is the original root schenradt.3.1.xsd)? We take each instance of tikeampleSet> ele-
ment out of its enclosingExperimentClass> element and move it up to beneath the root of the docu-
ment (the<pharmgkb> element), replacing it with gasampleSetXref> element. Then we take the two
documents, the first using the old scher8al(xml) and the second the updated docum@a2.&kml)
and SQUASH them into a temporal documernep.xml). (Even better, we could use a temporally-aware
XML editor to make these changes to the document. Such aoredituld output the temporal document.
This is themanagedenvironment mentioned earlier.)

What would the representational schema look like for thiegeral document? We could see that
schema directly by runningc3HEMAM APPERON our temporal schema. A portion of the temporal document
is shown in Listing 115. Note that every change of the basersah(which is what occurred here) or in
the physical annotation results in a neschemaVersion > element andep i namespace within the
time-varying root (with these names being generated bEBMAMAPPER. The conventional validator
can thus check to ensure that prior to the schema change or2MaExperimentClass> elements
contained arksampleSet> element, and afterward, arsampleSetXref> element. (®UASH will
ensure that the appropriat@ersion> is used in the generated temporal documeKtVILL INT will also
check this.)

145

© 0 N O 0B W NP

e
o b W N FE O

17

Listing 115: A portion of a temporal documemep.xml)

<?xm version ="0.1" encoding -"UTF-8"?>
<sv_root ..>

<schenal t en»
<schenmaVer si on0>
<t Ti me>May 1, 2004</ tTi ne>
<rep0 :tv_root>
<t Ti me>May 1, 2004</ tTi ne>
<phar nG<KB>

<Experinment Cl ass>
<sanpl eSet> ... </ sanpl eSet>

</ Experi ment Cl ass>
</ phar mB>
</rep0 :tv_root>
</ schenmaVer si on0>
<schenaVer si onl>
<t Ti me>May 29, 2004</ tTi ne>
<repl :tv_root>
<phar nGKB>

<Experi nment Cl ass>

<sanpl eSet Xref>...</ sanpl eSet Xr ef >

</ Experi ment Cl ass>
<sanpl eSet >

</ sanpl eSet >
</ phar nKB>
</repl :tv_root>
<schemaVer si on1>
</ schemal t en»

</ sv_r oot >

Continuing with the example, in Version 4.0 a&xperimentClass>

can now cross-reference more

than one<sampleSet> . (Note theunbounded for maxOccurs in Listing 112.) Additionally, a

<sampleSet> is now a set oksample> instead of a set oksubject>

. The latter change can be

checked by the conventional validator because such sufreaks would themselves be enclosed in a new
<tv _version _3> element. The former change, however, possibly cannot bekeleby the conventional

validator.

In context of constraints, we made reference to sequenaktdamsequenced distinctions (in Section 6).
A temporal constraint is termed asquencevith respect to a similar conventional constraint in thessoh
document, if the semantics of the temporal constraint caaxpeessed as the semantics of the conventional
constraint applied at each point in time [72]. Given a cotiegral XML Schema constraint, we can define
the corresponding temporal semanticsrdSchema in terms of a sequenced constraint. In the earlier
schema, with anaxOccurs of 1, the temporal semantics of this integrity constrainthis sequenced
constraint, at every point in timgthere can be a maximum of one such element.” However, depgeod
the physical annotations, it may be that #sampleSet> element is itself versioned, which implies that
an <ExperimentClass> element could have severabampleSet> elements, each resident at non-
overlapping periods, so that at any one time, there woulo'more than one. In this case, this integrity
constraint would need to be checked separately by the tamgng data checker componentiXMLL INT,
which knows the temporal extent of the integrity constrgfrmm the temporal schema), and thus could
check for a maximum of one only before Version 4.0 went infeaf In some cases, the representational

146

schema can be designed such that many sequenced congtaairiits checked directly by the conventional
validator.

7XMLL INT is a direct replacement for the conventional validatort i$ provided with a conventional
schema and a conventional XML document (suchaea.1.0.xsd and1.0.xml), it simply invokes
the conventional validator. TheN$QuUASHtool is similarly configured. If it is given a temporal docunte
(e.g.,rep.xml) that references a temporal schema (versioned or not; tergoralschema.xml),
it will produce a conventional XML document by taking a tiries atnow (4.0.xml); this conventional
document will reference a conventional XML Schemaot.4.0.xsd), formed by slicing the temporal
schema abow. If UNSQUASHIs given a static XML document, it simply returns that documméience W-
SQUASHcan be invoked before any conventional XML tools. In this wegnporal upward compatibilit{3]
is ensured.

147

148

16 Theoretical Framework

There are four aspects that do not show up with time-varyiaig,dbut rather are unique to versioned
schemas: (1) an evolving definition of keys, (2) accommodatiaps in lifetimes, (3) the semantics of
mixed data and schema changes, and (4) checking non-segueoigstraints across schema changes. We
examine each in turn in this section.

16.1 Accommodating Evolving Keys

When documents vary over time, it is important to identifyiethelements in successive snapshots are
in actuality the same item, varying over time. We refer toghecess of associating elements that persist
across various snapshotsghsing the elements. UAsH must do this gluing; the time-varying data checker
within 7XMLL INT must also on occasion glue elements.

When a pair of elements is glued, @am is created. An item is an element that evolves over time
through various versions. Determining which elements shbe glued depends on two factors: tgpeof
the element, and thigem identifierfor that element’s type. The item identifiers and gluing @&neénts to
form items is already explained in detail in Section 5.3.

When a schema-change wall is encountered, items acrossatheegd to be associated. This process
is called axross-wall gluing or bridging. Figure 51 depicts the concepts of gluing and bridging.

Wall
Item Al Item A2

Bridging

/

[
N A | R
/ /

Gluing Glumg

Versions Verslons

Item A

Figure 51: Gluing and Bridging

In this figure, individual elements in individual versionsam XML document are depicted as small
circles in the center of the figure. Here we see six elememtse tof which are determined to be versions
of the same item (A1) and three of which are determined to b&iores of another item (A2). The wall
indicates that the schema was changed between the thirdart fersion of the document.

Gluing uses the item identifier to associate the first thremehts with an item and likewise the next
three elements. Bridging determines that the element shagrision 3 of item Al and the element that is
version 1 of item A2 are actually versions of the same iteamifA. So in fact item A hasix versions,
the three elements before the schema change and the threengdeafter the schema change. Gluing
and bridging occur in different stages within the validatooth conspire to realize an item across schema

149

changes, which is the first step in checking the temporaltcings associated with that item’s definition in
the schema.

What is relevant for our purposes here is that item idensipecified in the logical annotations, are usu-
ally the (conventional) key of the element type [12] givertlia base schema, and are usedBKWLL INT
to extract the items from the temporal document and thenkctiectemporal constraints on those items.

What if either the conventional key (specified in the basees@) upon which an item identifier is
defined, or if the item identifier itself (specified in a lodi@mnotation) changes? This is a particularly
insidious kind of quicksand. Even worse is when the undegl\@élement type of an item changes. As
an example, if thezathlete> element in thevinolympic.verl.xsd is replaced byplayer> in
the future versions, an item that was a particwtathlete> element before the schema change could
be associated with a particulgplayer> element in the conventional document associated with tee la
schema.

Our solution is to put in thetemporalSchema> element, which signals a change in some aspect of
the schema, aritemldentifierCorrespondence> element, specifying how old item identifiers
are to be mapped to new item identifiers. This element hasdtitibutes: oldRef , a string naming an
item that appears in the old schenmewRef, a string naming an item that appears in the new schema,
mappingType , an XML Schema enumeration, and optionallynappingLocation , which is a URI.

We have defined four mutually exclusive mapping types.

» useNew: The new identifier must also be present in the old element.
» useOld : The old identifier must also be present in the new element.
e useBoth : An attribute’s name is changed, but its value isn't.

» replace : Use an externally-defined mapping.

This could be best described with an example. Say that in #@®2em identifier is thathID attribute
of the<athlete> element. In January 2005, this attribute is renamtdtumber ; we specify a mapping
type ofuseBoth . In March 2005, the item identifier is changed to #ieName element, with a mapping
type ofuseNew. (This attribute has been around since 2002, but it wasetl as a key until January 2005.)
Assume that, in June 2005 we add a new attribateKey , and specify that as the item identifier, with
a mapping type otiseOld . Finally, in July 2005, just before the beginning of the gamee replace the
<athlete> element with a<player> element, with glayerID attribute as the item identifier and a
mapping type ofeplace

The gluing of elements into items is then done the followiraywBefore 2005, thathlD is used for
gluing. When the schema change occurs sometime in Janu@by @@ glue across the schema change by
matching theathlD value of the element before the schema change witltiiumber value after the
change: these (integer) values must match for the two elenebe glued. In March 2005, we glue across
the schema change by matching up old elements and new ekethabthave the same (string) value for
theirathName element, the new item identifier. The only difference is thefore the schema change, that
element was present but wasn't being used as a key. In a tamdiashion, in June we also glue using the
athName element, which was theld item identifier.

July is the most complex. We need to glue<athlete> element with an item identifier athKey
with a<player> element with an item identifier glayerlD . For this, we use thklappingLocation
attribute in the temporal schema to access a mapping tadilpribvides a list of pairs, each with athKey
and aplayerID value.

This list of pairs is termed seplace mapping listAs it is instance-based, containing as it does a list of
key values the replace mapping list should only be used as a last rdtorble is to allow bridging for all

150

cases in which the other three mapping types, which have ed fug storing instance information in the
schema, are not appropriate.

Of course, the mapping location document can also be timgngg 7XMLL INT extracts the relevant
timeslice with INSQUASH

16.2 Accommodating Gaps

Bridging is more involved when there agapsin the lifetime of an item. Gaps make the process of finding
the correspondence between the items from consecutivensebenstant periods more difficult. If there are
gaps in the lifetime of an item, bridging becomes even morepiex.

Figure 52 shows three cases that may arise while bridgingethes from consecutive schema-constant
periods. It shows the data and schema changes along thadtianstime dimension, from left to right.
The schema-change walls are shown as bold vertical lines. hbhizontal lines depicts the evolution of
a particular item (in this case, three separate items). Tiggihg process is shown by the jumpers over
schema change walls. A dotted line indicates when the itehmai exist in the database. The first item
existed during the entire transaction time period depigtedis figure. There is a single gap in the existence
time of the second item: it ceased to exist sometime dubngut reappeared i,. The third item had a
much longer gap, reappearing only.

Py P2 P3
[~ A
> < [— B
,,,,, - R - 1T~ ¢

Transaction Time

Figure 52: Cross Wall Gluing

We now now examine each item in turn.

1. The itemA (the first horizontal line) is present throughout schemastant period$® and P,. Thus
the last snapshot a@P; and the first snapshot @, contains versions of iterd. Here, no extra work
is needed as the items can be bridged directly using one afirée four methods.

2. The itemB (the second horizontal line) disappeared for some timéirand reappeared about
halfway through inP. Thus the last snapshot &f and first snapshot aP, will not contain ver-
sions of itemB. Bridging these two items in this case involves virtuallyemding period of itenB’s
last version until the end o, as if it were present during the last snapshot; and virtuattending
its first version’s period until the start ¢%; and then performing the bridging using one of the above
four methods. Each virtual extension is depicted as a ddstedith an arrow indicating the direc-
tion the extension was made. In an implementation, thisccbeldone by simply checking item'’s last
version fromP; and first version from.

151

3. Anitem could also disappear for one or more schema-coing&iods and then reappear again. ltem
C (the bottom horizontal line) was present for initial partfat It then disappeared over entire period
P, and again appeared in the later halffaf. For such cases, bridging involves virtually extending
the period of the iten’s last version fromP; over multiple schema-constant periods followed by
bridging using one of above methods. Bds version is extended to the wall, then bridged to a virtual
element over all of, then bridged to the extended elemenfin

Figure 53 illustrates the most complex situation of crogg-gluing over multiple schema-constant
periods. Documents in the top right part of the figure showténgporal schema corresponding to schema-
change walls in March, May and July respectively. The twcetimes correspond to amassay> item.
The top time line is that contained in the March document;ldbtom one is that contained in the July
document. Theeplace anduseNew methods are used for item correspondences in July and Se@tem
respectively. The item identifier during this period is tltgilbute ‘assayKey ' of <assay> . In July we
replace the<assay> element with a<genotypingAssay> element, with ggenolD attribute as the
item identifier and a mapping type oéplace . In September the item identifier is changed back to the
name attribute, with a mapping type afseNew.

The item is present during the initial part of schema-cartgteriod P, but is removed sometime during
June, as indicated by a terminated line in the middI&ofA schema change takes place in July. Since this
item is absent during, no item correspondence is necessary in the replace malxing

A second schema-change takes place in the month of SeptefrbegenotypingAssay> element
that is in fact a version of the oldassay> element present in January reappears sometime in November.
At this point the user wants to associate this new elemetht thvé old one fromP; since both represent the
same assay. In order to perform this association, the udlenedd to add a pair of identifiers to the old
replace mapping list for the month of July to handle thisuafly extended element. Multiple versions of
the replace mapping list could also be maintained as a teahgocument;- XMLL INTwould then extract
the relevant snapshot from it.

For the first case, no extra work is needed as the items candgebrdirectly using one of the above
four methods.

But, to handle cases 2 and 3, the following two approaches w@rsidered.

» Associate the pieces of an item across a schema changeywatiuzlly extending period of versions
of the item. As an example, in Figure 52, bridging the two egeof itemB involves virtually extend-
ing period of itemB'’s last version until the end aP, as if it were present during the last snapshot;
and virtually extending its first version’s period until tsiart of Ps; and then performing the bridging
using one of the above four methods. Similarly, for the itemresponding to the third line, bridging
involves virtually extending the period of the ite@fs last version fromP; over multiple schema-
constant periods followed by bridging using one of aboveho@s$. SoP;’s version is extended to
the wall, then bridged to a virtual element over allfef, then bridged to the extended elementin

» The second option is not to extend the “item” across a schemaage wall if it does not exist. So
the item matching semantics, e.g., “useNew” matches owlgetlitems that exist immediately before
the wall with those that exist immediately after the wall. &sexample, in Figure 52, bridging the
two pieces of itemd3 and C' having gaps in their existence across the schema change iwalbt
possible.

We decided to take the second approach, since we couldiiif feaow” a priori if an item that reap-
pears is the same item or a different one from the earlier one.

152

P1 Replace

VRN
Time Varying
I N Temporal Schen
Document
September
March July
Item Identifier is Item Identifier is
assayNumber genolD
Replace Use New
Py P P, Py
VRN VRN
VN N N e NS
March July September December
Item Identifier is Item Identifier is Item Identifier is
assayNumber genolD assay|D

Transaction Time

Figure 53: Cross-Gap Gluing

16.3 Semantics for mixed data and schema changes

A data change in XML documents can co-exist with schema asngthin a single transaction, and hence

can occur at exactly the same (transaction commit) time h\86hema changes coming into picture, we

also need to consider other factors like name and relatitie gieanges for item identifier fields and other

elements that constitute the content of an item, comptigatie process of bridging and hence validation.
We considered three ways to handle this situation.

1. Not allow any data change in a transaction containingraehehanges. This is the most stringent
option and makes the user’s job more difficult, forcing hingplit the task into multiple transactions.
This may not be always feasible from real world point of vi€ansider a situation where an element
is modified to have a new ‘required attribute’, data changedadatory in this case and hence cannot
be separated from schema change. It could be argued thad tiihievable with addition of a new
‘optional’ attribute, followed by required data changes #ilen making the attribute required. But it
requires more work from the user’s side.

2. Allow schema changes to coexist with data changes, eXoegthema changes to item identifier

153

fields. This will eliminate the need of replace mapping listlahe bridging could always be done
using one of the three optiongseNew’, ‘ useOld ’, or ‘useBoth .

3. Allow data changes to coexist with schema changes witliarsaction without any restrictions.

We decided to go with the third approach, as it is the most géné schema change for an element
can consist of changes to its structure or its attribute® tineé element definitions nested within it. Thus,
given two schemas, it becomes very difficult to find the dédfeze between the schemas and to validate the
versions. So, we decided not to validate versions of an itmwsa schema change walls if a schema change
is detected for it.

16.4 Non-Sequenced Constraints

A constraint isnon-sequenced it is applied to a temporal item as a whole (including tHetiime of the
data entity) rather than to individual time slices. They @eéined in a logical annotation as an extension
of conventional XML Schema constraints. An example of a seguenced (cardinality) constraint is: “An
item cannot change more than three times in a year.”. Thi éfgonstraint cannot be validated using the
conventional validator and thus needs to be validated uki@gTemporal Constraint Checker’ module of
TXMLL INT.

As mentioned earlier, schemas vary only over transactioe.tiHence, non-sequenced constraint vali-
dation is easier in valid time, as schema changes cannot.occu

We considered two alternatives for the applicability of ats@quenced constraint across schema changes:

» The constraint is applicable only within the schema-camisperiod in which it is defined.

» The constraint once defined becomes applicable to thesatdzument.

As per the first approach, any violation of a constraint dypnevious schema-constant-periods is ig-
nored, while in the second approach, the constraint mayddated even when first defined.

Consider a situation shown in Figure 54. It maintains theesaomventions as Figure 52. Changes to an
item are shown by X’s. A new non-sequenced constraint isdluiced during third schema-constant period
Pj stating that “An item cannot change more than three timegy#saa” But the item has already undergone
four changes during previous schema-constant peripdmd P.

According to first alternative listed above, the constranhot violated as long as the item does not
change more than three times in the third schema-constaotpé&ntil there are four changes made after
the schema change, the constraint is not considered to lzgedo

According to the second alternative semantics, there isddiately a violation of the constraint, due to
activity during the previous two schema-constant periods.

We decided on the first alternative: to apply a non-sequeoessitraint only within the schema-constant
period in which it is defined. Thus the non-sequenced cansirare “turned off” on any schema change.
So for instance a constraint that says that the content neusbbstant is checked only up to the schema
wall, and then checked within the new schema starting fraenatéill. In effect the schema change deletes
all the old constraints and then adds them back as new cuonistra

154

P) P3

—y p
January March May August
Constraint Constraint
"No more than dropped
3 changes in a year"
introduced

- @@ @ -

Transaction Time

Figure 54: Non-Sequenced Constraints

155

156

17 Implementation

In this section we present the modifications and enhancenernhbe tools that have been implemented to
support schema versioning. We also discuss the methodolegyy byrXMLL INT and its relationship to
the representation used. These descriptions extend thesenped in Section 9.

17.1 Overview

The tools are open-source and beta versions are availdijlari the full implementation and architecture
is described by Joshi [47]. Figure 55 shows the overall &gchire of the tools as a UML class diagram [61].
The architecture consists of three packagest.xml for the interface of each tookau.time for classes
that handle time; andau.util for utility classes common to all tools and classes.

The tools have been implemented in Java using the DOM API [88g DOM API was chosen over
SAX API due to its ability to create an object-oriented hiehécal representation of the XML document
in main memory which can be navigated and manipulated atime- This capability has proven to be
extremely useful in all of the tools.

Figure 62 on page 173 shows the overall architecture of tbks tas they manage XML documents
and their schemas. A sequence of non-temporal documempus into YUASH to create a temporal
representation; this document can then be validated usfddLL INT and SSHEMAMAPPER UNSQUASH
can be used to reconstruct the original non-temporal dontsrfeom the temporal representation, while
RESQUASH can be used to create a new representation (e.g., difféne@stamp locations) from a given
representation.

17.2 7XMLL INT

Figure 63 provides the validation procedure usedrBWLL INT. The first step is to pass the temporal
schema intor XMLL INT, which ensures that the logical and physical annotatioasansistent with the
conventional schema and with each other. Once the annwati®@ found to be consistentCISEMAM AP-
PERIs invoked to generate a representational schema from ifi@arconventional schema and the logical
and physical annotations. The representational schemersised as the schema for the temporal document
and input into a conventional validator (in this case, XMNTL). The next step is to pass the temporal doc-
ument and the temporal schemaramporal Constraint Validator Modulé his step is to enforce temporal
constraints that are not possible to be enforced by the septational schema alone.

The algorithm forrXMLL INT is given in Figure 58.7XMLL INT is able to check for the following
types of temporal constraints.

Content Constant Content of an element cannot vary over time.
Cardinality Constant Cardinality of an element cannot vary over time.
Existence ConstantThe element cannot disappear and reappear again.

Content Varying Applicability The contents of an item cannot change beyond the periodfigueloy the
contentVaryingApplicability element in the annotation.

Valid Time Frequency The element cannot change more than specified humber of sipeeffied by the
frequency element.

Maximal Existence Period The element can exist only within the period specified by the
maximalExistence element.

157

«interface»
& IRepresentationFactory

| £ tau.xml
{3 DecomposedRepresentationFactory
instantiates instantiates instantiates instantiates
«ifterfaces wdrterfaces: {3 Primitives wdrterfaces: airterfaces
@ IDoSchemaMapping 3 IDoTemporalValidation . @ IDoSquashing & IDouUnSquashing
: «“usex | j
«usen P
(€] DuScHemaMapping . (€] DuTempDréIValidation i H .(9 DoSquashing =@ DDUnSquasHing
LisE 1 . ! wUsER L=
HLISER ; § ¥
«Lisen «use» (3 TemporalValidator | | HUSEP [Gquash “EE [G UnSquash
«usen wLisEs wLsE
wLseR 5
£ S .(9 DDS\.ISquashing | (3 DoS¥UnSquashing
<<u.se>> 3 DoSYSchemaMapping | «uses | (3 DoSVYTemporalValidation - !
2k i wLISER
- schiemaitern
(3 schemaltem * © Baseltem
© Genericvalidator | 1 ' "
: - item
@ Item (3 Repltem

s | 1
& TemporalAnnotationValidator (3 PhysicalannotationValidator

< itemidentifier1

“lIsen
HLISEN . - -
(& ItemIdentifier

e] (c] SchemaPathEvaluator
au.uti

Figure 55: Overview class diagram for the tools

7XMLL INT enforces each temporal constraint using a simple bruteefapproach. For example, for
an item that has a content-constant constraintJémeporal Constraint Validatdoops through each version
of the item and determines whether the nodes are DOM-e@guitzal

17.3 Tool Modifications and Extensions

In order to implement different classes of representatiasslescribed in Section 18), the tools were reor-
ganized to abstract the details of the representation $dhese details may vary freely without affecting
the rest of the code. This was achieved by introducing atistaatory methods [35] in each of the tools
(SQUASH, UNSQUASH, SCHEMAMAPPER 7XMLL INT) in place of the original methods; each abstract
factory method would then call the appropriate concretenotebased on the type of representation speci-
fied by the user. Figures 59 and 60 show the placement of tlieebfctory method.

The changes to allow the edit-based representation to loewitign the tools are described in detail in
Section 18.4, and the changes to the item-based represardet described in Section 18.5.

158

«interface»
@ IRepresentationFactory

© createDecomposedRepresentation ()

(© DecomposedRepresentationFactory
@ createDoSchemaMappingObj ()

@ createDoTemporalvalidationObj ()

@ createDoSquashingObj ()

@ createDoUnSquashingObj ()

@ createPrimitives ()

instantiat: i i
metantiates instantiates nstantiates . oee instantiates
«interface» «interface» ® Primitives «interface» «interface»
© IDoSchemaMapping) IDoTemporalvalidation ® pushUp () @ IDoSquashing @ IDoUNnSquashing
© doSchemaMapping () © doTemporalvalidation () @ pushDown () ® doSquash () ® doUnSquash ()
©® coalesce ()
«use»
«se» «use»
(© DoSchemaMapping (© DoTemporalValidation (® DoSquashing (® DounSquashing
@ doSchemaMapping () ® doTemporalvalidation () ® doSquash () ® doUnSquash ()
«Lise» 1 «izen «use»
(® Temporalvalidator (® Squash (® UnSquash
«use» «use» @ main () «use» @ main () «use» @ main ()
® validate () ® squash () @ unSquash ()
«se» «sen «use» «usen «se»
(© DoSY¥SchemaMapping . (© DoS¥Temporalvalidation © DoSV¥Squashing © DoSYUnSquashing
® doSchemaMapping () ® doTemporalvalidation () ® doSquash () ® doUnSquash ()

1
- schemaitern

*
79 schemaltem Y _iteﬁ"peaseltem

© validate ()
1 " -item
™ @ Item I3 RepItem
©® coalesce () ® toXML ()
® validate ()

Figure 56: Detailed class diagram fiau.xml

17.4 Schema Versioning

To implement schema versioning, the representationalnsgh®d to be generalized so that each schema-
constant period corresponds to a new namespace. Each rauadmgins with the root element of the slice
and describes all changes within the SCP in the same way aslsisin previous sections.

In particular, the tools are constructed in a such a way ttfaea versioning is handled by a different
Java class than schema-constant cases. This allows figxibilthe way that schema-versioning is im-
plemented and provides an abstraction to the developeh tBetschema-versioning and schema-constant
classes implement the same interface so that the othergfdhts tools do not need to be aware of the fact
that schemas are changing. The schema-versioning clasdesuse of the functionality within schema-
constant classes for each SCP; this again reduces codeatigoliand promotes software reuse.

Figure 61 shows the method for validating a temporal documéth a time-varying schema. (This
method was also presented in Section 18.6 as Figure 63.)liflateasuch a documentXMLL INT applies
the conventional validator to the document, using the mer&tional schema produced bgr&EMAM AP-

PER It then determines the times when the schema changes,gtersnihing schema-constant periods. For
each such period, the time-varying data checker is invokeghéck the temporal integrity constraints over
the time-varying data, with the single base schema and atioo$. Then théemporal constraint checker
glues across the schema change walls and performs the t&nopecks across these walls.

159

£ tau.time

«interface»

© ITime
«use»
«interface» «interface» (9 TemporalElement

@ ITimePeriod @ ITemporalRegion ® add ()
@ getRelationship {) @ split () @ addall ()
@ split () @ toXML () @ getTimeSpan ()
@ toXML ()

(9 TimePeriod (9 TemporalRegion
@ getRelationship () @ split ()
@ split () @ toXML ()
@ toXML ()

Figure 57: Detailed class diagram fawu.time

The framework for cross-wall validation is described inaileby Joshi [47] and our implementation
closely follows his design. Briefly, the tools must consitlee following issues that arise with schema
versioning.

Accommodating evolving keys. When a schema-change wall is encountered, items acrossatheegd

to be associated. This process is caleolss-wallgluing or bridging. This becomes especially tricky if
either the conventional key (specified in the base schen) which an item is defined, or if the item iden-
tifier itself (specified in the logical annotation) chang@$e solution is to use arxitemldentifier-
Correspondence> element to determine the type of mapping desired, spegifiiow old item identi-
fiers are to be mapped to new item identifiers. As describedetti® 16.1 this element has four at-
tributes: oldRef , a string haming an item that appears in the old schereaRef, a string naming an
item that appears in the new schemaappingType , an XML Schema enumeration, and optionally a
mappingLocation , which is a URI. We have defined four mutually exclusive maggypes.

» useNew: The new identifier must also be present in the old element.
» useOld : The old identifier must also be present in the new element.
» useBoth : An attribute’s name is changed, but its value isn't.

» replace : Use an externally-defined mapping.

160

Figure 58: Algorithm:7XMLL INT

/lInputs
I/l conventionalSchemaParsed conventional schema document
/l'logicalAnnotation- Parsed logical annotation document
I/l physicalAnnotation Parsed physical annotation document
/I temporalDocument Parsed temporal document
function doTemporalValidation (conventionalSchemé#ogicalAnnotation physicalAnnotation
temporalDocumennt
initialize ahash-tablewith item-identifier as key and item as hash value
if Consistent(conventionalSchem#ogicalAnnotation physicalAnnotation
repSchema— doSchemaMapping(conventionalSchemahysicalAnnotation
if conventionalValidator(temporalDocumentepSchempg
for each elementein thetemporalDocumento
if isTimeVarying(e, logicalAnnotation)
evaluate the item-identifier
if item-identifierin hash-table
if the element is DOM-equivalent to some version in the item
coalesce the metadata with the version
else
create a new version
else
create a new item ihash-table with one version
for eachitemin hash-tabledo
for each sequenced and non-sequenced constiaitgmporalAnnotatiordo
if the constraint is not satisfied
display errors
else
display errors generated by the conventional validator
else
display errors

161

Conventional

Document
Temporal Document
[
\

Figure 59: UASH before abstract factory methods were added.

Item-based

Edit—based Process_Edit

SQUASH

Conventional
Document

Temporal Document

Figure 60: QUASH after abstract factory methods were added.

Temporal)
Schema SCHEMA Representational

MAPPER Schema
Temporal

Document Conventiona Error

W Message

Temporal
Data
Validator

Temporal

Schema | Slice

Temporal
Constraint
Validator

Figure 61: Validating a document with Time-Varying Data an@ime-Varying Schema.

This could be best described with an example. Say that in #@Rem identifier is thathID attribute
of the<athlete> element. In January 2005, this attribute is renamtdtumber ; we specify a mapping
type ofuseBoth . In March 2005, the item identifier is changed to #ieName element, with a mapping
type ofuseNew. (This attribute has been around since 2002, but it wasetl as a key until January 2005.)
Assume that, in June 2005 we add a new attribateKey , and specify that as the item identifier, with
a mapping type otiseOld . Finally, in July 2005, just before the beginning of the gamee replace the

162

<athlete> element with a<player> element, with glayerID attribute as the item identifier and a
mapping type ofeplace

The gluing of elements into items is then done the followiraywBefore 2005, thathlD is used for
gluing. When the schema change occurs sometime in Janu@by @@ glue across the schema change by
matching theathlD value of the element before the schema change witlattidumber value after the
change: these (integer) values must match for the two elsn@be glued. In March 2005, we glue across
the schema change by matching up old elements and new ekethabhthave the same (string) value for
theirathName element, the new item identifier. The only difference is thefore the schema change, that
element was present but wasn’t being used as a key. In a tmmtdiashion, in June we also glue using the
athName element, which was theld item identifier.

July is the most complex. We need to glue<athlete> element with an item identifier athKey
with a<player> element with an item identifier gfiayerlD . For this, we use th®lappingLocation
attribute in the temporal schema to access a mapping tadilpritvides a list of pairs, each with athKey
and aplayerID value.

Accommodating gaps. When gaps appear in the lifetime of an item, the process afinitie correspon-
dence between the items from corresponding SCPs becomesdiffazult. To handle the case of gaps, it
has been decided to create a new item when the element resipfies is, the first item is not virtually
extended across a schema change wall, since it is difficuthpossible to know a priori if an item that
reappears is the same item or a different item. Thus, whenggpear, the tools create a new item and both
the original item and new item are treated like every ottemitn the evaluation.

Semantics for mixed data and schema changesWhen a data change co-exists with a schema change
within a single transactiom,XSchema places no restrictions on the types of changeseadiawis is the most
general and flexible design. However, given two schemagcdbimes very difficult to find the differences
between them and validate the versions. Thus, versions @eanacross schema change walls are not
validated if a schema change is detected for it. This detiiads to no additional work needed from the
tools.

Non-sequenced constraints. Here we consider temporal constraints suctfasitem can only be changed
3 times per year’Note that it has been decided to consider non-sequencettaiois only within a SCP
since the user might introduce unintended complexity wipetisying new constraints in the middle of the
year: should the constraint be checked only from that panvédrd or from the beginning of the docu-
ment’s lifetime? This means that the tools must verify eamfstraint within each SCP separately, which is
relatively simple. For example, for the above temporal trainst, the tools must simply check the number
of versions of an item and make sure that it is less than orl ¢égtlae specified amount. Note that only the
theoretical design exists for some non-sequenced camistréll implementation is left for future work.

We note that the complete set of features and functionaéiscdbed above is not yet implemented by
the tools.

17.5 Packages

Here we describe the packages that have been created tatsingpiools.

tau.xml This package contains interfaces and classes corresgptodinolsT XMLL INT, SCHEMAM AP-
PER SQUASH, and UINSQUASH. The details of the important classes used for data vergjoaie given
below.

163

* Item : Provides an abstraction for a logical item. It containshods for manipulating versions, their
coalescing validation.

* Repltem : Provides an abstraction for actual representation itesmeht in the XML document.
It provides methods for conversion of an XML element to/frantogical item. Both these classes
extend from the base claBaseltem , which provides common functionality.

* Itemldentifier : Provides an abstraction for item-identifier.
* Primitives : Provides implementation for primitives explained in $&t®.1.

 LogicalAnnotationValidator andPhysicalAnnotationValidator : Provide checks
for the consistency of logical and physical annotation$iwhie conventional schema.

» DoSchemaMapping, DoSquashing , DoUnSquashing , DoTemporalValidation . Pro-
vide the implementation for the algorithms explained int®&c7. Each of the classes implement
corresponding interfaces preceding their namelbyAs an exampleDoSquashing implements
IDoSquashing

The extended tools for schema versioning use these cladsesally to manipulate schema-versionsed
XML documents. The classes used for schema-versioninipa8/DataSquashing , DoSVDataUn-
Squashing ,DoSVTemporalValidation ,andDoSVSchemaMapping, where SV stands for ‘schema-
versioned’. The implementation of these classes first ifyesthema-constant-periods and call correspond-
ing data-versioning classes on individual schema-cotgi@mods.

The classeSquash , UnSquash and7XMLL INT provide commond-line tools for the end-user. These
classes accept temporal schemas and temporal documesiasfiltemmand line parameters and internally
invoke schema-versioning or data-versioning tools dejpgnabon whether the schema is versioned or not.

tau.time This package contains the implementation of classes tdéaénte. It provides implementation
for both TimePeriod (used for single time dimension) afdgémporalRegion (used for bitemporal
elements).

tau.util This package contains utility class&schemaPathEvaluator provides abstraction for eval-
uating schemapath expressions. Given a target and reéesd@ment, the function checks for the consis-
tency of the target according to the conventional schemas flinctionality is used by bothogical-
AnnotationValidator , PhysicalAnnotationValidator andltemldentifier

As explained, the class for every tool implements its coesling interface. Thus, it is easily pos-
sible to accommodate a new implementation of these toolsfoew representations without necessi-
tating many changes to the overall picture. Use of ‘Abstieattory’ design pattern makes the inte-
gration and selection of the new representation seamlesglthiyion of just a few lines of codes to the
RepresentationFactory class.

To add a new representation, we need to add new classes imiamnthe new representation for each
tool. Each class needs to implement the correspondingactmentioned earlier. Once these classes are
added, a small addition of code is needed toRlepresentationFactory class. Then, any represen-
tation can be easily selected by providing correspondingrpater to theRepresentationFactory
class.

164

18 Representations

In this section we present the design space for temporagéseptations in XML. We first introduce and
describe some aspects relating to schema versioning. Wettzgacterize the general design space. Then
we elaborate on the edit-based, item-based, and slicetHlaggeoaches.

18.1 Schema Versioning Considerations

In the following sections our focus is on the different agmtoes to representig temporal data. However,
central to each approach is the method of handling schenstomarg. This section briefly summarizes
some concepts that are present in each method.

A key idea that first appeared in a paper on temporal aggoeggt#] is that ofschema-constant periods
(SCP) It is possible, even with versioned schemas having themselersioned schemas, to identify con-
tiguous periods of time when there are no schema changeshany. These are termed as schema-constant
periods. These periods are non-overlapping and continloeieeen the periods are schema changhs.
Now, during these periods the data may be (and probably isjoreed, but at least we have a fixed base
schema and fixed logical annotations, each of which has agoteeina. And since the physical annotations
are fixed, the representation is also fixed, so it is possibiead and interpret the temporal document during
that schema-constant period, and even to validate thabpat the document. So a general temporal doc-
ument can be viewed as a sequence of data-varying docureantspver a single schema-constant period.
Since we can validate each schema-constant period, gieeapbroaches outlined by Joshi [47], all we
have to do is validate across schema changes.

For each of the representation classes below, we will shewdobema change walls are handled. How-
ever, for simplicity, most examples will contain a singléema constant period without loss of generality.

18.2 Design Space

Researchers have proposed and evaluated many differepbiteimepresentations on an individual basis
[12, 19, 38, 47, 52, 67]. We have found that all extant repriad®ns can be categorized into one of four
categories depending on the decisions made to the follotwogconsiderations. The first consideration
is whether the resulting representation will keep the erdontent of a slice explicitly or use some sort of
compression which requires slices to be reconstructedlinuinates data duplication. We call this decision
Direct or Indirect The second consideration is whether the resulting reptaten will explicitly capture
the changes to the XML tree or will only capture changes tdithétself without any knowledge of XML.
We call this decisioritemedor Flat. As these considerations are orthogonal, they induce fossiple
classes of representations, as shown in Table 4. The F&stedalo not consider XML structure and instead
treat the file as a flat text file; the Itemed classes use XMLcgira within the representation. The Direct
classes maintain full versions of each slice in the reptasen which may result in data duplication; the
Indirect classes use some sort of compression which regsiiees to be reconstructed but alleviates all
data duplication. We now name and briefly describe each oiassn.

Flat ltemed
Direct | Slice-based Item-based
Indirect | Edit-based | Reference-based

Table 4: The design space of temporal representations an@shlting classes.

Thesslice-basedepresentation class maintains the full text content ohesdice throughout the entire

165

history of a document and does not use knowledge of XML atrectEach new slice is simply appended
to the representation with the appropriate timestamp. sy, a full history of slices is maintained

in a single representation. Two advantages of the sliceebasheme are its simplicity and its ease of
implementation: no processing or logic is needed to add asliee. Another advantage is the ease of
reconstructing an arbitrary slice: one must simply find #auested timestamp and select the corresponding
slice. The major disadvantage of this scheme is the sizesakisulting representation: it will grow linearly
with the size and number of slices and will thus require botarger amount of disk space and a large
amount of memory for processing. We elaborate on this ini@eds8.3.

Theedit-basedepresentation class maintains the full text content of t¢mé most recent slice, storing
reverse edit scripts for each additional slice. It does setknowledge of XML structure; instead it uses
the well-known diff ~ tool to compute the text differences between two slicess $bheme can often result
in an extremely compact representation but requires exbe@egsing to reconstruct and validate past slices.
More detail is given in Section 18.4.

Theitem-basedepresentation class creates and maintains an item fortieaetvarying XML element.
It keeps each slice intact and uses knowledge of XML strecténitemis a collection of versions that
in concert represent the same real-world entity. It is adalgéntity that evolves over time through various
slices. This scheme is compact and allows for fast validatidore detail is given in Section 18.5.

The reference-basedepresentation class is similar to the item-based reptatsem in that it uses the
concept of items. However, the reference-based schemandtemn key identifiers (via XML Schema
<key> elements) in each element node. Here, every item is presemchild of a top level element, and
then each slice representation makes references to oneremfribese items. Thus, this scheme factors out
common data items to avoid duplication, but as a result lkessdo not remain fully intact. This scheme
provides similar size performance to the item-based sclomawerage and performs similarly in validation
time.

Listings 116-121 show two slices of an XML document and trslteng representation in each of
the four classes of representations. In each caseASH is used to transform the two slices into the
single representation, andN3QUASH can be used to recreate the original two slices from eachedilr
representations. Table 4 summarizes the design space.

Listing 116: Slice on 2008-01-01. Listing 117: Slice on 2008-03-17.
<l-- 2008-01-01 --> <l-- 2008-03-17 -->
<per son> <per son>
<f name>Steve </ f nane> <f nanme>Steve </ fnane>
<age>24</ age> <age>25</ age>
</ per son> </ person>
Listing 118: Slice-based representation. Listing 119: Edit-based representation.
<tv_root> <tv_root>
<ti mestanp begin ="2008-01-01"> <ti mestanp begin ="2008-03-17">
<per son> <per son>
<f nane>Steve </ f nane> <f nane>Steve </ f nane>
<age>24</ age> <age>25</ age>
</ per son> </ per son>
</ timestanp> </timestanp>
<ti nmestanp begin ="2008-03-17">
<person> <ti mestanp begin ="2008-01-11" >
<f nane>Steve </ f nanme> <change lines ="3">
<age>25</ age> < ; age> ;24&It ;/ age>
</ per son> </ change>
</ timestanp> </timestanp>
</tv_root> </tv_root>

166

Listing 120: Item-based representation. Listing 121: Reference-based representation.

<tv_root> <tv_root>
<per son> <per son>
<f name>Steve </ fnane> <f nanme>Steve </ f nane>
<age_ltenp <age_|tem jtemRef ="1"/>
<age_\Ver si on begin ="2008-01-01"> </ per son>
<age>24</ age> <age_ltem itemlD ="1"/>
</ age_Ver si on> <age_Ver si on begin ="2008-01-01">
<age>24</ age>
<age_\Ver si on begin ="2008-03-17"> </ age_Ver si on>
<age>25</ age> <age_\Ver si on begin ="2008-03-17">
</ age_Ver si on> <age>25</ age>
</ age_l ten> </ age_Ver si on>
</ person> </ age_ltenr
</tv_root> </tv_root>

18.3 Slice-Based Representation

As mentioned previously, thelice-basedepresentation class maintains the full text content ohedice
throughout the entire history of a document and does not meelkedge of XML structure. Each new slice
is simply appended to the representation with the appraptimestamp. In this way, a full history of slices
is maintained in a single representation, albeit with obsidata duplication.

Since any data change will result in a new copy of the entirelXMe, and any schema change will
result in a new wall, we can expect the size of the representad grow linearly with the number of
slices. In some real-world scenarios where each slice if®otder of kilobytes and the number of slices
is measured in the thousands, this size growth can beconiéepratic for both disks (for storage) and
memory (for parsing and processing). However, this appraaextremely simple and so it is often a
researcher’s initial idea.

This approach can be thought of as a special case of the isedbscheme with the physical time-
stamp placed at the root. With this strategy, the slicedbasheme can be trivially implemented into the
TXSchema tools.

18.4 Edit-Based Representation

Theedit-basedscheme (also callediff-basedor delta-basellis proposed and described in several research
papers [13, 19, 53]. Briefly, this representation maintéiresmost recent version of the document and then
only the edits necessary to transform each slice into thaqure (see Listing 119).

The edit-based scheme has the potential of minimizing theesentation size in some cases, and on
average, will result in significantly smaller represemtatinan the slice-based approach. Another advantage
of the edit-based scheme is the relative simplicity of thestaction of the representation.

However, the edit-based approach suffers from high prowgsserhead to reconstruct early versions,
since the edit script has to be applied for every slice in betw It is also difficult to make time-traveling
queries [37] since either the entire version history must be reconstructed, or a complex analysis of the
edit scripts must be performed. Also, it is important to ribig the edit scripts are saved as text only and
not XML trees; as a result, it is difficult or impossible to idgte temporal constraints directly on the edit
scripts.

We have implemented this representation intK&chema tools with the following approach. First, we
take the most recent slice in its entirety and place it as alsoient of a<timestamp> element. Then, for
each successive slice, we rutiff -e to compute the differencediff is a standard command line tool

167

that computes the difference between two files. Fheoption formats the output into aed script. We
encode the output ofliff -e as follows.

Listing 122: diff output. Listing 123: Edit-based encoding.
1| 6¢C 1| <change lines ="6">
2 <quantity >2</quantity > 2 &It ;quantity > ;2&It ;/quantity > ;
3. 3| </ change>

We create a<change>, <add>, or <delete> element depending on the operation specifieddify

(line 1 of Listing 122), along with thdines attribute. The text content of the new element is set to be the
output of diff with special characters (e.g., angle brackets) encodestdmrvalid XML syntax (i.e., <"

is replaced with<). To recreate an arbitrary slice, we iteratively apply thatch tool on the diff
output.

One important but easily overlooked detail with this apptoe the issue of white space. Since white
space is an important and necessary characteristiifiof output, it should be captured and maintained in
the resulting representation. However, the default benasfiDOM and other parsers is to ignore whites-
pace in elements that don't explicitly set thenl:space attribute to preserved [84], which could cause
problems during thepatch ing stage. For example, consider the simple document showisiing 124.
After being parsed by DOM and then written to disk, the résglfile could look something similar to the
document shown in Listing 125.

Listing 124: Original document. Listing 125: Parsed and output by DOM.
<a> <a>foo </ b>
foo </ b> </ a>

</ a>

Since the edit-based representation outputs the latestisliits entirety and then uses this as the starting
point for the reverse edit scripts, it is crucial that newtirbe preserved. To achieve this, we introduce a
filter that is applied to the conventional documents befbey tare parsed by DOM,; the filter encodes each
newline in the original document withaXnl> element (meaningrXSchema new line”). See Listing 126
and 127 for an example filter output.

Listing 126: Original document. Listing 127: After filter and DOM mangling.
<a> <a> <t Xnl />< b>foo </ b><t Xnl />
foo </ b> </ a>

</ a>

We then apply the reverse filter after writing the latestestiz disk (that is, the filter removes all hewlines
and then replaces alktXnl> with newlines) to ensure that the newly written file matches mewline
structure of the original, and thus the reverse edit scryiitsvork correctly.

To implement temporal validation of this representatiore use the following approach. For each
schema-constant period, weNSQUASH the temporal document into individual slices and theyussH
them into a slice-based representation. We can then usedfsetd validate the new slice-based represen-
tation. This allows us to use the same (unmodified) tools lidat all three representation classes, which
promotes software reuse and reduces complexity. We argii¢hib approach is necessary in order to val-
idate some temporal constraints, since it is impossibletsalusing the edit scripts alone. However, there
is some performance degradation due to the extra stepsé@u.orl his tradeoff is quantified in Section 18.7.

Note that the above approach must treat each schema-copstend separately, as opposed to the entire
representation, due to the nature of the edit-based scHeaetion 18.4.2 below elaborates on this idea.

Through this implementation strategy, we are able to fudgtare, reproduce, and validate the changes

168

between slices with the help of commonly available tools emeédte a practically useful edit-based repre-
sentation.

18.4.1 Capturing Namespaces

Since the edit-based approach does not represent dataeshemgn XML format (rather, these changes
are captured in encoded text within an XML element), thedassucapturing namespaces does not arise.
The output of diff does not indicate what kind of change occurred on a line,(eamespace change
versus element change), only what lines changed and thealeesvof those lines. Thus, when namespace
changes occur, we cannot detect them explicitly and so wdlédhem in the same manner as any other
schema change.

18.4.2 Schema Versioning

Changes to the schema are handled with the following apprdaer each schema change, we represent a
wall by inserting a new<schemaVersion X> element. Each<schemaVersionX> is populated with a
set of one or more<tv:itimestamp> sub-elements: the first such sub-element contains theamision

of the most recent slice in the current schema-constanbgheaind each additional sub-element contains
the edit script produced byliff . Listing 128 shows an example edit-based representatitim sshema
versioning.

Listing 128: Edit-based representation with schema veinsgp

<sv_root >
<schenal t en»
<schenmaVer si on0>
<tv :timestanp begin ="2008-03-17">
<repO : person>

</rep0 : per son>
</tv_:timestanmp>
<tv :timestanp begin ="2008-01-11" >
<change lines ="3">..</ change>
</tv_:timestanmp>
<tv :timestanp begin ="2008-01-07" >

<change lines ="8">..</ change>
</tv_:timestanp>

</ schemaVer si on0>
<schenmaVer si on1>
<tv :tinmestanp begin ="2008-04-23">
<repO : person>

</rep0 : per son>
</tv_:timestanmp>
<tv :timestanp begin ="2008-04-10" >
<change lines ="3">..</ change>
</tv_:timestanp>

</ schemaVer si on1>
</ sv_r oot >

The design of this representation is such that each SCP dglesamilar in syntax and format to the static
schema case. The representational schema must then beictetsso that for each SCP the contents of the
base schema are inserted as a sub-element of a timestamgnel@imestamp elements are also permitted
to havechange , add, ordelete sub-elements to encode the edit scripts.

169

18.5 Item-Based Representation

Theitem-basedcheme [47] creates and maintains an item for each timengaefement and was the origi-
nal representation type implemented-iSchema. Antemis a collection of XML elements that in concert
represent the same real-world entity. It is a logical eritigt evolves over time through various slices. An
item can occur at any level in the XML tree hierarchy, and ec#jed by the user via a physical annotation.
Every occurrence of the actual time-varying element from ¢bnventional document is replaced by its
corresponding item. The item-based representation hdsltoeing features.

e Only elements can be time-varying and can have versions. iniheediate content (text and at-
tributes), is considered to be an integral part of an eleraadttherefore does not have a separate
time-varying lifetime.

e A version of an element is created when the immediate cowteattributes of an element change.
This includes text content, sub elements, comments, ar@égsong instructions. The change must
be observable through DOM: only changes observable thr@@M create a new version. This
implies that whitespace and attribute ordering does nattera new version. In contrast, since the
edit-based representation usdsf to observe changes, whitespace and attribute orderingdwoul
create a new edit script in the representation.

e If an element is glued but remains unchanged, then thentigetif the current version of the element
is extended; no new version is created. This implies thatiors are coalesced [47].

e The timestamp that represents the version’s lifetime }é-dimensional temporal element. It may
includenow, until changed , and/or indeterminate times.

We now extend the item-based representation to explicipture schema versioning and namespaces
with elements. These tasks are accomplished with the uséditianal elements and namespaces in the
resulting representation. Briefly, each elemeim the original document with namespace will take on
the following form in the representation,

<ns:e> = <rep X_Y_nsie>
where X andY are unique integers for each schema-constant period anespaice change, respectively.
The following sections describe this production in moreadetnd provide examples.

18.5.1 Capturing Namespaces

A conventional document may have more than one namespatie. eath namespace associated with a
different schema. Further, these hamespaces may changeslice to slice without a schema changing
(i.e., the namespace mapping in the conventional docuniamges, but the conventional schema does not
change). To capture and reproduce such situations, eackspace in each slice must be mapped by the
tools to a uniqgue namespace in the representation. Corikigléro slices shown in Listings 129 and 130.

Listing 129: Slice on 2008-01-01. Listing 130: Slice on 2008-03-17.
<l- 2008-01-01 --> <l- 2008-03-17 -->
<a> <a>
<nsl: b>foo </nsl : b> <nsl: b>fool </nsl : b>
<ns2: c>bar </ns2 : c> <ns2:c>blah </ns2 : c>
</ a> </ a>

In this simple example, three different namespaces arearsgcemain constant between slices (specif-
ically, the default namespacejsl and ns2). The resulting representation (Listing 131) has one eorre
sponding namespace for each of the original namespace®, therrep namespace corresponds to the
default namespace used ky> in the slices.

170

Listing 131: Item-based representation of Listings 129 Hsfl

<tv_root>
<rep :a>
<l-- rep_nsl is a newly created namespace -->
<rep_nsl :b_Repltenr
<rep nsl :b_Version begin ="2008-01-01">
<nsl:b>foo </nsl : b>
</rep nsl :b_Version>
<rep_nsl :b_Version begin ="2008-03-17">
<nsl: b>fool </nsl : b>
</rep_nsl :b_Version>
</rep_nsl :b_Repltenr

<l-- rep_ns2 is a newly created namespace -->
<rep ns2 :c_Repltenr
<rep_ns2 :c_\Version begin ="2008-01-01">
<ns2: c>bar </ns2 : c>
</rep_ns2 :c_Version>
<rep_ns2 :c_\Version begin ="2008-03-17">
<ns2: c>blah </ns2 :c>
</rep_ns2 :c_Version>
</rep ns2 :c_Repltenr
<lrep_:a>
</tv_root>

Since no naming conflicts are present in this scenario, tlganntegery” is not necessary and is therefore
omitted. Similarly, the unique intege¥ for the SCP is omitted. To illustrate a scenario where a hgmin
conflict occurs, consider the following two slices.

Listing 132: Slice on 2008-01-01.

Listing 133: Slice on 2008-03-17.

<l-- 2008-01-01 -->
<a>

<nsl: b>foo </nsl : b>

<rep nsl :c>bar </rep nsl :c>
</ a>

<l-- 2008-01-01 -->
<a>

<nsl: b>fool </nsl : b>

<rep nsl :c>bar </rep nsl :c>
</ a>

Since <nsl:b> istime-varying, we need to create an item and thus a new n@aunedgor the item. We
can not userep _nsl in the resulting representation because that namespaaawlexists in the original
slice and would cause confusion. Instead, we create a newspawerep 0._nsl, as shown in Listing 134.

Listing 134: Item-based representation of Listings 132 BBi8l

<tv_root>
<rep :a>
<rep 0 nsl :b_Repltenr
<rep_ 0 nsl :b_Version begin ="2008-01-01">
<rep 0 nsl :b>foo </rep 0 nsl :b>
</rep_ 0 nsl :b_Version>
<rep 0 nsl :b_Version begin ="2008-03-17">
<rep_0 nsl :b>fool </rep O nsl :b>
</rep_ 0 nsl :b_Version>
</rep O nsl :b_Repltenr

<rep rep nsl :c>bar</rep rep nsl :c>
</rep :a>
</tv_root>

In this scenario, the valué happens to be the first unique integer that relieves the rpeonflict. If

there already exists a namespa@p 0.nsl in the original document, then the representation would try

rep _1.nsl. If rep _1_nsl already exists, this process would iterate until no corfliemain.

171

18.5.2 Schema Versioning

To achieve schema versioning in the item-based represantelass, we introduce one level of abstrac-
tion. For each schema-constant period, we create a newsegpiadional schema in the normal way and
define a uniqgue namespace for this schema of the ferep X Y > as described above. Then, in the main
representational schema, we import the representatiah&insa for each SCP and define a new element
<schemaltem> . Sub-elements of this element correspond to each SCP asc#uh <rep X _Y> name-
space. Listings 135 and 136 below show an simple exampleheinsa versioning and Listing 137 shows
the representational schema.

Listing 135: Version 1 of a simple schema. Listing 136: Version 2 of a simple schema.

<el enent name="athlete"> <el ement name="athlete">

<conpl exType mixed ="true">
<sequence>
<el enent name="athName"
type ="string"/>
</ sequence>
<attri bute name="athlD"/>

<conpl exType mixed ="true">
<sequence>
<el enent name="athName"
type ="string"/>
</ sequence>
<attri bute name="athNumber"/>

<attribute name="age" />
</ conpl exType>
</ el emrent >

31
32

<attribute name="age" />
</ conpl exType>
</ el ement >

Note that the filesep0.xsd andrepl.xsd correspond to the representational schemas created for the
two SCPs. Each defines the namespace and elements corriegptanits SCP.

The temporal document then has orschemaVersion X> element for each SCP and the representa-
tion proceeds in the normal way. Listing 138 shows the temlpiwmcument created in the scenario.

18.6 Functionality Placement: Schema vs. Tools

To this point we have focused on how the user describes higaehdocuments and their schemas. We now
turn to examine where schema constraint functionality & @il and the issues that arise when validating
temporal constraints. In this section we focus on the latter

Before facing these issues, it is convenient to discuss pipeoach that the-XSchema tools take to
validate temporal contraints. Figure 62 shows the overahitecture of the tools as they manage XML
documents and their schemas. A sequence of non-temporaimands is input into 8UASH to create a
temporal representation; this document can then be vatidasingrXMLL INT and S HEMAMAPPER
UNSQUASH can be used to reconstruct the original non-temporal dontsyieom the temporal representa-
tion, while RESQUASH can be used to create a new representation (e.g., diffémegdgtamp locations) from
a given representation.

Figure 63 provides the validation procedure usedKWLL INT. The first step is to pass the temporal
schema intor XMLL INT, which ensures that the logical and physical annotatioasansistent with the
conventional schema and with each other. Once the annwati®@ found to be consistentCSEMAM AP-
PERIs invoked to generate a representational schema from ifi@arconventional schema and the logical
and physical annotations. The representational schemersised as the schema for the temporal document
and input into a conventional validator (in this case, XMNTL). The next step is to pass the temporal doc-
ument and the temporal schemaramporal Constraint Validator Modulé his step is to enforce temporal
constraints that are not possible to be enforced by the septational schema alone.

A key design decision during the validation of temporal ¢asts is the placement of functionality:
should a constraint be implemented in the representatissctedma or within the temporal constraint val-
idator? Implementing (oexpressingor enforcing constraints in the representational schema may provide

172

E 2 0. XML Schema Legend of Arrows

—_— - > - —— >

) Input/Output References Namespace
1. TSSchema 2. ASchema 3. ASchema
4. Conventional
Schema) X)
\ : |
A 5. Temporal Schema- - - - -, |
”””””” v 3 v
l 6. Logical Annotation 7. Physical Annotation
SCHEMA
MAPPER
8. Conventional
Document 9. Temporal _,| 10. Representational
= Document Schema

UNSQUASH)= ~(RESQUASH @

11. Error Messages

Figure 62: The overall architecture 8KSchema.

Temporal]
Schema SCHEMA Representational
MAPPER Schema

Temporal
Document m\ Error
Validator Message

Temporal
Constraint
Validator

Figure 63: Validating a document with Time-Varying Dat&{MLL INT.

faster validation since a conventional validator can beked directly, but may result in increased size and
complexity of the representational schema. Converselglamenting constraints in the temporal validator

173

Identity | Referential | Cardinality | Datatype
Sequenced X X v v
Non-sequenced X X X X

Table 5: The classes of constraints that can be implememgdepresentational schema in the general case.

may yield small and compact schemas, but requires more ¢ipertorm the validation since the tools must
perform checks across all slices sequentially and indaligun the worst case.

In the following sections we explore two issues related ® placement of functionality. First, we
determine which temporal constraints are possible to besggpd in a representational schema using the
item-based representation cldssid which can only be implemented in the temporal constsailitlator.
Second, for those constraints that can be implemented im thet schema and the temporal constraint
validator, we provide a brief analysis of the tradeoffs kedwthe two placements.

18.6.1 Constraints

In this section we discuss botlequencedenforced at each point in time) andn-sequencefenforced on

the temporal document as a whole) constraints and deteffiori@ach whether it is possible to express that
constraint in the representational schema. For both segdeamd non-sequenced constraints, we focus on
the following classes of constraints.

Identity constraints These constraints restrict uniqueness of elements arlouétis in a given document.
Identity constraints are defined in the schema documeng wsitombination of<selector> and
<field> sub-elements within arkey> or <unique> element.

Referential Integrity constraints These constraints, defined using tkikeyref> element, are similar to
the corresponding constraints in the relational model hEeaferential integrity constraint refers to a
valid key or unique constraint and ensures that the correpg key value exists in the document.
For example, a<keyref> can be defined to ensure that only valid product numbers ithese that
exist for a <product> element) are entered for an order.

Cardinality constraints The cardinality of elements in XML documents is restrictgdhe use ofminOccurs
and maxOccurs in the XML Schema document. The cardinality of attributeseistricted using
optional , required , or prohibited

Datatype restrictions Datatype definitions can restrict the structure and cordeatements, and the con-
tent of attributes. For example, a datatype definition catriot the content of an elemenrtage> to
be between 0 and 100.

Table 5 provides a sneak-peak summary of which of the eiglssek of constraints we claim can be imple-
mented in the representational schema in the general casenoW/ provide an argument for each cell of
this table in turn.

18.6.2 Sequenced Constraints

In this section we examine whether each class of sequenostraimts can be enforced by a representational
schema. Given a conventional XML Schema constraint, we el¢fiea corresponding logical semantics in

®Section 18 introduces and describes the four kinds of reptation classes and Section 18.6.4 outlines how the dihee t
classes affect this analysis.

174

89| ...

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

XML Schema in terms of @equenced constraintFor example, a conventional (cardinality) constraint,
“There should be between 0 and four 4 URLSs for each supples’ the following sequenced constraint:
“There should be between 0 and 4 website URLSs for each sutlevery point in timé

For each sequenced constraint below we use the followingaph. If we claim that the constraint can
be enforced by a representational schema, we outline a thétiad can be used by thexSchema tools
to transform the sequenced constraint syntax into standlistid Schema syntax. If, on the other hand, we
claim that the constraint cannot be enforced by a reprets@méh schema, we provide a counter example
that illustrates the specific shortcoming of XML Schema thatids the constraint to be enforced.

Identity Constraints We claim that identity constraints of elements and attabaannotbe enforced in
a representational schema in the general case. To seedhssder the following example that begins with
Listings 139 and 140. In this example, we requigip> elements to have uniqueode attributes via an
identity constraint namedipUnique

Listing 139: XML Schemas<unigue> . Listing 140: Uniquecode s (slice 1).
25| ... 163 ...
26 <XS:uni que name="zipUnique"> 164/ <zip code="85721"> Tucson , AZ </zip>
27 <xs:sel ector xpath ="zip"/> 165 <zi p code ="85001"> Phoenix , AZ </zip>
28 <xs:field xpath ="@code"/> 166 ...
29 </xs_:uni que>
30| ...

Now suppose the user were to change tlwele for Tucson to be the same as Phoenix (violating the
conventional schema’s identity constraint), and then lzayzkin (see Listings 141 and 142).

Listing 141: Slice 2 (invalid). Listing 142: Slice 3 (valid).
163 ... 163 ...
164 <zip code="85001"> Tucson , AZ </zip> 164 <zi p code="85721"> Tucson , AZ </zip>
165 <zi p code ="85001"> Phoenix , AZ </ zip> 165 <zi p code ="85001"> Phoenix , AZ </zip>
166| ... 166| ...

Assuming that the physical annotations place the timestaamphe <zip> element level, the above
actions would create an item-based representation sitoil&e one shown in Listing 143.

Listing 143: Squashed version of the three slices.

<zi p_Repl tenr
<zi p_Versi on begin ="1" end ="1">
<zi p code ="85721"> Tucson , AZ </zip>
</ zi p_Ver si on>
<zi p_Versi on begin ="2" end ="2">
<zi p code ="85001"> Tucson , AZ </zip>
</ zi p_Ver si on>
<zi p_Version begin ="3">
<zi p code ="85721"> Tucson , AZ </zip>
</ zi p_Ver si on>
</ zi p_Repltenr

<zi p_Repl tenr
<zi p_Versi on begin ="1">
<zi p code ="85001"> Phoenix , AZ </ zip>
</ zi p_Ver si on>
</ zi p_Repl tenr

With this representation, there is no way to create an itjetnstraint in XML Schema that can
detect that bothcode values at time 2 are the same. If the constraint were constiuo restrict all

175

Jzip _Repltem/zip _Version/zip/@code values® to be unique, this would fail since at times 1 and
3, Tucson has ecode value of 85701, and this is legal in our temporal constraifhthe constraint were
constructed to require allzip _Version/zip/@code within each./zip _Repltem to be identical, this
would also fail since the user is allowed to change the zigdonm slice to slice.

One could imagine extending the constraint shown in ListiB§ to include key specification fields
begin and end for the valid times associated with each version of thip element, as shown in List-
ing 144 on lines 29 and 30, with the corresponding attribirtése element specification.

Listing 144: XML Schemas<unique> with additional fields.

25| ...

26 <xS:uni que name="zipUniqueAttempt">
27 <xs:sel ector xpath ="zip"/>

28 <xs:field xpath ="@code"/>

29 <xs:field xpath ="@begin"/>

30 <xs:field xpath ="@end"/>

31 </Xs :uni que>

32| ...

As long as thebegin and end attributes are maintained in proper order (which can beldtby
7XMLL INT), the keys will uniquely identify each key within each sraqis Listing 145 below shows an
example where the addition of such attributes will achiéeedesired functionality. Here, the conventional
validator would detect that theip elements on lines 95 and 104 are in violation of the uniquestcaimt,
which is indeed correct.

However, this approach will not succeed in the general casause it only enforces uniqueness at the
interval end points and not anywhere within the interval &@mple, consider the excerpt from a squashed
document shown in Listing 146. We see that the elements ea 86 and 101 conflict our desired constraint,
but since thebegin attributes are distinct, XML does not detect an error.

Listing 146: Squashed document with multiple changes

89 ...
90| <zip_Repltenv

91 <zi p_Version bpegin ="1" end ="1">

92 <zi p code ="85721" begin ="1" end ="1"> Tucson , AZ </zip>
93 </ zi p_Ver si on>

94 <zi p_Version begin ="2" end ="2">

95 <zi p code ="85001" begin ="2" end ="2"> Tucson , AZ </zip>
96 </ zi p_Ver si on>

97| </ zip_Repltenr
98
99| <zi p_Repltenr

100, <zi p_Versi on begin ="1" end ="2">
101 <zi p code ="85001" begin ="1" end ="2"> Phoenix , AZ </zip>
102 </ zi p_Ver si on>

103| </ zip_Repltenr
104 ...

We are thus forced to conclude that XML Schema lacks sufficiepability to discriminate time boundaries
in a way that would allow sequenced identity constraintset@bforced.

Referential Integrity Constraints We claim that referential integrity constrairdannotbe implemented
in a representational schema. The argument is similar toféhadentity constraints: there is no way to
create a constraint in XML Schema that can both satisfy eet@l integrity and time issues. Consider the
example shown in Listings 147 and 148.

T his is XPath code [77].

176

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Listing 147: A referential constraint.

Listing 148: Squashed document.

<l-- Defines a key named "pNumKey" -->
<key name="pNumKey">
<sel ect or xpath ="states/state"/>
<field xpath ="@id"/>

</ key>

<l-- Says that the "state" attribute -->

<l-- in <zip><city></zip> elements -->

<l-- must match a pNumKey. ->

<keyr ef name="stateMatcher"
refer ="r:pNumKey">
<sel ect or xpath ="regions/zip/city"/>
<field xpath ="@state"/>
</ keyr ef >

<regi ons_Repl tenr
<regi ons>
<zi p code ="85701">
<city state="1"/>
</ zi p>
</ regi ons>
</ regi ons_Ver si on>
<r egi ons_Ver si on begin ="2" end ="3">
<r egi ons>
<zi p code ="85701">
<city state="6"/>
</ zi p>
</ regi ons>

46| ... 8o| </ regions_Version>
81| </ regi ons_Repl tenr

83| <st at es_Repl ten»
84| <states_\Version begin ="1" end ="2">

85 <st at es>
86 <state id ="1">Arizona </ state>
87 <state id ="2">California </ state>

88 </ st at es>
89| </ states_\Version>
90| <states_Version begin ="3" end ="3">

91 <st at es>

92 <state id ="6">Arizona </ st ate>

93 <state id ="2">California </ state>
94 </ st at es>

95| </ states_Version>
96| </ st at es_Repl t en»

Here, we have a constraint that sépscity element’s state attribute must match an existingesedement’s

id attribute at every point in time.The squashed document shows that this constraint is sdtedfiemes

1 and 3, but violated at time 2 since Arizona will point to a reistent stateid . To construct an XML
Schema that could describe this situation, one would nedxsk table to somehow discriminate between
different <regions _Version> elements according to theibegin and end attributes, but there is no
such way to accomplish this without the help from a procddaraguage like XQuery [79]. We are again
forced to conclude the XML schema lacks sufficient mechasisnenforce a referential constraint.

Cardinality Constraints We claim that the cardinality of both elements and attribui@n be enforced

in the representational schema. Consider an elemevtiich has created a logical itein If the lowest
timestamp is located at a ancestor or descendenttbén no change to the definition @from the original
schema is necessary, only a direct copy into the repregmmhschema. If a timestamp is located,ahen
the cardinality constraint information must be moved fremmp to: in the representational schema. Since
there must be one item for each original element, ensuriaigviie have a particular number of items is the
same as ensuring that we have a particular number of origieaients.

Listings 149 and 150 below show an example constrdiftte element<supplier> can occur exactly
1 or 2 times.” We first assume that the physical timestamps—specified itethporal schema—are placed
at a predecessor or successor element oftbepplier> element. In this case the specification of the
<supplier> element requires no modification in the representatiorasa.

177

Listing 149: Conventional schema 1. Listing 150: Representational schema 1.

<xs:el ement name="supplier" <xs:el ement name="supplier"

minOccurs ="1" maxOccurs ="2"> minOccurs ="1" maxOccurs ="2">
</xs _: el enent> </xs _: el enent >

Listings 151 and 152 show the same example as above, exagphaghysical timestamps are located
at the level of the<supplier> element. In this case, the transformation pushes the eamistrup to the
<supplier _Repltem> element.

Listing 151: Conventional schema 2. Listing 152: Representational schema 2.
. <xs:el ement name="supplier" <xs: el ement name="supplier_Repltem"
minOccurs ="1" maxOccurs ="2"> minOccurs ="1" maxOccurs ="2">
</xi: el ement > <& el enent name="supplier_Version">
<& el enent name="supplier">

</xs _: el enent >
</xs : el enent >
</xs _: el enent>

Datatype Constraints We claim that datatype definitions of both elements andoatigiscan be enforced

in the representational schema. This can be achieved byngpthye datatype definition for each element

in the original schema into the representational schenmaeSiatatype restrictions are not affected by the
location of timestamps, the transformation is trivial ih@dses. See Listings 153 and 154 for an example
of the datatype constraintThe element <age> must have a value between 0 and 100, inclusive, at all
times.” No changes to the constraint must be made in the transfamati

Listing 153: Datatype conventional schema. Listing 154: Datatype rep. schema.
45| ... 65| ...
46| <xs:el enment name="age"> 66 <xs: el ement name="age">
47 <xs:sinpl eType> 67 <xs:sinpl eType>
48 <xs:restriction base="xs:integer'> 68 <xs:restriction base="xs:integer'>
49 <xs: mnlnclusive value ="0"/> 69 <xs: m nlncl usi ve value ="0"/>
50 <xs: mexl ncl usi ve value ="100"/> 70 <xs: maxl| ncl usi ve value ="100"/>
51 </xs :restriction> 71 </xs :restriction>
52 </xs :sinmpl eType> 72 </xs :sinmpl eType>
53| </xs :el enent> 73 </xs : el ement >
54/ ... 74] ...

18.6.3 Non-sequenced Constraints

Non-sequenced constraingse constraints applied to a time-varying element as a wgiotduding the
lifetime of the data entity) rather than individual timecgls. Non-sequenced constraints are not defined on
conventional XML Schema equivalents. An example of a naquseced (cardinality) constraint is: “There
should be no more than 10 URLSs for each suppfieany year’

We claim that in general it isot possible to enforce non-sequenced constraints withinraseptational
schema. Since non-sequenced constraints can refereticargrbections of time that don’t necessarily cor-

178

33| .

34
35
36
37
38
39
40
a1
42
43
a4
45
46
4
48

b

respond to slice lifetimes or schema changghéma wajlboundaries, it is impossible to use XML Schema
to isolate and thus validate these sections. For exampisjder the simple non-sequenced cardinality con-
straint: “There should be two or three unique suppliers in any givearyedf the document were changed
at intervals that were less than one year in duration, wedcbaVve a representation that looked similar to
Listing 155.

Listing 155: Squashed version. One day equals one unit @f tim

<suppl i ers_Repl tenr
<suppl i ers_Versi on begin ="1" end ="1">
<supplier id ="1">IBM </ supplier>
<supplier id ="2">HP </ suppl i er>
</ suppl i ers_Versi on>
<suppl i ers_Version begin ="2" end ="100">
<supplier id ="1">IBM </ supplier>
<suppl i er id ="3">Sun </ supplier>
</ suppl i ers_Versi on>
<suppl i ers_Versi on begin ="100" end ="600">
<supplier id ="3">Sun </ supplier>
<suppl i er id ="4">Apple </ supplier>
</ suppl i ers_Versi on>
</ suppl i ers_Repl tenr

It is easy to see that there are in fact four suppliers betwiertimes 1 and 365, violating our example
contraint. However, there is no way to construct an XML Scadmsuccessfully validate this, since we
would need some way to accumulate the number of unigaieplier> s across<supplier _Version>

and then check this number against the constraint; but ther@ such way to perform this accumulation in
XML Schema.

However, we do note that there exist specific circumstanteghich non-sequenced constraimtgay
be validated. Again consider the non-sequenced cardinadibstraint: “There should be 2 or 3 unique
suppliers in any given year’Also suppose that the timestamps were placed at some eletbewnt the
<supplier> element and that slices were created exactly once per yeaneBult will be a representation
that closely mimics the individual slices. We see that itasgible to create a representational schema to
enforce this constraint (Listings 156 and 157).

Listing 156: Item-based temporal representationListing 157: Non-sequenced representational

#1. schema #1.
66| ... 80| ...
67| <conpany_Repltenr 81 <xs:el ement name="company_Repltem"
68 <conpany_Ver si on begin ="1" end ="2"> 82
69 <conpany> 83 <xs:el ement name="company_Version">
70 <suppl i er s> 84
71 <supplier id ="123"/> 85 <xs: el ement name="supplier'>
72 <supplier id ="456"/> 86 minOccurs ="2" maxOccurs ="3">
73 </ suppl i ers> 87
74 </ conpany> 88 </xs :el ement>
75 </ conpany_Ver si on> 89 </xs :el enment>
76 90 </xs _: el enent>
77 ... 91 ...

In this case, we are guaranteed to have ggeppliers> element per year. Thus, validating each element
in each company version will validate the constraint.

As another example, consider the non-sequenced carglicalitstraint: “There should be between 2
and 4 players on the team in any given yediithe slices happen to have a one-to-one correspondenbe wit
the boundaries for a year, and the timestamp happens to balabee the<team> element, then we could
have the following representational schema.

179

Listing 158: Item-based temporal representationListing 159: Non-sequenced representational

#2. schema #2.
12| ... 45(...
13| <t eam Repl t en> 46 <xs:el ement name="player"
14| <team Version begin ="1" end ="1"> 47 minOccurs ="2" maxOccurs ="4">
15 <t eanp 48
16 <pl ayer >Steve </ pl ayer> 49| </xs :el ement>
17 <pl ayer >Bob</ pl ayer > 50| ...
18 <pl ayer >Mark </ pl ayer >
19 <pl ayer >Paul </ pl ayer >
20 </t eanr

21| </team Version>

23 <t eanp
24 <pl ayer >Steve </ pl ayer>
25 </t ean>

26| </team Version>
27| </ t eam Repl t en>

In general, we see that such special cases can be constmictzdboth of the following conditions are
met.

e Placing the physical timestamp at or above the highest elethat is involved in the constraint.

e \ersioning the conventional document so that the lifetimeaxh slice matches the time unit speci-
fied by the constraint (e.g., if the constraint involves orarythen there would be exactly one slice
per year).

Clearly, these situations are of limited practical useesithey are constricting and unlikely to occur natu-
rally. Nevertheless, one might argue that the tools couttbli adopt the following strategy. “If a special
case occurs, place the functionality in the representaltisthema; otherwise, place the functionality in the
tools.” We argue that this process would add complexity ihabt justified by the marginal performance
gains, especially when there are multiple constraints ddfamd only some would meet the special-case
criteria.

18.6.4 Functionality of Other Representation Classes

In the above sections we considered whether constraintisl tmuexpressed in an XML schema using
the item-based representation class. We now provide a toimimentary on the ability of each of the
remaining three representation classes to express costr&riefly, the remaining three representation
classes provide the same or worse level of capability agdhebased class.

The slice-based class allows the same set of constrainsegdyessed as the item-based class. This is
because the slice-based class is a special case of thedtsed-blass; it possesses no unique characteristics
and thus the same limitations apply. The reference-bases ellso allows the same set to be expressed.
This can be seen by viewing the reference-based class asianizepl, but similar version of the item-based
class. The reference-based class has the same structheeitesr-based class (e.g., items, versions, phys-
ical timestamps); the only difference is that the referdnased class avoids data duplication by providing
multiple references to subtrees that occur more than onleis. pfocess does not gain the reference-based
class any benefits that can be used to enforce constraintseditibased class is not able to express any
temporal constraints within the representational schentz st reduces changes to the XML tree to simple
text content that cannot reliably be parsed and examined.

180

18.6.5 Placement of Functionality

For those constraints that can be implemented within eitierepresentational schema or the tools (i.e.,
sequenced cardinality and datatype constraints), thetignpegmains: where should the functionality be
placed? To address this question, we provide a discusslow.be

Consider the model of validation used bXMLL INT shown in Figure 63. First, the temporal doc-
ument is validated against the representational schenmg astonventional validator (i.e., XMLNT).
Then theTemporal Constraint Validator Modulis invoked to explicitly and exhaustively check all tempo-
ral constraints. This module uses DOM to parse and travacetice and manually checks each constraint
present in the logical annotation set. From the descripgifdhese steps we draw two simple observations.
First, the conventional validator is always invoked on gs@poral document, no matter which constraints
are being implemented in the representational schema.n8gt@amporal constraints which are “hard” to
implement are done so using DOM. Thus, since the convernti@liaator is empirically much faster than
DOM, and is being invoked anyway, we argue that all condsaihen possible, should be implemented
within the representational schema. This will provide mbekter performance in terms of time required,
and as we have shown in the previous sections, will not gréatlease the complexity of the representa-
tional schema. Furthermorec8EMAMAPPERWIll not require extensive modifications in order to create
a schema that can enforce these constraints, since théftraasion is trivial in most cases and relatively
simple in the rest.

For these reasons, we conclude that the functionality afessced cardinality and datatype constraints
be placed within the representational schema and not wiitleitemporal constraint validator.

18.7 Evaluation of Representation Classes

This section presents a detailed empirical analysis of egmtesentation class in a variety of scenarios. The
goal is to determine how each class performs with respeciuorhetrics: size of representation, time to

construct the representation, time to validate the reptaen, and time to reconstruct an arbitrary slice.

We first describe the motivation for this evaluation and enéshe methodology used in our experiments.

We then analyze the results of the experiments and we canglitth general observations and recommen-
dations.

18.7.1 Motivation

When choosing a representation for a temporal XML documeetconsider several characteristics in the
decision making process. Consider the following examples.
e A user wants to transmit a document across the country omtemet. Here, theize of the repre-
sentationis the most important feature.
e A user makes frequent updates to a file, resulting in frequezdtions of the representation. Here,
thetime taken to create the representatiwill be the most important feature.
e A user wants to frequently select different versions of audioent, an operation called temporal
slicing. Here, theime taken to extract the original documeigghe most important feature.
e Auser makes frequent updates to a file and must always validatdocument to ensure correctness.
Here, both théime taken to creatandvalidate the representatioare the most important features.

Itis not clear whether any single representation class eahrheet the needs of every user in every scenario.
Our aim is to quantify the features of each class so thatnméor decisions can be made by the user, taking
into account their particular needs.

181

18.7.2 Methodology

Given the above motivation, we will address the followingesions about each representation class. Is
the size of the representation linear in the number and diztices, or does it provide some level of
compression? Does the overhead of the representation iesularge amount of time required to squash
and unsquash? Can we validate the representation quictlygérto allow practical use?

To answer these questions, we first extended-®chema tools to support each representation'type
and then ran a set of experiments to test and evaluate eadseefation. In these experiments, we were
interested in how the representation would respond to akivetependent variables: the amount of change
from slice to slice, the types of changes within each slibe, iumber of slices in the system, and the
size of each individual slice. To quantify the changes, wasuesd several dependent variables: the size
of the resulting representation, the time taken to createréipresentation from the original documents,
the time taken to extract the original documents from theesgntation, and the time taken to validate
the representation against the original schema(s) andaingonstraints. Tables 6 and 7 summarize the
experiment.

Independent Variables

Name Expressed as Values
Slice Size Number of elements 10, 20, 40, 80, ..., 2000
Number of Slices | Number of files 10, 20, 40, 80, ..., 2000

Amount of Change| Percentage of changed elements 0,2,4,8,16,32,64
Type of Change Percent value change vs. new elemer(d, 100), (25, 75), (50, 50), (75, 25), (0, 100)

Table 6: The independent variables considered in the erpets.

Dependent Variables
Name Measured by
Representation size Kilobytes on disk of the representatign
Time taken to squash files | Seconds of execution
Time taken to unsquash filgs Seconds of execution
Time taken to validate files | Seconds of execution

Table 7: The dependent variables measured in the expesment

We have created todfsto help build temporal cases dynamically based on the fopemxent param-
eters and to automate the run process and output the reBoexperiments were executed on a machine
running Ubuntu 8.10 with a 2.83 GHz Intel Core2 quad-coreessor and 8 GB main memory. The testing
scripts were created in Perl and the data was analyzed imMatl

Note that all of the following experiments were run with tieenporal constraint functionality placed
at the tool level as opposed to the representational schevehds described in Section 18.6. Also note
that schema-versioning is not considered in the followirgneples due to the complexity it adds to the
creation of large, random scenarios. However, we beliegé ttiese results will provide a good initial
understanding of the behavior of each representation slass each schema change results in a new wall,
with the representation structure remaining the same mvéhch wall. Thus, a schema change will have the
same effect across all representation types.

Due to time and tool constraints, we could not evaluate tfereace-based representation. However, it is believetttim
representation would perform similarly to the item-basggtesentation under typical circumstances.
125ee Appendix B for details.

182

We note here that the execution times presented in the folgpgections contain both 1/0 and execution
times—the entire execution time of the process. Since ngalias not disabled during the experiments, itis
possible that some experiments unfairly report smallecebien times; this might happen if an experiment
involved reading a file that was already in the O/S cache.

18.7.3 Initial Sensitivity to Parameters

Initial experiments were run to test the sensitivity of eegresentation type to the variables that controlled
the amount and type of change in each slice. In particulapevirmed runs with the amount of change set
to 1%, 2%, 4%, ..., 64% and with the type of change set to (0%vezaion, 100% new item), (25%, 75%),
(50%, 50%), (75%, 25%), and (100%, 0%). We also varied the gizach slice (values of 10 and 100)
and number of slices (values of 10 and 200). For each comdimat parameters, we ran 30 repetitions for
each representation class and took the minimum resultg(sirecare interested in the performance of the
tools inisolation, but the experiments were conducted ame-shared machine with background processes
running). Interestingly, the results showed that all repreation classes were relatively insensitive to the
change-related parameters. This is likely because for egrkRsentation class, the amount of computation
overhead for each additional change per file is small wherpeoed to the execution of the entire tool (e.g.,
file /0 for each slice, DOM parsing of each file, etc). Appen@i provides the detailed results of these
executions.

As a consequence of these results, for each of our expesndestribed in the following sections, we
held the amount of change constant at 32% and the type of ef@mgtant at (75%, 25%), which represent
intermediate values for each.

18.7.4 SQUASH Results

We first consider the amount of time required for each repitatien class to squash a temporal document.
Figure 64 displays the results with all classes on the sanid\ith a band stretching across the document
size parameter for each class) while Figure 65(a)-65(aysteach representation class individuallly. We
immediately see that the item-based scheme is particusmmgitive to the parameters and even modest
increases result in a large increase in time. We now brieflgstigate why this happens.

Figures 66(a) and 66(b) show the execution traces of theaSH algorithm for the item-based and edit-
based representation classes, respectively. Note thathease, only the steps that required a significant
portion of the execution time are shown. Table 8 summarizesattual exectution time for each step in
both classes for three simple scenarios. We immediatelths¢éor the item-based representation, the bulk
of the execution time is being spent on task 1.2.2 (physa&@rporal conversion), specifically in the push
down operation. The push down operation recursively ctidfito “push down” the items from the root
node down to the<part> elements; this algorithm involves merging similar versiaf an item into a
single version. In these executions, the push down opereticalled a total of 342, 642, and 1282 times for
the three input sets, respectively. The edit-based schesgribt have the concept of items, and thus avoids
the penalty of the push down operation. Further, thg -e call that the edit-based scheme employs
between each slice is relatively inexpensive: on the orfl€ @1 seconds to compare two files with 20
elements each, 0.03 seconds to compare files with 1000 elereach, and 0.2 seconds to compare files
with 10,000 elements each, and 1.65 seconds to compare file4@0,000 elements each.

In order to further investigate the time required for theeslbased and edit-based schemes under heavier
conditions we increased the magnitude of the parameterthangsults are shown in Figures 65(d)—65(f).
We see again that the edit-based scheme has better perfwhien compared to the slice-based scheme
under the same parameters. Figure 65(f) shows the parasettiérat first starts to stress the performance

183

200

Squash Execution Time

Squash Execution Time (Zoom)

150

Time (seconds)
=
o

50

20 40 60

Number of Slices

(SR R ©) I > I |

Time (seconds)

N

40
Number of Slices

60 80 100

(a) Full view. The item-based class requires ordergbdfZoom view of the slice-based and edit-based classes.
magnitude more time to squash than the slice-based and
edit-based classes.

Figure 64: Time required to squash a temporal document. Aree band colors correspond to the different
representation types. Each band stretches a¢fo3$$, 20,50} elements per slice.

Slice-based Edit-based Iltem-based
4 T 4 T 200 T
-5 -5 -5
_all-=10 1 =10 aenll=10 |
>3 >3 - 150
220 38 20 S 420 — |
] || 5 5
20 —e-50 4 2, -e-50 % £ 100 —-e-50
2 '/ 2 n
~ / [I— ~ //V / /" -~
E '/// | E /./ / é / I
= 1 = F 50
L M /
0 0 0]
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Number of Slices Number of Slices Number of Slices
(a) Slice-based (b) Edit-based (c) ltem-based
Slice-based Edit-based Edit-based
30 10 50 T
10 10
. =40 _. 8 __40|-=-100 A~
€ 20 —4-80 -~ 3 10 € —4-500 A
g 160 g ® =40 g 3017|1000
2} & 2} | =
© / o 4 =80 o 20 v
£ 10 £ -+~ 160 £ /
[/_‘ [) [10 //
50 150 0 50 100 150 0

Number of Slices

(d) Slice-based

Number of Slices

(e) Edit-based

500 1000 1500

MHE

Number of Slices

dit-based (larger)

Figure 65: Time required to squash a temporal document., Htegdines correspond to different document
sizes, shown in number of elements.

of the edit-based scheme (i.e., the parameters that firsedhe execution time to show larger than linear
growth); these parameters are roughly 10x the parametarstiessed the slice-based scheme.
Figures 67(a)-67(c) show the size on disk of the resultingpteal document. As expected, the slice-

184

: t: 1.1 Parse Input i
1.2 Squash_ltem
= 1.2.1 Loop Through Slices
! — 1.2.2 Physical to Temporal !

t: 1.1 Parse Input
1.2 Squash_Edit
1.2.1 Loop Through Slices
E 1.2.2.1 Mark Items
1.2.2.2 Push Down
1.2.2.3 Coalesce
— 1.2.3 Temporal to Physical

(a) Item-based (b) Edit-based

Figure 66: The main methods (in terms of time) entered dutiegexecution of SUASH.

Step # Item-based Edit-based Slice-based
(10, 10) | (20, 20) | (20,20) | (10,10)| (10,20)| (20, 20)| (10,10)((10,20)| (20, 20)
1 2.15 3.99 9.59 0.85 0.99 1.09 0.91 1.13 1.70

11 0.02 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01
1.2 1.63 3.47 9.04 0.33 0.46 0.56 0.39 0.59 1.15
1.2.1 | 0.06 0.10 0.14 0.28 0.43 0.51 0.07 0.10 1.14

1.2.2 1.43 3.21 8.46 - - - 0.19 0.24 0.14
1.2.2.1| 0.57 1.06 2.38 - - - 0.01 0.02 0.04
1.2.2.2| 0.80 2.08 5.67 - - - 0.03 0.05 0.05
1.2.2.3| 0.04 0.05 0.09 - - - 0.14 0.17 0.19
1.2.3 | 0.10 0.11 0.39 - - - 0.08 0.18 0.61

Table 8: The execution times (in seconds) MUAsH for each task, broken up by representation type and
shown for three different input sets. In these runs, the anofichange was set t32 and the type of
change was set 1@5%, 25%).

Slice-based Edit-based Item-based
& 500 I & 50 I . & 80 T)
g -5 o1 2 -5 / g ||+ |
g 400 -=-10 g 40 —=-10 § 60| 10 —
3 20 i 20 / i 20 //
5 3001 e-50 5 30N -e-50 / g -e-50
4 /) L §40
& 200 820 5 |
@ |4 2 /1/ | 4] |]]
S 100 5 10| T |_—1 5 20— ——
8 | ——] [Aw‘&%/ o A e I R
o A e I a4 —]
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Number of Slices Number of Slices Number of Slices
(a) Slice-based (b) Edit-based (c) Item-based

Figure 67: Size of the resulting temporal document. Notedltfierent scales on thg-axis.

based scheme grows linearly with the number of slices ansitleeof the representation; this is because this
scheme keeps the entire unmodified slice in the represemtatiowever, the edit- and item-based schemes
are able to provide a large amount of compression and kedpelsize relatively low.

185

Slice-based Edit-based Iltem-based
10

800 T 10 T
10 10 /"
- 8 600 =20 - 8 -=-20
B -v-10 e —-40 e —-40
S 6 S o 6
I} —=-20 o —-80 o -o-80
g 8 400 g
~ —A—40 ~ ~ /A
o 4 o o 4
£ -o-80 S E ¢ //
= T = 200 oA |
4—-—-"’I r—
(,/' n/_’—l; \ |
0 20 40 60 80 20 40 60 80 0 20 40 60 80
Number of Slices Number of Slices Number of Slices
(a) Slice-based (b) Edit-based (c) Item-based

Figure 68: Time required to validate the temporal docummBiote the different scales on the time axis; the
edit-based scheme takes orders of magnitude longer.

Slice-based ltem-based
15 ; 15 ;)
20 ~10 /
— -=-80 — —=—40 /
1) 1)
210 —4—-160 S 101470
S S A
3 —e—400] -e-100 / /
£ s £ 5
- / | — E e "
| — — |
4/”“ ‘:ﬁ/' v
M Y
0 100 200 300 400 0 20 40 60 80 100
Number of Slices Number of Slices

(a) Slice-based (b) Item-based

Figure 69: Time required to validate the temporal documalute the different scales on theaxis. The
slice-based scheme can handle roughly four times the nuafiséices within the same time period.

18.7.5 7XMLL INT Results

Here we considered the validation time required for a siteyleporal cardinality constraint. Figures 68(a)—
68(c) show the amount of time required to validate scenawitis modest number of slices and size for
each slice. We see that while the slice-based and item-lsdemmes can handle these parameter ranges
with relative ease, the edit-based scheme takes orders gifitnde more time. This is due to the nature
of the current implementation of the edit-based schemeteimporal document is first unsquashed into a
series of slices; then these slices are squashed into afbésed representation with the timestamp at the
root; finally, the item-based representation is validatethe normal way. Although this implementation
benefits from the reuse of several existing software moduridss logically correct, it suffers from both high
overhead and the bad performance of the item-based sqgasbidule. These factors add up to significant

values, with the majority of the time coming again from thelpdown operation of the item-based scheme
(70% of the total execution time).

Figure 69 shows the slice-based and item-based schemeshaadeer conditions to illustrate the mag-
nitude of the parameters that first cause a noticable iner@asxecution time. We see that the slice-based
scheme can handle roughly four times the number of sliceseaisem-based scheme within the same time
period. This is because the slice-based scheme requiragpimpessing before validation can begin, while
the item-based scheme must undergo a number of operatitwesinaghe correct form for validation.

186

Slice-based Edit-based ltem-based

-v10 10 /I
|| =40 -=-40

N

o

£

o]

o
L 4

=
[$2)

w

[o2]
o

g —- g g —A
= 80 g g 70
3 Loll*-160 3 5 3 20 -e-100
2 2 2 N
P |4 © / -v10 s /
£ s — [E] =40 £ =
v ,*——"—l -4 80 / //II
1é§7‘ g -o-160 s | o
0 50 100 150 0 50 100 150 0 20 40 60 80 100
Number of Slices Number of Slices Number of Slices
(a) Slice-based (b) Edit-based (c) Item-based

Figure 70: The amount of time required to extract all slicesta temporal document. Note the different
andy axes.

18.7.6 UNSQUASH Results

Figure 70 shows the amount of time required to extract aéslifrom the temporal document. We see that,
like the SQUASH results, the edit-based scheme has the best performanite tehitem-based scheme re-
quires significantly more time than the other two schemesex&tution analysis similar to that foRBAsH
was performed and the same conclusions were reached. loutertduring the unsquash operation, the
item-based scheme must perform the opposite of merging iggm pushing down timestamps: it must push
up timestamps and unmerge items. These operations resuluge number of recursive calls and loops
for every item. In contrast, the edit-based scheme only s\¢edun the patch command for each edit
script. The slice-based scheme must simply loop thoughreth@dral document and extract each slice with
a copy-and-paste-like method; no preprocessing is needeen still, it does not perform as well as the
edit-based scheme.

18.7.7 Representation Conclusions and Recommendations

The above results show that, as anticipated, no repregsnsmtheme provides the best performance under
all conditions. In particular, while the edit-based scheshews the fastest time to squash and unsquash as
well as the smallest representation size, it suffers freméndous overhead during validafidnOn the
other hand, the slice-based scheme can be squashed, uresjuasd validated quickly but the resulting
representation is very large. Further, the item-basednsetresults in a smaller representation and can be
validated quickly, but suffers from a large amount of timeguash and unsquash. Table 9 summarizes the
findings.

Our current recommendation would be to use the edit-badeshse for all activities that do not require
temporal validation (although under this assumption, arentional validator may still make sense to vali-
date the last instance and the one representation in itemtiand to use the slice-based scheme in all cases
that do require temporal validation. However, if improvertsecan be made to the item-based squashing and
unsquashing methodologies (i.e., the “push up” and “pustnd@perations) in terms of execution time,
then the item-based scheme would become most attractivesicemarios. In this case, additional analysis
would be required to study the effects of using an item-baségme in its original form versus a hybrid
between the item-based and the edit-based. For exampleooitkimagine storing the representation on

131t should be noted that although the current implementatfoedit-based validation is not very efficient, it would béfidult
to find any implementation that would be. The problem liehminability to enforce complex temporal constraints bynexang
the edit scripts alone. This implies that the first step duwalidation would always have to be reconstructing theioaigslices.
Only then could the validation process—whatever that may-begin.

187

Representatior] SQUASH Time SQUASH Size UNSQUASH Time [7XMLL INT Time

Rank Ratio Rank Ratio Rank Ratio Rank Ratio
Slice-based 2 1.1 3 3.9 2 2.6 1 -
Edit-based 1 - 1 - 1 - 3 41.1
ltem-based 3 15.7 2 1.5 3 13.0 2 1.6

Table 9: The overall results of the analysis. TR@&nkcolumns indicate the performance of this represen-
tation when compared to the other two (e.g., a rank ofeans it was the second best). TRatio column
indicates how much worse this representation performedeaoea to the top ranking representation, mea-
sured as the average ratio between the two representations.

disk using the edit-based method, while converting intatéma-based scheme for all in-memory operations
(e.g, adding or extracting slices, enforcing temporal trairgs). Further, one might consider using a mix of
representation types for different parts of the timeline: &le, a user could use the slice-based scheme
for the five most recent slices, the item-based scheme forekie300 slices, and the edit-based scheme for
all other slices. This might allow efficient extraction oteat files, efficient validation for all files in the
recent past, and efficient storage for files not likely to bergpd often. The time and space tradeoffs for
these options are left for future work.

188

Listing 137: Representational schema.

<?xm version ="1.0" encoding ="UTF-8"?>

<xsd: schema xmlns :xsd ="http://www.w3.0rg/2001/XMLSchema"
targetNamespace _="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem a
xmins ="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem a"
xmlins :rep0 ="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem a0"
xmins :repl ="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem al"
xmlins :tv_="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema ">

<xsd:i nport namespace ="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema "
schemalocation ="TVSchema.xsd" />

<xsd: i nport namespace ="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem ao"
schemalocation ="repO.xsd" />
<xsd: i nport namespace ="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem al"

schemalocation ="repl.xsd" />

<xsd: el enent name="sv_root">
<xsd: conpl exType>
<xsd : sequence>
<xsd: el enent name="schemaltem">
<xsd: conpl exType>
<xsd : sequence>

<xsd: el enent maxOccurs ="1" minOccurs ="1" name ="schemaVersion0">
<xsd: conpl exType>
<xsd : sequence>
<xsd: el ement maxOccurs ="1" minOccurs ="1" ref ="tvitimestamp" />
<xsd: el ement maxOccurs ="1" minOccurs ="1" ref ="repO:tv_root" />
</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >

<xsd: el enent maxOccurs ="1" minOccurs ="1" name ="schemaVersionl">
<xsd: conpl exType>
<xsd : sequence>
<xsd: el ement maxOccurs ="1" minOccurs ="1" ref ="tvitimestamp" />
<xsd: el ement maxOccurs ="1" minOccurs ="1" ref ="repl:tv_root" />
</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >

</xsd :sequence>
</xsd : conpl exType>
</xsd : el enent >
</xsd :sequence>
<xsd:attribute name="temporalSchema" type ="xsd:string">
</xsd :conpl exType>
</xsd : el enent >

</xsd :schema>

189

© 0 N O B W NP

el
W N P O

14

Listing 138: Temporal document.

<?xm version ="1.0" encoding ="UTF-8"?>

<sv_root xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem a"
xmins :rep0 ="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem a0"
xmlins :repl ="http://www.cs.arizona.edu/tau/tauXSchema/RepSchem al"
xmlins :tv_="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema ">

<schenal t en»
<schenmaVer si on0>
<tv :timestanp begin ="2002-01-01" end _ ="2005-01-01" />
<rep0 :tv_root>
<rep0 : at hl et e>

</rep0 :athlete>
</rep0 :tv_root>
</ schemaVer si on0>
<schenmaVer si on1>
<tv :ti mestanp begin ="2002-01-01" end ="2005-01-01" />
<repl :tv_root>
<repl :athl ete>

</repl :athlete>
</repl :tv_root>
</ schemaVer si on1>
</ schemal t en»

</ sv_r oot >

Listing 145: Squashed document with multiple changes

89 ...

90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105,

106,

107

<zi p_Repltenr
<zi p code ="85721" begin ="1" end ="1"> Tucson , AZ </zip>
</ zi p_Ver si on>
<zi p_Versi on begin ="2" end ="2">
<zi p code ="85001" begin ="2" end ="2"> Tucson , AZ </zip>
</ zi p_Ver si on>
</ zi p_Repltenr

<zi p_Repl tenr

<zi p code ="85001" begin ="1" end ="1"> Phoenix , AZ </zip>
</ zi p_Ver si on>
<zi p_Version begin ="2" end ="2">
<zi p code ="85001" begin ="2" end ="2"> Phoenix , AZ </zip>
</ zi p_Ver si on>
</ zi p_Repltenr

190

© 0 N O O W N -

PR e
N P O

19 Example Schema and Instance Documents

19.1 Conventional Schemas

Listing 160: Conventional schema on 1 January 2002.

<?xm version ="1.0" encoding ="UTF-8"?>
<xsd: schema
xmlins :xsd ="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault ="qualified"
attributeFormDefault ="unqualified">

<xsd: el enent name="winOlympic">
<xsd : conpl exType mixed ="true">
<xsd : sequence>
<xsd: el ement ref ="country" minOccurs ="0" maxOccurs ="unbounded"/>
</xsd :sequence>
</xsd : conpl exType>
</xsd : el enent >
<xsd: el ement name="country">
<xsd : conpl exType mixed ="false">
<xsd : sequence>
<xsd: el enent ref ="athleteTeam"/>
</xsd :sequence>
<xsd:attribute name="countryName" type
</xsd : conpl exType>
</xsd : el enent >
<xsd: el enent name="athleteTeam">
<xsd : conpl exType mixed ="true">
<xsd :sequence>
<xsd: el ement name="teamName" minOccurs ="1" maxOccurs ="1" type ="xsd:string"/>

="xsd:string" use ="required"/>

<xsd: el ement ref ="athlete" maxOccurs ="unbounded"/>
</xsd :sequence>
<xsd:attribute name="numAthletes" type ="xsd:positivelnteger" use ="optional'/>

</xsd : conpl exType>
</xsd : el enent >
<xsd: el enent name="athlete">
<xsd : conpl exType mixed ="true">
<xsd : sequence>
<xsd: el ement name="athName" type ="xsd:string"/>
<xsd: el ement name="phone" type ="phoneNumType" minOccurs ="0" maxOccurs ="unbounded"/>
</xsd :sequence>
</xsd : conpl exType>
</xsd : el enent >
<xsd : si npl eType name="phoneNumType">
<xsd:restriction base="xsd:string">
<xsd: Il ength value ="12"/>
<xsd:pattern value ="\d{3}-\d{3}-\d{4}"/>
</xsd :restriction>
</xsd :sinpl eType>
</xsd :schema>

Listing 161: Conventional schema on 1 January 2005.

<?xm version ="1.0" encoding ="UTF-8"?>
<xsd: schema
xmlins :xsd ="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault ="qualified"
attributeFormDefault ="unqualified">

<xsd: el enent name="winOlympic">
<xsd : conpl exType mixed ="true">
<xsd : sequence>
<l--numEvents added on Wednesday-->
<xsd: el ement name="numEvents" type ="xsd:nonNegativelnteger'/>

<xsd: el ement ref ="country" minOccurs ="0" maxOccurs ="unbounded"/>

191

© 0 N OO O Bh W NP

NNNNNERRRERR R P B B
2 W NP O ©®NO®O ™ ®WNE O

</xsd :sequence>
</xsd : conpl exType>
</xsd : el enent >
<xsd: el ement name="country">
<xsd : conpl exType mixed ="false">
<xsd : sequence>
<xsd: el enent ref ="athleteTeam"/>
</xsd :sequence>
<xsd:attribute name="countryName" type ="xsd:string" use ___ ="required"/>
<xsd:attribute name="countryLead" type ="xsd:string" use __ ="required"/>
</xsd : conpl exType>
</xsd : el enent >
<xsd: el enent name="athleteTeam">
<xsd : conpl exType mixed ="true">
<xsd : sequence>
<xsd: el ement name="teamName" minOccurs ="1" maxOccurs ="1" type ="xsd:string"/>

<xsd: el ement ref ="athlete" maxOccurs ="unbounded"/>
</xsd :sequence>
<xsd:attribute name="numAthletes" type ="xsd:positivelnteger" use ="optional'/>

</xsd : conpl exType>
</xsd : el enent >
<xsd: el ement name="athlete">
<xsd : conpl exType mixed ="true">
<xsd : sequence>
<xsd: el ement name="athName" type ="xsd:string"/>
<xsd: el ement name="phone" type ="phoneNumType" minOccurs ="0" maxOccurs ="unbounded"/>
</xsd :sequence>
</xsd : conpl exType>
</xsd : el enent >
<xsd: si npl eType name="phoneNumType">
<xsd:restriction base="xsd:string">
<xsd:length value ="12"/>
<xsd: pattern value ="\d{3}-\d{3}-\d{4}"/>
</xsd :restriction>
</xsd :sinpl eType>
</xsd :schema>

19.2 Annotations

Listing 162: Annotation document on 1 January 2002.

<?xm version ="1.0" encoding ="UTF-8"?>
<annot ati onSet xmins ="http://www.cs.arizona.edu/tau/tauXSchema/PXSchema ">
<physi cal >
<stanp target ="/winOlympic">
<st anpKi nd timeDimension _="transactionTime" stampBounds ="extent"/>
</ st anp>
<stanp target ="/winOlympic/country">
<st anpKi nd timeDimension ="transactionTime" stampBounds ="extent"/>
</ st anp>
<stanp target ="/winOlympic/country/athleteTeam">
<st anpKi nd timeDimension ="transactionTime" stampBounds ="extent"/>
</ st anp>
<stanp target ="/winOlympic/country/athleteTeam/athlete">
<st anpKi nd timeDimension _="transactionTime" stampBounds ="extent"/>
</ st anp>
</ physi cal >
<l ogi cal >
<i t em target ="/winOlympic">
<transactionTi me content ="varying" existence ="constant'/>

192

© 0 N O 00 B W N -

W oW oW WwWWWWNNNRNNNRNRNRNNERERRRB R B B B B
N O 0 R WN R O ©®NOO U ONRP,O®©®NOOS®WNERO

<item dentifier name="olympicld1" timeDimension ="transactionTime">

<field path ="./text"/>
</item dentifier>
</itemr
<i t em target ="/winOlympic/country">
<transactionTi me content ="varying" existence ="varyingWithGaps"/>
<item dentifier name="countryldl" timeDimension ="transactionTime">

<field path ="./@countryName"/>

</item dentifier>

<litenp

<i tem target ="/winOlympic/country/athleteTeam">

<transactionTi me content ="varying" existence ="varyingWithGaps"/>
<item dentifier name="teamName" timeDimension ="transactionTime">

<field path ="./teamName/text"/>
</item dentifier>
<litemp
<i tem target ="/winOlympic/country/athleteTeam/athlete">
<transactionTi me content ="varying" existence ="varyingWithGaps"/>
<item dentifier name="atheleteld1l" timeDimension ="transactionTime">
<fi el d path ="./athName/text"/>
</item dentifier>
<litemp
</l ogi cal >

</ annot at i onSet >

Listing 163: Annotation document on 1 January 2005.

<?xm version ="1.0" encoding ="UTF-8"?>
<annot at i onSet xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/PXSchema ">
<physi cal >
<stanp target ="/winOlympic">
<st anpKi nd timeDimension ="transactionTime" stampBounds ="extent"/>
</ st anp>
<stanp target ="/winOlympic/country">
<st anpKi nd timeDimension _="transactionTime" stampBounds ="extent"/>
</ st anp>
<stanp target ="/winOlympic/country/athleteTeam">
<st anpKi nd timeDimension ="transactionTime" stampBounds ="extent"/>
</ st anp>
<stanp target ="/winOlympic/country/athleteTeam/athlete">
<st anpKi nd timeDimension ="transactionTime" stampBounds ="extent"/>
</ st anp>
</ physi cal >
<l ogi cal >
<i t em target ="/winOlympic">
<transactionTi me content ="varying" existence ="constant'/>
<item dentifier name="olympicld1" timeDimension ="transactionTime">
<field path ="./text"/>
</item dentifier>
<litenp
<i t em target ="/winOlympic/country">
<transactionTi me content ="varying" existence ="varyingWithGaps"/>
<item dentifier name="countryldl" timeDimension ="transactionTime">

<field path ="./@countryName"/>
<field path ="./@countryLead"/>
</item dentifier>
</itenp

193

© 0 N O b~ W N P

NN NRNRNNNNRERRRRR B B B
N o 08 WON P O ©®mNOoOOSWNERE O

28

© 0 ~N O U1 A W N P

P
[N

<i tem target ="/winOlympic/country/athleteTeam">
<transactionTi me content ="varying" existence ="varyingWithGaps"/>
<item dentifier name="teamName" timeDimension ="transactionTime">
<field path ="/teamName/text'/>
</item dentifier>
</itenp

<i tem target ="/winOlympic/country/athleteTeam/athlete">
<transactionTi me content ="varying" existence ="varyingWithGaps"/>
<item dentifier name="atheleteld1l" timeDimension ="transactionTime">
<field path ="/athName/text"/>
</item dentifier>
</itenp
</l ogi cal >

</ annot at i onSet >

19.3 Conventional Documents

Listing 164: Conventional document on 1 January 2002.

<?xm version ="1.0" encoding ="UTF-8"?>
<wi nd ynpi ¢ xmlns :xsi _="http://www.w3.0rg/2001/XMLSchema-instance"
xsi_:noNamespaceSchemalocation ="schemal.xsd">
There are
events in the Olympics .
<country countryName ="Norway">
<at hl et eTeam numAthletes ="95">
<t eamNanme>Norway Army </t eanNane>
Athletes will take part in various events . The athletes participating are listed

below

<at hl et e>

<at hNanme>
Kjetil Andre Aamodt

</ at hNanme>

</ at hl et e>

<at hl et e>
<at hNanme>

Trine Bakke -Rognmo

</ at hNanme>
His phone numbers are :
<phone>123-402-0340</ phone>
<phone>123-402-0000</ phone>

</ at hl et e>

<at hl et e>
<at hName>

Lasse Kijus

</ at hNanme>

</ at hl et e>

</ at hl et eTeanr
</ country>
</wi nQA ynpi c>

Listing 165: Conventional document on 1 January 2003.

<?xm version ="1.0" encoding ="UTF-8"?>
<wi nd ynpi ¢ xmlns :xsi __="http://www.w3.0rg/2001/XMLSchema-instance"
xsi_:noNamespaceSchemalocation ="winOlympic.verl.xsd">
There are
events in the Olympics .
<country countryName ="Norway">
<at hl et eTeam numAthletes ="95">
<t eanrNanme>Norway Army </t eanNane>
Athletes will take part in various events . The athletes participating are listed

below

<at hl et e>
<at hNanme>

194

© 0 ~N O U1 A W NP

WWWWRNNNNRNNNNRNDNERRRR R B B B B
DN P O ©®~N0o s WNRLO®© ®NO®OAMWNRL O

34

Kjetil Andre Aamodt
</ at hNanme>
</ at hl et e>
<at hl et e>
<at hNanme>
Andre Agassi
</ at hNanme>
</ at hl et e>
<at hl et e>
<at hName>
Trine Bakke -Rognmo
</ at hNanme>
His phone numbers are :
<phone>123-402-0340</ phone>
<phone>123-402-0000</ phone>
</ athl et e>
<at hl et e>
<at hNanme>
Lasse Kjus
</ at hNanme>
</ at hl et e>
</ at hl et eTeanr
</ country>
</wi nQA ynpi c>

Listing 166: Conventional document on 1 January 2005.

<?xm version ="1.0" encoding ="UTF-8"?>
<wi nA ynpi ¢ xmins :xsi__="http://www.w3.0rg/2001/XMLSchema-instance"
xsi_:noNamespaceSchemalocation ="schema2.xsd">
There are

<nunmEvent s>11</ nunEvent s>
events in the Olympics .
<country countryName ="Norway" countryLead ="Andre Agassi">
<at hl et eTeam numAthletes ="95">
<t eanNanme>Norway Army </ t eanNanme>
Athletes will take part in various events . The athletes participating are listed

below

<at hl et e>
<at hNanme>
Kjetil Andre Aamodt
</ at hNanme>
</ at hl et e>
<at hl et e>
<at hName>
Andre Agassi
</ at hNanme>
</ at hl et e>
<at hl et e>
<at hName>
Trine Bakke -Rognmo
</ at hNanme>
His phone numbers are :
<phone>123-402-0340</ phone>
<phone>123-402-0000</ phone>
</ at hl et e>
<at hl et e>
<at hNanme>
Lasse Kjus
</ at hNanme>
</ at hl et e>
</ at hl et eTeanr
</ country>
</wi nQA ynpi c>

195

© 0 N OO OB W NP

W W wWwWNNNNNNNRNNDNDERERRRR R B B B E
W N P O © N U B WNEF O ®© 0N U DM WNE O

34

© 0 N O 00 B W N -

11
12
13
14
15
16
17

Listing 167: Conventional document on 1 January 2006.

<?xm version ="1.0" encoding ="UTF-8"?>
<wi nd ynpi ¢ xmlns :xsi__="http://www.w3.0rg/2001/XMLSchema-instance"
xsi_:noNamespaceSchemalocation ="schema2.xsd">
There are
<nunEvent s>11</ nunEvent s>
events in the Olympics .
<country countryName ="Norway" countryLead ="Andre Agassi">
<at hl et eTeam numAthletes ="95">
<t eanNanme>Norway Army </ t eanName>
Athletes will take part in various events . The athletes participating

are listed

below

<at hl et e>
<at hNanme>
Kjetil Andre Aamodt
</ at hNanme>
</ athl et e>
<at hl et e>
<at hName>
Andre Agassi
</ at hNanme>
</ at hl et e>
<at hl et e>
<at hNanme>
Trine Bakke -Rognmo
</ at hNanme>
His phone numbers are :
<phone>123-402-0340</ phone>
<phone>123-402-0000</ phone>
</ at hl et e>
<at hl et e>
<at hName>
Lasse Kijus
</ at hNanme>
</ at hl et e>
</ at hl et eTean®
</ country>
</ wi nd ynpi c>

19.4 Temporal Schema

Listing 168: Temporal Schema.

<?xm version ="1.0" encoding ="UTF-8"?>
<t enpor al Schema xmlns ="http://www.cs.arizona.edu/tau/tauXSchema/TS">

<conventi onal Schena>
<sl i ceSequence>
<slice location ="schemal.xsd" begin ="2002-01-01" />
<slice location ="schema2.xsd" begin ="2005-01-01" />
</ sl i ceSequence>
</ conventi onal Schena>

<annot at i onSet >
<sl i ceSequence>
<slice location ="annotationsl.xml" begin ="2002-01-01" />
<slice location ="annotations2.xml" begin ="2005-01-01" />
</ sl i ceSequence>
</ annot at i onSet >

</ t enpor al Schema>

196

© 0 ~N O U1 A W N P

o 000 o U g O ug ool gA SRR DND DD DD ®EWWWWWWWWRNNNNNNNNRNDNERERRRRRRPR PR
B WN P OO ®N®abd W®WRNPRP O O®NO Ol ®O®NP OO ®NOAOBRKO®NERPROO®NODWAOBRSWNEROO®NOAODMWNLEPRPO

19.5 Representational Schemas

Listing 169: Representational schema for 2002-01-01 tGAMBO1.

<?xm version ="1.0" encoding ="UTF-8"?>
<xsd: schene attributeFormDefault ="unqualified"
elementFormDefault ="unqualified"

targetNamespace ="http://www.cs.arizona.edu/tau/RepSchema0"
xmlins ="http://www.cs.arizona.edu/tau/RepSchema0"”

xmins :tv_="http://www.cs.arizona.edu/tau/TVSchema"

xmlins :xsd ="http://www.w3.0rg/2001/XMLSchema"

xmins :xsi _="http://www.w3.0rg/2001/XMLSchema-instance">

<xsd: i nport namespace ="http://www.cs.arizona.edu/tau/TVSchema" schemaloca tion

<xsd : si npl eType name="phoneNumType">
<xsd:restriction base="xsd:string">
<xsd: |l ength value ="12" />
<xsd:pattern value ="\d{3}-\d{3}-\d{4}" />
</xsd :restriction>
</xsd :sinpl eType>
<xsd: el enent name="tv_root">
<xsd : conpl exType>
<xsd : sequence>
<xsd: el ement ref ="winOlympic_Repltem" />
</xsd :sequence>
<xsd:attribute name="begin" type ="xsd:date" />
<xsd:attribute name="end" type ="xsd:date" />
</xsd : conpl exType>
</xsd : el enent >
<xsd: el ement name="athleteTeam_Repltem">
<xsd: conpl exType>
<xsd : sequence>
<xsd: el enent maxOccurs ="unbounded" minOccurs ="1"
name="athleteTeam_Version">
<xsd : conpl exType>
<xsd : sequence>
<xsd: el ement ref ="tvitimestamp_TransExtent' />
<xsd: el enent name="athleteTeam">
<xsd : conpl exType mixed ="true">
<xsd :sequence>
<xsd: el enent maxOccurs ="1"
minOccurs ="1" name ="teamName" type ="xsd:string" />
<xsd: el ement
maxOccurs ="unbounded" ref _ ="athlete_Repltem" />
</xsd :sequence>
<xsd:attribute name="numAthletes"
type ="xsd:positivelnteger" use __ ="optional" />
</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
<xsd:attribute name="isltem" type ="xsd:string" />
<xsd:attribute name="originalElement" type ="xsd:string" />
</xsd : conpl exType>
</xsd : el enent >
<xsd: el ement name="country_Repltem">
<xsd : conpl exType>
<xsd :sequence>
<xsd: el enent maxOccurs ="unbounded"” minOccurs ="1"
name="country_Version">
<xsd : conpl exType>
<xsd : sequence>
<xsd: el ement ref ="tvitimestamp_TransExtent' />
<xsd: el ement name="country">
<xsd : conpl exType mixed ="false">
<xsd : sequence>
<xsd: el enent

197

="TVSchema.xsd" />

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100,

101

102

103

104

105

106,

107

108

109

110

111

112

113

114

115

116,

117

118

119

120

121

122

123

124

125

126,

127

128

129

130,

131

132

ref ="athleteTeam_Repltem" />
</xsd :sequence>
<xsd:attribute name="countryName"
type ="xsd:string" use _ ="required" />
</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
<xsd:attribute name="isltem" type ="xsd:string" />
<xsd:attribute name="originalElement" type ="xsd:string" />
</xsd : conpl exType>
</xsd : el enent >
<xsd: el enent name="winOlympic_Repltem">
<xsd: conpl exType>
<xsd : sequence>
<xsd: el enent maxOccurs ="unbounded” minOccurs ="1"
name="winOlympic_Version">
<xsd : conpl exType>
<xsd : sequence>
<xsd: el ement ref ="tvitimestamp_TransExtent' />
<xsd: el ement name="winOlympic">
<xsd :annotation >
<xsd :documentation >
Schema for recording non
tenmporal country information
</xsd :documentation >
</xsd :annotation >
<xsd : conpl exType mixed ="true">
<xsd : sequence>
<xsd: el enent
maxOccurs ="unbounded" minOccurs ="0" ref ="country_Repltem" />
</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
<xsd:attribute name="isltem" type ="xsd:string" />
<xsd:attribute name="originalElement" type ="xsd:string" />
</xsd : conpl exType>
</xsd : el enent >
<xsd: el ement name="athlete_Repltem">
<xsd : conpl exType>
<xsd : sequence>
<xsd: el enent maxOccurs ="unbounded” minOccurs ="1"
name="athlete_Version">
<xsd : conpl exType>
<xsd : sequence>
<xsd: el ement ref ="tvitimestamp_TransExtent' />
<xsd: el enent name="athlete">
<xsd : conpl exType mixed ="true">
<xsd : sequence>
<xsd: el enent name="athName"
type ="xsd:string" />
<xsd: el enent
maxOccurs ="unbounded" minOccurs ="0" name ="phone"
type ="phoneNumType" />
</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
<xsd:attribute name="isltem" type ="xsd:string" />

198

133
134
135
136

© 0 N O 0 Bh W NP

OO UG U g g0 S A DS SN DD DN ®WWWWWWWWWNRNNNNNRNNNRNERRR B B B op e
PO © 0 NO®ahMNRLOOGC®®NOD®ONEN®INRLOS O ®NO OO ONPO®©®ONOAAENM®NRLROO®NO®OUS™®WNEREO

<xsd:attribute name="originalElement" type ="xsd:string" />
</xsd : conpl exType>
</xsd : el enent >
</xsd :schema>

Listing 170: Representational schema for 2002-01-01 t&ANBO1.

<?xm version ="1.0" encoding ="UTF-8"?>
<xsd: schena attributeFormDefault ="unqualified"
elementFormDefault ="unqualified"

targetNamespace ="http://www.cs.arizona.edu/tau/RepSchemal"
xmins ="http://www.cs.arizona.edu/tau/RepSchemal”

xmlins :tv_="http://www.cs.arizona.edu/tau/TVSchema"

xmins :xsd ="http://www.w3.0rg/2001/XMLSchema"

xmins :xsi _="http://www.w3.0rg/2001/XMLSchema-instance">

<xsd: i nport namespace ="http://www.cs.arizona.edu/tau/TVSchema" schemaloca tion

<xsd : si npl eType name="phoneNumType">
<xsd:restriction base="xsd:string">
<xsd: |l ength value ="12" />
<xsd:pattern value ="\d{3}-\d{3}-\d{4}" />
</xsd :restriction>
</xsd :sinpl eType>
<xsd: el enent name="tv_root">
<xsd : conpl exType>
<xsd : sequence>
<xsd: el enent ref ="winOlympic_Repltem" />
</xsd :sequence>
<xsd:attribute name="begin" type ="xsd:date" />
<xsd:attribute name="end" type ="xsd:date" />
</xsd : conpl exType>
</xsd : el enent >
<xsd: el ement name="athleteTeam_Repltem">
<xsd : conpl exType>
<xsd :sequence>
<xsd: el enent maxOccurs ="unbounded” minOccurs ="1"
name="athleteTeam_Version">
<xsd : conpl exType>
<xsd : sequence>
<xsd: el ement ref ="tvitimestamp_TransExtent' />
<xsd: el enent name="athleteTeam">
<xsd : conpl exType mixed ="true">
<xsd : sequence>
<xsd: el enent maxOccurs ="1"
minOccurs ="1" name ="teamName" type ="xsd:string" />
<xsd: el ement
maxOccurs ="unbounded" ref ="athlete_Repltem" />
</xsd :sequence>
<xsd:attribute name="numAthletes"
type ="xsd:positivelnteger" use __ ="optional" />
</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
<xsd:attribute name="isltem" type ="xsd:string" />
<xsd:attribute name="originalElement" type ="xsd:string" />
</xsd : conpl exType>
</xsd : el enent >
<xsd: el enent name="country_Repltem">
<xsd : conpl exType>
<xsd :sequence>
<xsd: el enent maxOccurs ="unbounded” minOccurs ="1"
name="country_Version">
<xsd : conpl exType>
<xsd : sequence>
<xsd: el ement ref ="tvitimestamp_TransExtent' />
<xsd: el ement name="country">

199

="TVSchema.xsd" />

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106,

107

108

109)

110

111

112

113

114

115

116,

117

118

119

120

121

122

123

124

125

126,

127

128

129

<xsd : conpl exType mixed ="false">
<xsd :sequence>
<xsd: el emrent
ref ="athleteTeam_Repltem" />
</xsd :sequence>
<xsd:attribute name="countryName"

type ="xsd:string" use ="required" />
<xsd:attribute name="countryLead"
type ="xsd:string" use ="required" />

</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
<xsd:attribute name="isltem" type ="xsd:string" />
<xsd:attribute name="originalElement" type ="xsd:string" />
</xsd : conpl exType>
</xsd : el enent >
<xsd: el enent name="winOlympic_Repltem">
<xsd: conpl exType>
<xsd : sequence>
<xsd: el enent maxOccurs ="unbounded” minOccurs ="1"
name="winOlympic_Version">
<xsd : conpl exType>
<xsd : sequence>
<xsd: el ement ref ="tvitimestamp_TransExtent' />
<xsd: el ement name="winOlympic">
<xsd :annotation >
<xsd :documentation >
Schema for recording non
tenporal country information
</xsd :documentation >
</xsd :annotation >
<xsd : conpl exType mixed ="true">
<xsd : sequence>
<l--numEvents added on Wednesday-->
<xsd: el ement name="numEvents"
type ="xsd:nonNegativelnteger" />
<xsd: el emrent
maxOccurs ="unbounded” minOccurs _ ="0" ref _="country_Repltem" />
</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
<xsd:attribute name="isltem" type ="xsd:string" />
<xsd:attribute name="originalElement" type ="xsd:string" />
</xsd : conpl exType>
</xsd : el enent >
<xsd: el ement name="athlete_Repltem">
<xsd : conpl exType>
<xsd :sequence>
<xsd: el enent maxOccurs ="unbounded"” minOccurs ="1"
name="athlete_Version">
<xsd : conpl exType>
<xsd : sequence>
<xsd: el ement ref ="tvitimestamp_TransExtent" />
<xsd: el ement name="athlete">
<xsd : conpl exType mixed ="true">
<xsd : sequence>
<xsd: el enent name="athName"
type ="xsd:string" />
<xsd: el emrent
maxOccurs ="unbounded” minOccurs _ ="0" name ="phone"
type ="phoneNumType" />

200

130
131
132
133
134
135
136
137
138
139
140
141

44

</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
<xsd:attribute name="isltem" type ="xsd:string" />
<xsd:attribute name="originalElement" type ="xsd:string" />
</xsd : conpl exType>
</xsd : el enent >
</xsd :schema>

Listing 171: Final Representational schema.

<?xm version ="1.0" encoding ="UTF-8"?>
<xsd: schema xmlns :xsd ="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault ="unqualified"
targetNamespace ="http://www.cs.arizona.edu/tau/RepSchema"
xmlIns ="http://www.cs.arizona.edu/tau/RepSchema"
xmins :rep0 ="http://www.cs.arizona.edu/tau/RepSchema0"
xmins :repl ="http://www.cs.arizona.edu/tau/RepSchemal”
xmlins :tv_="http://www.cs.arizona.edu/tau/TVSchema"
xmins :xsi _="http://www.w3.0rg/2001/XMLSchema-instance">
<xsd: i nport namespace ="http://www.cs.arizona.edu/tau/TVSchema" schemaloca
<xsd: i nport namespace ="http://www.cs.arizona.edu/tau/RepSchema0" schemalo
<xsd: i nport namespace ="http://www.cs.arizona.edu/tau/RepSchemal" schemalo
<xsd: el ement name="sv_root">
<xsd : conpl exType>
<xsd :sequence>
<xsd: el enent name="schemaltem">
<xsd : conpl exType>
<xsd : sequence>
<xsd: el enent maxOccurs ="1" minOccurs ="1"
name="schemaVersion0">
<xsd : conpl exType>
<xsd : sequence>
<xsd: el enent maxOccurs ="1"
minOccurs ="1" ref _="tvitimestamp_TransExtent" />
<xsd: el enent maxOccurs ="1"
minOccurs ="1" ref _="repO:tv_root" />
</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >
<xsd: el enent maxOccurs ="1" minOccurs ="1"
name="schemaVersionl">
<xsd : conpl exType>
<xsd : sequence>
<xsd: el enent maxOccurs ="1"
minOccurs ="1" ref _="tvitimestamp_TransExtent" />
<xsd: el enent maxOccurs ="1"
minOccurs ="1" ref ="repl:tv_root" />
</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
</xsd :conpl exType>
</xsd : el enent >
</xsd :sequence>
<xsd:attribute name="temporalSchema" type ="xsd:string">
</xsd : conpl exType>
</xsd : el enent >
</xsd :schema>

tion ="TVSchema.xsd" />
cation ="rep0.xsd" />
cation ="repl.xsd" />

201

© 0 ~N O U1 A W N P

© 0 N O 00 B W N -

B A D DD DD WWWWWWWWWWNDNNNNNNRNRNDNDERERRRRRPR R P
O 00 F W N EFP OO NS ®NERP O ®© 0N U WNEPO ®© NS WNE O

19.6 Temporal Document

Listing 172: Temporal Document.

<?xm version ="1.0" encoding ="UTF-8"?>
<t enpor al Root xmins ="http://www.cs.arizona.edu/tau/tauXSchema/TD">
<t enpor al SchenaSet >
<t enpor al Schema location ="temporalSchema.xml"/>
</ t enpor al SchemaSet >

<sl i ceSequence>

<sl i ce location ="slicel.xml" begin ="2002-01-01" end ="2003-01-01" />
<slice location ="slice2.xml" begin ="2003-01-01" end _ ="2005-01-01" />
<slice location ="slice3.xml" begin ="2005-01-01" end _ ="2006-01-01" />
<slice location ="sliced.xml" begin ="2006-01-01"/>

</ sl i ceSequence>

</ t enpor al Root >

Listing 173: Squashed document.

<?xm version ="1.0" encoding ="UTF-8"?>
<rep : sv_root xmins :rep ="http://www.cs.arizona.edu/tau/RepSchema"
t enpor al Schema="winolympic_tempSchema.xml"
xmins :rep0 ="http://www.cs.arizona.edu/tau/RepSchema0"
xmlins :repl ="http://www.cs.arizona.edu/tau/RepSchemal”
xmins :tv_="http://www.cs.arizona.edu/tau/TVSchema'">

<schemal t en»
<schemaVer si on0>
<tv :timestanp_TransExtent begin ="2002-01-01"
end="2005-01-01" />
<rep0 :tv_root
xmins :rep0 ="http://www.cs.arizona.edu/tau/RepSchema0"
begin ="2002-01-01" end _ ="2005-01-01">
<repO : wi nA ynpi c_Repl t em isltem ="y"
originalElement ="winOlympic">
<wi nd ynpi c_Ver si on>
<tv :timestanp_TransExtent begin ="2002-01-01"
end="2005-01-01" />
<wi na ynpi ¢>
There are events in the Olympics .
<repO : country_Repltem isltem ="y"
originalElement ="country">
<country_Versi on>
<tv :timestanp_TransExtent
begin ="2002-01-01" end _ ="2005-01-01" />
<country countryName ="Norway">
<rep0 : at hl et eTeam Repl tem
isltem ="y" originalElement ="athleteTeam">
<at hl et eTeam Ver si on>
<tv :timestanp_TransExt ent
begin ="2002-01-01" end _ ="2003-01-01" />
<at hl et eTeam
numAthletes ="95">
<t eamNanme>

Norway Army
</ t eanNane>

Athletes will take part in various events . The athletes

participating are listed below
<rep0 :athl ete_Repltem
isltem ="y" originalElement ="athlete">
<at hl et e_Ver si on>
<tv :tinestanp_TransExtent
begin ="2002-01-01" end _ ="2003-01-01" />
<athl ete>
<at hName>

202

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

Kjetil Andre Aamodt
</ at hName>
</ athl et e>
</ at hl et e_Ver si on>
</rep0 :athlete_Repltenr
<rep0 : athl ete_Repltem
isltem ="y" originalElement ="athlete">
<at hl et e_Ver si on>
<tv :tinmestanp_TransExt ent
begin ="2002-01-01" end _ ="2003-01-01" />
<at hl et e>
<at hName>
Trine
Bakke -Rognmo
</ at hName>
His phone numbers are :
<phone>
123-402-0340
</ phone>
<phone>
123-402-0000
</ phone>
</ at hl et e>
</ at hl et e_Ver si on>
</rep0 :athlete_Repltenr
<rep0 : athl ete_Repltem
isltem ="y" originalElement ="athlete">
<at hl et e_Ver si on>
<tv :tinestanp_TransExtent
begin ="2002-01-01" end _ ="2003-01-01" />
<athl ete>
<at hName>
Lasse Kjus
</ at hNare>
</ at hl et e>
</ at hl et e_Ver si on>
</rep0 :athlete_Repltenr
</ at hl et eTean®>

</ at hl et eTeam Ver si on>
<at hl et eTeam Ver si on>

<tv :timestanp_TransExt ent

begin ="2003-01-01" end ="2005-01-01" />
<at hl et eTeam

numAthletes ="95">

<t eamNanme>

Norway Army
</ t eanNanme>

Athletes will take part in various events . The athletes

participating are listed below
<rep0 :athl ete_Repltem
isltem ="y" originalElement ="athlete">
<at hl et e_Ver si on>
<tv :tinmestanp_TransExt ent
begin ="2003-01-01" end ="2005-01-01" />
<at hl et e>
<at hName>
Kijetil Andre Aamodt
</ at hNare>
</ athl et e>
</ at hl et e_Ver si on>
</rep0 :athl ete_Repltenr
<rep0 :athl ete_Repltem
isltem ="y" originalElement ="athlete">
<at hl et e_Ver si on>
<tv :tinestanp_TransExt ent
begin ="2003-01-01" end ="2005-01-01" />
<at hl et e>
<at hName>

203

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

Andre Agassi
</ at hName>
</ athl et e>
</ at hl et e_Ver si on>
</rep0 :athlete_Repltenr
<rep0 : athl ete_Repltem
isltem ="y" originalElement ="athlete">
<at hl et e_Ver si on>
<tv :tinmestanp_TransExt ent
begin ="2003-01-01" end ="2005-01-01" />
<at hl et e>
<at hName>
Trine
Bakke -Rognmo
</ at hName>
His phone numbers are :
<phone>
123-402-0340
</ phone>
<phone>
123-402-0000
</ phone>
</ at hl et e>
</ at hl et e_Ver si on>
</rep0 :athlete_Repltenr
<rep0 : athl ete_Repltem
isltem ="y" originalElement ="athlete">
<at hl et e_Ver si on>
<tv :tinestanp_TransExtent
begin ="2003-01-01" end _ ="2005-01-01" />
<athl ete>
<at hName>
Lasse Kjus
</ at hNare>
</ at hl et e>
</ at hl et e_Ver si on>
</rep0 :athlete_Repltenr
</ at hl et eTean®>
</ at hl et eTeam Ver si on>
</rep0 : at hl et eTeam Replten»
</ country>
</ country_\Versi on>
</rep0 :country_Repltenr
</ wi nd ynpi c>
</wi nQA ynpi c_Ver si on>
</rep0 :w nd ynpi c_Repl teny
</rep0 :tv_root>
</ schemaVer si on0>
<schemaVer si on1>
<tv :timestanp_TransExtent begin ="2005-01-01"
end="9999-12-31" />
<repl :tv_root
xmins :repl ="http://www.cs.arizona.edu/tau/RepSchemal"”
begin ="2005-01-01" end ="9999-12-31">
<repl :wi nO ynpi c_Repl t em isltem ="y"
originalElement ="winOlympic">
<wi nd ynpi c_Ver si on>
<tv :timestanp_TransExtent begin ="2005-01-01"
end="9999-12-31" />
<wi na ynpi c>
There are
<nunmEvent s>11</ nunEvent s>
events in the Olympics .
<repl : country_Repltem jsltem ="y
originalElement ="country">
<country_\Versi on>
<tv :timestanp_TransExtent
begin ="2005-01-01" end ="9999-12-31" />

204

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

<country countryLead ="Andre Agassi"
countryName ="Norway">
<repl : at hl et eTeam Repltem
isltem ="y" originalElement ="athleteTeam">
<at hl et eTeam Ver si on>
<tv :timestanp_TransExtent
begin ="2005-01-01" end _ ="9999-12-31" />
<at hl et eTeam
numAthletes ="95">
<t eamNane>
Norway Army
</ t eanNanme>
Athletes will take part in various events . The athletes

participating are listed below
<repl : athl ete_Repltem
isltem ="y" originalElement ="athlete">
<at hl et e_Ver si on>
<tv :tinmestanp_TransExt ent
begin ="2005-01-01" end ="9999-12-31" />
<athl ete>
<at hName>
Kjetil Andre Aamodt
</ at hNare>
</ athl et e>
</ at hl et e_Ver si on>
</repl :athlete_Repltenr
<repl : athl ete_Repltem
isltem ="y" originalElement ="athlete">
<at hl et e_Ver si on>
<tv :tinmestanp_TransExt ent
begin ="2005-01-01" end ="9999-12-31" />
<at hl et e>
<at hName>
Andre Agassi
</ at hNare>
</ athl et e>
</ at hl et e_Ver si on>
</repl :athlete_Repltenr
<repl :athlete_Repltem
isltem ="y" originalElement ="athlete">
<at hl et e_Ver si on>
<tv :tinestanp_TransExtent
begin ="2005-01-01" end ="9999-12-31" />
<at hl et e>
<at hName>
Trine
Bakke -Rognmo
</ at hName>
His phone numbers are :
<phone>
123-402-0340
</ phone>
<phone>
123-402-0000
</ phone>
</ athl et e>
</ at hl et e_Ver si on>
</repl :athlete_Repltenr
<repl : athl ete_Repltem
isltem ="y" originalElement ="athlete">
<at hl et e_Ver si on>
<tv :tinmestanp_TransExt ent
begin ="2005-01-01" end ="9999-12-31" />
<at hl et e>
<at hName>
Lasse Kjus
</ at hName>
</ athl et e>

205

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

</ at hl et e_Ver si on>
</repl :athlete_Repltenr
</ at hl et eTean»
</ at hl et eTeam Ver si on>
</repl :athleteTeam Repltenv
</ country>
</ country_Versi on>
</repl :country_Replteny
</ wi nd ynpi c>
</w nQA ynpi c_Ver si on>

</repl :w nd ynpi c_Repltenr
</repl :tv_root>
</ schemaVer si onl>

</ schenual t en>
</rep_:sv_root>

206

Part Il
Common

In this part, we conclude and discuss future work. Sectiopr@%ides a short summary of all elements and
attributes defined inXSchema.

207

208

20 Overall Conclusions and Future Work

In this report we have considered how to accommodate andiataltime-varying data within XML Schema.
We have presented the constructs of Temporal XML Schem{&¢hema), which is an extension of XML
Schema. This report also discusses infrastructure andeacfuiols to support the creation and validation
of time-varying documents, without requiring any changeXML Schema.

In Section 4.2, we introduced ten desiderata for our langengl tools. We now revisit these desiderata
and evaluate our design against them.

» Simplify the representation of time for the user.

The SYUAsSH tool enables a temporal document to be constructed diriotly a sequence of conven-
tional documents, by providing only a list of these docureeamd their timestamps. A conventional
schema may optionally be provided; no further (tempordigsatas are required, as the defaults allow
all the logical and physical annotations to be omitted.

The user can later provide more details, such as exactlyanthertimestamps are to be placed, which
representation is to be used, and what portions of the datiuca@ vary over time.

e Support a three-level architecture to provide data inddpece, so that changes in the logical and
physical level are isolated.

Our approach ensures data independence by separating ¢drkientional schema document for the
instance document, (ii) information concerning what orts) of the instance document can vary
over time, and (iii) where timestamps should be placed aedigely how the time-varying aspects

should be represented. Since these three aspects areamdhogur approach allows each aspect to
be changed independently.

This three-level schema specification approach is explaitesupporting tools; several new, quite
useful toolst XMLL INT, SCHEMAMAPPER SQUASH, UNSQUASH, and RESQUASH are introduced
that enable the logical and physical data independencadawy our approach. Additionally, this
independence enables existing tools (e.g., the XML Schetidator, XQuery, and DOM) to be used
in the implementation of their temporal counterparts.

 Retain full upward compatibly with existing standards aotrequire any changes to these standards.
Data and schema versioning are supported in a fashion ¢emsesnd upwardly-compatible with
XML, XML Schema, and conventional XML validators.

» Augment existing tools such as validating parsers for XMlsuch a way that those tools are also
upward compatible. Ideally, any off-the-shelf validatipgrser (for XML Schema) can be used for
(partial) validation.

We introduced the following tools forXMLL INT: SCHEMAMAPPER SQUASH, UNSQUASH, and
RESQUASH and extended them to support schema versioning. The toolprige in concert around
10K source lines of code including comments. Two new schen&&chemaand ASchemacom-
prise more than 500 lines of XML code. The framework cont&dsdd Java interfaces and classes.

» Support both valid time and transaction time.
Both kinds of time are fully supported irXSchema.
» Accommodate a variety of physical representations foetirarying data.
» Accommodate different kinds of time, such as indeternairtiehes, unknown times, the current time,

and times at a variety of temporal granularities.

209

e Support instance versioning.

TXSchema provides an efficient way to define time-varying eleintypes; specifically, an element
type that can vary over time, describes how to associatevangng elements across snapshots, and
provides some temporal constraints that broadly chaliaetbow a time-varying element can change
over time.

e Support schema versioning. Different versions of a documey conform to different versions of a
schema, as both a document and schema are modified over tipgorSfor schema versioning will
ensure that the schema’s history can be kept and corredtiedt

7XSchema fully supports schema versioning, including (tiragying) schemas that include or refer-
ence other (time-varying) schemas. In doing so, we leverdgéh conventional XML Schema and
related tools (principally, the conventional validat@$, well asr XMLL INT for data versioning.

By identifying when schema changes occur, the schemaamnperiods can be identified. Such
periods have the very useful property that there is an urgihgrschema (comprised of a single base
schema, a single temporal annotation document, and a gihgéécal annotation). The dance between
the conventional validator, the time-varying data checked the temporal constraint checker ensures
that most of the checking is done by the conventional vadiciatith most of the remaining checking
done by the time-varying data checker.

T7XSchema and XMLL INT can be further enhanced to provide a better system and nedteds.

» Future work includes extending thXSchema model to fulfill the issues not addressed duringiike i
tial implementation. One of the goals in the desideratavleae not fulfilled is of supporting temporal
granularity and indeterminacy. However, it is easy to augitieerXSchema model timestamps with
concepts of granularity and incorporate additional phalsiepresentations for valid and transaction
time that account for indeterminacy, since these extemssimuld require additions to the TSSchema,
ASchema and the generated Representational Schema (B@usexes 1, 2 and 9), but no changes
to the user designed schema documents (boxes 3-6). Thesem@tagions would maintain upward
compatibility with previous versions afXSchema and be transparent to the user.

» Another broad area of work is optimization and efficiencyithAugh we do talk about the space-
efficiency of the tools described in Section 9, we haven’egimuch attention to their performance.
New representations can be proposed, incorporated angagedlto improve the space-efficiency of
the temporal document. We have seen that the DOM API couldepi@ be a memory bottleneck
for huge documents. So instead of parsing the complete dexuat once, other options need to be
evaluated.

One option is to validate the document in parts, bringiny @mle item at a time in the memory. This
could be achieved by replacing the immediate descendantdgtements by their dummy equivalents
and then validating the item for its sequenced and non-segadeconstraints. This would result in
less memory utilization since only a part of the documentdmd kept in the memory. As few
changes would be required to manage the items one at a timajoa part of the existing algorithm
for YXMLL INT could be reused. Here, if a DOM-based parser is used, theevdoclument needs to
be parsed at least once, even if we are validating one itentirmiea This could be avoided by using
an event-based SAX parser and building an in-memory trealgftbe required elements in order to
perform those aspects of the validation that are synchednizth the parsing. This approach would
require complex memory management and parsing of the dodgumatiple times, but memory use
would be greatly reduced.

210

As described earlier, all the tools are based on the elemyefitactionspushUp, pushDown and
coalesce. If we can modify them to use a SAX parser instead of a docwobject-model, we can
easily convert all the tools to use a SAX parser. We think, ttatvertingpushDown to use a SAX
parser woule be easier; the timestamps could be pushed dsily &s the document is being parsed
from start to end. After initial thought it appears thaishUp would need building of an in-memory
tree, pushing the timestamps up and then serializing tee Treis could also be achieved by building
the tree in parts resulting in more complexigpalesce would also need to build a tree in memory.
But instead of building a complete tree at once, it can busdlatree for each item at a time and then
coalesce it.

» Future work also includes enabling the legacy applicatmrthe data inconsistent with a subsequently
changed schema, by exploiting information about the emglgichema that is already captured in the
temporal schema.

o Current implementation of tools does not support all dbsdr features of-XSchema completely.
These features need to be implemented to provide compistdnethe tools. The unimplemented
features, the anticipated changes and the estimatedseffagtiired to implement them are listed
below. The estimated effort does not include becoming faniked with the architecture and the
source code.

— Support for the Step representation of timestamp: Some changes to the classesadnd
Repltem would be needed to support tistep representation. Some changes would also be
needed to the algorithms implemented in clBssnitives . 15-20 hours of work is antici-
pated.

— Support for the generic validation of non-sequenced caimis: Currently, the validation for
each non-sequenced constraints is implemented using eatsgh&unction insidétem class.
To provide a framework for the generic support of non-segadrconstraints, a ‘Visitor’ pattern
could be used. Inthat case, the validator for each non-segdeconstraint will be implemented
in a separate class and a reference to an Iltem element widldseg to it. The addition of a new
constraint could be made easier by some properties filewiitligliminate any changes to the
Iltem class for addition/modification of constraints. 15-20 Isoafrwork is anticipated.

— Support for the schemaPath expressions containing ‘willd¢acharacters and shortcut rep-
resentation: This will change the way targets are beinguatedl. Changes to the classes
SchemaPathEvaluator , Item andltemldentifier would be needed. Around 30—
40 hours of work is anticipated.

— Support for the item-identifiers specified in terms of ergtitems or schema keys, and targets
containing ‘wildcard’ characters: Some changes to theselsltem andltemldentifier
would be needed. Some changes to the functions from Eldasstive may also be needed
since the procedure for coalescing may change. 20-30 héwer& is anticipated for this
change.

— Support for nested time-varying schemas: We anticipais,would result in a considerable
change to all the tools. A couple of weeks of work may be ne¢dedpport this feature.

— Support for RESQUASHINg of a temporal document using a new temporal annotatidme T
changes needed for this functionality are mentioned in theti® 9.6. 4-5 hours of work
should be sufficient for this change.

* In this work, only conceptual support for the bitemporaménts is defined. The tools need to be
extended to support bitemporal elements.

211

» 7XSchema should be integrated with a schema-aware XML-bedigat like XMLSpy [88]. Schema-
aware editors generate easy-to-use templates for updadirtytype of element defined in a schema.
But they do not track changes to either the schema or the Ba&hling versioning for both will sup-
port unlimited undo/redo, improve change tracking, andraiwboperative editing. Another direction
of future work is to add versioning to XUpdate [89]. XUpdaseailanguage for specifying changes
to the XML document.

» 7XSchema can also be extended to support generic aspectslf8iat approach, we generalized
TXSchema to represent any generic aspect instead of justames.

* We plan to extend our approach to also accommodate inteadsKML data [58] which refer to
programs that generate data. Some of these programs mayhted (a process termed mate-
rialization), with the results replacing the programs ie ttocument. There are several interesting
time-varying aspects of intensional XML data: (i) the pags themselves may change over time,
(i) even if the programs are static, the results of prograaiuations may change over time, as exter-
nal data the programs access changes, and (iii) even if tgggms and the external data are static,
different versions of the program evaluators (e.g., Javapier) may be present, may generate dif-
ferent results due to incompatibilities between versidiis.challenging to manage this combination
of schema and instance versioning over time.

» Currently there is no separation of elements or attribbbée®d on the relative frequency of update. In
the situation that some elements (for example) vary at afgigntly different rate than other elements,
it may prove more efficient to split the schema up into pieceshthat elements with similar “rates
of change” are together [56, 62, 71]. This would avoid regmdepetition of elements that do not
change as frequently. Related to optimization, there issthee of optimizing the use of time-varying
loose text. For instance it may be desirable to capture @oheng different loose text pieces within
an element (e.qg., different pieces may be used to describdiaypar sub-element and may therefore
vary with a frequency strongly correlated to the sub-elérmagamporal characteristics). We want
to incorporate recently proposed representations (§.g13, 19, 22] into our physical annotations.
Finally, the efficiency of the tools mentioned in Sectionsnd 43 can be improved. For example, it
would be interesting to investigate whether incrementédlsion approaches [5, 9, 63] are applicable
in the temporal schema validator.

* In Section 6 we discussed temporal augmentations to XMle@ehconstraints. For non-sequenced
unigueness constraints, we do not currently support thefggion of a constraint that applies solely
between nodes. For example, given the constraint on empley®il addresses in Listing 24, if we
wished to refine it to say: “the same employee could have ditiepeof an email address over time,
but two different people were not allowed to have the sameeaddver time”, we need to extend our
work to support it. We leave for the future a detailed dismrssf and specification of the syntax and
semantics for such unique constraints that apply solelyédxn nodes.

» Another extension for constraints (Section 6) is to cogisttle constraints under temporal indetermi-
nate times. So for instance, suppose we don’t know whenlgx@atemployee is employed. We have
some time that we know he is employed (e.g., 2005-2009), dmeduzziness on each end of that
employment (exactly which month and day). Then the evalanaif each constraint can be done with
respect to what is definite and what is possible. For exanfiple ihave a sequenced constraint that
each employee’s email has to be unique, if two employeesthaveame e-mail but the time at which
they co-exist is indeterminate then the constraint mayiplysbe maintained, rather than definitely
violated (the user would chose the validation semantics).

212

The three-level schema specification approach introducdhis work byrXSchema, the infrastruc-
ture, and a suite of tools provide a system for creation afidateon of data-versioned XML documents,
without requiring any changes to the XML Schema specificatiBy clever use of schema-constant peri-
ods and cross-wall validation, schema versioning is alssgnated in the framework with the support for
time-varying documents in a fashion consistent and upwardinpatible with XML, XML Schema, and
conventional XML validators. This work has shown that byizitig schema-constant periods and cross-
wall validation, it is possible to realize a comprehensiystam for representing and validating data- and
schema-versioned XML documents, while remaining fully patible with the XML standards.

213

214

21 7XSchema Reference

21.1 Conventions
The following are conventions used in this section.
* Indented text is used to specify a sub-element.

» “Datatype” refers to the “base datatype” which may be ret&ld or extended via datatype definitions.
The restrictions are specified in the “Notes” column.

» The column for “[min:max]” is used both for element®iOccurs , maxOccurs) and attributes
(optional , required). For example, optional is denoted using [0:1], while regdiis denoted
with a [1:1]. The value “U” is used to denote “unbounded” foaxOccurs .
21.2 TSSchema

Filename:TSSchema.xsd

Purpose: Defines temporal schemas used to associate schrthannotations

Target Namespacérttp://www.cs.arizona.edu/tau/tauXSchema/TSSchema

Root ElementtemporalSchema

Details:

Table 10 sub-elements demporalSchema
Table 11 sub-elements of multiple elements
Table 12 sub-elements atemldentifierCorrespondence

21.3 ASchema

* Filename:ASchema.xsd
» Purpose: Schema for Logical and Physical Annotations

» Target Namespacduttp://www.cs.arizona.edu/tau/tauXSchema/ASchema

Root ElementannotationSet

Details:

Table 13 sub-elements adnnotationSet
Table 14 sub-elements dbgical

Tables 15 and 16sub-elements datem

Table 17 sub-elements atemldentifier
Table 18 sub-elements ofalidTime

Table 19 sub-elements ddttribute

Table 20 sub-elements adefaultTimeFormat
Table 21 sub-elements afionSeqUnique

215

Table 22 sub-elements afionSegKey

Table 23 sub-elements ainiqueNullRestricted
Table 24 sub-elements afionSegKeyref

Table 25 sub-elements atardConstraint
Table 26 sub-elements dfansitionConstraint
Table 27 sub-elements gbhysical

Table 28 sub-elements aftamp

Table 29 sub-elements afrderBy

21.4 TDSchema

 Filename:TDSchema.xsd
» Purpose: Defines Temporal Documents

» Target Namespacéittp://www.cs.arizona.edu/tau/tauXSchema/TDSchema

Root Element: temporalDocument
* Details:

Table 30 sub-elements demporalDocument

21.5 MDSchema
* Filename:MDSchema.xsd
» Purpose: Defines mapping pairs to associate old an new dentifier values

» Target Namespacéittp://www.cs.arizona.edu/tau/tauXSchema/MDSchema

Root Element: mappings
* Details:

Table 31 sub-elements ahappings
Table 32 sub-element obldValue andnewValue

216

Element Notes [min:max]
conventionalSchema specifies the conventional schema(s) [1:1]
sliceSequence see details of sub-element in Table 11 [0:1]
include see details of sub-element in Table 11 [0:1]
annotationSet specifies the annotation schema(s) [1:1]
sliceSequence see details of sub-element in Table 11 [0:1]
include see details of sub-element in Table 11 [0:1]

Table 10: TSSchema: Sub-elementseshporalSchema

217

81¢
JuBUss|e a|diNw Jo SUBWIIB-gNS :82usanbasals TT 9|geL

Element Attribute Notes datatype [min:max]
include includes another document into current document [0:1]
schemalocation the URI of the document to include Xs:string [1:1]
sliceSequence specifies a sequence of slices [0:1]
slice details about a single slice [0:U]
location the URI of the slice document Xs:string [1:1]
begin the begin date for the slice xs:.date [1:1]
end the end date for the slice xs:date [0:1]
itemldentifierCorrespondence specifies how to bridge item identifiers between [0:U]

instance documents

61¢
90Uapu0dsa110DIa1IUBP|WeIRIUBWSIS-gNS (BWaYISS] (ZT 9|0el

Element Attribute Notes datatype [min:max]

oldRef references the identifier in the old logical Xs:string [1:1]
annotation

newRef references the identifier in the succeeding logicals:string [0:1]
annotation

mappingType mapping type, one aiseBoth ,useOld |, Xs:string [0:1]
useNew, replace

mappingLocation location of mapping file containing old and new xs:anyURI [0:1]

values that correspond (schema for this file is
provided in a separate Appendix)

Element Notes [min:max]

logical contains all logical annotations see details of sub-elésnen [0:1]
in Table 14
physical contains all physical annotations see details of [0:1]

sub-elements in Table 27

Table 13: ASchema: sub-elementsapiotationSet

220

| X44

[edIfmluswale-gNS (BWaYoISY HT 9|gel

Element Attribute Notes datatype [min:max]
include contains the location / URI of one or more [0:U]
(possibly time-varying) logical or physical
annotation files.
annotationLocation URI for location xs:anyURI [1:1]
defaultTimeFormat default time format used in the document (detdils [0:1]
in Table 20 below)
item [subelements in defines a time varying item [0:U]
Table 15]
target location of the element being annotated xs:anyURI [1:1]

c¢cc
W\IBIUBWSIR-gNS "_WBYISY ST a|gel

Element Attribute Notes datatype [min:max]
validTime information on the valid time annotations for the [0:1]
[subelements in element
Table 18]

kind the time kind, eithestate or event Xs:string [1:1]
content if the content of an element changes over time (if leaks:string [0:1]
element), or its loose text / order of sub-elements
change (if not leaf element), eitheonstant or
varying
existence if the element itself can exist / not-exist over time, ongs:string [0:1]
of: constant ,varyingWithGaps
varyingWithoutGaps
transactionTime describes if the element varies in transaction time [0:1]
frequency frequency of change for the annotated item Xs:string [0:1]
itemldentifier item identifier definitions, required for all [0:1]
[subelements in time-varying elements; if not defined defaults to the
Table 17] contents of the element (i.éltext)
name unique (across the current logical annotation file) | xs:string [0:1]
name of the item-identifier to allow it to be referenced
by other identifier definitions
timeDimension time dimension applicable, one @flidTime Xs:string [0:1]

transactionTime , bitemporal ; default is
validTime

€ece

U092 * WBIBIUBWSR-ONS "eWaYISY 9T d|qeL

attribute defines a time varying attribute [0:U]
[subelements in

Table 19] name name of the attribute being annotated Xs:string [1:1]
nonSequUnique defines a non-sequenced Unique constraint [0:U]
[details in Table 21]

nonSegKey [details in defines a non-sequenced Key constraint [0:U]
Table 22]

uniqueNullRestricted defines a non-sequenced Unigue constraint with Null [0:U]
[details in Table 23] value restrictions

nonSegKeyref defines a non-sequenced referential integrity [0:U]
[details in Table 24] Constraint

cardConstraint defines a non-sequenced Cardinality constraint [0:U]
[details in Table 25]

transitionConstraint defines a non-sequenced transition constraint [0:U]

[details in Table 26]

vee
191J1IUSP|WBISIUBWBIS-ONS BWaYISY /T d|0el

Element Attribute Notes datatype [min:max]
keyref information on the referenced keys [0:U]
refName the name of the referenced key Xs:string [1:1]
refType whether the keyref is to a conventional key, an| xs:string [0:1]
item identifier
field information on the location of the key elementg [0:U]
and/or attributes
path simplified XPath expression to specify the Xs:string [0:1]

element / attribute picked as part of the key

Gce
aWl| pIperSIUBWLIR-qNS (BWLYISY 8T d|qel

WIBIYIM JUBWSIS

Element \ Attribute

Notes

datatype

[min:max]

contentVaryingApplicability

begin

end

captures the periods over which the content c4d
vary (inapplicable if content isonstant). The
max occurrence is set to unbounded to allow f
temporal elements.

the earliest time the content of the element or
attribute may vary

the latest time the content of the element or
attribute may vary

n

Dr

Xs:string

Xs:string

[0:U]

[0:1]

[0:1]

maximalExistence

begin

end

captures the periods over which the existence
vary (for elements: inapplicable if existence is
constant ; can only take on a single period if
is varyingWithoutGaps ; for attributes:
inapplicable if attribute is required)

restriction on the earliest time of existence for i
element or attribute

restriction on the latest time of existence for an
element or attribute

can

—

aIxs:string

Xs:string

[0:U]

[0:1]

[0:1]

frequency

frequency of change for the annotated attribute

> XS:string

[0:1]

9¢¢

SINqLAPESIUBWBIS-ONS BWSBYISY 6T d|0el

validTime information on the valid time annotations for the [0:1]
[subelements similar attribute
to those in Table 18
with no maximal- kind the time kind, eithestate or event Xs:string [1:1]
Existence]
content if the content of an attribute changes over time, eithexs:string [1:1]
varying orconstant

transactionTime describes if the attribute varies in transaction time [0:1]

frequency frequency of change for the annotated attribute Xs:string [0:1]

lcc
Tewlo-aWI 1)Ne@siusWa|a-gns (BwaydsyY 0z a|gel

Element Attribute Notes datatype [min:max]
defaultTimeFormat default time format used [0:1]
plugin plugin usedtauZaman , unix , XMLSchema/ | xs:string [0:1]
etc.
granularity granularity of the time format (KMLSchemais | xs:string [0:1]
the plugin, it refers to the datatype)
calendar calendric system used, e.@Gregorian Xs:string [0:1]
properties date format properties Xs:string [0:1]
valueSchema value schema used for the date xs:anyURI [0:1]

8¢¢
anbiunbasumsiusWa|a-qNs pue SaINQUNY BWaYISY TZ 9|0el

Element Attribute Notes datatype [min:max]
name The name of the constraint Xs:string [0:1]
conventionalldentifier The referenced conventional identifier Xs:string [0:1]
dimension validTime ,transactionTime ,or Xs:string [0:1]
bitemporal (default: validTime
evaluationWindow Time window over which the constraint should| xs:string [0:1]
be checked (default: lifetime of document)
slideSize Size of the slide for successive evaluation Xs:string [0:1]
windows (default: granularity of constrained data
type); Only used in conjunction with
evaluationWindow
applicability When the constraint is applicable (default: [0:1]
lifetime of document)
(begin ,end) Temporal element to specify applicability; we | xs:date [0:U]
use a series of intervals (indicated bbggin and | xs:date
end)
selector For the definition of a new constraint. [0:1]
field For the definition of a new constraint. [0:U]

6¢¢
Kaybasimisiuawa|a-gns pue SaINquUNY BWaydISY 2z a|0el

Element Attribute Notes datatype [min:max]
name The name of the constraint Xs:string [0:1]
conventionalldentifier The referenced conventional identifier Xs:string [0:1]
dimension validTime ,transactionTime ,or Xs:string [0:1]

bitemporal (default: validTime
evaluationWindow Time window over which the constraint should| xs:string [0:1]
be checked (default: lifetime of document)
slideSize Size of the slide for successive evaluation Xs:string [0:1]
windows (default: granularity of constrained data
type); Only used in conjunction with
evaluationWindow
applicability When the constraint is applicable (default: [0:1]
lifetime of document); if a value is specified
(e.g.,lifetime—thebegin , end sub-elements
should be empty
(begin ,end) Temporal element to specify applicability, with pxs:date [0:U]
series of intervals xs:date
selector For the definition of a new constraint. Itis [0:1]
similar to theselector ~ sub-element in the
uniqueConstraint definition
field For the definition of a new constraint. It is [0:U]

similar to thefield sub-element in the
uniqueConstraint definition

oge
pa1oIsay|INNanbayrsluaWwa|a-gns pue SaINquNy BWaydSy €2 a|gel

Element Attribute Notes datatype [min:max]
name The name of the constraint Xs:string [0:1]
conventionalldentifier The referenced conventional identifier Xs:string [0:1]
nullCountMin The number of null values allowable (either this xs:nonNeg - [0:1]

attribute omullCountMax should have a ativelnt -
value) eger
nullCountMax The number of null values allowable (used only xs:nonNeg - [0:1]
within unigueNullRestricted) ativelnt -
eger
dimension validTime ,transactionTime , or Xs:string [0:1]
bitemporal (default:validTime)
evaluationWindow Time window over which the constraint should| xs:string [0:1]
be checked (default: lifetime of document)
slideSize Size of the slide for successive evaluation Xs:string [0:1]
windows (default: granularity of constrained data
type); Only used in conjunction with
evaluationWindow
applicability When the constraint is applicable (default: [0:1]
lifetime of document)
(begin ,end) Temporal element to specify applicability, with pxs:date [0:U]
series of intervals xs:date
selector For the definition of a new constraint. It is [0:1]
similar to theselector ~ sub-element in the
uniqueConstraint definition
field For the definition of a new constraint. It is [0:U]

similar to thefield sub-element in the

uniqueConstraint definition

TEC
Ja1faybasimisiuswala-gns pue saNqLNY (eWaydSY 2 d|qeL

Element Attribute Notes datatype [min:max]
name The name of the constraint Xs:string [0:1]
refer The referenced identifier or referential integrity| xs:string [0:1]
constraint
applicability When the constraint is applicable (default: the [0:U]
lifetime of the document)
selector Used in the definition of a new constraint [0:1]
field Used in the definition of a new constraint [0:U]

ceec
JUIRJISUODAMSIUSWSIR-gNS pue SaINgUIY BWaYISY G2 9|0el

Element Attribute Notes datatype [min:max]
name The name of the constraint Xs:string [0:1]
restrictionTarget One ofchildList , childSet Xs:string [1:1]
valueList ,valueSet
itemldentifierRef Name of a referenced item identifier—only usgdxs:string [0:1]
with childSet
dimension EithervalidTime ortransactionTime Xs:string [0:1]
(default:validTime)
evaluationWindow Time window over which the constraint should| xs:string [0:1]
be checked (default: lifetime of document)
slideSize Size of the slide for successive evaluation Xs:string [0:1]
windows (default: granularity of constrained data
type); Only used in conjunction with
evaluationWindow
sequenced If it is a sequenced constraint (defautiise) [0:1]
agglLevel The level at which the aggregation is performef xs:string [0:1]
(default: parent level); a string (prefix) of the
selector
min minOccurs equivalent (defaultD) [0:1]
max maxOccurs equivalent (defaultunbounded) [0:1]
selector Role and definition is similar to theelector [1:1]
sub-element in the conventional XML Schema
constraint definitions (e.g., fi&eyref
constraints)
field Similar to thefield sub-element in the [1:U]
conventional XML Schema constraint
definitions. Allowing for multiplefield
elements lets us constraint combinations of
entities.
applicability When the constraint is applicable (default: [0:U]

lifetime of the document)

€ee
JUIRJISUODUONISIEIBIUSWS|-gNS puR SaINgUIY :eWaydSY 92 a|gel

Element

Attribute

Notes

datatype

[min:max]

name

dimension

The name of the constraint

EithervalidTime ortransactionTime
(default: validTime)

Xs:string

Xs:string

[0:1]

[0:1]

selector

Role and definition is similar to theelector
sub-element in the conventional XML Schema
constraint definitions (e.g., fi&eyref
constraints)

[1:1]

field

Similar to thefield sub-element in the
conventional XML Schema constraint
definitions. Allowing for multiplefield
elements lets us constraint combinations of
entities.

[1:U]

valuePair

Sub-element listing possible pairs for discrete
changes

[0:U]

old , new

Sub-elements ofaluePair

valueEvolution

Sub-element specifying direction of continuous
changes

[0:1]

applicability

When the constraint is applicable (default:
lifetime of document)

[0:1]

vee
[edIsAlpdsIUBWIB8-gNS (RWAYISY :/Z 9|gel

Element Attribute Notes datatype [min:max]
include contains the location or URL of one or more [0:U]
(possibly time-varying) physical annotation files.
annotationLocation location or URL of (possibly many) physical xs:anyURI [1:1]
annotation files being included
defaultTimeFormat default time format used in the document [0:1]
[sub-elements in Tar
ble 20]
stamp [subelements in
Table 28] target path of the element or attribute being annotated xs:string [0:1]
datalnclusion specifies sub-element representation, one of | xs:string [0:1]

expandedEntity ,referencedEntity ,
expandedVersion ,referencedVersion

Gee
dwssjuswale-gNs (BWaYISY 8z d|0el

Element Attribute Notes datatype [min:max]
stampKind contains the stamp time dimension and [1:1]
representation of bounds
timeDimension time dimension applicable, one @@lidTime , | xs:string [0:1]
transactionTime , bitemporal
stampBounds eitherstep or extent Xs:string [0:1]
defaultTimeFormat format for the timestamp Xs:string [0:1]
[sub-elements in Tar
ble 20]
orderBy [sub- ordering instructions for elements in temporal | xs:string [0:1]
elements in Table 29 data; order the multiple instances of this elemgnt

by: time or specified target

9e¢c
AgIapaosiusWale-gns (eWaYISY 62 a|gel

Element Attribute Notes datatype [min:max]
field ordering field [0:1]
target path of element or attribute to order by Xs:string [0:1]
time [0:1]
dimension time dimension to order by, eithgalidTime Xs:string [0:1]

or transactionTime

L€¢C
JuswnooelodumElusWale-gNS :BWaydsSdl :0g a|geL

Element Attribute Notes datatype [min:max]
sliceSequence see details of sub-element in Table 11 [0:1]
include see details of sub-element in Table 11 [0:1]

8¢e¢
sbuiddgousiuswiaja-gns :BWaYISAIN (TE a|qel

Element Attribute Notes datatype [min:max]
pair information about the mapping pair to link old [1:U]
and new item identifiers
oldVvalue specifies value of the item identifier in old data [1:1]
(sub-element description in Table 32)
newValue specifies value of the item identifier in old data [1:1]

(sub-element description in Table 32)

6EC
aneAMaUpUR SNEAPMIUSWSIS-GNS "BWLYISAIN :ZE d|0el

Element

Attribute

Notes

datatype

[min:max]

field

contains the data value for the old / new item

identifier

xs:anyType

[1:U]

240

Acknowledgements

We thank Lingeshwaran Palaniappan for the developmenteoinitial version of the logical to represen-
tational mapper and the temporal data validator. NSF gi#s8100436, 11S-0415101, 11S-0515101, 1I1S-

0639106, 11S-0803229, and EIA-0080123 and grants from theiid) Corporation and Microsoft provided
partial support for this work.

241

242

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

Serge Abiteboul, Angela Bonifati, Gregory Cobena, ladflanolescu, and Tova Milo. Dynamic
XML documents with distribution and replication. WCM SIGMOD International Conference on
Management of Datgpages 527-538, San Diego, CA, 2003.

Toshiyuki Amagasa, Masatoshi Yoshikawa, and Shunsukltra. A data model for temporal XML
documents. IMDEXA '00: Proceedings of the 11th International ConferenoeDatabase and Expert
Systems Applicationpages 334-344, London, UK, 2000. Springer-Verlag.

John Bair, Michael H. Bohlen, Christian S. Jensen, aich&d T. Snodgrass. Notions of upward
compatibility of temporal query languageBusiness Informatics (Wirtschafts InformafiBp(1):25—
34, 1997.

Andrey Balmin, Yannis Papakonstantinou, and Victorida Incremental validation of XML docu-
ments.ACM Transactions on Database Syste@®(4):710-751, 2004.

Denilson Barbosa, Alberto Mendelzon, Leonid Libkin,urant Mignet, and Marcelo Arenas. Effi-
cient incremental validation of XML documents. In Meral ©gsglu and Stan Zdonik, editor&0th
International Conference on Data Engineerjrigpston, MA, 2004. IEEE Computer Society.

Geert Jan Bex, Frank Neven, and Stijn Vansummeren. rinfgXML Schema definitions from XML
data. InVLDB '07: Proceedings of the 33rd international conferemceVery large data basepages
998-1009. VLDB Endowment, 2007.

Dorian Birsan, Harm Sluiman, and Stacey-Anne Fernz. Hiffland merge tool, 1999.

Michael H. Bohlen, Christian S. Jensen, and Richard fodgrass. Temporal statement modifiers.
ACM Transactions on Database SysteR%&4):407—-456, 2000.

Beatrice Bouchou and Mirian Halfeld-Ferrari. Updated ancremental validation of XML documents.
In Georg Lausen and Dan Suciu, editogh International Workshop on Data Base Programming
LanguagesPotsdam, Germany, 2003. Springer.

Zouhaier Brahmia and Rafik Bouaziz. Schema versioningulti-temporal XML databases. I€IS
08: Seventh IEEE/ACIS International Conference on Conmuté Information Science, 200Bages
158-164. IEEE Computer Society, 2008.

Harvey Bratman. A alternate form of the “uncol diagranCommunications of the ACM(3):142,
1961.

Peter Buneman, Susan Davidson, Weifei Fan, Carmem, ldathWangChiew Tan. Keys for XML.
Computer Networks39(5):473-487, 2002.

Peter Buneman, Sanjeev Khanna, Keishi Tajima, and W&inigw Tan. Archiving scientific data. In
Michael J. Franklin, Bongki Moon, and Anastassia Ailamaddjtors,ACM SIGMOD International
Conference on Management of Dapages 1-12, Madison, WI, 2002. ACM.

Thomas Burns, Elizabeth N. Fong, David Jefferson, RidhKnox, Leo Mark, Christopher Reedy,

Louis Reich, Nick Roussopoulos, and Walter TruszkowskifeRace model for doms standardiza-
tion, database architecture framework task group of théxa&tsparc database system study group.
SIGMOD Record15(1):19-58, 1986.

243

[15] Marcela Campo and Alejandro Vaisman. Consistency mifperal XML documents. I’XSym 2006:
Database and XML Technologies. 4th International XML Datsb Symposium, Proceedingsec-
ture Notes in Computer Science Vol. 4156, pages 31-45, S8outh Korea, 2006. Springer-Verlag.
9144700, temporal XML document, temporal data representatistorical information tracking, doc-
ument state recovery, temporal XML abstract model, tempmmastraint, document validation, tem-
poral XML consistency.

[16] XML Schema Versioning Use Cases. Framework for disouassf versioning, 2006. URL http:
Ilwvww.w3.0rg/XML/2005/xsd-versioning-use-cases, Viganuary 15th, 2007.

[17] Cristina De Castro, Fabio Grandi, and Maria Rita Scashema versioning for multitemporal rela-
tional databasednformation System£2(5):249-290, 1997.

[18] Sudarshan S. Chawathe, Serge Abiteboul, and JenniigorV Representing and querying changes
in semistructured data. 4th International Conference on Data Engineeripages 4-13, Orlando,
FL, USA, 1998. IEEE Computer Society.

[19] Shu Yao Chien, Vassilis J. Tsotras, and Carlo ZanioldficiEnt schemes for managing multiver-
sionXML documentsThe VLDB Journagl11(4):332—-353, 2002.

[20] Junghoo Cho and Hector Garcia-Molina. Estimating fiextpy of change.ACM Transactions on
Internet Technology3(3):256—290, 2003.

[21] James Clifford, Curtis Dyreson, Tomas Isakowitz, iStiein S. Jensen, and Richard Thomas Snod-
grass. On the semantics of “now” in databas&€M Transactions on Database Syste@®(2):171-
214, 1997.

[22] Gregory Cobena, Serge Abiteboul, and Amelie Mariantebing changes in XML documents. In
18th International Conference on Data Engineeripgges 41-52, San Jose, California, 2002. IEEE
Computer Society.

[23] Roger L. Costello and Melissa Utzinger. Impact of XMLhsena versioning on system design, 2007.
URL http://www.xfront.com/SchemaVersioning.html, Vied February 7th, 2007.

[24] Carlo A. Curino, Hyun J. Moon, and Carlo Zaniolo. Gradedatabase schema evolution: the prism
workbench. Invery Large Data Base (VLDB2008.

[25] Faiz Currim, Sabah Currim, Curtis E. Dyreson, and Ridh& Snodgrass. A tale of two schemas:
Creating a temporal XML schema from a shapshot schemanxgbhema. I9th International Con-
ference on Extending Database Technol|qmpges 559-560, Heraklion-Crete, Greece, 2004. Springer
Berlin / Heidelberg.

[26] Faiz Currim and Sudha Ram. Conceptually modeling wivel@nd bounds for space and time in
database constraintS&ommun. ACM51(11):125-129, 2008.

[27] Curtis Dyreson. Towards a temporal world-wide web: Ansaction time web server. IPth Aus-
tralasian Database Conferenceolume 23, pages 169-175, Gold Coast, Australia, 2001.

[28] Curtis Dyreson, Richard T. Snodgrass, Faiz Currim, 8atdah Currim. Schema-mediated exchange
of temporal XML data. IrER 2006: Proceedings of the 25th International Conferent€onceptual
Modeling Lecture Notes in Computer Science, Vol. 4215, pages 2I2-R#cson, AZ, USA, 2006.
Springer-Verlag. 9496307, schema-mediated temporal Xlsiia @xchange, Web servers, temporal
data collection.

244

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

Curtis Dyreson, Richard T. Snodgrass, Faiz Currim,a®aBurrim, and Shailesh Joshi. Weaving
temporal and reliability aspects into a schema tapeBtaya and Knowledge Engineerin§3(3):752—
773, 2007.

Curtis E. Dyreson, Michael Bohlen, and Christian Sisén. Capturing and querying multiple aspects
of semistructured data. In Malcolm P. Atkinson, Maria E.d$ka, Patrick Valduriez, Stanley B.
Zdonik, and Michael L. Brodie, editor&5th International Conference on Very Large Data Bases
pages 290-301, Edinburgh, Scotland, UK, 1999. Morgan Kaofm

Curtis E. Dyreson, Hui ling Lin, and Yingxia Wang. Mariag versions of web documents in a
transaction-time web server. WWW '04: Proceedings of the 13th international conferenc&\orld
Wide Webpages 422-432, New York, NY, USA, 2004. ACM.

Massimo Franceschet, Angelo Montanari, and Donatlidiani. Modeling and validating spatio-
temporal conceptual schemas in XML schemal8ih International Conference on Database and Ex-
pert Systems Applicationpages 25-9, Regensburg, Germany, 2007. IEEE. 987643f)-spaporal
conceptual schema validation, W3C XML schema language, lianary.

Enrico Franconi, Fabio Grandi, and Federica Mandreéatihema evolution and versioning: A logical
and computational characterisation. In Herman Balsteest 8e Brock, and Stefan Conrad, edi-
tors, 9th International Workshop on Foundations of Models andduages for Data and Objects,
FoMLaDO/DEMM 2000 Database Schema Evolution and Meta-Modeling, pages 8®&$stuhl,
Germany, 2000. Springer.

Jim Gabriel. How to version schemasXML-Conference and Exhibition, Washington DC, November,
2004 2004. URL http://www.idealliance.org/proceedings/@afpapers/74/howToVersionSchemas.
html, Viewed February 7th, 2007.

E GammaDesign Patterns: Elements of Reusable Object-Orientetv8ad Addison-Wesley, 1995.

Dengfeng Gao and Richard T. Snodgrass. Syntax, secsaatid evaluation in thexquery temporal
XML query language. Technical Report Technical Report TRIimeCenter, February 2003.

Dengfeng Gao and Richard T. Snodgrass. Temporal glizinthe evaluation of XML queries. In
VLDB '2003: Proceedings of the 29th international confereon Very large data basggages 632—
643. VLDB Endowment, 2003.

Manolis Gergatsoulis and Yannis Stavrakas. Represgohanges in XML documents using dimen-
sions. InDatabase and XML Technologjeslume 2824 of_ecture Notes in Computer Scienpgages
208-222. Springer-Verlag Berlin, Berlin, 2003. I1SI DocurnBelivery No.: BY03G Heidelberg Platz
3, D-14197 Berlin, Germany.

Ana Isabel Gonzalez-Tablas, L. M. Salas, BenjamimBs, and Arturo Ribagorda. Providing person-
alization and automation to spatial-temporal stampingises. InProceedings - International Work-
shop on Database and Expert Systems Applications, DEXl&me 2006, pages 219-225, Copen-
hagen, Denmark, 2006. Institute of Electrical and Ele¢t®iEngineers Inc., New York, NY 10016-
5997, United States. Compilation and indexing terms, Gghy12008 Elsevier Inc. 064010145615,
Stamping services, Spatial-temporal stamping, Inforomathodel, Personalization.

Fabio Grandi. A bibliography on temporal and evolut@spects in the world wide web. Technical
Report Technical Report TR-75, TimeCenter, September.2003

245

[41] Fabio Grandi and Federica Mandreoli. The valid web:tiitse to go. Technical Report Technical
Report TR-46, TimeCenter, October 1999.

[42] Fabio Grandi and Federica Mandreoli. The valid web: ANXXSL infrastructure for temporal
management of web documents.ABVIS "00: Proceedings of the First International Confereron
Advances in Information Systeppages 294-303, London, UK, 2000. Springer-Verlag.

[43] Bo Huang, Shanzhen Yi, and Weng Tat Chan. Spatio-teahfiiormation integration in xmlFuture
Generation Computer Systen29(7):1157-1170, 2004. 1SI Document Delivery No.: 861BM.

[44] Mizuho Iwaihara, Somchai Chatvichienchai, Chutipémutariya, and Vilas Wuwongse. Relevancy
based access control of versioned XML documentsSACMAT '05: Proceedings of the tenth ACM
symposium on Access control models and technolog@ges 85-94, New York, NY, USA, 2005.
ACM.

[45] Christian S. Jensen and Curtis E. Dyreson. A consensgsayy of temporal database concepts, 1998.

[46] Christian S. Jensen and Richard T. Snodgrass. Temgaiamanagement. Technical Report Technical
Report TR-17, TimeCenter, June 1997.

[47] Shailesh JoshirXSchema - support for data- and schema-versioned XML dontsnblaster’s thesis,
Computer Science Department, University of Arizona, Au@@®7.

[48] Vijay Khatri, Sudha Ram, and Richard T. Snodgrass. Aegtimg a conceptual model with geospa-
tiotemporal annotation$EEE Transactions on Knowledge and Data Engineerit(11):1324-1338,
2004.

[49] Dongwon Lee and Wesley W. Chu. Comparative analysisxoK®IL schema languagesSIGMOD
Record 29(3):76—-87, 2000.

[50] Libxml. The XML C parser and toolkit of Ghome, versior/2, 2008. http://xmlsoft.org/, Viewed
February 5, 2009.

[51] Federica Mandreoli, Riccardo Martoglia, and EnriconRletti. Supporting temporal slicing in XML
databases. IEDBT 2006: 10th International Conference on Extending bate Technology. Pro-
ceedings (Lecture Notes in Computer Science Vol.3896), pages 2BB-Blunich, Germany, 2006.
Springer-Verlag. 8923096.

[52] Amélie Marian. Detecting changes in XML documents. IGDE '02: Proceedings of the 18th In-
ternational Conference on Data Engineerjmmage 41, Washington, DC, USA, 2002. IEEE Computer
Society.

[53] Amélie Marian, Serge Abiteboul, Gregory Cobena, aadfent Mignet. Change-centric management
of versions in an XML warehouse. WiLDB '01: Proceedings of the 27th International Conference
Very Large Data Basgepages 581-590, San Francisco, CA, USA, 2001. Morgan KauifrRablishers
Inc.

[54] Jason McHugh and Jennifer Widom. Query optimizatian¥diL. In Malcolm P. Atkinson, Maria E.
Orlowska, Patrick Valduriez, Stanley B. Zdonik, and MichkeBrodie, editors,25th International
Conference on Very Large Databaspages 315-326, Edinburgh, Scotland, UK, 1999. Morgan Kauf
mann.

246

[55] William M. McKeeman, James J. Horning, and David B. Waaih. A Compiler GeneratorPrentice-
Hall, Englewood Cliffs, NJ, 1970.

[56] L. Edwin McKenzie and Richard T. Snodgrass. An evahratf relational algebras incorporating the
time dimension in databaseACM Computing Survey23(4):501-543, December 1991.

[57] Alberto O. Mendelzon, Flavio Rizzolo, and Alejandroisf@an. Indexing temporal XML documents.
In In Proceedings of the 30th International Conference on \laagge Databasespages 216-227,
2004.

[58] Tova Milo, Serge Abiteboul, Bernd Amann, Omar Benjatlip and Fred Dang Ngoc. Exchanging
intensional XML data. IMPACM SIGMOD International Conference on Management of Dptgyes
289-300, San Diego, CA, 2003.

[59] Benjamin Nguyen, Serge Abiteboul, Gregory Cobena,Mefai Preda. Monitoring XML data on the
web. In Timos Sellis, editoACM SIGMOD International Conference on Management of Daéages
437-448, Santa Barbara, CA, 2001.

[60] Kijetil N@rvag. Algorithms for temporal query operasoin XML databases. IEDBT Workshops
pages 169-183, 2002.

[61] OMG. Unified modeling language (UML), v2.2, Februar020

[62] Gultekin Ozsoyoglu and Richard T. Snodgrass. Tempanal real-time databases:a surveizEE
Transactions on Knowledge and Data Engineerin@}):513-532, August 1995.

[63] Yannis Papakonstantinou and Victor Vianu. Incremievafidation of XML documents. In Diego Cal-
vanese, Maurizio Lenzerini, and Rajeev Motwani, editdth, International Conference on Database
Theory pages 4763, Siena, Italy, 2003. Springer.

[64] SAX project. Sax project, official website, 2007. URIltghf/www.saxproject.org, Viewed March 26,
2007.

[65] TAU Project. rxschema, computer science department at the universitsizoina, 2007. URL http:
Ilwww.cs.arizona.edu/projects/tau/txschema/index, htiewed March 26, 2007.

[66] Mukund Raghavachari and Oded Shmueli. Efficient releion of XML documentsIEEE Transac-
tions on Knowledge and Data Engineerjri(4):554-567, 2007. 1041-4347.

[67] Flavio Rizzolo and Alejandro A. Vaisman. Temporal XMhpdeling, indexing, and query processing.
The VLDB Journal The International Journal on Very Large ®8ases17(5):1179-1212, 2008.

[68] John F. Roddick. Schema evolution in database systamsnnotated bibliographysIGMOD Reg.
21(4):35-40, 1992.

[69] John F. Roddick. A survey of schema versioning issuedditabase systemsiformation and Software
Technology37(7):383—393, 1995.

[70] Richard Snodgrass. The temporal query language TQAEBM Transactions on Database Systems
12(2):247-298, 1987.

[71] Richard T. Snodgrass. Temporal object oriented datedaA critical comparison. In W. Kim, editor,
Modern Database Systems: The Object Model, Interopetglsitid Beyongdpages 386—408. Addison-
Wesley/ACM Press, 1995.

247

[72] Richard T. SnodgrassDeveloping time-oriented database applications in SQMorgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2000.

[73] Richard T. Snodgrass and llsoo Ahn. Temporal databd&&dE Computer19(9):35—42, 1986.

[74] Richard Thomas Snodgrass, S. Gomez, and E. McKenzigrejates in the temporal query language
tquel. IEEE Transactions on Knowledge and Data Engineerbi$):826—842, 1993.

[75] Na Tang, Yong Tang, and MiaoMiao Cai. Bitemporal extensand mapping of XML data model. In
Proceedings of the 2007 11th International Conference om@ider Supported Cooperative Work in
Design pages 757-61, Melbourne, Vic., Australia, 2007. IEEE.(44Z .

[76] Abdullah Uz Tansel, James Clifford, Shashi Gadia, 8uJstjodia, Arie Segev, and Richard Snodgrass,
editors. Temporal databases: theory, design, and implementat®enjamin-Cummings Publishing
Co., Inc., Redwood City, CA, USA, 1993.

[77] W3C. XML path language (XPath), version 1.0, w3c recagnghation, november 1999, 1999. URL
http://www.w3.org/TR/xpath, Viewed February 5, 2008.

[78] W3C. XML schema part 2: Datatypes, May 02 2001.
[79] W3C. XQuery 1.0: An XML query language, W3C working drab august 2002, August 16 2002.

[80] W3C. XML schema part 1: Structures second edition, W8&mmendation, october 2004, October
2004. URL http://Iwww.w3.org/TR/xquery, Viewed February?008.

[81] W3C. XML schema, second edition, W3C recommendatid@@42 URL http://www.w3.org/XML/
Schema.html, Viewed March 25, 2009.

[82] W3C. Document object model, 2007. http://www.w3.@@M, Viewed March 26, 2007.

[83] W3C. Document type definition (DTD) language, 2007. URittp://www.w3.0rg/TR/REC-xml/
dt-doctype, Viewed March 25, 2007.

[84] W3C. Extensible Markup Language (XML) 1.0, August 2006ttp://www.w3.org/TR/REC-xml,
Viewed August 25, 2008.

[85] Fusheng Wang and Carlo Zaniolo. Temporal queries anslore management in XML-based docu-
ment archives.Data and Knowledge Engineering5(2):304—-324, 2008. Compilation and indexing
terms, Copyright 2008 Elsevier Inc.081411182348 0169X023

[86] Raymond K. Wong and Nicole Lam. Managing and queryindtiaimersion XML data with update
logging. InDocEng '02: Proceedings of the 2002 ACM symposium on Docuergineering pages
74-81, New York, NY, USA, 2002. ACM.

[87] Vilas Wuwongse, Masatoshi Yoshikawa, and Toshiyukiggasa. Temporal versioning of XML doc-
uments. In7th International Conference on Asian Digital Librarie§€ADL 2004. Proceedings (Lec-
ture Notes in Computer Science Vol.333@)gital Libraries: International Collaboration and Cses
Fertilization, pages 419-28, Shanghai, China, 2004. §erikferlag. 8411139.

[88] XMLSpy. XML editor for modeling, editing, transform@ & debugging XML technologies., 2007.
URL http://www.altova.com/products/xmlispy/xnelditor.html, Viewed April 18, 2007.

248

[89] XUpdate. XML update language, working draft 2000-08-12000. URL http://xmidb-org.
sourceforge.net/xupdate/xupdate-wd.html, Viewed ApBil 2007.

[90] Lucie Xyleme. Xyleme: A dynamic warehouse for XML dafitloe web. INNDEAS '01: Proceedings
of the International Database Engineering & Applicationgrosium pages 3—7, Washington, DC,
USA, 2001. IEEE Computer Society.

[91] Cong Yu and Lucian Popa. Semantic adaptation of scheappings when schemas evolve MhDB
'05: Proceedings of the 31st international conference oryVarge data basespages 1006-1017.
VLDB Endowment, 2005.

249

250

© 0 N O 0B W NP

W W wWwwWwwWwwNNNNNNNNRNDNERERRRRR R R PP
O B W NP O © 0N U B WNEF O ®© N UM WNE O

© 0 ~N O U1 A W N P

PR R R R R R R
© N o b W N Rk O

A Base Schemas

A.1 TSSchema: Schema for Temporal Schema

Listing 174: TSSchema.xsd

<?xm version ="1.0" encoding ="UTF-8"?>
<xs:schema targetNamespace ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema
xmlns :ts ="http://www.cs.arizona.edu/tau/tauXSchema/TSSchema
xmins :xs ="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault ="qualified"
version ="December 5, 2008">

<xs:incl ude schemalocation ="./SliceSequence.xsd"/>

<xs: el ement name="temporalSchema">
<xs:conpl exType>
<xS:sequence>

<xs: el ement name="conventionalSchema" minQccurs ="1" maxOccurs ="1">

<xs:conpl exType>
<xs: choi ce>

<xs: el ement name="sliceSequence" type ="ts:sliceSequenceType"/>

<xs: el enent name="include" type ="ts:includeType"/>
</xs _: choi ce>
</xs : conpl exType>
</xs : el enent>
<xs: el ement name="annotationSet" minOccurs ="0" maxOccurs ="1">
<xs:conpl exType>
<xs: choi ce>

<xs: el ement name="sliceSequence" type ="ts:sliceSequenceType"/>

<xs: el enent name="include" type ="ts:includeType"/>
</xs _: choi ce>
</xs : conpl exType>
</xs _: el enent>

</xs :sequence>
</xs_: conpl exType>
</xs : el enent >
</xs :schenma>

A.2 ASchema: Schema for Annotation Schema

Listing 175:ASchema.xsd

<?xm version ="1.0" encoding ="UTF-8"?>
<xs:schema targetNamespace ="http://www.cs.arizona.edu/tau/tauXSchema/ASchema"
xmlins : a="http://www.cs.arizona.edu/tau/tauXSchema/ASchema"
xmins :xs ="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault ="qualified"
version ="December 5, 2008">

<xs: el ement name="annotationSet">
<xs:conpl exType>

<xs:all>
<xs: el ement name="logical" type ="a:logicalType" minOccurs ="0" maxOccurs
<xs:el ement name="physical* type ="a:physicalType" minOccurs ="0" maxOccurs

</xs :all>
</xs : conpl exType>
</xs _: el enent>

251

gt fs
="1">

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42
43
a4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

<xs:conpl exType name="logicalType">
<xs:sequence>

<xs: el ement name="include" minOccurs ="0" maxOccurs ="unbounded">

<xs:conpl exType>
<xs:attribute name="annotationLocation" type ="xs:anyURI"/>
</xs : conpl exType>
</xs : el enent>
<xs: el ement name="defaultTimeFormat" minOccurs ="0">
<xs:conpl exType>
<xs:sequence>

<xs: el ement name="format" minOccurs ="0">
<xs:conpl exType>
<xs:attribute name="plugin" type ="xs:string" use __ ="optional"/>
<xs:attribute name="granularity" type ="xs:string" use ___ ="optional"/>
<xs:attribute name="calendar" type ="xs:string" use __ ="optional"/>
<xs:attribute name="properties" type ="xs:string" use ___ ="optional"/>
<xs:attribute name="valueSchema" type ="xs:anyURI" use _ ="optional'/>
</xs :conpl exType>
</xs _: el enent>
</xs :sequence>
</xs _: conpl exType>
</xs : el enent>
<xs: el ement name="item" minOccurs ="0" maxOccurs ="unbounded">
<xs:conpl exType>
<xs:sequence>
<xs:el ement name="validTime" minOccurs ="0">
<xs:conpl exType>
<xs:sequence>
<xs:el ement name="contentVaryingApplicability"
minOccurs ="0" maxOccurs ="unbounded">
<xs:conpl exType>
<xs:attribute name="begin" type ="xs:string" use ___ ="optional"/>
<xs:attribute name="end" type ="xs:string" use ___ ="optional"/>
</xs : conpl exType>
</xs _: el enent>
<xs: el ement name="maximalExistence" minOccurs ="0">
<xs:conpl exType>
<xs:attribute name="begin" type ="xs:string" use __ ="optional'/>
<xs:attribute name="end" type ="xs:string" use ___ ="optional"/>
</xs : conpl exType>
</xs : el enent>
<xs:el ement name="frequency" type ="xs:string" minOccurs ="0"/>
</xs :sequence>
<xs:attribute name="kind"
type ="a:kindType" use_ ="optional'/>
<xs:attribute name="content"
type ="a:contentType" use _ ="optional"/>
<xs:attribute name="existence"
type ="a:existenceType" use ___ ="optional'/>
</xs : conpl exType>
</xs _: el enent>
<xs: el ement name="transactionTime" minOccurs ="0">
<xs:conpl exType>
<xS:sequence>
<xs:el ement name="frequency" type ="xs:string" minOccurs ="0"/>
</xs _:sequence>
<xs:attribute name="kind" type ="akindType" use__ ="optional'/>
<xs:attribute name="content" type ="a:contentType" use ___ ="optional'/>
<xs:attribute name="existence" type ="a:existenceType" use _ ="optional'/>

</xs_:conpl exType>
</xs : el enent >
<xs: el ement name="itemldentifier" minOccurs ="0">
<xs:conpl exType>
<xS:sequence>
<xs:el ement name="keyref' minOccurs ="0" maxOccurs

="unbounded">

<xs:conpl exType>

252

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

<xs:attribute name="refName"

type ="xs:string" use __ ="required"/>
<xs:attribute name="refType"
type :ua:keyreﬂ-ype”" use 7:"optional"/>

</xs _:conpl exType>
</xs : el enent>

<xs:el ement name="field" minOccurs ="0" maxOccurs ="unbounded">

<xs:conpl exType>

<xs:attribute name="path" type ="xs:string" use ="required"/>

</xs : conpl exType>
</xs _: el enent>
</xs _:sequence>
<xs:attribute name="name"
type ="xs:string" use __ ="optional'/>
<xs:attribute name="timeDimension"
type ="a:timeDimensionType" use
</xs :conpl exType>
</xs _: el enent>
<xs: el enent name="attribute" minOccurs ="0" maxOccurs ="unbounded">
<xs:conpl exType>
<xs:sequence>
<xs: el ement name="validTime" minOccurs ="0">
<xs:conpl exType>
<xs:sequence>
<xs: el ement name="contentVaryingApplicability"
minOccurs ="0" maxOccurs ="unbounded">
<xs:conpl exType>
<xs:attribute name="begin"

="optional"/>

type ="xs:string" use ="optional"/>
<xs:attribute name="end"
type ="xs:string" use ="optional"/>

</xs _: conpl exType>
</xs : el enent >

<xs: el ement name="frequency" type ="xs:string" minOccurs

</xs :sequence>
<xs:attribute name="kind"
type ="a:kindType" use___ ="required"/>
<xs:attribute name="content"
type ="a:contentType" use ___ ="optional'/>
</xs :conpl exType>
</xs _: el enent>
<xs: el ement name="transactionTime" minOccurs ="0">
<xs:conpl exType>
<xs:sequence>

<xs:el ement name="frequency" type ="xs:string" minOccurs

</xs :sequence>
</xs : conpl exType>
</xs _: el enent>
</xs :sequence>
<xs:attribute name="name" type ="xs:string" use ___ ="optional"/>
</xs_:conpl exType>
</xs : el enent >
</xs :sequence>
<xs:attribute name="target" type ="xs:anyURI" use ="required"/>
</xs _:conpl exType>
</xs : el enent>
</xs :sequence>
</xs_: conpl exType>

<l-- Simple Types used by the logical annotations above -->
<xs:si npl eType name="kindType">
<xs:restriction base="xs:string">
<xs:enuneration value ="state"/>
<xs:enuneration value ="event'/>
</xs :restriction>
<Ixs _:sinpl eType>
<xs:si npl eType name="keyrefTypell">
<xs:restriction base="xs:string">

253

="0"/>

="0"/>

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

<xs:enumneration value ="snapshot'/>
<xs:enuneration value ="itemldentifier'/>
</xs :restriction>
<l-- Il in "keyrefTypell" stands for Itemldentifier -->
</xs :sinpl eType>
<xs: si npl eType name="contentType">
<xs:restriction base="xs:string">
<xs:enumeration value ="constant'/>
<xs:enuneration value ="varying"/>
</xs :restriction>
</xs :sinpl eType>
<xs:si npl eType name="existenceType">
<xs:restriction base="xs:string">
<xs:enuneration value ="constant"/>
<xs:enuneration value ="varyingWithGaps"/>
<xs:enuneration value ="varyingWithoutGaps"/>
</xs :restriction>
</xs :sinpl eType>
<xs: si npl eType name="timeDimensionType">
<xs:restriction base="xs:string">
<xs:enuneration value ="validTime"/>
<xs:enumeration value ="transactionTime"/>
<xs:enuneration value ="bitemporal'/>
</xs :restriction>
</xs :sinpl eType>

<xs:conpl exType name="physicalType">
<xs:sequence>

<xs: el ement name="include" minOccurs ="0" maxOccurs ="unbounded">

<xs:conpl exType>

<xs:attribute name="annotationLocation" type ="xs:anyURI"/>
</xs : conpl exType>
</xs : el enent>
<xs: el ement name="defaultTimeFormat" minOccurs ="0">
<xs:conpl exType>
<xs:sequence>
<xs: el ement name="format" minOccurs ="0">
<xs:conpl exType>
<xs:attribute name="plugin"
type ="xs:string" use ___ ="optional'/>
<xs:attribute name="granularity"
type ="xs:string" use __ ="optional'/>
<xs:attribute name="calendar"
type ="xs:string" use __ ="optional'/>
<xs:attribute name="properties"
type ="xs:string" use __ ="optional'/>
<xs:attribute name="valueSchema"
type ="xs:string" use __ ="optional'/>

</xs_:conpl exType>
</xs _: el enent >
</xs :sequence>
</xs _: conpl exType>
</xs : el enent>
<xs:el ement name="stamp" minOccurs ="0" maxOccurs

="unbounded">

<xs:conpl exType>
<xs:sequence>
<xs: el ement name="stampKind">
<xs:conpl exType>
<xs:sequence>

<xs:el ement name="format" minOccurs

<xs:conpl exType>
<xs:attribute name="plugin"
type ="xs:string" use
<xs:attribute name="granularity"
type ="xs:string" use
<xs:attribute name="calendar"
type ="xs:string" use

254

="Q">

="optional"/>
="optional"/>

="optional"/>

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243]
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273]
274
275
276
277
278
279
280

<xs:attribute name="properties"

type ="xs:string" use ="optional"/>
<xs:attribute name="valueSchema"
type ="xs:string" use ="optional"/>

</xs _:conpl exType>
</xs : el enent>
</xs :sequence>
<xs:attribute name="timeDimension"
type ="a:timeDimensionType" use
<xs:attribute name="stampBounds"
type ="a:stampType" use _ ="optional'/>
</xs_:conpl exType>
</xs : el enent >
<xs: el ement name="orderBy" minOccurs ="0">
<xs:conpl exType>
<xs:sequence>
<xs: el ement name="field" maxOccurs ="unbounded">
<xs:conpl exType>
<xs: choi ce>
<xs:el ement name="target" type ="xs:string"/>
<xs:el ement name="time">
<xs:conpl exType>
<xs:attribute name="dimension" type ="a:timeDimensionType"/>
</xs :conpl exType>
</xs _:el enent>
</xs :choice>
</xs : conpl exType>
</xs _: el enent>
</xs :sequence>
</xs_:conpl exType>
</xs : el enent >
</xs :sequence>
<xs:attribute name="target"

="optional"/>

type ="xs:string" use ="required"/>
<xs:attribute name="datalnclusion"
type ="a:datalnclusionType" use ="optional"/>

</xs _:conpl exType>
</xs : el enent>
</xs :sequence>
</xs : conpl exType>

<xs:si npl eType name="stampType">
<xs:restriction base="xs:string">
<xs:enumneration value ="step"/>
<xs:enuneration value ="extent"/>
</xs :restriction>
</xs :sinpl eType>
<xs:si npl eType name="datalnclusionType">
<xs:restriction base="xs:string">
<xs:enuneration value ="expandedEntity"/>
<xs:enuneration value ="referencedEntity"/>
<xs:enuneration value ="expandedVersion"/>
<xs:enuneration value ="referencedVersion"/>
</xs :restriction>
<Ixs _:sinpl eType>

</xs :schema>

255

© 0 N O OB W N -

NN B B R R R B R B B
B O © ® N ® 0 A WN B O

© 0 N O 00 B W N -

WWNNRNNNNNNNNERERRR R B B B B
P O © X0 N0 U A WWNREOO®MNO®OD™®WNEO

A.3 SliceSequenceSchema: Schema for Slice Sequences

Listing 176: SliceSequence.xsd

<?xm version ="1.0"?>

<xs:schem
xmlins :xs ="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault ="qualified">

<xs:conpl exType name="sliceSequenceType">
<xs:sequence>

<xs: el ement name="slice" minOccurs ="1" maxOccurs ="unbounded">
<xs:conpl exType>
<xs:attribute name="location" type ="xs:string" use ___ ="required"/>
<xs:attribute name="begin" type ="xs:date" use ="required"/>
<xs:attribute name="end" type ="xs:date" use __ ="optional'/>

</xs : conpl exType>
</xs _: el enent>
</xs :sequence>
</xs _: conpl exType>

<xs:conpl exType name="includeType">
<xs:attribute name="schemalocation" type ="xs:string" use ___ ="required"/>
</xs : conpl exType>
</xs :schenma>

A.4 TDSchema: Schema for Temporal Document

Listing 177: TDSchema.xsd

<?xm version ="1.0" encoding ="UTF-8"?>
<xs:schema targetNamespace ="http://www.cs.arizona.edu/tau/tauXSchema/TDSchema "
xmins :td ="http://www.cs.arizona.edu/tau/tauXSchema/TDSchema "
xmins :xs ="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault ="qualified"
version ="December 5, 2008">

<xs:incl ude schemalocation ="./SliceSequence.xsd"/>

<xs: el ement name="temporalDocument">
<xs:conpl exType>
<xS:sequence>

<xs:el ement name="temporalSchemaSet" minOccurs ="1" maxOccurs ="1">
<xs:conpl exType>
<xs:sequence>
<xs: el ement name="temporalSchema" minOccurs ="1" maxOccurs ="unbounded">
<xs:conpl exType>
<xs:attribute name="location" type
</xs :conpl exType>
</xs _: el enent>
</xs :sequence>
</xs : conpl exType>
</xs _: el enent>

="xs:string"/>

<xs:el ement name="sliceSequence" type ="td:sliceSequenceType"/>

</xs :sequence>
</xs : conpl exType>
</xs : el enent >
</xs :schema>

256

© 0 N O 0 Bh W NP

OO UG U g g0 S A DS SN DD DN ®WWWWWWWWWNRNNNNNRNNNRNERRR B B B op e
PO © 0 NO®ahMNRLOOGC®®NOD®ONEN®INRLOS O ®NO OO ONPO®©®ONOAAENM®NRLROO®NO®OUS™®WNEREO

B Evaluation Tools

B.1 Slice Generator

Listing 178: Slice Generator script

#/usr/bin/perl -w

B B
#

Author: Stephen W. Thomas

Date: Fall 2008

Purpose: To generate a large number of XML slices. The

output of this script is a set of sliceXX.xml
files along with config.xml file used in the
tools.

#

ST A R A A A T S

if (S#ARGV < 3){

print "Usage: $0 amountChange docSize changeKind numSlices\n";

exit 1;

$amountChange = $ARGVI[0];

$docSize = $ARGV[]1];
$changeKind = $ARGV[2];
$numSlices = $ARGV[3];

Set begin date

$lastDate = "2008-01-01"

ny $numParts = $docSize;

Probability that any given element is changed

ny $pNewVersion = $amountChange * $changeKind;

Probability that a new item (element) is created

257

62

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106,

107

108

109)

110

111

112

113

114

115

116,

117

118

119

120

121

122

123

124

125

126,

127

128

129

ny $pNewltem = $amountChange =+ (1.0-$changeKind);
#nitialize values
$totalPossible = $numParts * (10 *»$numSlices);
nmy @partQuant;
for ($j=0; $j < S$totalPossible; ++$j)}{
$partQuant[$j] = $j;
}
Print header of config document
open(CONFIG, ">config.xml");
print CONFIG "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n";
print CONFIG "<config bundle=\"./test_bundle.xml\"
xmlins=\"http://www.cs.arizona.edu/tau/tauXSchema/Co
Print each slice to disk, and add the name of the slice to the ¢
for ($i = 0; $i <= $numSlices; ++$i)}{
printLargeFile($i);
addSnapshotToConfig($i);
}
print CONFIG "</config>\n"
Adds an entry into the config file
sub addSnapshotToConfig{
$outfile = "slice$i.xml";
$datel = $lastDate;
$lastDate = incrementDate($datel);

print CONFIG

<snapshot file=\"$outfile\" beginDate=\"$datel\" endD

Increments a simple date format "YYYY-MM-DD" with wrappin

258

nfigSchema\">\n";

onfig file

ate=\"$lastDate\"/>\n";

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

sub incrementDate{

$firstDate = shift(@_);
$incMonth = 0;
$incYear = 0;
@ar = split("-", $firstDate);
$firstyear = $ar[0];
$firstMonth = $ar[1];
$firstDay = $ar[2];
$newDay = $firstDay + 1;
if ($newDay > 28)
$newDay =1,
$incMonth = 1,
}
$newMonth = $firstMonth + $incMonth;
i f ($newMonth > 12){
$newMonth = 1;
$incYear = 1;
}
$newYear = $firstYear + $incYear;
return sprintf "%4d-%02d-%02d", $newYear,$newMonth,$newDay;
}

ST R T A

In each additional slice, we may add more elements to each se

We may also change the content of existing elements.
BRI G G A S B B g i 2

sub printLargeFile{

Should we increase the number of <part> elements?

if (rand() <= $pNewltem){

259

ST A

ction.

BHHFHHAHH B

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243]
244
245
246
247
248
249
250
251
252
253
254
255
256
257

$numParts

= $numParts + rand(10);

$outfile = "slice$i.xml";

open(OUT, ">$outfile");

print OUT "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n";

print OUT "<root>\n"

print OUT "<parts>\n";

Print out every <part> element that we have.

for ($=0; $j < $numParts; ++$j){

Should we create a new "version" of this element?

A new version is created by just changing the value

of the <quantity> subelement.

if (rand() <= $pNewVersion){

$partQuant[$j]++;
}
print OUT " <part>\n"
print OUT " <name>part_$j</name>\n";
print OUT " <id>$j</id>\n";
print OUT " <quantity>$partQuant[$j]</quantity>\n";
print OUT " </part>\n"

}

print OUT "</parts>\n",

print OUT "</root>\n"

260

© 0 ~N O U1 A W N P

o 000 o U g O ug ool gA SRR DND DD DD ®EWWWWWWWWRNNNNNNNNRNDNERERRRRRRPR PR
B WN P OO ®N®abd W®WRNPRP O O®NO Ol ®O®NP OO ®NOAOBRKO®NERPROO®NODWAOBRSWNEROO®NOAODMWNLEPRPO

B.2 Scenario Tester

Listing 179: AllRuns script

#!/usr/bin/perl

A R R R e s i A i S R
#

Author: Stephen W. Thomas

Date: Fall 2008

Purpose: To execute a large set of runs and output results

to stdout.

#

A R R R s s e i SR

use Time:HiRes qw(gettimeofday tv_interval);
ny $N = 30;

Define the variables and their values

my @amountChanges = (0, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64);
ny @docSizes = (1000, 4000, 16000, 64000);

ny @degrees = (0, .25, .5, .75, 1);

my @numsSlices = (100, 1000, 5000, 10000);

ny ($t1, $t2, $squashTime, $squashSize, $valTime, $unsquash Time);

Full factorial design space. Run all cases.
foreach ny $amountChange (@amountChanges) {
foreach ny $docSize (@docSizes) {
foreach ny $degree (@degrees) {
foreach ny $numSlice (@numSilices) {

$squashTime = 0;
$squashSize = 0;
$valTime = 0;

=0

$unsquashTime

for (nmy $i=0; $i<$N; ++$i){

#print "Producing test case $amountChange $docSize $degre
syst en("generator.pl $amountChange $docSize $degree $numSlice

Run Squash

$t1 = [gettimeofday];

syst enm("squash config.xml");

$squashTime += tv_interval($tl);

$squashSize += ‘Is -I squashed.xml | awk ‘{ print\$5 }";

Run tXMLLint

$t1 = [gettimeofday];

syst en("txmllint config.xml squashed.xml > /dev/null");
$valTime += tv_interval($tl);

Run UnSquash

$t1 = [gettimeofday];

syst en("unsquash config.xml squashed.xml");
$unsquashTime += tv_interval($tl);

systen("rm slice *");
syst en("rm squashed.xml");

}

Get averages
$squashTime
$squashSize

$squashTime / $N;
$squashSize / $N;

261

e $numSlice \n";

);

65
66
67
68
69
70
71
72
73
74
75
76

$valTime / $N;
$unsquashTime / $N;

$valTime
$unsquashTime

Output results
printf "%12.5f %12.5f %12.5f %12.5f %12.5f %12.5f %12.5f %12.5f\n
$amountChange, $docSize, $degree, $numSlice,
$squashTime, $squashSize,
$valTime, $unsquashTime;
}
}

262

C Initial Sensitivity to Parameters

This appendix provides details on the results of the ingigderiments executed. The goal was to determine
whether or not the dependent variables of interest werétsen® the amount of change and type of change
between each slice. Figure 71 shows the resultQfASH in these scenarios. In this figure, the slice-based
and item-based representation schemes show almost nedifein performance between both percentage
change increasegaxis) or type of change increased (lines). The edit-basedme shows some small
variation, but no general trend is evident and the absoluteuat of change is small.

We see that for each representation type, as the percentat@rmge increases, the time required to
squash the document does not increase significantly. Figirehows the results of a larger scenario,
but the trends exhibited by the results are similar. . Agtin,slice-based and item-based representation
schemes show almost no difference in performance betwebnpeocentage change increasesakis) or

type of change (lines). The edit-based scheme shows sonievamation, but no general trend is evident
and the absolute amount of change is small.

Slice-based Edit-based Iltem-based
10 10 T T 10 T
-¥0.25 -¥-0.25
8 _. 8 -=-0.50~ __ 8 ~=-0.50
1) [%) [%)
2 --0.25 i f': \ 75| 2 75
8 6 8 6 10| 8 6 —--1.0
8 -=-0.50 8 { \\\ . g .
~g 447—A—75 ‘é 4 Al . \é 4
--1.0
= ‘ E \F‘ E -
2 3 2 2~ * 4
0 0 0
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Percentage Change (%) Percentage Change (%) Percentage Change (%)
(a) Slice-based (b) Edit-based (c) ltem-based

Figure 71: Time required to squash 10 slices, each with atldetements

Slice-based Edit-based Item-based
10 10 T T 10
-¥-0.25
. 8 _. 8 -=-050— __ 8
[%2) [2) [2)
2 67—'v'—0.25 ke . R)\ —A- 75 |2 6_ L,
§ -%-0.50 § --1.0 § =
2 - 75 2 2
o 4 . o 4 o 4 -v0.25_
£ £ L £
£ —--1.0 s £ f‘ \x E N —#-0.50Ly
2 ;4 - = 2¢ v 2 —A- 75 —
—-10
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Percentage Change (%) Percentage Change (%) Percentage Change (%)
(a) Slice-based (b) Edit-based (c) Item-based

Figure 72: Time required to squash 100 slices, each withtet@elements (20 slices with 20 elements in
the case of the item-based scheme)

Both UNSQuAsH and7XMLL INT show similar trends. In effort to reduce to number of experits

run, we conclude that the type and frequency of change is laoga factor in representation performance,
and thus we can fix these parameters for the remainder of eziments.

263

