
On the Semantics of “Now” in Databases

JAMES CLIFFORD
New York University, New York, NY
CURTIS DYRESON
James Cook University, Townsville, Australia
TOMÁS ISAKOWITZ
New York University, New York, NY
CHRISTIAN S. JENSEN
Aalborg University, Aalborg, Denmark
and
RICHARD T. SNODGRASS
University of Arizona, Tucson, AZ

Although “now” is expressed in SQL as CURRENT_TIMESTAMP within queries, this value
cannot be stored in the database. However, this notion of an ever-increasing current-time
value has been reflected in some temporal data models by inclusion of database-resident
variables, such as “now”, “until-changed,” “`,” “@,” and “–”. Time variables are very desirable,
but their use also leads to a new type of database, consisting of tuples with variables, termed
a variable database.

This article proposes a framework for defining the semantics of the variable databases of the
relational and temporal relational data models. A framework is presented because several
reasonable meanings may be given to databases that use some of the specific temporal
variables that have appeared in the literature. Using the framework, the article defines a
useful semantics for such databases. Because situations occur where the existing time
variables are inadequate, two new types of modeling entities that address these shortcomings,
timestamps that we call now-relative and now-relative indeterminate, are introduced and
defined within the framework. Moreover, the article provides a foundation, using algebraic

Partial support for Curtis Dyreson and Richard Snodgrass was provided by the National
Science Foundation through grants IRI-8902707 and IRI-9302244, the IBM Corporation
through Contract #1124, and the AT&T Foundation. Partial support for Christian S. Jensen
was provided by the Danish Natural Science Research Council through grants 11-9675-1 SE
and 11-0061.
Authors’ addresses: J. Clifford and T. Isakowitz, Information Systems Department, Leonard
N. Stern School of Business, New York University, 44 W. 4th Street, New York, NY 10012;
email: {tisakowi}@stern.nyu.edu&; C. Dyreson, Department of Computer Science, James Cook
University, Townsville, Queensland Q4811, Australia; email: ^dyreson@cs.jcu. edu.au&; C. S.
Jensen, Department of Mathematics and Computer Science, Aalborg University, Fr. Bajers
Vej 7E, Dk-9220 Aalborg Øst, Denmark; email: csj@iesd.auc.dk&; R. T. Snodgrass, Department
of Computer Science, University of Arizona, Tucson, AZ 85721; email: ^rts@cs. arizona.edu&.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 0362-5915/97/0600–0171 $03.50

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997, Pages 171–214.

bind operators, for the querying of variable databases via existing query languages. This
transition to variable databases presented here requires minimal change to the query
processor. Finally, to underline the practical feasibility of variable databases, we show that
database variables can be precisely specified and efficiently implemented in conventional
query languages, such as SQL, and in temporal query languages, such as TSQL2.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—data de-
scription languages (DDL), query languages; H.2.4 [Database Management]: Systems—
query processing

General Terms: Languages, Performance

Additional Key Words and Phrases: Indeterminacy, Now, now-relative value, SQL, temporal
query language, TSQL2

1. INTRODUCTION

Now is a noun in the English language that means “at the present time”
[Sykes 1964]. A variable with this name has also been used extensively in
temporal relational data model proposals, primarily as a timestamp value
associated with tuples or attribute values in temporal relations. Yet, the
precise semantics of databases with this and other current-time variables
has never been fully specified. An important goal of this article is to give a
clear semantics for databases with current-time variables.

Time variables such as now are of interest and indeed are quite useful in
databases, including conventional SQL databases, that record time-varying
information, the validity of which often depends on the current-time value.
Such databases may be found in many application areas such as banking,
inventory management, and medical and personnel records. For example,
in a banking application, it is necessary to record when account balances
for customers are valid. Specifically, if a customer opens an account and
deposits US$ 200 on January 15 (in some year), the validity of that balance
starts when the deposit is made and extends until the current time,
assuming no update transactions are committed. Thus, on January 16, the
balance is valid from January 15 until January 16; on January 17, the
balance is valid from January 15 until January 17, and so on. It is
impractical to update the database each day (or millisecond) to correctly
reflect the valid time of the balance. Rather, it would be quite useful to be
able to store a variable, such as now, to indicate that the time when a
balance is valid depends on the current time. In the example, it would be
recorded on January 15 that the customer’s balance of US$ 200 is valid
from January 15 through now. Although SQL-92 [Melton and Simon 1993]
has a construct CURRENT_TIMESTAMP (as well as CURRENT_DATE and
CURRENT_TIME) for use in queries, one cannot store such a value in a
column of an SQL table. All major commercial DBMSs have similar
constructs, and impose this same restriction. The user is forced instead to
store a specific time, which is cumbersome and inaccurate. This article
shows how database variables such as CURRENT_TIMESTAMP can be
precisely specified and efficiently implemented in conventional query lan-

172 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

guages such as SQL-92 and in temporal query languages, while having
little impact on the underlying data model.

We knew of no work on storing now in conventional databases, so we
turned to the literature on temporal databases. In examining the large
body of existing temporal data models, it is apparent that two different
types of models have been proposed. The first type of model essentially
accords with the view expressed by Reiter that a relational database can be
seen as a set of ground first-order formulæ, for which there is a minimal
model [Reiter 1984]. These models have either been presented as logical
models directly (e.g., Clifford and Warren [1983] and Clifford et al. [1993]),
or have been presented in such a way that their logical model was clear
(e.g., Codd [1970]).

The second type of model deviates from this tradition. Rather, these
models have been presented as a set of formulæ some of which are ground,
but others of which have included one or more free, current-time variables.
Chief among these current-time variables is “now” (e.g., Clifford and
Croker [1987], Gadia [1988], and Clifford and Tansel [1985]), but a variety
of other symbols have been used, including “–” [Ben-Zvi 1982], “`”
[Snodgrass 1987], “@” [Lorentzos and Johnson 1988], and “until-changed”
[Wiederhold et al. 1993]. As already mentioned and exemplified, the use of
such variables is quite convenient and practical. Thus, these approaches
have advantages at the implementation level, namely, they are space
efficient and avoid the need for updates at every moment in time. However,
nowhere have we found a clear exposition of temporal variables; that is,
nowhere has the semantics of this type of database—a database with
current-time variables, here termed a variable database—been formally
specified so that the logical model represented by the database is clear.
Rather, the models have relied on the choice of intuitive names for the
variables to convey their meaning. This has led many to suppose that they
understood their semantics. However, this reliance on intuition and lack of
a clear semantics for databases with current-time variables is an unsatis-
factory foundation for the development and implementation of variable
databases, as it is prone to ambiguities and misinterpretations and, there-
fore, to errors.

In this article, we present a framework for the specification of the
different semantics that may be given to variable databases, which builds
on the approach introduced in Clifford and Isakowitz [1994]. In the frame-
work, the semantics of a variable database is defined by means of an
extensionalization mapping from a variable database to a fully ground data
model. The actual extensionalization mappings for valid-time, transaction-
time, and bitemporal databases with one or more current-time variables
are given in subsequent sections. This illustrates that the framework is
general enough to allow for the specification of a wide variety of semantics,
an important property of a framework. It also illustrates that the frame-
work can capture the semantics of multidimensional databases in a
straightforward manner: the multidimensional extensionalization mapping

On the Semantics of “Now” • 173

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

is obtained by a simple, but coordinated, combination of the mappings for
the constituent one-dimensional databases.

We also observe that the modeling capabilities of current-time variables
are limited. To overcome these limitations, two new modeling entities,
now-relative and now-relative indeterminate timestamps, are introduced
and defined within the framework. Next, a mechanism for the querying of
variable databases using existing query languages is provided. This mech-
anism provides added functionality, does not require changes to a query
language, and is easily integrated into a query processor. It is observed
that the incorporation of the notion of perspective into query languages
may provide additional functionality when querying variable databases.
Finally, to underline the practicality of a variable database, compact
physical representations for timestamps involving current-time variables
are provided. These formats can be efficiently manipulated during query
processing.

2. MOTIVATION

To motivate the need for current-time variables in databases with time-
varying data, including a solid, formal foundation for their use, this section
introduces the use of such variables and explores some of the perhaps
unintuitive, semantic subtleties resulting from their incorporation. Fur-
ther, this section explores the limitations of current-time variables in some
realistic situations.

As the meaning of current-time variables depends on whether the context
is valid time or transaction time, current-time variables in valid-time and
transaction-time databases are considered in isolation, followed by a short
discussion of current-time variables in bitemporal databases.

2.1 Storing Valid-Time Variables in Databases

The valid time of a fact denotes the time(s) when the fact is true in the
modeled reality [Jensen et al. 1994a; Snodgrass and Ahn 1985; Jensen and
Snodgrass 1996]. In the valid-time dimension, a timestamp involving now
is commonly used to indicate that a fact is currently valid [Ariav et al.
1984; Bassiouni and Llewellyn 1992; Elmasri et al. 1990; Gadia 1988;
Navathe and Ahmed 1989; Sarda 1990; Tansel 1990; Yau and Chat 1991].

It is possible to explicitly record when facts are valid in both conventional
SQL databases and in truly temporal (e.g., TSQL2 [Snodgrass 1995])
databases. With SQL databases, the semantics of valid time must be
implemented in application programs, whereas in temporal databases, the
semantics is built directly into the data model and query language. The
discussion of valid time that follows is phrased in terms of temporal
databases, but applies equally well to conventional databases.

As an example, suppose that a database records that Jane was on the
faculty of “State University” in some particular year, for example, 1995;
which year is not relevant here. Figure 1(a) shows the relevant tuple from
the University’s employment database (the FACULTY valid-time relation).

174 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Jane started working as an Assistant Professor on June 1, as indicated by
the “from” attribute. The value now, appearing as the “to” time in Jane’s
employment tuple, represents the (later) time when Jane will stop working
for State University as an Assistant Professor. Together, the “to” and
“from” attributes encode the valid time associated with the tuple. For
simplicity, we assume a timestamp granularity of one day in all examples.

The informal meaning of this tuple is that Jane is a faculty member from
June 1 until the current time. Thus, the result of a query that requests the
current faculty members will include Jane. As the current time inexorably
advances, the value of now also changes to reflect the new current time.
Some authors have called this concept “until changed” [Wiederhold et al.
1993] or “@” [Lorentzos and Johnson 1988] instead of “now,” but the
meaning is the same.

Using the variable now in a timestamp is very convenient. To see why,
suppose that instead of using the variable as the “to” time, we use a ground
time, that is, a particular date. We start by recording a “to” time of June 1.
Then as time advances and Jane remains an Assistant Professor, the “to”
time on Jane’s tuple must be updated each day to record when she worked.
Hence, the “to” time would be updated to June 2, then to June 3, and so on.
Although this representation is faithful to our knowledge at any point in
time, having to continuously update the “to” time as time advances is
impractical. It is also unclear who should do the updating, as the database
has no indication of which tuples have a continuously increasing valid time
and which are stable. For these reasons, it is better to use the variable now.

2.2 Anomalies of Existing Approaches

Here we explore four situations that illustrate shortcomings of a single
variable now and thus indicate a need for additional current-time modeling
entities, which we introduce in Section 4.

2.2.1 The Pessimistic and Optimistic Assumptions. Although using
now is convenient, using it as the “to” time of a tuple may lead to an overly
pessimistic assumption about the modeled reality. The university applica-
tion introduced in the previous section provides such a situation. Specifi-
cally, it is reasonable to expect that if an employee is employed in a certain
position today, that employee will also be employed in that position

Fig. 1. Describing Jane’s employment.

On the Semantics of “Now” • 175

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

tomorrow (and the next few, following days). However, the FACULTY
relation given in Figure 1(a) specifically records that Jane will not be
employed tomorrow. Assume that today is July 9. Then a query asking who
will be employed tomorrow (i.e., July 10) will not include Jane in the
answer, since the “to” time of Jane’s tuple is now, or in this case, July 9.
This is overly pessimistic.

Some temporal data models avoid this problem by limiting valid time to
the past, that is, “to” times before now [Gadia 1988; Tansel 1990]. For
many applications, for example, the university application, this limitation
is much too restrictive. Other data models have advocated using one of the
special (nonvariable) valid-time values, such as forever, `, or “–” [Snodgrass
1987, 1993; Ben-Zvi 1982; Thirumalai and Krishna 1988] instead of now.
These symbols (we use forever) denote the largest representable timestamp
value, that is, the one furthest in the future. In SQL and in IBM’s DB2,
forever is about 8,000 years from the present [Melton and Simon 1993; Date
and White 1990]; in our more liberal proposal, it is approximately 18 billion
years from the present time [Dyreson and Snodgrass 1993a].

By using a “to” time of forever, as in Figure 1(b), we certainly avoid the
pessimistic assumption, but we are now being overly optimistic. We have
indicated that Jane will be employed as an Assistant Professor not only
tomorrow, but until forever. To assert that Jane will be employed as an
Assistant Professor until forever is most assuredly incorrect (others have
also noted that a “to” time of `, or forever, has erroneous implications for
the future [Navathe and Ahmed 1989]). Another indication that forever is
inappropriate is that when Jane departs the University, forever must be
replaced by the date of her departure; but the revised date will be a
separate and much earlier time that is inconsistent with forever. Rather
than having the new information refine the old information, the new
information contradicts the old information. Using, instead of forever, some
large, application-dependent time value earlier than forever (e.g., in the
university application, the mandatory retirement date) is better than the
generic forever, but is still overly optimistic. In Section 4.4, we introduce a
new type of timestamp that better addresses these requirements.

2.2.2 The Punctuality Assumption. The use of now in timestamps
implies a strong assumption about the punctuality of updates. For example,
the tuple in Figure 1(a) states that Jane will remain an Assistant Professor
until the current time. The correctness of this tuple is dependent on the
correctness of the assumption that updates are made ahead of time, that is,
predictively. Thus, changes in Jane’s employment status and rank are
assumed to conform with the punctuality assumption: “changes are re-
corded in the database no later than the instant they take effect.”

This assumption is not often satisfied. Rather, information is often
recorded after the time it became valid, but within a well-specified maxi-
mum delay [Jensen and Snodgrass 1994]. For example, when employees
change status, it may be that the database is guaranteed to be updated to
reflect this at most three days after the status is changed. If Jane was

176 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

promoted on July 8, perhaps it is not until July 11 that her tuple is actually
updated to reflect her correct status. With this delay, the database is
known to correctly describe the miniworld only in the past, up until three
days ago. Within the last three days, it can only be concluded that it is
likely, or possible, that Jane is employed as an Assistant Professor. In this
case, one could interpret the meaning of Jane’s tuple in Figure 1(a) as of
today (July 9) as shown in Figure 1(c) that intuitively illustrates the
“possible” type of information that we would like to be able to record
because it more accurately describes our knowledge of the miniworld. This
cannot conveniently be recorded using now. Sections 4.2 through 4.4
describe a new kind of timestamp that can be used to address these issues.

2.2.3 The Problem of Now in Predictive Updates. Another problem
with using the variable now as a “to” time in a tuple occurs in predictive
updates where the “from” time is after the current time. Thus, the “to” time
is before the “from” time, contradicting the intuition that the “to” should
always be after the “from” time. To illustrate this use of now, assume that
the tuple in Figure 1(a) was inserted on May 25 (i.e., the fact was recorded
prior to when Jane began work). Then, during the remainder of May, the
“to” time is before the “from” time.

Some data models do not allow the use of now as a “to” time when its
value is before the “from” time. Instead, a special “to” time value of NULL
is used in such situations [Elmasri et al. 1990; Navathe and Ahmed 1989;
Yau and Chat 1991]. This value is replaced by now when the value of now
exceeds the “from” time. Tuples with NULLs are ignored in queries.
However, there is a subtle difficulty with this solution. Suppose that today
is May 25 and we record that Jane will be an Assistant Professor from June
1 until now (or NULL in this case). We then execute a query that
determines who will be employed in June barring any changes to the
database between now and June. To evaluate this query, we temporarily
“observe” the database from the perspective of a user in June even though
today is May 25. The result should include Jane; however, Jane’s tuple is
ignored since it has a “to” time of NULL. In Section 4.4 we introduce a new
modeling entity that addresses this shortcoming.

2.2.4 Queries and Now. When querying data that involve now, the
current time must be clearly specified since the value of now depends on
this time. To illustrate the kind of ambiguity that can result from unclear
specification of the current time, assume that today is July 9 and that our
database is given as in Figure 1(a). Then, consider the query, “Will we
agree on July 13 that Jane was employed on July 11?” Suppose that now is
interpreted to refer to the time at which the query is asked, in this case
July 9. Then Jane will not be employed on July 11 and so we would answer
“no.” But now could be interpreted as the time mentioned in the query
about which we were asked to agree, in this case July 13. Then Jane will be
employed on July 11 and so we would answer “yes.”

Another source of ambiguity is that the constant evolution of the current-
time variable now appears to cause the “same” query to return different

On the Semantics of “Now” • 177

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

results when evaluated at different times, even if no updates have oc-
curred. For instance, consider the query, “Is Jane employed on July 11?”
This simple query asked on July 10 will yield one answer (“no”), but if we
ask the query on July 12 we will receive a quite different answer (“yes”).
Hence, the querying of variable databases introduces new semantic subtle-
ties, not found when querying nonvariable databases.

2.3 Storing Transaction-Time Variables in Databases

The transaction time of a database fact denotes the time(s) when the fact is
(logically) current in the database [Snodgrass and Ahn 1985; Jensen et al.
1994a]. It is an orthogonal concept to valid time, in that it concerns the
evolution of the database, as opposed to the enterprise being modeled. The
use of current-time relative variables in transaction-time databases intro-
duces a different set of problems.

Whereas a valid-time timestamp is generally supplied by the user, a
transaction-time timestamp, an interval from a “start” to a “stop” time, is
supplied automatically by the DBMS during updates. Insertions initialize
the “start” time to the “current time” and the “stop” time to now.1 Deletions
are accommodated by changing “stop” times of now to the “current time.”
Hence, deletion is logical. The information is not physically removed from
the relation; rather, it is tagged as no longer current by having a “stop”
time different from now. Updates may be considered combinations of
deletions and insertions.

As an example, consider the transaction-time relation in Figure 2(a). The
distinct semantics of transaction time yields a different interpretation of
this relation as compared with the one shown in Figure 1(a). The “start”
time of June 1 indicates that this tuple was stored in the database on June
1; that is, we first became aware that Jane was an Assistant Professor on
that date. The value of now for the “stop” attribute indicates that the
database still records that Jane is an Assistant Professor; that is, the fact is
current. If we learn on July 10 that Jane left State University and thus
(logically) delete the fact, this is reflected by changing the “stop” time to
July 10.

The problem with using a variable called now in transaction time is that
the name “now” obscures the use of the variable. Strictly speaking, it

1The transaction processing system must also ensure that the “start” times of tuples are
consistent with a serialization order of their respective transactions.

Fig. 2. Describing Jane’s employment in a transaction-time relation.

178 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

implies that every current tuple was deleted by the current transaction! In
Figure 2(a), if the current time is July 9, then a strict interpretation of a
“stop” time of now suggests that the “stop” time is July 9. This is not what
was intended.

As with valid time, some data models address this problem by using
forever (also called ` or “–”) instead of now, as shown in Figure 2(b)
[Ben-Zvi 1982; Bhargava and Gadia 1989; Snodgrass 1987; Thirumalai and
Krishna 1988]. Using this large value, we immediately encounter difficul-
ties. The strict interpretation of this tuple is that some transaction execut-
ing a (very) long time in the future will logically delete this tuple from the
relation. In the meantime, it will remain in the database. If, on July 10, it
becomes known that Jane has left State University, then we logically delete
this tuple by changing the “stop” time to July 10. Such a change is
inconsistent with the previous “stop” time. Put differently, in this scenario
the database first records that we believe that Jane is an Assistant
Professor from June 1 until “forever.” The subsequent update then contra-
dicts this belief by saying that it is only from June 1 until July 10 that we
believe Jane is an Assistant Professor.

There is a more fundamental problem with forever in transaction time.
By the semantics of transaction time, storing future transaction times is
equivalent to predicting future states of the database, which is a highly
problematic proposition. With no crystal ball at hand, it is customary to
avoid predictions and require that the right endpoint of every interval be
less than or equal to the current time. To distinguish “now” in transaction
time from “now” in valid time, we propose in this paper to adopt the name
“until changed” for the former and provide a precise semantics for its
interpretation.

2.4 Variables in Bitemporal Databases

Bitemporal databases support both valid time and transaction time [Jensen
et al. 1994a]. The confusion that has arisen in a number of bitemporal data
models between the use of the same variable in both dimensions was a
prime motivation for the semantic framework that we present in the
following. In order to allow for a completely general treatment of the
semantics of these variables, we use a different variable in each dimension.
In Section 6 we show how the concept of a reference time can coordinate the
interaction between the current-time variables in both time dimensions.

3. SEMANTIC FRAMEWORK

In order to provide a precise semantics for databases with current-time
variables, we propose a semantic framework for defining the meaning of
databases with variables in terms of databases of a fully extensional
temporal data model. Databases in this latter model are fully ground; that
is, they do not admit variables. Although the model is not suitable for the
implementation of temporal databases, it is well suited for capturing the
semantics of variable databases.

On the Semantics of “Now” • 179

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

3.1 The Temporal Universe

The framework developed in the following includes three distinct time
dimensions, each with its own temporal universe. The framework requires
the existence of well-defined mappings between these universes. Although
this requirement does not preclude the possibility of different granularities
for the universes, we choose to avoid such diversions and instead use a
single, underlying granularity. This yields an homogeneous treatment of all
time dimensions and their relationships.

Since most database researchers have adopted the view that valid time in
a database is best viewed as discrete, and every database transaction model
that we are aware of has this property, we also adopt a discrete model of
time. Let 7Z to be the totally ordered set {. . . , 22, 21, 0, 11, 12, . . .} ø
{', Á}, where ' (bottom) and Á (top) are two distinguished elements, which
intuitively correspond to 2` and `, respectively. The total order ,7Z

on 7Z
is the normal order on integers extended so that ' and Á are a bottom and
a top element, respectively; that is,

(1) for any two integer elements z and z9 of 7Z, z ,7Z
z9 if z , z9 (as

integers); and
(2) for any element z in 7Z, ' #7Z

z #7Z
Á.

The only requirement on our temporal universe 7 is that it has the same
order structure as 7Z. That is, 7 can be any ordered set of order type 1 1
*v 1 v 1 1 [Fraenkel et al. 1973, p. 128].2 For example, in most of the
examples in this article we chose 7 to be the ordered set of days, extended
infinitely into the past and the future, with added elements 2` and `.

In addition to the concepts of valid time and transaction time, we
introduce a third time, reference time, to represent the relationship be-
tween a temporal database and the “real world” time at which it is viewed.
Thus, three temporal universes are required in the framework, namely, the
reference-time, the valid-time, and the transaction-time universe, and it
may be desirable or convenient to restrict them to some subset of 7.
Therefore, let

7RT # 7 denote the reference-time universe of our database,
7VT # 7 denote the valid-time universe of our database, and
7TT # 7 denote its transaction-time universe.

3.2 Important Times

Throughout our discussion of variable databases and queries on these
databases, five distinct times surface repeatedly. The first of these is called
initiation. It is relative to a specific relation and denotes the transaction

2The ordinal 1 stands for the order type of a one-element set. The ordinal v is the ordinal type
of an enumerated set, for example, the nonnegative integers with their familiar ordering: 0, 1,
2, 3, . . . ; whereas *v represents the inverse of that ordinal, that is, the type of . . . , 3, 2, 1, 0.
Thus, 1 1 *v 1 v 1 1 stands for the following ordinal type “an element before . . . , 3, 2, 1, 0,
1, 2, 3, . . . , followed by another element.” The appearance of one zero instead of two (. . . , 3,
2, 1, 0, 0, 1, 2, 3, . . .) does not change the ordinal.

180 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

time when that relation was created. To simplify the discussion that
follows, we assume that all relations are created at the same time, denoted
by t0. Once created, we assume that the database schema never changes
(schema versioning [Roddick 1992] is orthogonal to most of the issues
discussed in this article).

The second important time, which is new to most readers, is the reference
time. The reference time is the time of the database observer’s “frame of
reference,” denoted by rt*. Reference time is a term analogous to the indices
or “points of reference” in intensional logic [Montague 1974], and discussed
more recently in the context of valid-time databases [Finger 1992]. The
reference time facilitates a kind of “time travel” by means of which we may
observe the database at times other than the present.

A related time is the query time, or current transaction time, denoted by
tcurrent. It is the time at which a query is processed. The reference time rt*
and current time tcurrent are related, but distinct. In general, tcurrent is
the time at which a query is initiated, and rt* is the time at which the user
“observes” the database. In many queries, the reference time and the query
time are the same. But the user may choose to observe the database from a
previous perspective; for this kind of query, the reference time is earlier
than the query time. For example, if today is July 9 and we wish to observe
the database from the perspective of a week ago, then tcurrent 5 July 9 and
rt* 5 July 2.

The final two times of special interest are the valid timeslice time vt* and
the transaction timeslice time tt*. These times are important in this article
because, for expository purposes, we focus exclusively on various timeslice
queries. The valid and transaction timeslice times could both be an instant,
an interval, or a set of instants or intervals. The valid timeslice time(s)
specifies the real-world time about which information is wanted, whereas
the transaction timeslice time(s) is the time(s) during which information
must be current in the database in order to be of interest for a query. For
the example queries given in this article, it is advantageous to choose
instants (as opposed to intervals) as the valid timeslice and transaction
timeslice times. Later, we see that, although these times are distinct
concepts, there are important relationships between the valid timeslice
time, the transaction timeslice time, and the reference time.

To illustrate the distinction among these five times, let us consider an
example. A temporal database for recording employment information is
created on January 11 (again, the particular year is immaterial). Today
(which we assume is July 9), the director of the personnel department
investigates an apparent discrepancy reported by a coworker a week
earlier, while using the database on July 2. The coworker discovered that
the database had mistakenly recorded on June 27 that an employee had
been hired two weeks earlier, on June 13. The five times in this example
are as follows.

(1) t0 is January 11, the day of the creation of the database;
(2) rt* is July 2, the day when the problem was observed;

On the Semantics of “Now” • 181

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

(3) tcurrent is July 9, the day the personnel department director investigates
the database;

(4) vt* is June 13, the real-world day of the problematic information; and
(5) tt* is June 27, the day for which we are interested in what was recorded

as current information in the database.

By using a reference time of July 2, the director can view the identical
database state in existence when the coworker discovered the discrepancy.
If a reference time of June 20 had been used instead, it is possible that no
discrepancy would have been found, because that date was well before tt*.
Although purposely contrived, this example highlights the differences
among the five times. Having made this point, this example is not used in
the remainder of this article.

We have the following constraints on these five times.

—' # t0 # tt* # tcurrent # Á.
—' # rt* # Á.
—' # vt* # Á.

Note that rt* is not bound by tcurrent. This provides the ability to ask
“hypothetical now” queries, that is, from the perspective of a future valid
time (i.e., ten years from now). Such an example is given later in Section 6.2.

3.3 Extensional and Variable Database Levels

It is useful to view the semantics of temporal databases with variables
within the context of a two-level framework. This section develops such a
framework by first presenting the levels of a theoretical framework. Then
this framework is augmented, motivated by the practical concerns of easily
extending existing data models to admit databases with variables, such as
now, with minimal impact on existing query languages and query process-
ing engines.

A relational database consists of a set of relations, where each relation is
a set of tuples. Each tuple in a relation has a number of application-specific
attribute values. Temporal databases extend this view by incorporating the
temporal aspects of data using special attributes, termed timestamps.
These are explored further next.

In our model of time from the previous section, time instants (or just
instants for short) are points in time and intervals are sequences of
temporally consecutive points. (Indeed, when time is discrete, intervals are
merely shorthand for a finite, or countably infinite, set of instants.)
Intervals may be uniquely described by two bounding instants, termed the
starting and terminating instants.

Each of the valid and transaction times of data may be recorded by
associating a single time interval or a single instant with each tuple.
Interval timestamps are very convenient at the conceptual and implemen-
tation levels, as they are compact and can represent information about a
potentially large number of times in a single tuple. Thus, following a range

182 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

of temporal data models, we assume interval timestamps at the variable
database level.

We employ specific names for the timestamp attributes that encode the
time intervals of tuples. For valid-time intervals, the starting instant is
recorded by an attribute “from” and the terminating instant is recorded by
an attribute “to”; see Figure 1 for an example. For transaction-time
intervals, we use “start” and “stop,” as in Figure 2. In a variable database,
the values of the timestamp attributes in any tuple are extended to permit
instances of one or more current-time variables, as discussed earlier.
Figure 1(a) gives a simple variable database with only one tuple.

Moving to the extensional level, tuples also have timestamp attributes.
However, there are three key differences. First, no variables are allowed—
the extensional level is fully ground. Second, timestamps are instants
rather than intervals. Third, an extensional tuple has one additional
temporal attribute, called a reference time attribute. Later in this article we
describe the importance of reference time to the meaning of tuples. For
now, it may be thought of as representing the time at which a meaning was
given to the temporal variables in the original tuple.

Whereas the variable-database level offers a convenient representation
that end-users can understand and that is amenable to implementation,
the mathematical simplicity of the extensional level supports a rigorous
treatment of temporal databases in terms of first-order logic. A theoretical
framework for providing a logical interpretation or “meaning” for a partic-
ular variable database (i.e., a “translation” from variable to extensional
level), may be based on a homomorphic mapping from variable-level data-
bases to extensional-level databases [Clifford and Isakowitz 1994]. This
mapping is termed an extensionalization, and is denoted v b. In addition to
giving the semantics of variable databases, the framework also provides a
means for checking the correctness of query languages over variable
databases. This is illustrated in Figure 3 and explained using an example.

The top of the figure, labeled the variable database level, represents a
database model that allows the use of temporal variables in timestamps of
tuples. At the top left, we see a particular variable database db. The tuple
^Jane, Assistant, [June 1, now]& (with now being a variable) from Figure
1(a) is an example. A query qV is applied to this database, resulting in

Fig. 3. Relationship between variable and extensional databases.

On the Semantics of “Now” • 183

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

another variable database, qV (db). Let qV be “List the faculty on June 15,”
and assume this query is evaluated on June 27. The result is then {^Jane,
Assistant&}.

The bottom of the figure, labeled the extensional database level, repre-
sents our fully extensional temporal data model, whose semantics is
well-specified in the standard tradition of a first-order logical framework.
Developing a query language in this extensional model is relatively
straightforward, due to the model’s simplicity. In contrast, developing a
query language for a more complex variable-level data model is error prone.
The framework can be used for checking the correctness of variable-level
query constructs. Specifically, variable-level query constructs must com-
mute with the corresponding extensional-level query constructs, as indi-
cated in the figure: qE (vdbb) 5 vqV (db)b.

A particular extensionalization mapping from the top level to the bottom
level is defined in order to specify the semantics of variable databases. As
tuples at the variable database level are independent of each other, an
extensionalization mapping may treat each tuple in isolation.

Continuing the example, an extensionalization mapping3 may map ^Jane,
Assistant, [June 1, now]& of db to {^Jane, Assistant, June 1, June 27&, ^Jane,
Assistant, June 2, June 27&, . . . , ^Jane, Assistant, June 27, June 27&} of
vdbb. In the extensional database level, valid-time tuples are associated
with two (instant) timestamps. The first timestamp (e.g., June 1) is the
instant when the fact was valid (the interval is deconstructed into its
component instants), and the second time (e.g., June 27) is the reference
time. The extensional-level version of the query then selects the tuple from
this set that has a valid time of June 15, giving as result qE (vdbb) 5 {^Jane,
Assistant, June 27&} (again omitting the valid time). Finally, applying the
extensionalization mapping to the variable-level query result, {^Jane, Assis-
tant&}, yields vqV (db)b 5 {^Jane, Assistant, June 27&}. The diagram thus
commutes for the sample database and query. Section 4 and subsequent
sections provide a thorough coverage of extensionalization.

We are concerned in this article with the practical use of variable
databases. In particular, we are interested in how to extend existing data
models and query languages with the ability to allow current-time vari-
ables, with as little impact as possible on their conceptual model and their
associated query-processing engines. This is consistent with the philosophy
of the designers of the proposed temporal extension to SQL-92, termed
TSQL2 [Snodgrass 1995]. Thus, we next augment the theoretical frame-
work as shown in Figure 4.

Figure 4 shows that at the variable database level, the database is
mapped to an intermediate stage, in which the tuples contain timestamps
but no variables, by applying a bindV operation, which is discussed further
in the following. The various existing temporal data models, including
SQL-92 and TSQL2, that do not permit variable timestamps in their

3Here, we consider only a reference time of June 27. In the discussion to follow, v b takes an
optional subscript. We omit these subscripts here to simplify the discussion.

184 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

databases belong to this stage. By mapping variable-level databases to this
intermediate stage, it is possible to reuse existing—or proposed—query
engines to query variable databases. This is the motivation for augmenting
the framework to permit preprocessing of variable databases before query-
ing them.

The preprocessor substitutes each instance of a variable with a specified
time, effectively “binding” the variables in a variable database (as dis-
cussed in Section 7, this occurs during query evaluation on a per-tuple
basis). The bind operator bindV maps a database from the variable to the
intermediate level, upon which it is queried with a variable-level query qV.
The correctness of this mechanism is ensured by providing extensional-
level counterparts to the preprocessor and to the queries, bindE and qE,
respectively, and by demonstrating that the preceding diagram commutes.

To exemplify, as before let the database db contain the single tuple in
Figure 1(a), let the query q be “List the faculty on June 15,” and let the
current date be June 27. To evaluate q on db, we first bind the variable now
to the reference time, June 27. The result is bindV (db) 5 {^Jane, Assistant,
[June 1, June 27]&}. The query can then be evaluated on this relation using
simple (and already accepted) methods, resulting in qV(bindV (db)) 5
{^Jane, Assistant&}.

By defining queries qV at the variable-level in this way, as a composition
of a binding operator and a ground query, we conceive a framework where
the commutativity of the diagram shown in Figure 3 holds. Although the
particular binding we exhibit here is simple, Section 2 showed this need not
be the case for all temporal databases, particularly not for bitemporal
databases. For this reason, we need a precise semantics, provided by the
extensionalization mapping and the extensional counterpart to the query
operators, and a correctness criterion, that is, the commutativity require-
ment.

Fig. 4. Preprocessing of variable-level databases.

On the Semantics of “Now” • 185

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

4. VALID-TIME DATABASES

Here we present a semantics for variable valid-time databases by specify-
ing mappings from the variable to the extensional level. We initially
consider the extensionalization mappings for databases with ground time-
stamps and timestamps with the variable now. In order to address the
shortcomings identified in Section 2, we also introduce additional current-
time modeling entities. Specifically, we consider now-relative timestamps
that allow for positive and negative displacements from now. Next, we
introduce so-called indeterminate time values that may be used in time-
stamps to indicate imprecise times. This leads to a further generalization of
now-relative instants to now-relative indeterminate instants, which are
values that are imprecise as well as current-time relative. The section
concludes with an illustration of the querying of variable databases.

4.1 Extensionalization of Valid-Time Tuples with Now

We first consider the extensionalization of tuples with ground timestamps.
To do this, it is convenient to start by defining the meaning, or denotation,
of the ground component in a timestamp. As other timestamp values are
introduced, their denotations are also defined.

Definition 4.1 [Denotation of a Time Instant]. The denotation of a
valid-time instant t at a particular reference time rt*, written ^^t&&rt*

, is
defined as follows.

^^t&&rt*
5df t.

In general, to map a ground valid-time tuple, that is, a tuple without
variables, to the extensional database level, the tuple is expanded into a set
of tuples, one for each time instant in its associated timestamp. Let us
consider first the extensionalization of a ground tuple at a particular
reference time. We use the notation vTbrt*

to denote the extensionalization
of tuple T at a reference time of rt*.

Definition 4.2 [Extensionalization of a Tuple at an Instant]. The exten-
sionalization of a ground tuple T of the form T 5 ^X, [vt1, vt2]&, where
[vt1, vt2] denotes the set of times {vtuvt1 # vt ` vt # vt2}, at reference time
rt* is defined as follows.

vTbrt* 5df $~X, vt, rt*! uvt [@^^vt1&&rt*,^^vt2&&rt*#%.

Note that each tuple at the extensional level is tagged with the reference
time.

To exemplify, assume that the academic career of Jane at State Univer-
sity is given by the tuple T 5 ^Jane, Assistant, [June 3, June 9]&. The
extensionalization mapping of this tuple at time June 6, that is, vTbJune 6,
consists of seven tuples: {^Jane, Assistant, June 3, June 6&, ^Jane, Assistant,

186 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

June 4, June 6&, . . . , ^Jane, Assistant, June 9, June 6&}. Recall also the
sample mapping given in Section 3.3.

Definition 4.3 [Extensionalization of a Tuple at an Interval]. In the
extensionalization mapping, a reference time interval may be used rather
than a single reference time. The extensionalization of the tuple T over the
reference time interval [rt1, rt2] is defined as follows.

vTb @rt1,rt2# 5df ø rt*[@rt1,rt2# vTbrt*
.

Definition 4.4 [Extensionalization (Complete)]. The complete meaning
or extensionalization of a tuple T, denoted vTb, is simply the extensionaliza-
tion of T over all reference times, that is, ørt*[7RT

vTbrt*
. Equivalently, the

general meaning or extensionalization of a tuple T is: vTb 5df vTb[',Á].

We have found that a two-dimensional graphical notation makes valid-
time concepts easier to grasp. In the visualization, reference time corre-
sponds to the X-axis and valid time corresponds to the Y-axis. The graphi-
cal representation is a plot of the tuple at the extensional database level.
Each cell in the plot stands for a particular reference time RT and valid
time VT combination. The cells corresponding to the temporal coordinates
of tuples in the extensional set of tuples are shaded, indicating when a
tuple is valid relative to the reference time of an observer. Even though our
underlying model of time is discrete, we treat each cell as a region rather
than a point since this results in a better visualization. Several tuples may
be plotted in the same graph by using different cell colors or patterns. The
key, shown below the graph, indicates the explicit attribute values of the
corresponding tuples. Variations of these graphs have been independently
explored [Jensen et al. 1994b; Jensen and Snodgrass 1992; Clifford and
Isakowitz 1994].

As an example, Figure 5(a) shows the extensionalization of Jane’s em-
ployment tuple from before for a sequence of reference times, June 1
through June 11, that is, vTb[June 1, June 11]. The figure illustrates that the
valid time of this tuple is reference-time invariant; that is, it is independent
of the reference time. So for a tuple with a valid-time interval but without
variables, it does not matter at what time the tuple is observed—it is
always valid over exactly the same interval.

The meaning of a tuple with the variable now, however, is not reference-
time invariant. The denotation of now makes this dependence explicit.

Definition 4.5 [Denotation of Now]. The denotation of the current-time
variable now at a particular reference time rt* is defined as follows.

^^now&&rt*
5df rt*

This is precisely how reference time enables us to “materialize” variables in
the extensional level. Although variables per se are not permitted at the
extensional level, a valid-time tuple does vary with reference time. With

On the Semantics of “Now” • 187

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

this additional timestamp value, the extensionalization of a tuple with now
as the “to” or “from” time is still given by Definition 4.2.

As an example, assume that the academic career of Jane at State
University is given by the tuple T 5 ^Jane, Assistant, [June 1, now]&.
Figure 5(b) visualizes the extensionalization of this tuple for every refer-
ence time between May 30 and June 8. Note that before June 1 the empty
interval is depicted in the figure. This is because a timestamp with a “to”
time that is before the “from” time denotes the empty interval. This
situation occurs prior to June 1. The valid-time region in the figure is
“stair-shaped” since the extensionalization of a tuple with variables is
dependent on the time at which we observe the tuple. The stair shape is a
result of the constraint that the “to” time in the valid-time interval is
bound to the reference time.

Fig. 5. Graphical representation of extensionalization of a valid-time tuple: (a) ground
valid-time tuple; (b) valid-time tuple with variable.

188 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

It is our contention that all other valid-time current-time variables
currently in use (e.g., “@” [Lorentzos and Johnson 1988] and until-changed
[Wiederhold et al. 1993]) have the same meaning as now. Thus having
covered existing variables, we now proceed by proposing new timestamps
that address the shortcomings of now discussed in Section 2.

4.2 Now-Relative Instants

In this section we introduce a new type of timestamp, called a now-relative
instant, that adds flexibility to the variable now. A now-relative instant
generalizes the variable now by allowing an offset from this variable to be
specified. Now-relative times were first introduced in transaction time for
vacuuming [Jensen and Mark 1990].

With now-relative instants, we have a means of more accurately record-
ing our knowledge of Jane’s employment with State University. For exam-
ple, it may be that changes in hirings at State University are recorded in
the database only three days after they take effect. Assuming that Jane
was hired on June 1, we can accurately record our definite knowledge of her
employment in the tuple ^Jane, Assistant, [June 1, now 2 3 days]&. This
tuple states that Jane was an Assistant Professor from June 1 and until
three days ago, but it contains no information about her employment as of,
for example, yesterday.

A now-relative instant thus includes a displacement, which is a (signed)
span, from now. In the given example, the displacement is minus three
days. The extensionalization of tuples with now-relative instants is formal-
ized as follows.

Definition 4.6 [Denotation of a Now-Relative Instant]. The denotation of
a now-relative instant, now OP n days, where OP [{1, 2}, at a particular
reference time rt* is defined as follows.

^^now OP n days&&rt*
5df ^^now&&rt*

OP n.

Even with this additional timestamp value, the extensionalization of a
valid-time tuple is still given by Definition 4.2.

Although now-relative instants allow us to relax the otherwise close
coupling between valid and transaction time found in the punctuality
assumption, now-relative instants still suffer from making a pessimistic
assumption. The use of now 2 3 days in the first example is an ultra-
pessimistic view of the future. Jane would not even be employed now since
her employment terminates three days prior to now. To address this
potential shortcoming, we next introduce the notion of indeterminate
timestamp values.

4.3 Indeterminate Timestamp Values

It turns out that support for valid-time indeterminacy [Brusoni et al. 1995;
Dutta 1989; Gadia et al. 1992; Kurutach and Franklin 1993] can also
alleviate the shortcomings of now and now-relative instants. This section

On the Semantics of “Now” • 189

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

introduces indeterminate timestamp values for ground timestamps. The
next section extends this treatment to indeterminate timestamps with
variables.

Sometimes, the time when an event occurred is known only imprecisely.
For instance, we may know that an event happened “sometime in June
1993,” which is an imprecise period of 30 days. An indeterminate instant is
the time of an event, which is known to have occurred, but exactly when is
unknown [Dyreson and Snodgrass 1993b; Dyreson 1994].

The times when the event might have occurred is called the period of
indeterminacy and is delimited by a lower and an upper bound (e.g., the
event occurred sometime between June 1 and June 30). An indeterminate
instant could have an associated probability distribution that gives the
probability that the event occurred for each time in the period of indeter-
minacy. For the purposes of this article, we ignore the probability informa-
tion: every indeterminate instant is treated as though it has a distribution
that is missing [Dyreson 1994]. A determinate instant may be thought of as
an indeterminate instant, with identical lower and upper bounds. An
indeterminate interval is an interval bounded by indeterminate instants.

By using indeterminate instants, we can more accurately record our
knowledge of Jane’s employment with State University. Instead of using
now as the “to” time in Jane’s tuple, we can use an indeterminate instant.
Which indeterminate instant to use depends on our knowledge of the
situation. If Jane was hired to work at least two months, we could record
this information as shown in Figure 6(a). Here two time bounds, July 31
and forever, delimit the “to” indeterminate instant. If State University has
a mandatory retirement policy, we could decrease the indeterminacy con-
siderably, as shown in Figure 6(b).

Indeterminate instants address the pessimistic update assumption, pro-
viding evidence that Jane might still be employed in the future. They also
remove the problem of incompleteness in the nontimestamp attributes [e.g.,
possibly employed, as shown in Figure 1(c)], and ensure that new knowl-
edge acquired later, such as the information that Jane left the company on
August 10, is not inconsistent with currently stored information, but rather
is a refinement of that information. They also address the problem of now
in predictive updates; an indeterminate interval is a valid interval no
matter when it was stored in the database.

There are two bounds on the information represented by an indetermi-
nate interval [Lipski 1979]. The first bound is the definite information. The

Fig. 6. Using indeterminate timestamps for recording Jane’s appointment.

190 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

definite information represents all that is definitely known about the
interval and is the intersection of all the possible intervals. The second
bound is the possible information. The possible information represents the
maximum possible extent of an interval and is the union of all the possible
intervals. The two bounds have different extensionalizations. The definite
information is given by the definite extensionalization, presented next.

Definition 4.7 [Indeterminate Ground Tuple]. An indeterminate ground
tuple is a ground tuple of the form T 5 ^X, [vt1 ; vt2, vt3 ; vt4]&, where
vt1 # vt2 and vt3 # vt4. Here, vt1 and vt2 are the lower and upper bound,
respectively, of the starting instant and vt3 and vt4 are the lower and upper
bound, respectively, of the terminating instant.

Definition 4.8 [Definite Extensionalization of an Indeterminate Tuple].
The definite extensionalization of an indeterminate ground tuple of the
form T 5 ^X, [vt1 ; vt2, vt3 ; vt4]&, at the reference time rt* is defined as
follows.

vTbrt*

D 5df $~X, vt, rt*! uvt [@^^vt2&&rt*,^^vt3&&rt*#%.

The possible information is given by the possible extensionalization.

Definition 4.9 [Possible Extensionalization of an Indeterminate Tuple].
The possible extensionalization of a ground indeterminate tuple of the form
T 5 ^X, [vt1 ; vt2, vt3 ; vt4]& at the reference time rt* is defined as follows.

vTbrt*

P 5df $~X, vt, rt*! uvt [@^^vt1&&rt*,^^vt4&&rt*#%.

It is always the case that the definite information is a subset of the possible
information. Note that if the bounding instants are determinate, that is, if
the lower and upper bounds are the same, then the possible and definite
extensionalizations yield exactly the same set of tuples. Consequently, for
the extensionalization of determinate intervals, we omit the possible or
definite superscript and use v brt*

instead of either v brt*

P or v brt*

D .
Valid-time tuples timestamped with indeterminate intervals have a

graphical representation similar to the one described. Both the possible and
definite extensionalizations are represented. We use different shadings to
distinguish the regions in the two extensionalizations. As an example,
assume that the academic career of Jane at State University is given by the
tuple

^Jane, Assistant, [June 1 ; June 3, June 7 ; June 10] &.

Jane’s academic career, for the reference times [June 1, June 11], is
graphically represented in Figure 7(a). Note that the region of possible
information is never smaller than the region of definite information and
that the valid time is reference-time invariant (just as it is for determinate
intervals) when the tuple has no variables.

On the Semantics of “Now” • 191

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

4.4 Now-Relative Indeterminate Instants

To achieve the full benefit of indeterminate timestamp values, we proceed
by introducing now-relative indeterminate instants, which may be under-
stood as generalizations of the ground indeterminate timestamps and of the
now-relative instants presented earlier.

Fig. 7. Graphical representation of extensionalization of an indeterminate valid-time tuple:
(a) ground indeterminate valid-time tuple; (b) Jane’s possible and definite employment.

192 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

To exemplify and motivate the utility of this new type of instant, assume
that today is July 9, that Jane is still employed, and that there is at most a
three-day lag in recording a fact in the database. Jane’s tuple in the
database should not be that of Figure 6(b), but rather that shown in Figure
8(a) which is more accurate. The state on July 10 is shown in Figure 8(b).
Note how the indeterminacy in the “to” instant has decreased ever so
slightly—on July 10 we know that Jane was employed on July 7.

To accurately represent our continuously changing knowledge about
Jane’s employment, we need to combine now-relative instants and ground
indeterminate values into a new kind of instant, which we call a now-
relative indeterminate instant. An example is shown in Figure 8(c) where
the “to” timestamp is such an instant. Note that a tuple with a now-relative
indeterminate instant may yield no definite information or may have the
same possible and definite information content; it all depends upon when
we observe that tuple.

The visualization of a tuple at the extensional database level with a
now-relative indeterminate time is similar to the visualization of a tuple
with an indeterminate interval. Both the definite and possible regions are
plotted on the same graph but using different colors or patterns. Figure
7(b) shows a graph of both the possible and definite extensionalizations of
the tuple in Figure 8(c) for every reference time between May 30 and
January 5, 2028. Note that for all reference times before June 4 the tuple
does not contain any definite information, only possible information. The
definite information gradually increases as the reference time advances.
On January 4, 2028, and for all reference times thereafter, the possible and
definite information for the tuple are the same.

Now-relative indeterminate instants provide a flexible means of precisely
capturing our imprecise, but current-time dependent, knowledge of when a
fact is valid. For instance, in the tuple given in Figure 8(c), we are certain
that Jane was an Assistant Professor starting on June 1, but our knowl-
edge of when she ceases to be an Assistant Professor is imprecise; all we
know is that she was definitely an Assistant Professor until three days ago
and that it is possible that she will remain an Assistant Professor until
retirement on January 1, 2028. The “to” timestamp allows us to capture
this precisely. Using a now-relative indeterminate instant ensures that
continual updates are not required, while capturing all of our knowledge of
exactly when Jane is employed by State University.

Fig. 8. Using indeterminate and now-relative indeterminate timestamps.

On the Semantics of “Now” • 193

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

A now-relative indeterminate instant consists of a variable lower bound
and a ground upper bound. The lower bound cannot exceed the instant’s
upper bound; consequently the upper bound represents a limit on the
possible or definite information in the instant. So, for instance, the possible
or definite information represented by Jane’s employment tuple shown in
Figure 8(c) cannot extend beyond January 1, 2028, even if today is after
January 1, 2028. If today is May 9, then the lower bound is May 6 and the
tuple indicates that we expect Jane to be (possibly) employed from June 1 to
January 1, 2028. If today is January 1, 2050, then the upper bound is
January 1, 2028 and the tuple indicates that Jane was actually employed
from June 1 to January 1, 2028. In short, now-relative indeterminate
instants capture the semantics of predictive updates. They are also able to
model the evolutionary character of temporal databases since values in the
possible extensionalization of a tuple evolve into definite values as the
reference time increases.

Definition 4.10 [Possible Extensionalization of a Now-Relative Indetermi-
nate Tuple]. The possible extensionalization at reference time rt* of the
tuple T 5 ^X, [e1 ; vt2, e3 ; vt4],& where e1 and e3 stand for “expressions
using variables,” and vt2 and vt4 are ground values, is defined as follows.

vTbrt*

P 5df $~X, vt, rt*! uvt [@min~^^e1&&rt* ,^^vt2&&rt*!,^^vt4&&rt*#%.

Definition 4.11 [Definite Extensionalization of a Now-Relative Indetermi-
nate Tuple]. The definite extensionalization of the tuple T 5 ^X, [e1 ; vt2,
e3 ; vt4],& at reference time rt* is defined as follows.

vTbrt*

D 5df $~X, vt, rt*! uvt [@^^vt2&&rt*, min~^^e3&&rt* , ^^vt4&&rt*!#%.

4.5 Summary of Extensionalizations

Table I summarizes some of the valid-time extensionalizations (the most
representative cases). Case v1 (the v stands for “valid-time” database)
specifies the extensionalization of tuple timestamped with a determinate
interval, case v2 a now-relative interval, case v3 an indeterminate interval,
and case v4 a now-relative indeterminate interval. Note that the possible
and definite extensionalizations in cases v1 and v2 are the same since the
intervals are determinate.

Table I. Extensionalization of Valid-Time Databases

194 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

4.6 Querying Variable Valid-Time Databases

In this section we enhance the query facilities of existing (nonvariable)
data models to support queries on timestamps containing variables. The
essential problem is what to do when a variable is encountered during
query evaluation. In the following we describe a solution to that problem.
Further, we show how the framework may be utilized in defining algebraic
operators on variable databases that are consistent with the semantics of
variable databases. Specifically, we consider the valid-time timeslice oper-
ation.

When evaluating a user-level query, for example, written in some dialect
of SQL, it is common to transform it into an internal algebraic form that is
suitable for subsequent rule or cost-based query optimization. As the query
processor and optimizer are among the most complex components of a
database management system, it is important that the added functionality
of current-time-related timestamps necessitates only minimal changes to
these components.

Although many solutions may be envisioned, a solution that meets this
requirement and is natural in our semantic framework is to eliminate
variables before they are seen. More specifically, when a timestamp that
contains a variable is used during query processing (e.g., in a test for
overlap with another timestamp), a ground version of that timestamp is
created and is used instead. Thus, only minimal, incremental changes to
the query processor are needed. Existing components remain unchanged.
Only a new component that substitutes variable timestamps with ground
timestamps has to be added.

More specifically, we define a “bind” operator that is added to the set of
operators already present. When user-level queries are mapped to the
internal representation, this operator is utilized. The operator accepts any
valid-time tuple with variables as defined earlier in the article. It substi-
tutes a ground value for each variable and thus returns a ground (but still
variable-level) tuple.

To exemplify, assume that on June 20 we are interested in Jane’s
employment status at State University as of June 15 and that we have
available the database with the single tuple in Figure 1(a), but that our
query processor is unable to contend with variables in timestamps. To
answer the query, we first eliminate the variable now by applying the bind
operator (defined in the following) to the tuple, resulting in {^Jane, Assis-
tant, [June 1, June 20]&}. Second, this tuple is passed to the query
processor, where it is then used to compute that Jane is an Assistant
Professor on June 15.

Definition 4.12 [Variable-Level Valid-Time Bind]. Given an arbitrary
valid-time tuple T 5^ X, [e1 ; vt2, e3 ; vt4]& and a reference time rt*, the
variable-level valid-time bind operation eliminates all variables and is
defined as follows.

bindrt*

V,VT~T! 5df ^X,@^^e1&&rt* , ^^vt2&&rt*,^^e3&&rt* , ^^vt4&&rt*#&.

On the Semantics of “Now” • 195

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

This operation can be extended in the obvious way to an operator on sets of
tuples (i.e., relations). The superscript “V,VT” indicates that this is a vari-
able-level, valid-time operator. Note that two tuples that have timestamps
“[vt1 ; vt1, vt2 ; vt2]” and “[vt1, vt2],” but are otherwise identical, have the
same extensionalizations. Thus the timestamps are equivalent, and there-
fore the preceding definition also covers determinate timestamps.

The outcome of a query on a variable database generally depends on the
specific reference-time argument given to the bind operator. To provide a
foundation for understanding how to use the bind operator when mapping
user-level queries to algebraic equivalents, we must explore its meaning.

The bind operator with reference-time argument rt* replaces each vari-
able by its denotation or value at time rt*. Put differently, the operator
replaces each variable timestamp with a ground timestamp that has the
special property of having the same denotation, or value, as the variable
timestamp at the reference time rt*. At other reference times, the original
and the ground timestamps will generally not have the same denotation.
This semantics may be expressed at the extensional level as follows.

Definition 4.13 [Extensional-Level Valid-Time Bind]. Given an arbitrary
set S of extensional-level valid-time tuples of the form (X, vt, rt) and a
reference time rt*, the extensional-level valid-time bind operation is defined
as follows.

bindrt*

E,VT~S! 5df $~X, vt, rt!u~X, vt, rt*! [S ~ rt [7RT%

The “E” in the operator’s superscript indicates that this is an extensional-
level operator. At the extensional level, the bind operator chooses the
meaning of a tuple at the indicated reference time and propagates that
meaning over every possible reference time, resulting in a reference-time
invariant meaning. To prove that this definition is correct vis-á-vis the
required commutativity of the left side of the diagram in Figure 4, we
need to show that given an arbitrary tuple T, and a reference time rt*,
vbindrt*

V,VT (T)b 5 bindrt*

E,VT (vTb). This follows directly from the definitions.
For brevity, we omit the proof.

Intuitively, the bind operator sets the perspective of the observer (i.e., it
sets the reference time as described in Section 3.2). Existing query lan-
guages generally assume that the perspective of a user observing the
database is the same as what we termed the query time or current time and
denoted tcurrent in that section. However, as we will see, a bind operator
provides a basis for added functionality.

Recall that the definition of query operators at the variable level is
complex and that current temporal data models have not satisfactorily
resolved the complex problems involved. In our approach, we first prepro-
cess the variable-level database by binding timestamps to rt* , effectively
removing the variables. We can then apply any algebraic operators from an
existing temporal query language. It should be clear from the previous
discussion that the composition of bind with any of these algebraic opera-
tors is well-defined, and the timestamps have the appropriate meaning.

196 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

To show how operators are defined within the semantic framework, we
now define several timeslice operators. Valid-time timeslice is a fairly
standard operation; some variant of timeslice is a component of virtually all
temporal algebras. Standard definitions of determinate and indeterminate
timeslice operators are given in the following. Note that these do not have
to contend with variables; because of the use of the bind operator, they can
be defined solely on ground tuples.

Definition 4.14 [Variable-Level Definite Valid-Time Timeslice]. Let S be
a set of tuples at the variable database level, that is, a set of tuples of the
form T 5^ X, [vt1 ; vt2, vt3 ; vt4]&, where the vti are ground values. The
definite valid-time timeslice of S at valid time vt* is defined as follows.

P vt*

D,V,VT ~S!

5df $^X,@vt*, vt*# . u T 5 ^X, @vt1 , vt2, vt3 , vt4#& [S~vt* [@vt2, vt3#!%.

Definition 4.15 [Variable-Level Possible Valid-Time Timeslice]. Let S be
a set of tuples at the variable database level, that is, a set of tuples of the
form T 5^X, [vt1 ; vt2, vt3 ; vt4]&, where the vti are ground values. The
possible valid-time timeslice of S at valid time vt* is defined as follows.

P vt*

P,V,VT ~S!

5df $^X,@vt*, vt*#& u T 5 ^X, @vt1 , vt2, vt3 , vt4#& [S~vt* [@vt1, vt4#!%.

The superscript “D,V,VT” of the first operator indicates that it considers only
the definite information content, that it belongs at the variable level, and
that it is a valid-time timeslice. Also, recall that definite timestamps are
special cases of indeterminate timestamps, which are then also covered by
the definition. The straightforward extensions of the operator to slice on
valid-time intervals and to take as input a set of tuples (i.e., a relation) are
omitted for brevity. A timeslice operator at the extensional level that
satisfies the correctness criterion of the framework, as illustrated in Figure 3,
specifically,)vt*

E,Vt (vTbD) 5 v)vt*

D,V,VT (T)b, is given next. The proof of this
statement is omitted for space considerations.

Definition 4.16 [Extensional-Level Valid-Time Timeslice]. Since there is
no indeterminacy at the extensional database level, there is no need for two
timeslice operators; one suffices. At the extensional database level, the
valid-time timeslice of a set S consisting of tuples of the form (X, vt, rt) is
defined as follows.

P vt*

E,VT ~S! 5 df $~X, vt*, rt! u~X, vt*, rt! [S%.

We are now in a position to explore the interaction of the important times
(Section 3.2) by using the new bind operator and existing (variable-level)
timeslice operators. We generally consider only the definite version of the
timeslice operator.

On the Semantics of “Now” • 197

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

The bind operator sets the perspective and is combined with timeslice to
formulate queries. In the first two example queries given in the following,
we assume that the database is to be observed from the perspective of June
5 (i.e., rt* 5 June 5). For all examples, the query time is assumed to also be
June 5 (i.e., tcurrent 5 June 5).

—Who is employed on June 5?

PJune 5
D,V,VT ~bindJune 5

V,VT ~Faculty!!.

—Who will actually be employed on June 7?

PJune 7
D,V,VT ~bindJune 5

V,VT ~Faculty!!.

Tuples with a “to” time of now will not be in the result.
—Discounting future (and as yet unknown) employee hirings or firings,

who do we expect to be employed on June 7?

PJune 7
D,V,VT ~bindJune 7

V,VT (Faculty!).

Our “expectation” is that current employees (i.e., those employed now)
will remain employed through June 7. We make this expectation concrete
by adopting a June 7 perspective of the database. Then all tuples with a
“to” time of now will contribute to the result.

—Making no assumptions about the future evolution of the database, who
will possibly be employed on June 7?

PJune 7
P,V,VT ~bindJune 5

V,VT ~Faculty)).

We limit the future evolution of the database by adopting a June 5
perspective, and query about a possible future from that perspective.
Tuples with intervals with a “to” time of now ; June 7 (or a later upper
bound) will be in the result, although those with a “to” time of now will
not be in the result.

We have seen that the binding of now has an impact on the meaning of
query results and that query results must be interpreted with respect to a
particular perspective. Existing query languages (e.g., TSQL2 [Snodgrass
1995]) generally assume that the perspective and the query time coincide.
This assumption leads to a restriction in functionality, but it also simplifies
the interpretation of answers.

4.7 Summary

Now appears in many temporal database models, although it is sometimes
disguised under a different name. Now is commonly used as the “to” time in
a valid-time tuple. It has one principal advantage: it efficiently represents
that a tuple will continue to be valid, barring further updates. But it also
suffers from several anomalies, as discussed in Section 2.2. In the follow-

198 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

ing, we show how each of these four anomalies is addressed in our
approach.

The use of now as a “to” time makes a pessimistic assumption about a
tuple’s continuing validity since it indicates that a tuple’s validity ends
immediately, whereas we expect such tuples to remain valid in future. To
address this problem we propose a semantics that allows users to bind now
to any desired “perspective,” that is, any reference time, in a query. The
user can adopt a pessimistic perspective, by binding now to the current
time, or an optimistic perspective, by binding now to some future time, for
example, forever. The proposed semantics is backwards-compatible with
existing, nonvariable semantics.

Now also imposes an unrealistic assumption about the punctuality of
updates to a tuple because it presupposes that the current database state
accurately models the current real-world state. To address this anomaly we
introduce now-relative instants that include a displacement from now.
Now-relative instants can relax the strict punctuality assumption by using
the displacement from now to model the real-world delay in updating
tuples.

Further, the use of now as a timestamp value necessitates special-case
processing to correctly support predictive updates. A predictive update
inserts into a database a fact that is valid sometime in the future. If such a
fact has a “to” time of now, its valid time ends before it starts. This not only
violates a common assumption about interval timestamps (that the time-
stamp is a valid interval), it can also lead to an incorrect result for a query
about information valid in the future. To support predictive update we
propose now-relative indeterminate instants that combine indeterminacy
with now-relativity. An interval with a now-relative indeterminate instant
as the “to” time is a valid interval no matter when it is inserted into the
database. Furthermore, the indeterminacy in a now-relative indeterminate
instant can be used to model the uncertainty of future information,
whereas the now-relative portion of the instant relaxes the punctuality
assumption and allows the user to adopt both optimistic and pessimistic
query perspectives.

Finally, when querying data that involves now, the current time must be
clearly specified since the value of now depends on this time. An unclear
specification can result in ambiguous query results. In our proposed
framework, the current time is fixed by the bind operation. This allows the
perspective of the observer to be set, thereby ensuring that the same
answer is always returned for a particular reference time.

5. TRANSACTION-TIME DATABASES

The use of a current-time variable in the transaction-time dimension is not
as fraught with problems as its use in the valid-time dimension. The reason
for this lies in the different meaning of transaction time in a database. The
valid time of a tuple indicates when it is considered valid, and, as such,
valid timestamps of tuples are generally provided by the users. In contrast,

On the Semantics of “Now” • 199

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

transaction timestamps are supplied by the database management system
itself. This is a consequence of the meaning of transaction time: the
transaction timestamp indicates when the tuple is current in the database.

Although several timestamp values (e.g., forever and now) have been
used, it is our contention that they all have the same meaning. Specifically,
they are all employed as a “stop” timestamp that indicates that the tuple
stamped is current (from the “start” time) until the database is updated to
indicate otherwise. However, the various names used do not convey the
intuitive semantics of the variable in this dimension. A term more precise
than now or forever for this meaning of “not yet logically deleted or
updated” is until changed—a fact is current in the database until changed.
It has no counterpart in valid time. Using until changed instead of now
avoids also potential confusion with now in valid time, although some
authors have used until changed in valid time [Wiederhold et al. 1993].
Unlike the (valid-time variable) now, until changed can only be used as the
“stop” time; it is undefined to use it as the “start” time.

5.1 Extensionalization of a Ground Transaction-Time Tuple

We first examine the meaning of a tuple without variables in transaction
time. The extensionalization of such a tuple differs from its valid-time
counterpart, because the semantics of transaction time does not allow
future transaction times to be recorded in the database. Hence, the exten-
sionalization of such tuples must be restricted to ensure that no matter
when we look at the database, we can never see a “future” transaction time.
Since the future depends on when we observe the database, the reference
time is used to constrain the transaction-time in the expanded set of tuples.

In Definition 4.1, the denotation at any reference time of a ground
valid-time instant was given to be the instant itself. The same applies to
ground transaction-time instants.

Definition 5.1 [Transaction-Time Extensionalization of a Ground Tuple].
The transaction-time extensionalization of a tuple of the form T 5^ X, [tt1,
tt2]&, where X is some set of attribute values and tt1 and tt2 are transaction-
time instants, at the reference time rt*, where t0 # rt* # tcurrent, is defined
as follows.

vTbrt*

TT 5df $~X, tt, rt*! utt [@^^tt1&&rt*, min~^^tt2&&rt*, rt*!#%.

We use a “TT” superscript to differentiate this mapping from a valid-time
extensionalization.

The visualization of a transaction-time tuple is similar to that of a
valid-time tuple. Again, a two-dimensional graph is used. The X-axis of the
graph is the reference time, and the Y-axis is the transaction time.
However, unlike a valid-time tuple without variables, the transaction-time
interval for a tuple is not independent of the time at which we observe the
tuple. Figure 9 depicts the extensionalization of the transaction-time tuple
^Jane, Assistant, [June 5, June 8] & for a sequence of reference times, June 1

200 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

through June 11. Note that the depicted region has a “stair-shaped” feature
which is a result of the constraint that the transaction time cannot exceed
the reference time.

5.2 Semantics of “Until Changed”

The current-time variable in transaction time indicates that the associated
fact is current in the database until the fact is changed by a subsequent
update. Substituting transaction time for valid time in our running exam-
ple yields the relation shown in Figure 10.

Definition 5.2 [Denotation of Until Changed]. The denotation of the
transaction-time variable until changed at a particular reference time rt*,
where t0 # rt* # tcurrent, is defined as follows.

^^until changed&&rt* 5df rt*.

The extensionalization of a transaction-time tuple with the variable until
changed as the value of its “stop” time is obtained by generating tuples for
each instant in the ground interval that results from substituting until
changed by rt*. Thus, Definition 5.1 also applies when until changed is
allowed as a “stop” time.

5.3 Summary of Extensionalizations

Table II summarizes the extensionalizations presented for transaction
time. Case t1 (the t stands for “transaction-time” database) applies to
tuples with fully ground timestamp values only, whereas Case t2 covers the
case where until changed is the “stop” time.

Fig. 9. Graphical representation of transaction-time tuple.

On the Semantics of “Now” • 201

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

5.4 Querying Variable Transaction-Time Databases

The bind operator for transaction time eliminates occurrences of until
changed in the “stop” component of timestamps.

Definition 5.3 [Variable-Level Transaction-Time Bind]. Given a tuple
T 5 ^X,[tt1, e2]&, where tt1 is a ground transaction time and e2 is until
changed or a ground transaction time, the variable-level transaction-time
bind operation is defined as follows.

bindV,TT~T! 5df ^X, @^^tt1&&tcurrent , ^^e2&&tcurrent#&.

Again, this operation can be extended in the obvious way to relations.
Transaction-time bind is very similar to valid-time bind, but differs in one
important respect. The bindV,TT operator does not accept any time argu-
ment, but always binds until changed to the query time or current transac-
tion time, tcurrent.

Since the bindV,TT operator lacks a time parameter and is always applied
before any other operator, it is feasible to omit the operator and instead
build it into the transaction timeslice operator, as has been done in some
variable-level transaction-time algebras [Jensen and Mark 1992]. However,
it would also need to be built into any additional operators, so to preserve
the parallel with Section 4.6, we choose not to do this. The definition of the
extensional-level bind for transaction time is omitted because it is very
similar to Definition 4.13.

Definition 5.4 [Variable-Level Transaction-Time Timeslice]. Let S be a
set of tuples at the variable database level, that, a set of tuples of the form
T 5^ X,[tt1, tt2]&, where tt1 and tt2 are ground transaction times. The
transaction-time timeslice of S at transaction-time tt* is defined as follows.

P tt*

V,TT ~S! 5df $^X,@tt*, tt*#& u T 5 ^X, @tt1, tt2#& [S~tt* [@tt1, tt2#!%.

Definition 5.5 [Extensional-Level Transaction-Time Timeslice]. At the
extensional database level, the transaction-time timeslice of a set S consist-
ing of tuples of the form (X, tt, rt) is defined as follows.

P tt*

E,TT ~S!5df $~X, tt*, rt! u~X, tt*, rt! [S%.

Fig. 10. Using until changed in a transaction-time relation.

Table II. Extensionalization of Transaction-Time Databases

202 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

The definitions of transaction-time binding and slicing conform to
the framework we set up in Section 3.3, specifically to Figure 4; that is,
)tt*

E,TT (bindrt*

E,TT (vSbrt*

TT) 5 v)tt*

V,TT (bindrt*

V,TT (S))brt*

TT. The proof, which follows
from the definitions, is omitted for brevity.

As with valid-time queries, a combination of bind and timeslice supports
transaction-time queries. When querying about a transaction-time data-
base, there are some important times to consider: (i) the transaction-time
timeslice time tt*, indicating that information is sought that was current in
the database at time tt*, and (ii) the query time tcurrent, the time at which
the query is asked.

As an example, we consider several timeslice operations on the tuple T
depicted in Figure 2(a). For the following queries, it is assumed that tcurrent
is June 11.

—)June 11
V,TT (bindV,TT(T)) yields an empty result because the interval associ-

ated with T is before the timeslice time—tuple T ceased to be current
starting on June 9.

—)June 11
V,TT (bindV,TT(T)) yields tuple T, but with “start” and “stop” times of

June 7. This is so because the information recorded by T was current on
June 7.

6. BITEMPORAL DATABASES

A bitemporal relation supports both transaction and valid time [Jensen et
al. 1994a; Snodgrass and Ahn 1985]. The combination of these two tempo-
ral dimensions empowers the database to record time-dependent informa-
tion as well as earlier database states. Bitemporal databases thus combine
the advantages of valid-time and transaction-time databases. Yet this
greater flexibility comes at a cost: increased complexity derives from the
interactions between the two temporal dimensions which must be carefully
considered. The logical framework we have presented for current-time
variables has been designed to make it relatively straightforward to obtain
the semantics of bitemporal databases. The interaction between the cur-
rent-time variable for valid time, now, and transaction time, until changed,
is coordinated through the reference time. We demonstrate one possible
(and, we think, reasonable) semantics for this combination, but we empha-
size that the framework is general enough to allow the definition of other
alternative semantics for the interaction of these variables.

6.1 Extensionalization of Bitemporal Databases

The timestamp of a bitemporal tuple contains both a valid-time and a
transaction-time component. Since the valid-time component may be inde-
terminate, it is necessary to distinguish between a definite and a possible
extensionalization, v brt*

BT,D and v brt*

BT,P, respectively.

Definition 6.1 [Definite Extensionalization of a Bitemporal Tuple]. The
definite extensionalization of a bitemporal tuple T of the form T 5^X,
[vt1, vt2], [tt1, tt2]&, where X is some set of attribute values and the

On the Semantics of “Now” • 203

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

timestamp [vt1, vt2], [tt1, tt2] may contain any of the variables introduced
earlier, at the reference time rt* is defined as follows.

vTbrt*
BT,D 5df $~X, vt, tt, rt*! u~X, vt, rt*! [v^X, @vt1, vt2#&brt*

VT,D

` ~X, tt, rt*! [v^X, @tt1, tt2#&brt*

TT%.

Definition 6.2 [Possible Extensionalization of a Bitemporal Tuple]. The
possible extensionalization of a bitemporal tuple T of the form
T 5^ X,[vt1, vt2], [tt1, tt2]& at the reference time rt* is defined as follows.

vTbrt*

BT,P 5df $~X, vt, tt, rt*! u~X, vt, rt*! [v^X, @vt1, vt2#&brt*

VT, P

` ~X, tt, rt*! [v^X, @tt1, tt2#&brt*

TT%.

The definitions show that the framework has been constructed so that the
extensionalization of bitemporal tuples is the combination of the extension-
alizations for valid and transaction time. It also shows how the reference
time rt* serves as an essential coordination mechanism between the valid
and transaction time components of the timestamp: the same reference
time appears in the valid-time and in the transaction-time denotations.
Although it is possible and may be interesting to consider situations where
the two reference times differ, we have found that for all practical purposes
this coordination is desirable. Nevertheless, other kinds of coordination
through the reference time are possible. For example, instead of the
standard Cartesian product used here, a coordination mechanism that
utilizes a step-wise cross product of the two temporal dimensions is
possible [Clifford and Isakowitz 1994].

Another feature of the framework is that the uniform and component-
wise treatment of time dimensions makes it easy to include additional
dimensions. To specify the semantics of a variable database with additional
dimensions, it is necessary to first specify the semantics of the variables
and tuples in that new dimension, for example, as is done for the transac-
tion-time dimension in Section 5. Subsequently, the new dimension can be
easily integrated with the other dimensions in a definition similar to the
previous one. Thus, our framework can be extended to encompass multidi-
mensional temporal databases (also termed indexical [Clifford 1993] and
parametric [Gadia and Nair 1993] temporal databases), for example, tem-
porally generalized [Jensen and Snodgrass 1994] and spatiotemporal [Al-
Taha et al. 1994] databases.

Tables I and II may be combined to cover the bitemporal extensionaliza-
tions. The combination of Case v1 from Table I and Case t1 from Table II
gives the bitemporal extensionalization for a tuple timestamped with a
determinate valid time interval, [vt1, vt2], and a transaction time interval,
[tt1, tt2], both without variables. Note that the transaction time in this case
is restricted to the “past” relative to the reference time, just as in transac-
tion-time tuples. For example, the extensionalization at reference time

204 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

June 2 of the tuple

^Jane, Assistant, @June 3, June 10#, @June 1, June 3#&

is

$~Jane, Assistant, vt, tt, June 2! u vt [@June 3, June 10#

` tt [@June 1, min~June 2, June 3!#%.

In this example, the terminating transaction time, June 3, is constrained
by the reference time, June 2.

The graphical representation of bitemporal tuples is three-dimensional;
transaction time is the X-axis, valid time is the Y-axis, and reference time
is the Z-axis. The reference time has been the X-axis, but making the
reference time the Z-axis in the three-dimensional visualization results in a
better picture. The graph is displayed so that the Z-axis goes “into” the
page. The three-dimensional picture of a bitemporal tuple allows us to
represent the passage of time as a spatial displacement, and provides a
visual representation for interesting phenomena such as history changes
and predictions about the future, as well as incorporating the viewpoint of
an observer into these phenomena. As we see in the following, the graphical
representation shows the subtle interaction between now, until changed,
and the reference time.

Examples of the combinations of the extensionalizations presented in
Tables I and II are graphically depicted in Figures 11 and 12. The dotted
line vectors in the graph represent directions of growth as the reference
time, valid time, or transaction time extends to Á. Only one generic
example tuple is depicted in each case. The evolutionary nature of temporal
databases, a key concept, comes through very clearly in the figures. Notice
how the shaded areas grow as reference time increases, most prominently
for tuples containing variables, indicating an accumulation of knowledge
stored in the database. Note also how information in later reference times
is always consistent with that in earlier reference times.

Figure 11 illustrates the determinate cases. For example, the lower right
corner of Figure 11 depicting the v2 3 t2 case shows how now and until
changed are bound to an increasing reference time, resulting in a three-
dimensional stair-shaped pattern. The tuple’s extensionalization grows as
time passes encompassing more points. In contrast, case v1 3 t1 depicts
constrained growth, as the tuple ceases to exist beyond transaction time tt2.
Note that, unless a tuple is known to have been deleted from the database,
its “transaction-stop time” is until changed, and hence it has unlimited
growth in the transaction-time dimension. This is true for the determinate
cases shown in Figure 11 as well as for the indeterminate cases of Figure
12. Notice, for example, how the possible and definite extensionalizations
in cases v3D 3 t2 and v3P 3 t2, the upper right-hand corner of Figure 12,
remain constant in the valid-time dimension while growing in transaction-

On the Semantics of “Now” • 205

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

time. In contrast, case v4D 3 t2 in the lower right-hand corner of Figure
12, illustrates constrained growth, that is, constant evolution up through
time vt2.

6.2 Querying Variable Bitemporal Databases

The existing bind and timeslice operators, developed for valid-time and
transaction-time databases, are easily generalized to apply to bitemporal
databases. A bitemporal tuple differs from a valid-time tuple by having a
transaction time interval in its timestamp. The valid-time operators are
generalized to corresponding bitemporal operators by simply ignoring this
extra timestamp. For example, the definite bitemporal valid-time timeslice
is defined by generalizing Definition 4.14 as follows.

Definition 6.3 [Variable-Level Definite Bitemporal Valid-Time Timeslice].
Let S be a set of tuples at the variable database level, that is, a set of tuples
of the form T 5^X, [vt1 ; vt2, vt3 ; vt4], [tt1, tt2]&, where T is ground. The

Fig. 11. Examples of bitemporal determinate cases.

206 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

definite bitemporal valid-time timeslice of S at valid time vt* is defined as
follows.

P vt*

D,V,VT,BT ~S! 5df $^X, @vt*, vt*#, @tt1, tt2#& u

T 5 ^X, @vt1 , vt2, vt3 , vt4#, @tt1, tt2#& [S~vt* [@vt2, vt3#!%.

The superscript “D,V,VT,BT” indicates that the operator considers only the
definite information in the tuple, belongs at the variable level, performs a
timeslice in the valid-time dimension, and is applicable to bitemporal
tuples. In addition to this operator, the subsequent discussion uses the
operators)P,V,VT,BT,)V,TT,BT, bindV,VT,BT, and bindV,TT,BT, which are all
similar generalizations of previous definitions.

As with valid-time and transaction-time databases, queries are evaluated
by combining bitemporal timeslice and bind operations. Also as before,
valid and transaction times must be bound before the bitemporal valid-time
timeslice or bitemporal transaction-time timeslice, respectively, can be
applied.

Fig. 12. Examples of bitemporal indeterminate cases.

On the Semantics of “Now” • 207

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

To explore the interaction of times in queries on bitemporal databases,
we consider a number of queries on the simple database depicted in
Figure 13 which shows that Jane’s employment tuple was added to the
database on June 2. Note that it contains a now-relative indeterminate “to”
time and “until changed” as the “stop” time. For the purpose of the
example, we assume that today is July 9. Thus, the transaction-time bind
operator binds until changed to July 9 in all queries. The first four queries
all include Jane in the result.
—Using the current database state, who was possibly a faculty member on

July 7?

PJuly 7
P,V,VT,BT SbindJuly 9

V,VT,BTS P
July 9

V,TT,BT

~bindV,TT,BT~Faculty!!DD.

In this query, we transaction timeslice to get only the most current
information. The valid-time bind ensures a perspective of today, and the
valid timeslice retrieves those tuples that were possibly valid two days
ago (on July 7).

—Using the current database state, who was definitely a faculty member
on July 1?

PJuly 1
D,V,VT,BT SbindJuly 9

V,VT,BTS P
July 9

V,TT,BT

~bindV,TT,BT~Faculty!!DD.

As before, the lower bound of the “to” time is ground to July 6 (July 9 2 3
days). The difference is solely in the valid timeslice; we require definite
information, and so we use a definite timeslice. Since July 1 is before
July 6, Jane is in the result.

—Using the database state on July 1, who was definitely a faculty member
on June 15?

PJune 15
D,V,VT,BT SbindJuly 1

V,VT,BTS P
July 1

V,TT,BT

~bindV,TT,BT~Faculty!!DD.

The transaction timeslice retrieves the information current on July 1.
The valid-time bind adopts this day as the perspective of the subsequent
valid timeslice that retrieves information about June 15. Since Jane’s

Fig. 13. A bitemporal relation.

208 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

tuple was current on July 1 and June 15 is more than three days before
July 1, Jane will be in the result.

—Using the current database state, who will we say on July 12 is possibly
a faculty member on September 1?

PSeptember 1
P,V,VT,BT SbindJuly 12

V,VT,BTS P
July 9

V,TT,BT

~bindV,TT,BT~Faculty!!DD.

We first consider only current information. Then we adopt a valid-time
perspective of July 12 to examine the database as it will appear on that
date if no updates are made, that is, our best guess as to what will be
current information on July 12. Finally, using that perspective, we ask
about possible information on September 1. Jane will be in the result.

In contrast to the preceding queries, the following three queries do not
include Jane in the result.
—Using the current database state, who was definitely on the faculty of

State University on July 7?

PJuly 7
D,V,VT,BT SbindJuly 9

V,VT,BTS P
July 9

V,TT,BT

~bindV,TT,BT~Faculty!!DD.

Here, the valid-time bind operation yields a ground “to” time of July 6 ;
January 1, 2028. Since July 7 is after July 6, Jane is possibly, but not
definitely, on the faculty.

—Using the database as of July 1, who was definitely a faculty member on
July 1?

PJuly 1
D,V,VT,BT SbindJuly 1

V,VT,BTS P
July 1

V,TT,BT

~bindV,TT,BT~Faculty!!DD.

—Using the current database state, who will we say on July 12 is definitely
a faculty member on September 1?

PSeptember 1
D,V,VT,BT SbindJuly 12

V,VT,BTS P
July 9

V,TT,BT

~bindV,TT,BT~Faculty!!DD.

In most of the preceding examples, the transaction timeslice time and the
valid-time bind time, or reference time, are the same. Indeed, this is the
typical and most useful scenario, as the following example makes clear.
Suppose that today, July 9, we execute a transaction-time timeslice with
time argument February 1 (i.e., the preceding February 1). This operation
chooses the most up-to-date information as of February 1, and disregards

On the Semantics of “Now” • 209

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

information that was not up-to-date on February 1 or was recorded at a
later time. The user’s perspective for subsequent operations using this
information should naturally switch to the frame of reference of the chosen
information. Hence, for this example, it would be natural to also bind now
to February 1.

Yet, two of the queries previously given illustrate that this is not a
necessary restriction. Lifting it leads to increased functionality, but also to
queries that are conceptually more involved. Existing query languages
generally enforce this restriction.

7. TIMESTAMP IMPLEMENTATION

This article has proposed four new current-time-related timestamps,
namely, until changed, now, now-relative instants, and now-relative inde-
terminate instants. Elsewhere we show how these timestamps may be
efficiently represented [Dyreson and Snodgrass 1993a, 1993c; Clifford et al.
1994; Dyreson 1994]. For example, a now-relative timestamp can be en-
coded as a datetime value coupled with a one-bit flag differentiating it from
a ground timestamp. Consequently, the timestamps proposed in this article
impose little space overhead.

We also proposed adding bind operations for valid time, transaction time,
and bitemporal databases; no other operations are needed to support
current-time-related modeling entities. The bind operations have no signif-
icant impact on the run-time efficiency of a temporal database. The
transaction-time bind is very efficient. It simply replaces until changed
with the current transaction time. The valid and bitemporal bind opera-
tions are only slightly less efficient. For now-relative instants (and now-
relative indeterminate instants) these operations replace now with the
reference time and then displace that reference time by a span. The
displacement costs one integer addition operation.

Now-relative instants also add an extra comparison to interval construc-
tors. As we observed in Section 2.2.3, predictive updates could insert into
the database intervals that end before they start. For a tuple without
variables, such intervals can be detected and eliminated when the tuple is
first inserted into the database. But a tuple with a variable might initially
end before it starts, and only later evolve into a valid interval. Conse-
quently, during run-time each interval involving a variable must be tested
to ensure that the starting instant is before the terminating instant. This
test needs to be performed only once per interval per query.

8. SUMMARY AND RESEARCH DIRECTIONS

The overall conclusion of this article is a recommendation that timestamps
involving current-time variables—that is, now, until changed, now-relative,
and now-relative indeterminate timestamps—be allowed to be stored as
values of columns, for conventional and temporal databases, as well as
implicit valid and transaction timestamps, for temporal databases.

210 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

This article makes a number of contributions. First, it provides a formal
basis for defining the semantics of databases with variables. The use and
generality of the framework was demonstrated by giving a semantics for
conventional, valid-time, transaction-time, and bitemporal databases with
all existing variables. Apart from specifying a reasonable semantics for
such databases, this exercise demonstrates important properties of the
framework. The first property is that it is capable of capturing the
semantics of a wide range of variables. We provide the semantics of
variables of all kinds of general temporal aspects of database facts cur-
rently identified [Jensen et al. 1994a]: user-defined time, valid time, and
transaction time. The second is that the semantics of a multidimensional
database may be specified as a coordinated combination of the semantics of
the constituent one-dimensional databases. The reference-time dimension
in the framework provides the coordination mechanism. For example, the
semantics of variable bitemporal databases was specified very easily by
using the already specified semantics for valid-time and transaction-time
databases. This property makes it relatively easy to specify the semantics
of multidimensional databases. It also makes it easy to add further kinds of
time that may emerge in the future, as well as other dimensions, such as
space, again, in all their various combinations.

Second, without current-time variables, temporal databases provide in-
adequate support for their applications. The article demonstrates that
existing variables, such as now and until changed, are indispensable in
databases. It also identifies situations where even these variables are
inadequate, and introduces new now-relative and now-relative indetermi-
nate instants that provide the desired support. The semantics of databases
with such variables is also defined within the framework.

Third, a foundation for the querying of variable databases from existing
temporal query languages was presented. The article provides algebraic
“bind” operators for valid-time, transaction-time, and bitemporal data-
bases, and it shows how these can be used to permit existing query
languages to access variable databases. As a first step during query
processing, the bind operation is applied to variable databases, thus
replacing all variables with ground values appropriate for the processing of
the query at hand. The framework also clarifies which values are the
appropriate ground values. This approach encapsulates the handling of
variables in a single operator per temporal dimension. It also requires only
minimal changes to the query processor: support for one new operator has
to be added; all other components remain unchanged.

These three observations provide the rationale for the conclusion that
variable databases are viable. A number of secondary, but noteworthy,
contributions also deserve mention. The article resolves the meaning of the
use of variables in existing temporal data models. A graphical notation
with two or three dimensions used throughout the article proved to be
helpful when describing the semantics of variable databases. The complex
interactions of current time, reference time, transaction time, and valid
time within queries and variable databases were investigated in detail.

On the Semantics of “Now” • 211

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

These interactions were not thoroughly understood or explicated in existing
bitemporal data models. The concept of “perspective” within queries was
illustrated. Perspective adds the ability to bind the valid-time variable now
to times other than the current time. Supporting this notion within a query
language enhances its functionality when querying variable databases.

This framework has implications for database query language design.
The user-defined time types available in SQL-92 can be easily extended to
store now-relative and indeterminate nonrelative variables as values in
columns. The TSQL2 language [Snodgrass 1995] does so, and also supports
those variables for valid and transaction time. In TSQL2 the “bind”
operation is implicit; NOBIND is provided to store variables in the database.

There are several directions for future research. The precise semantics of
several temporal models proposed in the literature could profitably be
examined in light of the framework presented here. In defining the seman-
tics for bitemporal databases, we have chosen but one possible way of
combining the semantics of valid-time and transaction-time databases;
other possible combinations of these two temporal dimensions might also
prove useful. In addition, the use of the graphical representation of
temporal relations at the user interface—for displaying the results of
queries and, for example, for the assertion of temporal integrity con-
straints—seems to us a promising one for further research. The impact of
stored variables on database storage structures and access methods is an
open problem. It also presents an opportunity, for example, if the optimizer
knows (through attribute statistics) that a large proportion of tuples have a
“to” time of now. The optimizer may then decide that a sort-merge temporal
join will be less effective. Finally, new kinds of variables, such as here for
spatial and spatiotemporal databases, should be investigated, as an exten-
sion of the framework introduced in this article.

ACKNOWLEDGMENTS

Won Kim, Nick Kline, and the anonymous referees provided helpful com-
ments on a previous draft.

REFERENCES

AL-TAHA, K. K., SNODGRASS, R. T., AND SOO, M. D. 1994. Bibliography on spatiotemporal
databases. Int. J. Geograph. Inf. Syst. 8, 1 (Jan.–Feb.), 95–103.

ARIAV, G., BELLER, A., AND MORGAN, H. L. 1984. A temporal data model. Tech. Rep. DS-WP
82-12-05, Decision Sciences Dept., Univ. of Pennsylvania, Dec.

BASSIOUNI, M. A. AND LLEWELLYN, M. J. 1992. A relational-calculus query language for
historical databases. Comput. Lang. 17, 3, 185–197.

BEN-ZVI, J. 1982. The time relational model. Univ. of California at Los Angeles, Ph.D.
Thesis.

BHARGAVA, G. AND GADIA, S. 1989. Achieving zero information loss in a classical database
environment. In Proceedings of the International Conference on Very Large Databases
(Amsterdam, Aug.), 217–224.

BRUSONI, V., CONSOLE, L., TERENZIANI, P., AND PERNICI, B. 1995. Extending temporal rela-
tional databases to deal with imprecise and qualitative temporal information. In Proceed-
ings of the VLDB International Workshop on Temporal Databases (Zurich, Switzerland,

212 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

Sept.), J. Clifford and A. Tuzhilin (Eds), Workshops in Computing Series, Springer Verlag,
New York, NY, 3–22.

CLIFFORD, J. 1993. Indexical databases. In Advanced Database Systems, Lecture Notes in
Computer Science 759, Springer-Verlag.

CLIFFORD, J. AND CROKER, A. 1987. The historical relational data model HRDM and algebra
based on lifespans. In Proceedings of the IEEE International Conference on Data Engineer-
ing (Los Angeles, CA, Feb.), 528–537.

CLIFFORD, J., CROKER, A., AND TUZHILIN, A. 1993. On completeness of historical relational
query languages. ACM Trans. Database Syst. 19, 2 (March), 64–116.

CLIFFORD, J., DYRESON, C. E., ISAKOWITZ, T., JENSEN, C. C., AND SNODGRASS, R. T. 1994. On
the semantics of ‘now’ in temporal databases. Tech. Rep. R-94-2047, Aalborg Univ., Dept. of
Mathematics and Computer Science, Denmark, Nov.

CLIFFORD, J. AND ISAKOWITZ, T. 1993. On the semantics of transaction time and valid time in
bitemporal databases. In Proceedings of the ARPA/NSF International Workshop on an
Infrastructure for Temporal Databases (Arlington, TX, June), R. T. Snodgrass, Ed., I.1–I.17.

CLIFFORD, J. AND ISAKOWITZ, T. 1994. On the semantics of (bi)temporal variable databases.
In Proceedings of the Fourth International Conference on Extending Database Technology
(Cambridge, England, March), 215–230.

CLIFFORD, J. AND TANSEL, A. U. 1985. On an algebra for historical relational databases: Two
views. In Proceedings of ACM SIGMOD International Conference on Management of Data,
S. Navathe, Ed., (Austin, TX, May), 247–265.

CLIFFORD, J. AND WARREN, D. S. 1983. Formal semantics for time in databases. ACM Trans.
Database Syst. 8, 2, 214–254.

CODD, E. F. 1970. A relational model of data for large shared data banks. Commun. ACM
13, 6 (June), 377–387.

DATE, C. J. AND WHITE, C. J. 1990. A Guide to DB2, Vol. 1, 3rd ed. Addison-Wesley,
Reading, MA.

DUTTA, S. 1989. Generalized events in temporal databases. In Proceedings of the Fifth
International Conference on Data Engineering, (Los Angeles, CA, Feb.), 118–126.

DYRESON, C. E. 1994. Valid-time indeterminacy. Computer Science Dept., Univ. of Arizona.
Ph.D. Thesis, Oct.

DYRESON, C. E. AND SNODGRASS, R. T. 1993a. Timestamp semantics and representation. Inf.
Syst. 18, 3, 143–166.

DYRESON, C. E. AND SNODGRASS, R. T. 1993b. Valid-time indeterminacy. In Proceedings of
the International Conference on Data Engineering (Vienna, Austria, April), 335–343.

DYRESON, C. E. AND SNODGRASS, R. T. 1993c. A timestamp representation. In The TSQL
Temporal Query Language, R. T. Snodgrass, Ed., Kluwer, Boston, MA, 1995, Chap. 25,
475–499.

ELMASRI, R., WUU, G., AND KIM, Y. 1990. The time index—an access structure for temporal
data. In Proceedings of the International Conference on Very Large Data Bases (Brisbane,
Australia, Aug.), 1–12.

FINGER, M. 1992. Handling database updates in two-dimensional temporal logic. J. Appl.
Non-Classical Logics 2, 2.

FRAENKEL, A. A., BAR-HILLEL, Y., AND LEVY, A. 1973. Foundations of Set Theory. North-
Holland, Amsterdam, Netherlands.

GADIA, S. K. 1988. A homogeneous relational model and query languages for temporal
databases. ACM Trans. Database Syst. 13, 4 (Dec.), 418–448.

GADIA, S. AND NAIR, S. 1993. Temporal databases: A prelude to parametric data. In
Temporal Databases: Theory, Design, and Implementation, A. Tansel et al., Eds., Benjamin
Cummings, Redwood City, CA, Chap. 2, 28–66.

GADIA, S. K., NAIR, S., AND POON, Y.-C. 1992. Incomplete information in relational temporal
databases. In Proceedings of the Conference on Very Large Data Bases (Vancouver, Canada,
Aug.).

JENSEN, C. S. AND MARK, L. 1990. A framework for vacuuming temporal databases. Tech.
Rep. CS-TR-2516/UMIACS-TR-90-105, Univ. of Maryland, Dept. of Computer Science,
College Park, MD, Aug.

On the Semantics of “Now” • 213

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

JENSEN, C. S. AND MARK, L. 1992. Queries on change in an extended relational model. IEEE
Trans. Knowl. Data Eng. 4, 2 (April), 192–200.

JENSEN, C. S. AND SNODGRASS, R. T. 1992. Temporal specialization. In Proceedings of the
IEEE International Conference on Data Engineering (Tempe, AZ, Feb.), 594–603.

JENSEN, C. S. AND SNODGRASS, R. T. 1994. Temporal specialization and generalization. IEEE
Trans. Knowl. Data Eng. 6, 6 (Dec.), 954–974.

JENSEN, C. S. AND SNODGRASS, R. T. 1996. Semantics of time-varying information. Inf. Syst.
21, 4, 311–352.

JENSEN, C. S., CLIFFORD, J., ELMASRI, R., GADIA, S. K., HAYES, P., AND JAJODIA, S. (EDS.) 1994.
A consensus glossary of temporal database concepts. ACM SIGMOD Rec., 23, 1 (March),
52–65.

JENSEN, C. S., SOO, M. D., AND SNODGRASS, R. T. 1994. Unifying temporal data models via a
conceptual model. Inf. Syst. 19 7 (Dec.), 513–547.

KURUTACH, W. AND FRANKLIN, J. 1993. On temporal-fuzziness in temporal fuzzy databases.
In DEXA’93 (Prague, Czech Republic, Sept.), 154–165.

LIPSKI, W. JR. 1979. On semantic issues connected with incomplete information databases.
ACM Trans. Database Syst. 4, 3 (Sept.), 262–296.

LORENTZOS, N. A. AND JOHNSON, R. G. 1988. Extending relational algebra to manipulate
temporal data. Inf. Syst. 13, 3, 286–296.

MELTON, J. AND SIMON, A. R. 1993. Understanding the New SQL: A Complete Guide.
Morgan-Kaufmann, San Mateo, CA.

MONTAGUE, R. 1974. Formal Philosophy: Selected Papers of Richard Montague. Yale Uni-
versity Press, New Haven, CT.

NAVATHE, S. B. AND AHMED, R. 1989. A temporal relational model and a query language. Inf.
Sci. 49, 147–175.

REITER, R. 1984. Towards a logical reconstruction of relational database theory. In On
Conceptual Modelling, Springer Verlag, New York, 191–233.

RODDICK, J. F. 1992. Schema evolution in database systems—An annotated bibliography.
SIGMOD Rec. 21, 4 (Dec.), 35–40.

SARDA, N. L. 1990. Algebra and query language for a historical data model. Computer J.,
33, 1 (Feb.), 11–18.

SNODGRASS, R. T. 1987. The temporal query language TQuel. ACM Trans. Database Syst.
12, 2 (June), 247–298.

SNODGRASS, R. T. 1993. An overview of TQuel. In Temporal Databases: Theory, Design, and
Implementation, A. Tansel et al., Eds., Benjamin-Cummings, Redwood City, CA, Chap. 6,
141–182.

SNODGRASS, R. T. (ED.) 1995. The TSQL2 Temporal Query Language. Kluwer, Boston, MA.
SNODGRASS, R. T. AND AHN, I. 1985. A taxonomy of time in databases. In Proceedings of

ACM SIGMOD International Conference on Management of Data (Austin, TX, May), 236–
246.

SYKES, J. B. (ED.) 1964. The Concise Oxford Dictionary. Oxford University Press, Oxford,
England.

TANSEL, A. U. 1990. Modelling temporal data. Inf. Sofw. Technol. 32, 8 (Oct.), 514–520.
TANSEL, A., CLIFFORD, J., GADIA, S., JAJODIA, S., SEGEV, A., AND SNODGRASS, R. T. (EDS.) 1993.

Temporal Databases: Theory, Design, and Implementation. Benjamin-Cummings, Redwood
City, CA.

THIRUMALAI, S. AND KRISHNA, S. 1988. Data organization for temporal databases. Tech.
Rep., Raman Research Institute, Bangalore, India.

WIEDERHOLD, G., JAJODIA, S., AND LITWIN, W. 1993. Integrating temporal data in a hetero-
geneous environment. In Temporal Databases: Theory, Design, and Implementation. Ben-
jamin-Cummings, Redwood City, CA, 563–579.

YAU, C. AND CHAT, G. S. W. 1991. TempSQL—A language interface to a temporal relational
model. Inf. Sci. Tech. (Oct.), 44–60.

Received November 1994; revised August 1996; accepted September 1996

214 • J. Clifford et al.

ACM Transactions on Database Systems, Vol. 22, No. 2, June 1997.

