
The Temporal Query Language TQuel
RICHARD SNODGRASS
University of North Carolina

Recently, attention has been focused on temporal datubases, representing an enterprise over time. We
have developed a new language, TQuel, to query a temporal database. TQuel was designed to be a
minimal extension, both syntactically and semantically, of Quel, the query language in the Ingres
relational database management system. This paper discusses the language informally, then provides
a tuple relational calculus semantics for the TQuel statements that differ from their Quel counterparts,
including the modification statements. The three additional temporal constructs defined in TQuel
are shown to be direct semantic analogues of Quel’s where clause and target list. We also discuss
reducibility of the semantics to Quel’s semantics when applied to a static database. TQuel is compared
with ten other query languages supporting time.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design-data models;
H.2.3 [Database Management]: Languages-query lunguages; H.2.7 [Database Management]:
Database Administration-logging and recovery

General Terms: Languages, Theory

Additional Key Words and Phrases: Historical database, Quel, relational calculus, relational model,
rollback database, temporal database, tuple calculus

1. INTRODUCTION

Most conventional databases represent the state of an enterprise at a single
moment of time. Although the contents of the database continue to change as
new information is added, these changes are viewed as modifications to the state,
with the old, out-of-date data being deleted from the database. The current
contents of the database may be viewed as a snapshot of the enterprise.

Recently, attention has been focused on temporal dutubases (Z’DBs), repre-
senting the progression of states of an enterprise over an interval of time. In
such databases changes are viewed as additions to the information in the
database. TDBs are thus generalizations of conventional (termed snapshot)
databases and their underlying snapshot relational model.

We have developed a new language, TQuel (Temporal QUEry Language), to
query a TDB [75]. TQuel is a derivative of Quel [41], the query language for the

This research was sponsored by the National Science Foundation under Grant DCR-8402339, and
was supported by an IBM Faculty Development Award and by a UNC-CH Foundation Junior Faculty
Development Award.
Author’s address: Department of Computer Science, University of North Carolina, Chapel Hill, NC
27514.
Permission to copy without fee all or part of this material is g-ranted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0362-5915/87/0600-0247 $00.75

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987, Pages 247-298.

248 l Richard Snodgrass

Ingres relational database management system [81]. TQuel was designed to be a
minimal extension, both syntactically and semantically, of that language. This
design decision has three important ramifications: All legal Quel statements are
also valid TQuel statements, such statements have an identical semantics in
Quel and TQuel when the time domain is fixed, and the additional constructs
defined in TQuel to handle time have direct analogues in Quel. TQuel is, then, a
natural extension of a conventional relational query language to a temporal
relational query language.

Major portions of the language have been formalized and implemented. This
paper will focus on the syntax and semantics of TQuel. The concept of TDBs
is introduced in Section 2, and an overview of the language is provided in
Section 3. A formal definition, semantics, and the prototype implementation of
TQuel are the subjects of Sections 4-6, respectively. The final section summarizes
the results, compares TQuel to other query languages, and indicates future work.
The Appendix gives the complete syntax of the augmented TQuel statements.

2. TEMPORAL DATABASES

Temporal information has been stored in computerized information systems for
many years; payroll and accounting systems are typical examples. In these
systems the attributes involving time are manipulated solely by the application
programs; the DBMS interprets dates as values in the base data types. For
example, the ENFORM database management system encodes dates and times
in character arrays [82]; the Query-by-Example system supports both date and
time domains directly [181; and Ingres has been extended to convert dates to and
from an internal format and to perform comparisons and arithmetic operations
on these domains [66, 701. However, none of these systems interprets temporal
domains when deriving new relations.

The need to handle time more comprehensively surfaced in the early 1970s in
the area of medical information systems, where a patient’s medical history is
particularly important. The model supported by the Time Oriented Databank
[93] and several other medical DBMSs (e.g., CLINFO [67]) views the database
as a set of entity-attribute-value-time quadruples, where the time portion indi-
cates when the information represented by the tuple became valid. In these
systems the query language is used to select subsets of quadruples from the three-
dimensional database of entities (i.e., patients), attributes, and times.

In the last five years, interest in the area of TDBs has increased. A recent,
\ extensive bibliography [61] contained 80 articles from 1982 to 1986. At least

25 research groups are studying time in databases [76]. This activity may be
classified loosely into three emphases: the formulation of a semantics of time at
the conceptual level, the development of a model for TDBs analogous to the
relational model for snapshot databases, and the design of temporal query
languages. However, the problems inherent in the modeling of time are not
unique to information processing; a significant literature exists on related issues
in artificial intelligence (c.f., [4-6,24,34,48,55, 60,88,91]), linguistics (c.f., 133,
42, 59,64]), logic (c.f., [58,68, 71]), philosophy (c.f., [92]), and physics (c.f., [87]).

Bubenko [20, 211 specified a TDB and examined two possible implementation
strategies, in the binary and n-ary relational models. Since the appearance of
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel 249

these papers, various semantic models have been proposed that incorporate the
temporal dimension to varying degrees [8,9,19,22,30,40,52].

At least two possible approaches to the development of a model for TDBs have
been suggested. One is to extend the semantics of the relational model to
incorporate time directly. The other is to base TDBs on the snapshot model,
with time appearing as additional attribute(s). The first has been applied suc-
cessfully by Clifford and Warren [27], with the entity-relationship model used to
formulate the intensional logic IL,. This logic serves as a formalism for the
temporal semantics of a TDB much as the first-order logic serves as a formalism
for the snapshot relational model. Sernadas has taken the same approach in
defining the temporal process specification language DMTLT, which incorpo-
rates a special modal tense logic [72].

In the second approach, the snapshot relational database model [28] serves as
the underlying model of the TDB. Each temporal relation is embedded in a
snapshot relation containing an additional temporal attribute(s). In this approach
the logic of the model does not incorporate time at all; instead, the query language
must translate queries and updates involving time into retrievals and modifica-
tions on the underlying snapshot relations. In particular, the query language
must provide the appropriate values for these attributes in the relation being
derived. In Ben-Zvi’s Time Relational Model, for example, five additional attri-
butes are appended to each relation [15]. Other researchers have also utilized
this technique [13, 32, 38, 471.

Several query languages incorporating time have been designed over the last
decade. In Section 7.1 TQuel is compared with these other proposals.

Most databases incorporating time support only one aspect of time-the time
when the information is valid. This aspect is termed valid time. Two other aspects
of time should be supported by a temporal query language: transaction time and
user-defined time. The remainder of this section will characterize these aspects
briefly; a more complete discussion may be found in [771, and a comprehensive
example may be found in [78]. The presentation is more of an intuitive nature
than a formal characterization of TDBs; Section 5.1 will show how to embed a
temporal relation in a snapshot relation, thereby providing a precise definition.
We take the second approach to modeling TDBs: utilizing the snapshot model.

2.1 Snapshot Databases

Conventional databases model the dynamic real world, as a snapshot at a
particular point in time. A state or an instance of a database is its current
contents, which does not necessarily reflect the current status of the real world,
since changes to the database will always lag behind changes in the real world.
Updating the state of a database is performed using data-manipulation operations
such as insertion, deletion, or replacement, taking effect as soon as it is commit-
ted. In this process past states of the database, and those of the real world, are
discarded and forgotten completely. We term this type of database a snapshot
database.

In the snapshot relational model, a database is a collection of relations. Each
relation consists of a set of tuples with the same set of attributes and is usually
represented as a two-dimensional table (see Figure 1). As changes occur in the
real world, changes are made in this table.

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

250 l Richard Snodgrass

Fig. 1. A snapshot relation.

2.2 Rollback Databases

Snapshot databases relying on snapshots are inadequate for many situations. For
example, they cannot answer queries on past states. Without system support in
this respect, many applications were forced to maintain and handle temporal
information in an ad hoc manner. One approach to resolve these deficiencies is
to store all past states, indexed by time, of the snapshot database as it evolves.
Such an approach requires a representation of transaction time, the time the
information was stored in the database. A relation under this approach can be
illustrated conceptually in three dimensions (Figure 2) with transaction time
serving as the third axis. The relation can be regarded as a sequence of snapshot
relations (termed snapshot states) indexed by transaction time. One can get a
snapshot of the relation as of some time in the past (a snapshot state) and make
queries on that state by moving along the time axis and selecting this relation.
The operation of selecting a snapshot state is termed rollback, and a database
supporting it is termed a rollback database. A rollback to a time t, where t is
between two transaction times tl and t2 represented in a rollback database, selects
the most recent snapshot state in effect at that time (i.e., the one at tl). Changes
to a rollback database may only be made to the most recent snapshot state. The
(single) relation illustrated in Figure 2 had three transactions applied to it,
starting from the null relation: (1) the addition of three tuples, (2) the addition
of a tuple, and (3) the deletion of one tuple (which was entered in the first
transaction) and the addition of another tuple. Each transaction results in a new
snapshot state being appended to the right; once a transaction has completed,
the snapshot states in the rollback relation may not be altered. Transaction time
is represented by transaction identifiers: monotonically increasing integers gen-
erated by the DBMS. We assume that the DBMS maintains information mapping
transaction identifiers into the clock time when the transaction was executed,
for querying and display purposes.

2.3 Historical Databases
One limitation of supporting transaction time is that the history of database
activities is recorded, rather than the history of the real world. A tuple becomes
valid as soon as it is entered into the database as in a snapshot database.
Retroactive/proactive changes are not recorded, and errors in past tuples cannot
be corrected. Errors can sometimes be overridden (if they are in the current
state), but they cannot be forgotten.

Whereas rollback databases record a sequence of snapshot states, historical
databases record a single historical state per relation, storing the history as is best
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel l 251

\ .\
I II
I II

mnsaction
time *

Fig. 2. A rollback relation.

Fig. 3. An historical relation.

known. As errors are discovered, they are corrected by modifying the database.
Previous states are not retained, so the database may not be viewed as it was in
the past. No record is kept of the errors that have been corrected; historical
databases are similar to snapshot databases in this respect. Thus historical
databases must represent ualicE time, the time that the stored information models
reality. Historical databases support historical queries, which may utilize infor-
mation from the past.

Historical databases may also be illustrated in three dimensions (see Figure 3)
[12, 15, 27, 561. The label of the time axis has been changed to valid time, and
the semantics are more closely related to reality, rather than update history. The
state of the world being modeled remains unchanged between the individual
snapshot slices found in the historical relation; this is termed the step function
continuity assumption [27] or the principle of temporal density [ll]. The infor-
mation present in the snapshot database slice at one valid time u1 is assumed to
be valid for all time between that valid time and the next one, u2. Hence, the
tuples in the relation are valid for the interval of time [ul, u2).

As the model now stands, only states that exist for a finite interval of time
may be represented, while events, occurring instantaneously, are more difficult
to model. Our representation of an event is a tuple that exists for exactly one
valid time, with the snapshot slices of the previous and next valid times not
containing the tuple. This representation is problematic because time is contin-
uous: It is misleading to talk about the previous and next time values. Of course,
any implementation will encode valid time in some discrete fashion; the proposed
representation for events then reduces to an interval of the ualid-time granularity
of the encoding (say, seconds, or microseconds). In effect, we are defining
instantaneous to be any occurrence over a time interval that is less than the
valid-time granularity. In the examples that appear later in the paper, the valid-
time granularity is one month: Any occurrence over a period of less than a month
is considered instantaneous. Snapshot relations as defined in Section 2.1 cannot
represent events at all, precisely because they are instantaneous.

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

252 l Richard Snodgrass

\
I II
I I1

“ii-i V V V
time mile tune hme

transaction
tune m

Fig. 4. A temporal relation.

Since an update to a historical relation must specify the valid time it concerns,
more sophisticated operations are necessary to manipulate and query valid time
adequately, compared to the simple rollback operation, since they apply to the
entire historical relation, rather than a single snapshot slice.

2.4 Temporal Databases

Benefits of both approaches can be combined by supporting both transaction
time and valid time. Whereas a rollback database views tuples as being valid at
some time as of that time, and a historical database always views tuples as being
valid at some moment as of now, a temporal DBMS makes it possible to view
tuples as being valid at some moment relative to some other moment, completely
capturing the history of retroactive/proactive changes. r--

We use the term temporal database to emphasize the need fir both valid time
and transaction time in handling temporal information. Since two time axes are
now involved, four dimensions are required to represent a temporal relation
(Figure 4 shows a single temporal relation). A temporal relation may be thought
of as a sequence of historical states, each of which is a complete historical
relation. The rollback operation on a temporal relation selects a particular
historical state, on which a historical query may be performed. Each transaction
creates a new historical state; hence, temporal relations are append only. How-
ever, the transaction must specify the valid time(s) it concerns, as in a historical
database. The temporal relation in Figure 4 is the result of four transactions,
starting from a null relation: (1) Three tuples were added, (2) one tuple was
added, (3) one tuple was added and an existing one deleted, and (4) a previous
tuple (with an earlier valid time) was deleted (presumably it should not have
been there in the first place). Each update operation involves copying the
historical relation, then applying the update to the newly created historical
relation.

User-defined time [46] is necessary when additional temporal information, not
handled by transaction or valid time, is stored in the database. The values of
user-defined temporal attributes are not interpreted by the DBMS and are thus
the easiest to support; all that is needed is an internal representation and input
and output functions. The transaction and valid times are needed in any case in
temporal relations.

In this model four types of databases were defined: snapshot, rollback, histor-
ical, and temporal. Each may be associated with a class of query languages.
A snapshot query language supports queries over multiple snapshot relations. A
rollback query language also supports rollback. A historical query language does
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel 253

not support rollback, but it does support historical queries, which combine
information from multiple valid times and possibly multiple relations. A temporal
query language supports both rollback and historical queries. The next section
will informally introduce the temporal query language TQuel.

3. OVERVIEW OF TQUEL

TQuel is a superset of Quel [41], the query language for Ingres [al]. Quel was
chosen for several reasons: It is well known, and implementations are widely
available; it is particularly simple, but rather powerful; and it has a simple and
well-defined semantics. The leading contender, SQL [43], is more complex and
has a rather complicated semantics [23, 501. An important goal in the design of
TQuel was that it be a minimal extension, both syntactically and semantically,
of Quel. This objective has three important ramifications: All legal Quel state-
ments are also valid TQuel statements, such statements have an identical
semantics in Quel and TQuel when the time domain is fixed, and the additional
constructs defined in TQuel to handle time have direct analogues in Quel.

TQuel will be illustrated using example queries on the database shown in
Figure 5. The Faculty relation lists the faculty members and their ranks (one of
the values Assistant, Associate, or Full); the Submitted relation lists those papers
submitted. In the discussion that follows, we assume the reader is familiar with
Quel.

The Quel retrieve statement consists of two basic components: the target list,
specifying how the attributes of the relation being derived are computed from
the attributes of the underlying relations, and a where clause, specifying which
tuples participate in the derivation. The following query produces the relation
shown in Figure 6 when applied to the sample database:

Example 1. List the associate professors.
range of f is Faculty
retrieve into Associates (Name = f.Name)

where f.Rank = “Associate”

The range statement associates tuple variables with relations; this binding
remains in effect until a new range statement tiith the same tuple variable is
executed.

The relations shown in Figures 5 and 6 are snapshot relations. Although the
graphical representation of a temporal relation as a sequence of three-dimensional
structures is conceptually elegant, it is not convenient for displaying the contents
of a temporal relation. For the purposes of this section, the temporal relations
will be embedded in a snapshot relation by appending two additional temporal
attributes. The value of the first attribute specifies the valid time: when that
tuple was valid. For event relations, which consist of tuples representing instan-
taneous occurrences, this attribute contains a single time value (at). For interval
relations, which consist of tuples representing a state valid over a time interval,
the attribute contains two time values delimiting the interval (from, to). Although
we will argue that events and intervals are quite similar semantically, there are
compelling arguments for presenting both to the user [57]. The second temporal

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

254 l Richard Snodgrass

Faculty (Name, Rank):

Fig. 5. A snapshot database.
Submitted (Author. Journal):

Merrie
Merrie
Tom

CACM
TODS
JACM

Associates (Name):
Name
Merrie
Tom

Fig. 6. Results of a query on a snapshot database.

attribute specifies the transaction time: when the information was entered into
the TDB. Two time values are always associated with the transaction time: the
time the tuple was entered into the TDB (start), and the time it was removed
(stop). Hence, data are current from the start time to just before the stop time,
when it becomes no longer current. Figure 7 illustrates the Faculty relation
extended to become an interval relation, and the Submitted relation extended to
become an event relation. Note that Tom was entered into the database as an
associate professor in August 1975; this error was corrected two months later.
No errors have been corrected in the Submitted relation, since the stop t&c fo;
all tuples is 03. Both intervals, for valid and transaction time, are closed on the
left and open on the right. The granularity of valid-time values is arbitrary; in
this section we assume for simplicity a granularity of one month. We also assume
that the DBMS has been instructed to display the transaction time to the nearest
month, again for simplicity. Tuples are assumed to be coalesced, in that tuples
with identical values for the explicit attributes (termed due-equimdent tuples
[62]) neither overlap nor are adjacent in time.

Since TQuel is a strict superset of Quel, the identical query, executed in
September, 1983 on this sample TDB, produces the relation shown in Figure 8.
The transaction time specifies when the relation was created; subsequent updates
will alter the transaction time of individual tuples.

Since the additional temporal attributes are an artifact of embedding a tem-
poral relation in a snapshot one, users must be constrained in how they use these
attributes. The query language must be designed so that temporal attributes are
used correctly. The approach taken here is to make the temporal attributes
implicit in the query language (except is one very restricted case), and to provide
facilities in the language for manipulating this implicit attribute. That these
additional attributes are implicit is indicated in the figures by a double vertical
line and parentheses surrounding the names of the attributes. To manipulate
these attributes, TQuel augments the retrieve statement with three components,
analogous to the components of the Quel retrieve statement, one specifying how
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Faculty (Name, Sank):

Name Rank

Jane Assistant
Jane Associate
Jane Full
Merrie Assistant
Merrie Associate
Tom Associate
Tom Assistant
Tom Associate

Submitted (Author, Journal):

The Temporal Query Language TQuel 255

Valid time Transaction time
(from) (to) (start) (stop)

9-71 12-76 9-71 m
12-76 11-80 12-76 01
11-80 m

t

lo-80 m
9-77 12-82 8-77 Ca

12-82 m

t

12-82 Q)
9-75 01 8-75 10-75
9-75 12430 10-75 m

12-80 00 11-80 00

11 Valid time 11
(at)

11-79
9-78
5-79

12-82

Author

Jane
Merrie
Merrie
Tom

Journal

CACM
CACM
TODS
JACM

Transaction time
(start) (stop)

11-79 m
9-78 QI
5-79 m

12-82 cc

Fig. 7. A temporal database.

Associates (Name):
Valid time Transaction time

Name (from) @) (St-Q (stop)

Jane 12-76 11-80 9-83 Ca
Merrie 12-82 co 9-83 Ca
Tom 12-80 03 9-83 01

Fig. 8. The same query on a temporal database.

the implicit valid temporal attribute is computed, and two specifying the temporal
relationship of the tuples participating in the derivation.

3.1 The When Clause

The when clause is the temporal analogue to Quel’s where clause. This clause
consists of the keyword followed by a temporal predicate on the tuple variables,
representing the implicit time attributes of the associated relations. The syntax
is similar to path expressions, which are regular expressions augmented with
parallel operators [10,391.

The overlap operator specifies that the events and/or intervals overlap in
time:

Example 2. List the associate professors in September.
range of a is Associates
retrieve into FirstDayAssociates (Name = a.Name)

when a overlap “September”

In this case the query specifies that the interval when the faculty member was
an associate professor should include September (of the current year), which is

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

256 l Richard Snodgrass

also a time interval (strings, enclosed in double quotation marks, are temporal
constants). We mention in passing that the overlap operator is also used in
another context, as illustrated in Section 3.2 and discussed more deeply in
Section 4.3. The result is Merrie and Tom.

Another example of the when clause follows:

Example 3: What papers were written by associate professors?
range of a is Associates
range of s is Submitted
retrieve into AssocPapers (Name = s.Author, Journal = s.Journal)

where a.Name = s.Author
when s overlap a

The time that the paper was submitted must overlap with the time interval when
the faculty member was an associate professor. Jane submitted a paper to CACM,
and Tom submitted a paper to JACM.

Intervals include two time values in the implicit attribute: a starting time and
a stopping time. These values may be indicated by the unary operators begin of
and end of:

Example 4. Who were the full professors when Tom was promoted to associate?
range of fl is Faculty
range of a is Associates
retrieve into Full (Name = fl.Name)

where a.Name = Tom and fl.Rank = “Full”
when fl overlap begin of a

This query returns Jane.
Sequentiality may be tested with the precede operator:

Example 5. Who has been an associate professor for the last five years?
range of a is Associates
retrieve into Disgruntled (Name = a.Name)

when (begin of a) precede “January 1980”
and “January 1985” precede (end of a)

This example also illustrates the and operator; the or and not operators are
allowed as well. Fortunately there are no disgruntled professors.

3.2 The Valid Clause

The valid clause serves the same purpose as the target list: specifying the value
of an attribute in the derived relation. In this case the attribute in question is
the implicit time attribute. There are two variants to this clause. If the derived
relation is to be an event relation, the valid at variant specifies the value of the
single time in the temporal attribute.

Example 6: When were the associate professors promoted to this rank?
range of a is Associates
retrieve into AssociatePromotions (Name = a.Name)

valid at begin of a
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel l 257

Jane was promoted on 12-76, Merrie on 12-82, and Tom on 12-80. In this query
the underlying relation, Associates, is an interval relation. One time value, the
start time, was selected as the time value in the derived (event) relation. The
valid clause contains an e-expression, also syntactically similar to path expres-
sions. The operators begin of, end of, overlap, extend, and precede may be
used in e-expressions. The binary Boolean operators and and or and the unary
Boolean operator not are not allowed, since they introduce ambiguity as to which
time value is desired.

The second variant of the valid clause, valid from . . . to . . . , also contains
e-expressions and is used when the derived relation is to be an interval relation:

Example 7. Who got promoted from assistant to full professor while at least one
other faculty remained at the associate rank?
range of fl is faculty
range of f2 is faculty
range of a is Associates
retrieve into Stars (Name = fl.Name)

valid from begin of f 1 to begin of f2
where f l.Name = f2,Name and f l.Rank = “Assistant” and f2Rank = “Full”
when (f 1 overlap a) and (f2 overlap a)

Tuples in the derived relation Stars indicate the interval of time from joining
the faculty as assistant professors to becoming full professors. There are currently
no full professors.

The operators found in temporal predicates and e-expressions may be applied
more generally than shown above; as an example, the e-expression

valid at begin of (fl overlap a)

specifies that the time value returned should be the first instant when both tuples
are valid. E-expressions must have begin of or end of as top-level operators.

3.3 The As-Of Clause

The when and valid clauses are used to express historical queries. To express
rollback, the as-of clause is used:

Example 8. What stars were known at the end of 1984?
range of fl is Faculty
range of f2 is Faculty
range of a is Associates
retrieve into Starsofl984 (Name = fl.Name)

valid from begin of f 1 to begin of f 2
where fl.Name = f2.Name and fl.Rank = “Assistant” and f2.Rank = “Full”
when (f 1 overlap a) and (f2 overlap a)
as of end of “1984”

The as-of clause rolls buck the database to the state it was at midnight on
December 31, 1984, and evaluates the rest of the query using the information
known only to that point. Additions and error corrections made after that time
would not be included in the resulting relation.

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

258 l Richard Snodgrass

Submitted (Author. Journal):

Author

Jane
Merrie
Merrie
Tom
Tom

CACM 11-79 11-79
CACM 9-78 9-78
TODS 5-79 5-79
JACM E-82 12-82
TOPLAS l-83 10-85

Fig. 9. An updated temporal relation.

Journal
Valid time

(at)
Transaction time

(start) (stop)

cc

cc
m

lo-85
m

The as-of clause is similar to the where and when clauses, in that it provides
an additional constraint on the underlying tuples participating in the query.
Most of the time the user will be interested in the most up-to-date information
in the database and will rely on the default for the as-of clause: aa of “now”. To
rollback to a previous historical database, the as-of clause as illustrated above
would be used. To examine a sequence of transactions occurring over a period of
time, a third variant is used:

as of (Y through B

3.4 Temporal Data Type

TQuel provides a temporal data type to support user-defined time. As discussed
previously the values of user-defined temporal attributes are not interpreted by
the temporal DBMS; only the internal representation and the input and output
functions are provided.

3.5 Modification Statements

Quel has three modification statements: append, delete, and replace. These
statements in TQuel do not have an as-of clause, because the transaction time is
computed automatically by the temporal DBMS as the current time (recall that
temporal databases are append only; hence the modification applies to the current
historical state). However, the valid and when clauses may be employed in these
statements. In October 1985 it was learned that Tom had submitted a paper not
to JACM, but to TOPLAS, a month later than previously thought.

Example 9. Tom submitted a paper to TOPLAS, not to JACM.

range of s is Submitted
replace s (Journal = “TOPLAS”)

where s.Author = “Tom” and s.Journal = “JACM”
valid at begin of “January 1983”

This results in the relation shown in Figure 9, which should be compared with
Figure 7.

4. FORMAL DEFINITION

The description of TQuel in the previous section was presented informally to
help the reader develop an intuitive understanding of the language. This section
and the next will provide a more precise definition and semantics for the language.
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel 259

Quel has some 14 statements; TQuel augments 5 of them: the create, retrieve,
append, delete, and replace statements. The statements will be discussed in this
order. The syntax for the retrieve statement will be presented in a bottom-up
fashion, discussing expressions before clauses, in contrast to the top-down
presentation of the previous section, where the clauses were emphasized. The
Appendix includes the syntax of the five statements.

4.1 Schema Definition

The create statement defines a new relation and provides a scheme for that
relation; the statement

create persistent interval Faculty (Name = ~20, Rank = ~10)

would define the Faculty relation shown in Figure 7 (the contents of this relation
would have to be provided through the copy or append statements). The Quel
create statement does not include the persistent, interval, or event keywords.
Each of these keywords is optional in TQuel (see the Appendix for details on the
syntax). If the persistent keyword is used, then the relation is either a rollback
or a temporal relation, and the as-of clause may be used in queries. If the
interval or event keyword is used, the relation is either a historical or temporal
relation, and the when and valid clauses may be used. If none of these keywords
is used, the relation is a conventional snapshot relation. The four types of
relations (snapshot, rollback, historical, temporal) are thereby specified. The
domain specifications are similar to those in Quel (integers, floating-point num-
bers, and fixed-length character strings, as used above, are supported), with the
addition of a temporal data type.

Associated with all rollback and temporal relations is a pair of transaction
time values, start and stop. Although these values are closely associated with
clock time, they are actually transaction identifiers. Tuples created or removed
by two different. transactions will have different transaction times, even if the
transactions started and completed at identical moments in time.

Associated with all historical and temporal event relations is a single valid
time value, at, and with all historical and temporal interval relations, a pair of
valid time values, from and to. These values are equal to the clock time when the
tuple was valid. In contrast to transaction time, two tuples entered into the
database at different times may have the same valid times.

4.2 Constants and Predefined Functions

Quel supports numeric and character string constants. TQuel augments these
with temporal constants. Strings appearing in the valid, when, and as-of clauses
are interpreted as temporal constants denoting a particular time interval. The
string “September 1, 1983” denotes an interval from midnight of September 1,
1983, to midnight of September 2, 1983; “September 1983” denotes the entire
month; and “4:O0 PM September 1, 1983” denotes a 60-second interval. Events
may be approximated with very short intervals. The exact format of these
constants is similar to that specified for the time expert [66] or the Ingres system
[701. The constants “beginning,” “now,” and “forever” are also available, with

ACM Transactions on Dstabaee Systems, Vol. 12, No. 2, June 1987.

260 l Richard Snodgrass

both transaction and valid time values, distinguished by the context in which
they are used.

The implicit temporal attributes are available through the functions “validat,”
“validfrom,” and “validto” (valid time), and “transactionstart” and “transaction-
stop” (transaction time), for use only in the target list and where clauses. These
functions, as well as the temporal data type, are provided in part for auditing
purposes [17]; a simple example is as follows:

Example 10. When was Tom entered incorrectly as an associate professor?
range of f is Faculty
retrieve into Mistake (MistakeDate = transactionstart(

CorrectedDate = transactionstop(f))
where f.Name = “Tom” and f.Rank = “Associate”
as of “1975”

Tom was entered incorrectly on 8-75, and his rank was corrected on 10-75. The
MistakeDate and CorrectedDate attributes cannot be used in subsequent when,
valid, or as-of-clauses; to the temporal DBMS, these attributes are just other
user-defined attributes. Perhaps the temporal data type’s most useful function is
to be displayed with the other user-defined attributes (as in the example above).
TRM also provides restricted access to the time attributes [15].

As the other statements, retrieve, append, delete, and replace, all incorporate
the when, valid, and as-of clauses, we will first discuss the expressions found in
these clauses.

4.3 Temporal Expressions
A temporal constructor is a unary or binary operator that takes one or two events
or intervals as arguments and returns an event or interval. If either of the
arguments to the temporal constructors is an event, then it is coerced into an
interval that starts and ends at the event’s time value. The unary prefix temporal
constructors are begin of and end of, both returning events. The binary infix
temporal constructors are overlap and extend, both returning intevals.
overlap is undefined if there are no time values that are in both underlying
intervals. The overlap operator may be thought of as a temporal intersection
operator, in that it returns the points in time when both arguments are valid:
The predicate

(a overlap b) precede c

is true when the overlap of the intervals represented by the tuple variables a and
b precedes the event or the start of the interval represented by c. However, the
extend operator is more like a temporal union, in that it returns the points in
time when either of the arguments are valid; the predicate

(a extend b) precede c

is true when the ends of both a and b precede the start of c. The difference
between overlap and extend is illustrated with the time lines in Figure 10.

An e-expression is simply an expression containing tuple variables, temporal
constants, and temporal constructors, with the constraint that the expression
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel l 261

Time

b

c

(a overlap b) precede c = True

a extend b

(a extend b) precede c = False

Fig. 10. The difference between overlap and extend.

must result in an event. E-expressions are used in the valid and as-of clauses.
Since the as-of clause specifies rollback to a particular transaction time, the
e-expression in an as-of clause must evaluate to a temporal constant. An equiv-
alent constraint is that an e-expression within an as-of clause must not contain
a tuple variable.

An i-expression is an expression containing tuple variables, temporal constants,
and temporal constructors that evaluates to an interval.

A temporal predicate operator is a binary infix operator that takes events or
intervals as arguments and returns a Boolean value. The three temporal predicate
operators are precede, overlap, and equal. The overlap operator is an over-
loaded operator, in that it is both a temporal constructor and a temporal predicate
operator. This overloading also occurs in English: One may ask whether two
intervals overlap, or may ask for the overlap of two intervals, expecting a yes or
no to the first query and an interval for the second request. CY precede fi is true
if the event (end of CY) is before the event (begin of p). One event is before a
second event if the time value of the first, expressed as an integer or real value,
is less than or equal to (I) the time value of the second. In this formulation an
event overlaps itself. CY overlap /3 is true if the event (begin of (Y) is before the
event (end of ,6?) and the event (begin of p) is before the event (end of CY). An
equivalent formulation is (end of (begin of (Y extend begin of /3)) precede
(begin of (end of (Y extend end of ,L?)). (Y equal /3 is true if (II and p are two
events that occurred at the same time (within the valid-time granularity) or if cx

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

262 l Richard Snodgrass

and B are two intervals that began and ended at the same time. An event is never
equal to an interval.

A temporal predicate is an expression containing logical operators (and, or,
not) operating on expressions containing a temporal predicate operator
(precede, overlap, or equal), operating on e-expressions and i-expressions.
This constraint is motivated by consideration of the types in a temporal predicate.
In particular, e-expressions evaluate to events, and i-expressions evaluate to
intervals. A temporal predicate operator maps pairs of intervals or events to a
Boolean value, which may be operated on by the logical operators. Temporal
predicates are used only in when clauses.

We envision that additional temporal constructors and temporal predicates
would be supported in an implementation.

4.4 Unique

Resulting relations are always coalesced (cf., Section 3) when they are stored.
This behavior is analogous to Ingres removing duplicates when storing relations.
If the retrieve statement does not name a destination relation, the tuples are not
coalesced, and duplicates are not removed, for performance reasons. The user
can insist on coalescing and duplicate elimination by specifying retrieve unique.

4.5 Augmented Quel Statements

The TQuel retrieve statement and the three TQuel modification statements-
append, delete, and replace-augment their Quel counterparts with (optional)
valid clauses and when clauses; the retrieve statement also allows an optional
as-of clause. See the Appendix for details on the syntax. A retrieve statement
always generates a new historical state, unless all the underlying relations are
snapshot or rollback relations, in which case a new snapshot state is generated.

4.6 Defaults

The defaults assumed in the language will be important for the semantics to be
presented shortly. Quel defaults the where clause to “where true.” The defaults
for the additional clauses in TQuel should be natural to the user. The retrieve
statement will be handled first. If only one tuple variable (say, I) is used, and it
is associated with an interval relation, then the defaults are as follows:

valid from begin of I to end of I
when I overlap “now”
as of “now”

These defaults say that the result tuple is to start when the underlying tuple
started and stop when the underlying tuple stopped and that the query is to be
executed on the current historical state. The valid from and valid to defaults are
distinct; one can be stated explicitly by the user, and the other will be supplied
as a default. When an event relation is associated with the one tuple variable
(say, E) the default is

valid at E
when true
as of “now”

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel l 263

specifying simply that the result tuple was valid at the same instant the under-
lying tuple was valid. The first TQuel query given (Example 1) thus has the
following default clauses:

Example 11. The first query, with defaults.
range of f is Faculty
retrieve into Associates (Name = f.Name)

valid from begin of f to end of f
where f.Rank = “Associate”
when f overlap “now”
as of “now))

When two or more tuple variables are used, the situation is more complex.
If the tuple variables associated with interval relations involved in the query
are tl, t2, . . . , tk, then the default temporal clauses are the following:

valid from begin of (tI overlap - . - overlap tk) to end of (tl overlap . - -
overlap tk)
when (tI overlap - . - overlap tk) overlap “now”
as of “now”

These clauses state that the underlying tuples must be consistent; that is, they
are all valid for the entire interval the resulting tuple is valid. Tuple variables
associated with event relations are ignored in this case.

For the append statement, the defaults are as follows:

valid from “now” to “forever”
when (tl overlap - - . overlap tk) overlap “now”

Informally, this means that the tuples used to supply values for the new tuples
to be appended should be currently valid, and that the new tuples should be
considered to have become valid immediately. Again, tuple variables associated
with event relations are ignored. For the delete statement, the defaults are as
follows:

delete to
valid from “now” to end of to
when (to overlap tl overlap . . . overlap tk) overlap “now”

The tuple variables tl . . . tk are from the where, when, and valid clauses. These
defaults imply that the deletion only applies to information valid now or in the
future. If to was associated with an event relation, the default is as follows:

delete to
valid at to
when (tl overlap . . . overlap tk) overlap “now”

And, finally, for the replace statement, the defaults are as follows:

replace to
valid from “now” to end of to
when (to overlap . . . overlap tk) overlap “now”

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

264 l Richard Snodgrass

These defaults follow from the fact that a replace is roughly equivalent to a
delete followed by an append. The situation where to is associated with an event
relation is handled similarly to the delete statement.

Note that when one or more of these clauses are not provided by the user, it is
assumed to be as discussed above. The user should be careful when only a few
clauses are defaulted, because the defaulted clause(s) may be inappropriate.

5. FORMAL SEMANTICS

TQuel statements manipulate information in a TDB composed of a sequence of
historical states indexed by transaction time, with each historical state consisting
of a sequence of snapshot slices indexed by valid time (i.e., the four-dimensional
structure). The semantics of TQuel must specify how this relation is modified
through an update command or is created through a retrieve command. The
semantics of TQuel uses the snapshot relational database model as the underlying
model of the TDB (Section 2 discussed one alternative: extending the semantics
of the relational model to directly incorporate time). Several benefits accrue from
using the snapshot relational model: The relational database model is simple and
is based on the well-developed formalisms of set theory and predicate calculus;
database models directly incorporating time are significantly more complex and
are based on newer and less well-understood logics such as Montague, multiple
transition, and temporal logics. Extensions involving aggregates and indetermi-
nacy are easier to formulate in the standard model (these extensions will be
discussed in a later paper). Finally, a TDB based on the relational model can be
implemented directly on conventional relational DBMSs. Many of the same
advantages resulted from a similar approach in the design of GEM, a query and
update language for a (snapshot) semantic data model [94], and in the specifi-
cation of the semantics of the snapshot query language SQL [23].

5.1 Embedding a Temporal Relation in a Snapshot Relation

The snapshot relational database model is utilized as the underlying model
of the TDB by embedding the four-dimensional temporal relation in a two-
dimensional snapshot relation. The semantics of operations on four-
dimensional temporal relations will be specified by stating their effect on the
two-dimensional snapshot relations. In this way the semantics can be expressed
in a traditional tuple calculus formalism.

This embedding can be accomplished in several ways. The most straightforward
is to append two attributes, each containing a single time value, to the user-
defined attributes, thereby specifying the valid and transaction times for each
tuple. Figure 11 shows a portion of the temporal relation in Figure 7 under this
representation. In Figure 11 the tuples comprising a historical state at a particular
transaction time are separated by horizontal lines, and the tuples comprising a
snapshot slice at a particular valid time are separated by dots. The snapshot
relation in Figure 11 contains a temporal relation consisting of five historical
states (each associated with a unique transaction time), each consisting of
snapshot slices (each associated with a unique valid time). The last historical
state, with a transaction time value of 8-77, consists of four snapshot slices,
totaling 8 tuples. That each transaction creates a copy of the most recent
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel l 265

Faculty (Name
Name

Jane

Jane
. . .
Jane
Tom

Jane
. . .
Jane
Tom

Jane
. . .
Jane
Tom
. . .
Jane
Tom

Jane
. . .
Jane
Tom
. . .
Jane
Tom
. . .
Jane
Tom
Merrie

ank):
Rank

Assistant

Assistant
. . .

Assistant
Associate

Assistant
. . .

Assistant
Assistant

Assistant
. . .

Assistant
Assistant

. . .
Associate
Assistant

Assistant
. . .

Assistant
Assistant

. . .
Associate
Assistant

. . .
Associate
Assistant
Assistant

Valid time Transaction time

9-71

9-71
. . .
9-75
9-75

9-71
. . .
9-75
9-75

9-71
. . .
9-75
9-75

9-71

a-75
. . .
6-75
6-75

10-75
. . .

10-75
10-75

12-76
. . .

12-76
12-76

.
12-76 12-76
12-76 12-76

9-71
. . .
9-75
9-75
. . .

12-76
12-76

. . .
9-77
9-77
9-77

6-77
. . .
a-77
a-77
. . .
6-77
a-77
. . .
6-77
8-77
a-71

Fig. 11. Embedding a temporal relation, version 1.

historical state, mentioned in Section 2.4, can be seen clearly in this represen-
tation. The full embedding of Figure 7 would contain eight historical states, since
the temporal relation was the result of eight transactions. The last historical
state would contain seven snapshot slices and a total of 30 tuples. The entire
snapshot relation embedding the temporal relation in Figure 7 would contain 102
tuples! The historical relations of Clifford and Warren are similar to this
embedding [271.

Another way to embed a temporal relation in a snapshot relation is to append
two attributes, each containing two time values, denoting intervals of valid and
transaction time. Temporal relations in this version were illustrated in Figures 7
and 8. Such a representation was proposed by Ariav in his Temporally Oriented
Data Management System [121. Still a third way is to add a total of five additional
attributes: the time the tuple became valid (Z’,,, the effective-time-start), the
time T,, was recorded in the database (T,, the registration-time-start), the time
the tuple became invalid (T,, the effective-time-end), the time T, was recorded
in the database (T,, the registration-time-end), and the time the entire tuple
was removed from the database, as it was no longer correct (Td, the deletion
time). Such a representation was proposed by Ben-Zvi in his Time Relational

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

266 l Richard Snodgrass

Faculty (Name. Rank):
Name

Jane
Jane
Jane
Merrie
Merrie
Tom
Tom
Tom

R&k

Assistant
Associate
Full
Assistant
Associate
Associate
Assistant
Associate

T, T, T, T*

9-71 12-76 9-71 12-76
12-76 11-80 12-76 lo-80
11-80 - lo-80 -

9-77 12-82 8-77 12-82
12-82 - 12-82 -
9-75 - 8-75 -
9-75 12-80 10-75 11-80

12-80 - 11-80 -

Fig. 12. Embedding a temporal relation, version 3.

Td
-
-
-
-
-

10-75
-
-

Model [El. Figure 12 illustrates the canonical example in this representation.
This example contains the same number of tuples as the representation illustrated
in Figure 7; generally it will contain somewhat fewer tuples (if Tom leaves the
department, one tuple would have to be added to Figure 7, whereas only Td of
one existing tuple would have to be changed in Figure 12). The effective time in
the time relation model (TRM) is equivalent to valid time in our model; the three
registration and deletion times encode the same information as our two trans-
action times.

A fourth way to embed a temporal relation in a snapshot relation is to associate
time values with the attributes themselves [35, 381. Within a tuple the value of
an attribute is no longer restricted to be a single value, but may take on different
values at different points in time. Figure 13 illustrates the same temporal relation
in this representation, without considering the transaction time. In this repre-
sentation the snapshot relation is no longer in first normal form.

Finally, the most space efficient representation was proposed by Kimball in
the DATA system; only the transactions are recorded [51]. Valid time was not
considered, but may be added as another attribute (see Figure 14). Determining
the tuples valid at a particular time as of another time involves replaying the
transctions in order from the beginning (optimizations are of course possible).
Updates, on the other hand, are easy to formalize and implement using this
representation.

We have chosen the second representation, with each tuple containing four
additional time values, upon which to base our semantics. We assume that
relations are coalesced, as defined in Section 3. The advantages of this represen-
tation include ease of formal manipulation and the promise of rapidly prototyping
a temporal DBMS on top of a conventional snapshot DBMS. We emphasize,
however, that an equivalent semantics could be generated for the other represen-
tations. The semantics of TQuel originates from the model of TDBs developed
in Section 2, not from any particular representation.

Since TQuel is a superset of Quel, its semantics will be based on the semantics
for Quel. We first review how Quel’s semantics has been specified, then show
how this treatment can be applied to TQuel.

5.2 Quel Semantics

Although no complete formal semantics of Quel has been specified, Ullman
has defined a tuple relational calculus semantics for Quel statements without
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Faculty (Name

Tme

Add
Add
Modify
Modify
Add
Modify
Modify
Modify

The Temporal Query Language TQuel 267

Faculty (Name, Rank):
Name Rank

Jane [9-71, co) Assistant [9-71, 12-76)
Associate [12-76, 11-80)
Full [ll-80, m)

Merrie [9-77, =J) Assistant [9-77, 12-82)
Associate [12-82, QI)

Tom [9-75, m) Assistant [9-75, 12-80)
Associate [12-80, a)

Fig. 13. Embedding a temporal relation, version 4.

Rank):
Transaction

time

~ 9-71 Assistant
8-75 Associate

10-75 Assistant
12-76 Associate

~ 8-77 Assistant
lo-80 Full
11-80 Associate
12-82 Associate

Fig. 14. Embedding a temporal relation, version 5.

Jane
Tom
Tom
Jane
Merrie
Jane
Tom
Merrie

Name
Valid
time

9-71
9-75
9-75

12-76
9-77

11-80
12-80
12-82

aggregates [89], and Klug has treated aggregates in the more general case [53].
The tuple calculus semantics for TQuel associates a tuple calculus statement
with each TQuel retrieve statement, ensuring that each construct has a clear and
unambiguous meaning.

Tuple relational calculus statements are of the form

(t”’ I WI)

where the variable t denotes a tuple of arity i, and t)(t) is a first-order predicate
calculus expression containing only one free tuple variable t. t)(t) defines the
tuples contained in the relation specified by the Quel statement. The tuple
calculus statement for the skeletal Quel statement

range of tl is RI
. . .
range of tk is Rk
retrieve (ti, .Dj,. . . . , ti,sDi,)

where I)

is

which states that each ti is in Rip that each result tuple u is composed of r
particular components, that the mth attribute of u is equal to the jmth attribute

ACM Transactions on Database Systems, Vol. 12, No. 2, June 198’7.

268 9 Richard Snodgrass

(having an attribute name of Dj,,,) of the tuple variable ti,,,, and that the condition
+’ (+ trivially modified for attribute names and Quel syntax conventions) holds
for U. The first line corresponds to the relevant range statements, the second to
the target list, and the third to the where clause. The skeletal Quel statement is
not quite correct syntactically, since attribute names for the derived relation
must be provided in the target list, and attribute values may be expressions. We
ignore such details for the remainder of this paper.

The semantics of a query on a TDB will be specified by providing a tuple
calculus statement that denotes a snapshot relation embedding a temporal
relation that is the result of the query. The tuple calculus statement for a TQuel
retrieve statement is very similar to that of a Quel retrieve statement; additional
components corresponding to the valid, when, and as-of clauses are also present.
Although the expressions appearing in all three clauses are similar syntactically,
having their origins in path expressions, their semantics are quite different.

As an alternative the semantics could have been specified by showing how any
TQuel query can be transformed into an equivalent relational algebra expression,
for which a semantics has been defined [53]. This method has been used to
express the semantics of SQL statements [23]. The tuple calculus was used
instead for several reasons. The first is pragmatic: since TQuel is a minimal
extension of Quel, its semantics should also be a minimal extension of Quel’s
semantics, which has been partially specified in tuple calculus, as discussed
above. The second reason is that the tuple calculus expressions resulting from
the transformation can themselves be easily transformed into relational algebra
expressions, so no generality has been lost. Third, the tuple calculus statements
are closer in form to statements in the query language, making the semantics
more comprehensible. Finally, if an algebra is desired, it should probably be a
temporal algebra. There is no generally accepted temporal algebra; proposals
include [26], [35], and [62].

The next subsection will provide the semantics of e-expressions as functions
on time values or pairs of time values, ultimately yielding a time value. The
following subsection examines the steps necessary to transform a temporal
predicate into a conventional predicate for the when clause; the next subsection
will do the same for the as-of clause. Section 5.6 uses these results to provide
a tuple calculus semantics for the retrieve statement. The final subsections con-
sider the modification statements and demonstrate a reduction to the Quel
semantics.

5.3 The Valid Clause
As discussed previously the valid clause specifies the time during which the
derived tuple is valid. For derived intervals the valid-from-to variant is used; for
derived events, the valid-at variant is used. In both cases an e-expression is used
to specify a time value. The time value returned by the e-expression will in fact
be one of the time values contained in one of the tuples associated with the
variables involved in that expression. Hence the e-expression is not actually
deriving a new time value from the given time values; rather, it is selecting one
of the given time values. Similarly, an i-expression selects two time values from
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel l 269

those given. Of course, the selection criteria can, and indeed usually do, depend
on the relative temporal ordering of the original events.

Several researchers have proposed a formal semantics for particular variations
on path expressions, involving denotational and axiomatic definitions [16, 453,
or transformations into Petri nets [54], parallel programs [lo, 441, or even VLSI
circuits [7]. Since these semantics express the active nature of path expressions,
that of constraining the occurrence of the relevant events, they are not applicable
in the context of TQuel. The approach taken here associates each temporal
constructor with a function on one or two intervals, returning an interval. Tuple
variables are replaced with their associated valid time values. The result of an
e-expression will hence be one of these time values. Individual time values will
be represented as integers (a mapping from times and dates to integers is
assumed); intervals will be represented as ordered pairs of integers. Anderson
has developed a model of time at the conceptual level that is slightly more
restrictive, yet has several nice properties [9].

We define the temporal constructors after first defining a few auxiliary func-
tions on integers (First, Last) or tuple variables (event, interual):

pl

First(a, /3) =
a if Before(a, /3)
P otherwise

Lr&(LY, p) = P if Before(a, P)
(Y otherwise

event(t) = (t&, td)

interval(t) = (tr,,, t,)

Wmf((a, P 1) = (a, a)
edof((a, P)) = (A B>

overhp((a, 8), (-~,a)) = bk.h, Y), First@, 6))
extend((a, P), (-~,a)) = (Firstb, Y),~t(P, 6))

A few comments are in order. First, if the e-expression is a correct one, that is,
if it results in an event, then the denotation of the expression will be defined to
be the time value appearing as the first element of the ordered pair resulting
from the application of these functions on the underlying tuples. The constraints
assure us that the first element will be identical to the second element. The
reader should verify that these definitions do indeed result in the correct time
value. Second, as mentioned in Section 4.3, the Before predicate is the “5”
predicate on integer time values. However, we wish to retain the Before predicate,
because its semantics will be altered when indeterminacy is considered (in a later
paper). Third, the translation is syntax directed: The semantic functions are in
correspondence with the productions of the grammar (given in the Appendix) for
e-expressions [23]. And, finally, the definition of the overlap function assumes
that the intervals do indeed overlap; if this constraint is satisfied, then the
ordered pairs (CY, 0) generated by these functions will always represent intervals,
that is, the ordered pairs will satisfy Before(a, 8). Invalid e-expressions will be

ACM Transactions on Database Systmm, Vol. 12, No. 2, June 1987.

270 l Richard Snodgrass

handled with an additional clause in the tuple calculus statement presented in
Section 5.6.

As an example, the e-expression

begin of (a overlap b)

is transformed into

beginof(ouerlap(interual(a), inter&(b)))

(We assume that the tuple variables a and b are associated with interval relations.)
Applying the functions defined above results in the following:

+ begimfbuerlap((a+,, ato), (bf,,, h,)))
+ begimf((htb~m,, b~,d, Firstbm, bd))
+ (ht(ati,, Tim), ht(ati,, b-d)
Hence the denotation of this expression is Last(ar,,, bf,.,,,). The use of this time
value will be discussed shortly.

5.4 The When Clause -3

The when clause is the temporal analogue of the where clause. The temporal
predicate in the when clause determines whether the tuples may participate in
the derivation by examining their relative order. Expressing this formally involves
generating a conventional predicate on the temporal attributes of the tuples in
the underlying relations. This predicate is generated in three steps: First, the
tuple variables and the temporal constructors are replaced by the functions
defined in the previous subsection. Second, the and, or, and not operators are
replaced by the logical predicates. Finally, the temporal predicate operators
are replaced by analogous predicates on ordered pairs of integers as follows:

precede((a, 8), (7, 6)) = Before(B, 7)
ouerlrrp((a, 8), (7, 6)) = Before(a, 6) A Befmdr, 8)

ew.W(a, B), (7, 6)) = Before& Y) A Before(r, a) A Before@, 6)
A Before(6, /3)

The result is a conventional predicate on the valid times of the tuple variables
appearing in the when clause.

As an example, applying the first step to the temporal predicate

(begin of (a overlap b)) precede c or (c precede a)

results in

+ (begimf (ouerhp(interual(a), interuaZ(b))) precede interval(c))
or (interval(c) precede interval(a))

+ (begimf (ouerlap((ati,, ati), (bti,, ho))) w-de (qmm, c,))
or ((cfmm, cto > precede (qmm, aa)I

+ (begimf ((Last(af,,, btid, J’iMam, b,))) precede (cti,, cm))
or ((cfmm, cb) w--de (afirn, a,))

+ ((ht(atim, b.d, htbfmm, &A) pr=ede (ctirn, c,))
or ((cfmm, ct,) precede (a@,,,, a,) 1.

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel l 271

The second step results in

((ht(afmm, b.d, ~t(a~mm, bf,,)) precede (cfmm, c,))
v ((qmn, cm) precede (afmm, a,)),

and third step results in

5.5 The As-Of Clause

The temporal constructors appearing in the as-of clause can be replaced with
their functions on ordered pairs of transaction identifiers, and the temporal
constants (strings) can be replaced by their corresponding ordered pairs of
transaction identifiers. The result can be evaluated at “compile time,” resulting
in a single transaction identifier, for the aa of variant, and two transaction
identifiers in the as of through variant. For convenience, these times will be
converted into an interval by interpreting through as extend.

as of begin of “1984” through “October 1984”

will, by using the functions defined in Section 5.3, be converted to the following:

extemf(beginof((1009, 1021)), (1018,1019))
+ extend((1009,1009), (1018,1019))
+ (First((1009, 1018)), Last((1009, 1019)))
+ (1009,1019)

5.6 The TQuel Retrieve Statement

A formal semantics for the TQuel retrieve statement can now be specified. Let
Cp, be the function corresponding to the e-expression c as generated in the process
discussed in Section 5.3. Let I’, be the predicate corresponding to the temporal
predicate 7 as generated by the process discussed in Section 5.4. Note that 0,
and I’, will contain only the functions First and Last and the predicates Before,
A, V, 1; the rest of the functions, and @m entirely (where (Y appears in an as-of
clause), can be evaluated at “compile time.” Of course, the defaults provide the
appropriate expressions when a clause is not present in the query. Given the
query

range of tl is RI
. . .
range of tk is Rk
retrieve (ti,.Dji, . . . , t&aDi,)

valid from Y to x
where rC,
when 7
as of a! through j3

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

272 l Richard Snodgrass

the tuple calculus statement has the following form:

b (r+4) 1 (31) * - - (3t/J(&(t1) A * - - A R&k)
A u[l] = &[jl] A . . . A uIr] = &,[j,]

A u[r + l] = a, A u[r + 21 = +x A Before(u[r + 11, u[r + 21)
A u[r + 31 = current transaction id A u[r + 41 = 00
A V
A I-‘,
A (Vl)(l s 1 I k.(Before(+,, tl[stop]) A Before(tJstart], Cps)))
11

The first line states that each tuple variable ranges over the correct relation, and
is from the Quel semantics. The resulting tuple is of arity r + 4 and consists of
r explicit attributes and four implicit attributes (from, to, start, and stop). The
second line, also from the Quel semantics, states the origin of the values in the
explicit attributes of the derived relation. The third line originates in the valid
clause and specifies the values of the from and to valid times. Notice that these
times must obey the specified ordering. The fourth line specifies the values of
the start and stop transaction times. “current transaction id” is replaced with the
integer corresponding to the current transaction; this integer must be monoton-
ically increasing. The transaction time is calculated by the concurrency control
mechanism. “a? is replaced with a distinguished integer, say, 0, which must not
correspond to a valid transaction. The next line originates in the where clause
and is from the Quel semantics. The fifth line is the predicate from the when
clause. The last line originates in the as-of clause and states that the tuple
associated with each tuple variable must have a transaction interval that overlaps
the interval specified in the as-of clause (a, and $ will be constant time values,
i.e., specific integers).

Note that Cp,, Gp,, I+?‘, and r, are functions over the from, to, and explicit
attributes of a subset of the tuple variables. If t is a tuple variable associated
with an interval relation and appears in an e-expression or temporal predicate,
then the from and to time values are passed to the relevant function; if t is
associated with an event relation, then only the at time value is used. The
superscript (r + 4) indicates that the tuple u has r explicit attributes and
4 implicit attributes, the starting and stopping time values for the valid and
transaction intervals; events will have only 3 implicit attributes. The entire
transformation from a TQuel query to a tuple calculus expression may be
considered to be syntax directed, as discussed briefly in Section 5.3.

The resulting relation is not required by this semantics to be coalesced,
although a coalesced result relation is one of the acceptable solutions. Minor
changes to the semantics are necessary when changing the type of the relation,
for example, deriving a historical relation from a snapshot relation. This is a
simple case of schema evolution, which is discussed elsewhere [63].

We complete the discussion of the semantics of the retrieve statement with
two examples-one realistic, but somewhat simple; the other contrived, yet more
comprehensive. The first is the semantics of the query shown in Example 8. We
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel l 273

assume this retrieve statement was executed on January 1, 1985, yielding a
transaction identifier of 12345.

lu (l+*)] (Ilfl)(3f2)(3a)(Faculty(fl) A Faculty(f2) A Associates(a)
A u[l] = fl[l]
A u[2] = f1[3] A u[3] = f2[3] A Before(u[2], u[3])
A u[4] = 12345 A u[5] = 0
A fl[l] = f2[1] A f1[2] = “Assistant” A f2[2] = “Full”
A Before(f1[3], a[3]) A Before(a[2], f1[4]) A Before(f2[3], a[3])

A Before(a[2], f2[4])
A Before(1020, f1[6]) A (Before(f1[5]), 1020)

A Before(1020, f2[6]) A (Before(f2[5], 1020)
A Before(1020, a[5]) A (Before(a[4], 1020)

)I

The second example, which includes several temporal expressions used as
examples in previous sections, is given below.

Example 12. A Contrived Example
range of a is A
range of b is B
range of c is C
retrieve (a.M, b.0, c.Q)

valid from begin of (a overlap b) to end of (a overlap b)
where a.N = b.P and b.P = c.R
when (begin of (a overlap b)) precede c or (c precede a)
as of begin of “1984” through “October 1984”

This query references relations containing the following attributes:

A [M N (from to start stop)]
B [0 P (from to start stop)]
C [Q R (from to start stop)]

The implicit temporal attributes are in parentheses (A, B, and C are all interval
relations). The query then has the following semantics (note that the current
transaction identifier has been incremented by one):

b (3+4)] (Ba)(3b)(S)(A(a) A B(b) A C(c)
A u[l] = a[l] A u[2] = b[l] A u[3] = c[l]
A u[4] = Last(a[3], b[3]) A u[5] = First(a[4], b[4]) A Before(u[4], u[5])
A u[6] = 12346 A u[7] = 0
Aa[2]=b[2]Ab[2]=c[2]
A UWore(h~(aM, bPl), cL31) V JWore(cWl, at31))
A Before(1009, a[6]) A Before(a[5], 1019)

A Before(1009, b[6]) A Before(b[5], 1019)
A Before(1009, c[6]) A Before(c[5], 1019)

11
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

274 l Richard Snodgrass

The correspondence between the Quel and TQuel tuple calculus semantics is
striking. The tuple calculus statement for the Quel retrieve statement consists of
a component associated with the tuple variables appearing in the query (the first
line), a component associated with the target list (the second line), and a
component associated with the where clause (the fifth line). The tuple calculus
statement for the TQuel retrieve statement adds four additional lines, one each
associated with the valid clause (the third line), the when clause (the sixth line),
and the as-of clause (the last line), and one specifying the transaction time for
the derived tuples (the fourth line). The additional lines in the tuple calculus
statement are also similar in form to those associated with the analogous Quel
statements: The where, when, and as-of clauses all generate predicates, and the
target list and valid clause generate equalities.

5.7 Modification Statements

In specifying the semantics of the TQuel modification statements, we will again
proceed by examining the tuple calculus semantics of the analogous Quel state-
ments. These have never appeared in the literature; fortunately, they are easy to
derive (such is not the case for the other major snapshot relational query language
SQL [23]). The skeletal Quel append statement,

append to R (til Dj,, . . . , tirDjr)
where tc,

has the following tuple calculus semantics:

R’ = R u {u”’ I (3h) - - - (%)(R~(td A - -. A R&d
A (Vl)(I. I 1 5 F.24[1!] = t,[jl])

A Ir/‘)l

The set being appended is identical to that for the Quel retrieve statement (see
Section 5.2). Note that the set being appended may contain tuples already in R.
We assume that the integrity constraints, particularly those relating to keys,
have already been checked and that the resulting relation R’ will satisfy these
constraints.

The semantics for the skeletal TQuel append statement

range of tl is RI
. . .
range of tk is &
append to R (ti, Bj,, . . . , ti,Bj,)

valid from u to x
where I)
when T

is somewhat complicated, because the set to be unioned with the existing relation
should only contain tuples that are not valid in the existing relation. We cannot
depend on the union working correctly when the tuples being appended are
identical to tuples in the current historical relation. For example, if on 9-85 we
execute:
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel 275

Example 13. Merrie actually joined the department a month earlier.

append to Faculty (Name = “Merrie”, Rank = “Assistant”)
valid from “8-77” to “12-82”

then we will have to append the following tuple:

Valid time Transaction time
Name Rank (from) w (start) (stop)

Merrie Assistant 8-77 9-77 9-85 00

Note that the to time is 9-77, since a tuple already exists in the relation valid
from 9-77 to 12-82 (cf., Figure 7).

We now give the tuple calculus statement for the skeletal TQuel append
statement. As before, we assume that the integrity constraints have been checked
previously.

R’ = R U (u(‘+~) 1 (31) - - - (%)(Rl(tl) A - - * A R&J
A (Vi!)(l I 15 r.U[Z] = ti,[jj])

A u[r + 3]= current transaction id A u[r + 4]= OQ
Ati’
A r,
A (VZ)(l 5 1~ k.ti[stop] = m)
A ((3s)(R(s) A (W)(l 5 1 I r.s[Z] = u[Z]) A (CT V C; V Cf V C’S)

V (1 (3s)(R(s) A (V1)(1 I IS r.s[l] = u[l]) A u[r + l] = ap,
A u[r + 2]= Cp,))

11

where

CY = (Before(s[r + 11, 0,) A Before(@“, s[r + 21) A Before(s[r + 21, ax)

A u[r + l] = s[r + 21 A u[r + 2]= @),)

C% = (Before(&, s[r + 11) A Before(s[r + 21, ax)

A ((u[r + l] = Cp, A u[r+ 2]= s[r + 11) V (u[r + l] = s[r + 21 A u[r + 2]= a),)))

Cg = (Before(+“, s[r + 11) A Before(s[r + 11, @‘,) A Before($, s[r + 21)

A u[r + l] = au A u[r + 2]= s[r + 11)

A False)

Again, the set being appended is similar to the TQuel retrieve statement (see the
previous section), with two major changes. The first is that the as-of clause is
assumed to be as of “now,” since the statement should only modify the current
historical relation (c.f., the sixth line); recall that an explicit as-of clause is not
permitted in any modification statement. The second change is the rather
complicated computation of the valid times for the tuples to be added, appearing
as the last three lines of the tuple calculus statement, which replace the third

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

276 l Richard Snodgrass

ct C$ c1 cs
Existing s[r + 11 s[r + 21 s[r + l] s[r + 21 s[r + 11 s[r + 21 s[r + l] s[r + 21

tuple
‘---A !--! I i I I

Tuple to cp. t ax a%. io, *, t 9, 9. 8,
be added I I I : I I : I H . , , ,

Actual tuple(s) . .

added i-i .i-i i-i k-i (none added)

Fig. 15. Calculating the valid time in an append statement.

line in the tuple calculus statement for the retrieve statement. The four clauses
cy,..., CZ in the seventh line handle the various overlap situations between the
tuples to be added and the tuples identical in the explicit attributes that already
exist during this valid interval. In particular, Ci states that, if the tuple already
exists in R over the entire valid time, there is no need to add it. The last line
states that the valid times are as specified in the valid clause if no such tuples
exist during this valid interval. Figure 15 shows the overlap handled by each
clause, and the resulting valid interval(s). Note that one, two, or no tuples are
added, depending on the valid clause specified and the tuples already present in
the relation.

The semantics of the delete statement shows a similar increase in complexity.
The Quel statement

range of tI is R,
. . .
range of tk is Rk
range of s is R
delete s

where I)

has the following tuple calculus semantics:

R’ = (d’) 1 (3,) a*- (%k)(%)(R(S) A RI(h) /\ -** A R&k)
A 3’))

We first look at an example of the TQuel delete statement before delving into
its semantics.

Example 14. Jane left the department in March 1981.
range of f is Faculty
delete f

where f.Name = “Jane”
valid from “3-81”

ACM Transactions on Database Systems, Vol. 12, No. 2, June 198’7

The Temporal Query Language TQuel l 277

This statement will modify the transaction stop time of the last tuple in
Figure 7 and will append an additional tuple (we give both here):

Valid time Transaction time
Name Rank (from) (to) (start) (stop)

Jane Full 11-80 lo-80 9-85
Jane Full 11-80 311 9-85 m

Hence the delete statement will probably change some transaction stop times
from 00 to now, if the where and when clauses are true at some point, and will
probably also add tuples with a transaction start time of now, if any of the tuples
to be deleted do not completely cover an existing tuple. For the skeleton TQuel
delete statement

range of tI is RI
. . .
range of tk is Rk
range of s is R
delete s

valid from u to x
where #
when T

the tuple calculus statement is

R’ = (LJ(‘+~) 1 (ihI) - * - (i!tk)(%)(Rl(tl) r\ * - - /\ R&k)
A (VZ)(l 5 1 s k.t&top] = 03)
A (Vl)(l 5 15 r.u[l] = s[l]) A u[r + l] = s[r + l]

A u[r + 21 = s[r + 21 A u[r + 31 = s[r + 31
A ((iAffected A u[r + 41 = s[r + 41)

V (Affected A u[r + 41 = current transaction id)))
U (u('+~) 1 (3tl) - - * (iitk)(3S)(&(tl) A * - - A R&k)

A (Vl)(l s 1 s k.tJstop] = m)
A (VZ)(l 5 I c r.u[l] = s[Z])
A Affected A (Cf V C$ V C$ V C$)

A u[r f 31 = current transaction id A u[r + 41 = 00))

where

Affected=(R(s)AJ/‘AI’,As[r+4]=mABefore(s[r+1],+X)

A Before(+v, s[r + 21))

C!f = (Before(s[r + 11, @“) A Before(+v, s[r + 21) A Before(s[r + 21, @J

Au[r+l]=s[r+l]Au[r+2]=%)

C$ = (Before(@,, s[r + 11) A Before(s[r + 21, @,)

A False)
Ct = (Before(@,, s[r -I- 11) A Before(s[r + 11, @X) A Before(+,, s[r + 21)

Au[r+1]=@XAu[r+2]=s[r+2])
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

278 l Richard Snodgrass

Cf = (Before(s[r + 11, %) A Before(Gx, s[r + 21)

A((u[r+l]=s[r+l]Au[r+2]=cP,)

V (u[r + 11 = ax A u[r + 2]= s[r + 21))

Both sets are similar in the first two lines, placing conditions on the underlying
tuple variables. The only difference is in the manner in which the implicit time
attributes are determined. The first set contains all tuples in past historical
relations of R and all tuples in the current historical relation of R that are not
Affected, that is, that do not satisfy the predicate in the where or when clauses
or whose valid intervals do not overlap with the specified valid interval. These
tuples remain unchanged by the delete statement. This statement also deals with
the Affected tuples, effectively removing them by setting their stop time to current
transaction id. The stop time of these tuples was previously 00; no other attributes,
implicit or explicit, are modified. The second set deals with the existing tuples
that only partially should be deleted, in a manner similar to that employed in
the semantics of the append statement. Those portions that should not have
been deleted are added back in the second set. The clauses Ci, . . . , Cf calculate
the valid times of the tuples to be added back. In the situation covered by C$,
the tuple to be deleted starts after the existing tuple starts, but still overlaps the
existing tuple (see Figure 15). The existing tuple is broken into two intervals, the
first, which remains (i.e., is added back by the second step), and the second,
which is removed (i.e., is not added back by the second set). This is the situation
illustrated in the example above where Jane leaves the department. In the
situation covered by C$, the tuple to be deleted overlaps the existing tuple
completely, so the existing tuple is deleted (i.e., no tuple is added back). C$ is
similar to Cf. In the situation covered by C2, the existing tuple is partitioned
into three intervals, and only the middle one is deleted (i.e., the left and right
remaining tuples are added back). In all cases the tuples added back have a from
time of now and a to time of 00.

The semantics of the replace statement is even more complex. The replace
statement has a semantics similar to that of a delete statement followed by an
append statement. It is not equivalent to a delete followed by an append when
the expressions in the target list mention the primary tuple variable. Hence the
semantics of the replace statement must be considered separately. The skeletal
Quel replace statement

range of tl is RI
. . .
range of tk is Rk
range of s is R
replace S(tilBjl, . . . , ti,Bj,)

where I)

has the following tuple calculus semantics:

R’ = (d’) 1 (%)(3tI) . . - (%)(R(s) A Rl(tI) A . -. AR/&k)

A ((u=sA l#‘)
V ((Vt!)(l I II r.u[l] = ti,[jl) A 9’))

11
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel 279

Note that the second line is very similar to the tuple calculus semantics of the
Quel delete statement, and that the third line is identical to the semantics of the
Quel append statement. The same strategy can be used in TQuel. The tuple
calculus semantics of the skeleton TQuel replace statement

range of tl is RI
. . .
range of tk is Rk
range of s is R
replace S (ti, Alj,, . . . , ti,Bj,)

valid from u to x
where rc/
when T

is the following:

R’ = j~(‘+~)) (3t,) -. . (3tJ(3s)(Rl(tl) A . . - R&)
A (Vl)(l % 15 kA&op] = 00)
A (VI)(l 5 1 I r.u[l] = s[Z]) A u[r + l] = s[r + l] A u[r + 21 = s[r + 21

A u[r + 31 = s[r + 31
A (1Affected A u[r + 41 = s[r + 41)

V (Affected A u[r + 41 = current trunsaction id)))
u (u(‘+4) 1 (31) . . . (3tk)(3s)(Rl(tJ A . . . A R&k)

A (Vl)(l s 1 I k.tJstop] = 00)
A (Vl)(l zz 1 5 r.u[l] = s[l])
A Affected A CC< V C$ V C$ V Cqd) A u[r + 31 = current transaction id

A u[r + 41 = m))
U (u(‘+~) 1 (3t,) . -. (3t,J(Rl(tJ A . -. A R,&)

A (Vl)(l 5 15 k.tJstop] = m)
A (VI)(l s 1% r.u[l] = ti,[jl]) A u[r + 31 = current trunsaction id

A u[r + 41 = w
/\+‘/\I’,
A ((Ss)(R(s) A (Vl(1 I 1 I r).s[l] = u[l]) A (CY V C% V C$ V Cq))

V (1(3s)(R(s) A (Vl)(l 5 15 r.s[l] = u[l])) A u[r + l] = +”
A u[r + 21 = ax))

5.8 Reduction to the Quel Semantics

If a TQuel statement does not contain a valid, when, or as-of clause, then it looks
identical to the analogous standard Quel retrieve statement; thus it should have
an identical semantics. However, an Ingres database is not temporal; it is a
snapshot database. Hence the tuples participating in a Quel statement are in the
snapshot relation that is the result of the last transaction performed on the
database (i.e., are current) and are valid at the time the statement is executed.
Note that the statement must not refer to any tuple variables associated with
event relations. The tuples in such relations are valid for only an instant and
hence would not ever appear in a snapshot database (this is discussed further in
Section 2.3).

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

280 l Richard Snodgrass

(Figure 7) TDB
slice at 7

+ snapshot DB (Figure 18)

W&e1
Qbl Q

semantics)

V&e1

semantics)

V

(Figure 6) k
slice at 7 v

wRs = RB (Figure 17)

(Figure 6)

Fig. 16. Outline of the reduction proof.

We will show that the TQuel semantics just presented reduces to the standard
Quel semantics when applied to a snapshot datdmse slice (all current tuples valid
at a particular time) of the TDB. A snapshot database slice at time 7 is formed
by first eliminating the event relations (since snapshot relations cannot represent
events at all), eliminating all tuples with a start time greater than 7 and with a
stop time less than T, eliminating all tuples not valid at 7, and finally removing
the implicit time attributes.

The reduction proof will be illustrated on a simple retrieve statement; the
interactions are illustrated in Figure 16. Assume that Q is a syntactically correct
Quel retrieve statement. (Example 1 is such a statement). Then Q is also a
syntactically correct TQuel statement. Q may be applied to a TDB (e.g., the one
given in Figure 7) at time 7 to define a derived temporal relation RT (the one in
Figure 8). In processing the query Q, the defaults for the valid, when, and as-of
clauses discussed in Section 4.6 will be applied. A snapshot database slice at time
7 of this derived temporal relation results in a conventional relation, R,+ For
example, assume that the query Q is executed on January 1,1964, on the relation
in Figure 7. The database slice at 7 = January 1, 1964, of the Associates relation
of Figure 8 is shown in Figure 17. Now, the query Q may also be applied to a
snapshot database slice at the same time 7 of the entire TDB (shown in
Figure 18) to arrive at another snapshot relation, Rb. To show that the TQuel
semantics reduces to the standard Quel semantics when applied to a snapshot
database slice, we must show the following:

Rs = Rb

The reduction implies that Figures 6 and 17 are identical.
The proof of this equality revolves around the defaults for the valid, when, and

as-of clauses specified in Section 4.6. The defaults effectively take a database
slice at T = new, which is the time the query is executed. The default when and
valid clauses state that all the underlying tuples are valid for the entire interval
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel 281

Associates (Name):
Name
Merrie
Tom

Fig. 17. Slice of the associates relation at January 1,1984.

Faculty (Name, Rank):

Fig. 18. A database slice at January 1,1984.
Merrie

I
Associate

Tom Associate

the resulting tuple was valid. The resulting tuples are guaranteed to be current
by the tuple calculus semantics of the retrieve statement. This intuition supports
the easily shown equality (actually, identity) of the tuple calculus semantics for
Rs and R,&.

A similar reduction can be argued concerning the modification statements, as
their defaults were specifically chosen to ensure their reducibility to the standard
Quel semantics. Figure 16 still applies if Q is interpreted to denote a valid Quel
modification statement. The modification statement Q executed at time T will
cause a new historical state to be appended to one of the temporal relations (we
assume that Before(sturt, 7) for all historical states in the database). A snapshot
slice at T on this historical state will result in the same snapshot state as if the
modification statement, with its Quel semantics, had been executed on a snapshot
slice of the original temporal database.

The benefit of these reductions is that the intuition and understanding gained
by using Quel on a snapshot database applies to TQuel on a TDB. A second
benefit is that it forces the definition of the defaults to support this intuition.

5.9 The Nondeletion Property

In Section 2 we argued that rollback and temporal relations were append only:
An update to such a relation would result in a new snapshot state or historical
state, respectively, being appended to the existing relation. As there are several
means of embedding a four-dimensional temporal relation (see Section 5.1) and
several ways to define the semantics of the modification statements given a
particular embedding, it is not necessary for the semantics to be append only, as
long as the model remains append only. However, the semantics presented above
is append only, with one qualification: The transaction stop time of some existing
tuples is changed from 00 to now by a delete or replace statement. This distinction
is not important in a practical sense, in that a transition from 00 to now can be
effected by a write-once storage device such as an optical disk drive through the
considered selection of the encoding for 00 (an encoding of all zeros is sufficient).
However, to be precise, we will term a semantics with this qualification a
nondeletion semantics, in contrast to an append-only semantics.

It is easy to prove that the semantics just presented has the nondeletion
property. The append statement is truly append only, so it trivially has this
property. In the deletion semantics, the first set is equivalent to the original
relation with the exception of the Affected tuples, of which only the stop attribute

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

282 9 Richard Snodgrass

(the r + 4 attribute) is changed to now. An examination of the definition of
Affected reveals that the previous value of this attribute was CQ. Hence the deletion
semantics has the nondeletion property! The same argument applies to the
replace statement.

6. IMPLEMENTATION

The formulation of the TQuel semantics as tuple relational calculus expressions
offers a straightforward means to implement a temporal DBMS. A TQuel query
(or update statement) can be mapped into a tuple calculus statement, which may
then be mapped into a Quel statement on the snapshot relations that embed the
temporal relations. The TQuel query in Example 8 would be mapped into the
equivalent Quel query

range of fl is Faculty
range of f2 is Faculty
range of a is Associates
retrieve into Starsofl984 (Name = fl.Name, validfrom = fl.validfrom,

validto = f2.validfrom, transactionstart = 123, transactionstop = 0)
where fl.Name = f2.Name and fl.Rank = “Assistant” and f2.Rank = “Full”

and f l.validfrom I a.validto and a.validfrom I fl.validto
and f2.validfrom I a.validto and a.validfrom 5 f2.validto
and 1020 I f Ltransactionstop and f l.transactionstart I 1020

and 1020 I f2.transactionstop and f2.transactionstart I 1020
and 1020 5 a.transactionstop and a.transactionstart I 1020

using the formal semantics as given in Section 5.6, on the following snapshot
schemas:

Faculty (Name, Rank, validfrom, validto, transactionstart, transactionstop)
Associates (Name, validfrom, validto, transactionstart, transactionstop)

This conversion can always be done if two functions, First and Last, both taking
two integers as arguments, are added to Quel (Example 12 would require the use
of these functions). It should be emphasized that the conversion from TQuel to
Quel is an entirely separate process from the reduction to the Quel semantics
discussed in Section 5.8.

We have extended the Ingres DBMS [81] along somewhat different lines [3].
Our prototype adopts the scheme of augmenting each tuple with two transaction
time attributes for a rollback and a temporal relation, and one or two valid time
attributes for a historical and temporal relation depending on whether the relation
models events or intervals. The parser was modified to accept TQuel statements
and generate an extended syntax tree with subtrees for valid, when, and as-of
clauses. Some of the query evaluation modules were changed to handle the newly
defined node types and implicit time attributes. Functions to handle temporal
operators start of, end of, precede, overlap, extend, and equal were added
in the one-variable query processing interpreter. The system relation was modi-
fied to support various combinations of implicit time attributes, which depend
on the type of a relation as specified by its create statement. A time attribute is
represented as a 32-bit integer with a resolution of 1 second. It has a distinct
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel l 283

type, so that imput and output can be done in human-readable form by automat-
ically converting to and from the internal representation. Various formats of
date and time are accepted for input, and resolutions ranging from a second to a
year are selectable for output.

The prototype supports all the augmented TQuel statements: retrieve,
append, delete, replace, and create. The valid, when, and as-of clauses are
fully supported, though default values for these clauses are not yet supplied. The
copy statement was modified to perform batch input and output of relations
having time attributes. It also supports all four types of databases: snapshot,
rollback, historical, and temporal. Coalescing, aggregates, and schema evolution
are not yet supported.

For a rollback relation, an append operation inserts a tuple with the
transaction-start and transaction-stop attributes set to the current time
and “forever,” respectively. A delete operation on a tuple simply changes the
transaction-stop attribute to the current time. A replace operation first executes
a delete operation, then inserts a new version with the transaction-start attribute
set to the current time. A historical relation follows similar steps for append,
delete, and replace operations with the valid-from and valid-to attributes as the
counterparts of transaction-start and transaction-stop attributes.

For a temporal relation, an append operation inserts a tuple with the transac-
tion start of the current time, and transaction stop of “forever.” Attributes valid
from and valid to are set as specified by the valid clause, or defaulted if it is
absent. A delete operation on a tuple sets the transaction-stop attribute to the
current time indicating that the tuple was virtually deleted from the relation.
Next, a new version with the updated valid-to attribute is inserted indicating
that the version has been valid until that time. A replace operation first executes
a delete operation as above, then appends a new version marked with appropriate
time attributes. Therefore, each replace operation in a temporal relation inserts
two new versions. This scheme has a high overhead in terms of space, but
completely captures the history of retroactive and proactive changes. In addition,
all modification operations for rollback and temporal relations in this scheme
have the nondeletion property, so write-once optical disks can be utilized.

The prototype was constructed in about three person-months over a period of
a year; this figure does not include familiarization with the Ingres internals or
with TQuel. Most changes were additions, increasing the source by 2,900 lines,
or 4.9 percent (our version of Ingres is approximately 58,800 lines long).

A benchmark set of queries was run to study the performance of the prototype
[3]. As expected, the performance rapidly deteriorated as information was added
to the database. Access methods such as sequential scan, hashing, and ISAM all
suffered. In addition, reorganization did not help shorten overflow chains, because
all versions of a tuple share the same key. These results indicate that new storage
structures are needed for TDBs to obtain adequate performance.

7. CONCLUSION

This paper has presented the syntax and formal semantics for the augmented
statements in TQuel. The discussion proceeded in an incremental fashion for
both the syntax and semantics. First, the Quel syntax was presented informally.

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

284 l Richard Snodgrass

Temporal analogues for the where clause and the target list were examined. A
more formal presentation, including a digression on constants and defaults,
completed the presentation of TQuel’s syntax.

After a short review of tuple calculus, the semantics of e-expressions was
described as functions on time values or pairs of time values, ultimately yielding
a time value. A transformation system provided the semantics of temporal
expressions, yielding a conventional predicate on the tuples participating in the
expression. At that point a tuple calculus expression for TQuel retrieve state-
ments without aggregates was presented. The semantics of the modification
statements were discussed. The semantics reduces to the standard Quel semantics
when the time attribute is fixed at a particular time. Finally, a prototype
implementation was described.

7.1 Other Query Languages Incorporating Time

In order to compare TQuel with the other query languages supporting time, we
introduce 17 properties and rate each query language on these criteria. Each
property is defined below; a summary of the analysis appears in Table I. Four of
the properties are essential; we contend that no query language not having all
4 essential properties should be considered to be a well-defined temporal query
language. The remaining 13 properties are desirable; the ideal temporal query
language would also possess all of these properties. Many criteria have been
suggested to evaluate and compare temporal query languages; we have chosen
these because they are well defined, are independent of any specific query
language, are not logically implied by other criteria, and are demonstrably
beneficial. Other criteria not sharing these properties will be discussed later.

We evaluate the following query languages on these criteria:

-Tansel’s algebra, also operating on non-first-normal-form (NlNF) relations,
but not requiring homogeneity [26]; and HQuel, his extension to Quel along
similar lines [83,84];

-the homogeneous temporal query language (HTQuel), an extension of Quel
operating on NlNF relations consisting of attributes containing one or more
(value, interval) pairs (this representation was discussed in Section 5.1);
the intervals within a tuple must be identical for all attributes (termed
homogeneity) [38];

-the query language for the multihomogeneous model (MHM), an extension of
the homogeneous model where homogeneity is required only for subsets of the
attributes within a tuple [36];

-natural language as formalized in the intensional logic IL, [27];
-Legal 2.0 [46, 471, a language based on relational algebra used to formalize

legislation;
-Ariav’s time oriented structured query language (TOSQL) [ll, 121, an exten-

sion of SQL [43];
-the query language utilizing Ben-Zvi’s time relational model (TRM), discussed

briefly in Section 5.1; this language, also an extension of SQL, was the first to
support more than one kind of time [15];

-TSQL [65], another extension of SQL,
-the algebra of Clifford and Croker accompanying their Historical Relational

Data Model (HRDM) [25].
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Table I. Comparison of Query Languages Concerning Tie

TQuel Tansel HQuel HTQuel MHM IL. Leg01 TOSQL TRM TSQL HRDM

Essential properties
Retrieval semantics provided
Historical queries
Rollback
Implementability demonstrated

Desirable Properties
Operational semantics provided
Snapshot completeness
Snapshot reducibility
Update semantics provided
Nonprocedural query language
Homogeneous model
Canonical model
Implementation exists
Supports evolving schema
Optimization strategies
Nondeletion
Aggregates formalized
Temporal indeterminacy

J

J

J

J

J

J

;

P
P
J
J
P

J

;1
J

J

I;
J

J

cl

q
J

J J
r; J J cl cl cl cl ? Cl
q

cl J Cl

;1 I; I;
cl 0 J

cl El Cl
J J J
? ?
cl Cl ;I

A
J 0
J J

0 ? ?
Cl 0 P
q 0 0
El 0 Cl
? ? ?
q P P
cl Cl -0

Cl
El
?
Cl
J
J
?
0
0
q
?
P
0

J

cl

J

J

J

J

J

J

J

J

?

cl

Cl

El

;

q

cl
r; IJ
q
J
?
0
J
J
?
0
0
cl
?
P
P

J

?

cl

J

J
r; 0 cl J ? Cl J Cl ? cl
q

J Satisfies criterion
P Partial compliance
Cl Criterion not satisfied
? Not specified in papers

286 l Richard Snodgrass

We omit Time-By-Example [86] in this comparison due to its similarity to
HQuel.

The first requirement is that a temporal query language must be well defined.
More specifically, it should have a formal retried semantics. Without a formal
semantics, the meaning of each construct, and the interaction between constructs,
is unclear. A check in this category means that a formal retrieval semantics has
been presented in the literature (as a published or working paper). TQuel is
formalized in this paper using the tuple calculus. Gadia claims that HTQuel may
be formalized using a special temporal relational calculus [38]. Tansel’s algebra
is formalized in conventional set theory [83], and HQuel is formalized in this
algebra. IL, is itself a typed, higher order lambda calculus incorporating indexical
semantics. The semantics of TRM is specified by utilizing a formally defined
“time view” operation to extract a snapshot slice from the TDB, on which an
SQL query (which itself has a formal semantics [23]) is applied. Finally, HRDM
is also formalized in conventional set theory. Here the situation is better in TDBs
than with conventional relational databases, whose early query languages were
often not well defined.

A temporal query language must support historical queries, and hence valid
time. By “supporting valid time,” we mean specifically that queries can be
formulated that derive information (i.e., tuples) valid at a point in time from
information in underlying relations valid at other points in time, much as
snapshot query languages can derive information concerning entities or relation-
ships from information in underlying relations concerning other entities or
relationships. Two aspects are thereby captured: the ability to refer to the time
that the information was valid and the ability to perform “join-like” operations
on valid time; a check in this category means that both aspects are present in
the language. TQuel accomplishes this through its valid and when clauses.
HTQuel does not satisfy this criterion because tuples valid at different times
cannot be used in deriving new tuples; its extension, MHM, was defined precisely
to circumvent this restriction [36]. TOSQL falls short because only one relation
may participate in the query, although aggregates, which are only mentioned,
may provide a measure of valid-time support. Because the valid time is eliminated
early in the processing of TRM queries, this language also does not fully support
valid time. Legol 2.0 supports historical queries via the while, since, until, and
during operators; Tansel’s algebra and HQuel support them via Cartesian product
and implicit Cartesian product, respectively. It is unclear whether HRDM sup-
ports historical queries, as the valid time for the result of a Cartesian product is
not specified.

A temporal query language must support rollback, and hence transaction time.
A query language supporting historical queries but not rollback is properly termed
historical, rather than temporal [78]. Some papers have confused the two terms;
we differentiate these terms for clarity. Only three query languages support
rollback, all through as-of clauses. Transaction time could be added to the
remaining query languages without difficulty [631.

Finally, a temporal query language must be implementable, if it is to be of more
than theoretical value. This property may be demonstrated formally through a
semantics based on a well-defined algebra or, practically, through an implemen-
tation. A box in this category means that neither has (yet) been presented in the
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel l 287

literature. TQuel has both a prototype implementation [3] and an algebra [62].
HTQuel, HQuel, and TRM each have an algebra; Tansel’s language and HRDM
are algebras; and Legol2.0 both is an algebra and has a prototype implementation.

The other properties are desirable; a temporal query language need not neces-
sarily exhibit any particular property. These properties are listed approximately
in order of importance.

A temporal query language should have a well-defined operational semantics.
By this we mean that a formal temporal algebra should be defined along with a
proof of equivalence of the semantics of the query language. Of course, if the
query language it itself a formally specified algebraic language, this property is
a priori satisfied. A check in this category means that a formal algebra and
equivalence proof are available in the literature. An incremental algebra has been
developed, formalized, and proved equivalent to the tuple calculus semantics of
TQuel [62, 631. An algebra is provided for HTQuel, HQuel, and TRM; Tansel’s
language and HRDM are algebras. Clifford (IL,) and Ariav (TOSQL) do not
provide an algebra; Legol2.0 is an algebra, but does not have a formal semantics.
Finally, an algebra is defined with TSQL, but the correspondence of the calculus-
based TSQL and the algebra was not discussed.

The issue of completeness naturally arises whenever a new query language is
proposed. A query language is said to be complete if it can simulate tuple relational
calculus, as defined by Codd [29]. We capture this aspect in the snapshot
completeness property, which implies that the temporal query language, when
applied to a snapshot of the database, is at least as powerful as existing conven-
tional query languages that are complete according to Codd’s definition. Note
that this property involves both the retrieval and the update semantics. One
language, TOSQL, is not snapshot complete, because only one relation may
participate in a query.

Snapshot reducibility is a related property, requiring that the language be
intuitive, based on one’s understanding of snapshot query languages. More
precisely, it should be possible to prove that the snapshot relation obtained by
applying a temporal query to a TDB and then taking a snapshot is identical to
the relation obtained by taking a snapshot of the TDB and applying the analogous
snapshot query (in a conventional query language) to the resulting snapshot
database. A box in this category means that such a proof is not possible; a
question mark means that the proof may be possible, but has not yet been
presented in the literature. Snapshot reducibility for TQuel was shown in
Section 5.8. The proofs for HTQuel and TRM are simpler, because their algebras
are defined in terms of snapshots. That Tansel’s algebra, HQuel, and HRDM are
not snapshot reducible may be seen by the following, which holds in these
algebras:

(((John, 1, 3))) - H(John, 1, f-3)) = (((John, 1, 3)))

where {((John, 1, 3))) p re resents a relation containing one tuple containing a
single attribute, with a value of John valid from time 1 to time 3. A snapshot at
time 2 yields

((John)] - ((John)] = ((John)),

which is clearly not the semantics of the snapshot relational difference operator.
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

288 l Richard Snodgrass

A temporal query language should have a well-defined update semantics. As
temporal relations model reality as it evolves over time, it is especially important
that the evolution of the relations is specified. A language satisfying this property
will have a formal semantics for the append, delete, and modification statements.
A check means that the update semantics for the language has been presented
in the literature. Although most languages include update statements, the formal
semantics of these statements is left unspecified.

User studies have shown that nonprocedural (e.g., calculus-based) query lun-
guages are often easier to use than procedural (e.g., algebraic) query languages
[69]. Only two languages, Tansel’s and Legol2.0, are algebraic.

A temporal query language should have a homogeneous model. This property,
first identified by Gadia, requires that the periods of validity of all the attributes
in a given tuple of a temporal (or historical) relation are identical [38]. Since
TQuel is based on a model with time-stamped tuples, its model is clearly
homogeneous. Such a model has two substantial benefits. A snapshot of a
temporal relation in a homogeneous model is well defined; in particular, it does
not contain nulls. In a nonhomogeneous model, a tuple in a snapshot might only
contain values for a subset of the attributes; the remaining attributes are
problematic. More importantly, relations in a homogeneous model have a partic-
ularly simple intuitive semantics: Each tuple models some portion of reality
during the period(s) of validity of the tuple. Note that this intuition depends on
a well-defined snapshot. Relations in a nonhomogeneous model have a more
complicated intuitive semantics; indeed, the intuitive semantics for these models
is never explicitly stated.

The desirability of a homogeneous model is controversial. We feel the reason
this criterion is not generally accepted is that it is confused with several related
properties. One such property is economy of logical representation, discussed
below. A second property confused with a homogeneous model is a homogeneous
representation. In the prototype implementation of TQuel, the representation
was indeed homogeneous, but an implementation based on the historical algebra
[62] would not be. It is also important to note that homogeneity does not
necessarily conflict with the ability to perform “join-like” operations on valid
times (c.f., the historical queries criterion discussed above). TQuel, HTQuel, IL,,
Legol2.0, TOSQL, TRM, TSQL, and HRDM, while having homogeneous models,
all support historical queries. MHM and the models of HQuel and Tansel’s
algebra are nonhomogeneous.

A temporal query language should have a canonical model, in which relations
are identical if and only if all of their snapshots are identical. In models not
satisfying this property, two relations can be radically different, yet their infor-
mation content, as identified in the snapshots of the relations, can be the same.
This situation is confusing to users, who must study the relations to abstract the
information contained in the relations. Gadia’s use of weak equality, which
partitions relations into equivalence classes [37], violates this property; in a
canonical model, each such equivalence class contains exactly one relation. If the
language is based on a model that is tuple time-stamped and requires coalesced
relations, then it has a canonical model. A question mark means that, although
coalescing was not discussed in the presentation of the model, the model is in
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel 289

fact canonical if coalescing is imposed, and a box means that coalescing was
explicitly disallowed. Hence TQuel definitely has a canonical model, whereas IL,,
Legol 2.0, TOSQL, TRM, and HRDM potentially satisfy this property. On the
other hand, HTQuel, MHM, HQuel, and Tansel’s algebra do not satisfy this
criterion, in part because they employ attribute time stamping.

A temporal query language should have an implementation, which can provide
many clues to desirable and undesirable features of the language. Although a
formal semantics is much more important, temporal query languages that have
not been implemented should be viewed with caution. A check means that an
implementation has been completed and is discussed in the literature. Only two
languages, TQuel and Legol2.0, have been implemented, both as prototypes.

A temporal query language should support an evolving schema, where the
schema is allowed to change over transaction time, and where past versions are
accessed according to the schema in effect at the time the version was stored.
TQuel supports this feature to the extent that its algebra supports it; the TQuel
statements are still being designed. HRDM also supports schema evolution, but
couples the lifetime of an attribute in the schema (an interval in transaction
time) with the lifetime of a value of that attribute in the relation instance (an
interval in valid time). Although the remaining languages include no support for
schema evolution, this feature could easily be added to many of them following
the approach used in TQuel’s algebra [63].

The language implementation should include optimization strategies. A good
language will aid in defining such strategies; a poor language will present
impediments to potential optimizations. Unfortunately, there has been little
work in optimization strategies for processing temporal queries. Ahn is actively
investigating this aspect in the context of TQuel and has generated some
results [l, 21.

Nondeletion was defined in Section 5.9 as the property of a model or language
semantics being append only with the exception that a transition from a time of
forever to a time of now be allowed. In that section we proved that the TQuel
semantics satisfies this criterion. A check means that this assertion is proved for
the update semantics; a box means that the update semantics violates the
assertion; and a question mark means that the status of the assertion is unclear
from existing explanations of the language, if, for example, no update semantics
was given. Since a language must at least have a well-defined update semantics
to have this property, HTQuel, MHM, IL,, TOSQL, TSQL, and Legol 2.0 are
immediately rejected. It is possible to prove that Tansel’s algebra and HQuel
violate the nondeletion criterion and that TRM satisfies it.

The language should include aggregates. Such aggregates should be an exten-
sion of snapshot aggregates, be time varying just as the relations are time varying,
be well defined (i.e., possess a formal semantics), and be integrated into the
operational semantics. Aggregates in TQuel are defined, formalized, and opera-
tionalized elsewhere [62, 74, 79, 901. Aggregates are defined in several other
languages, but are not given a formal semantics, except in Tansel’s algebra and
HQuel [85].

Finally, the language and its semantics should support temporal indeterminacy,
that is, events for which the time of occurrence is not precisely known. This

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

290 l Richard Snodgrass

requirement increases in importance as the valid-time granularity shrinks. The
granularity of the examples in this paper was 1 month. A more reasonable
granularity would be 1 second or even 1 millisecond. However, it is unreasonable
to expect that the time of occurrence of every event (e.g., the promotion of a
faculty member) be known to that precision. TSQL’s model allows a default value
of NULL for the valid-to time. Nontemporal attributes can also have a value of
NULL, but the handling of such values is not discussed in detail. A modification
to the formal semantics to incorporate indeterminacy was proposed for TQuel
[74]; more work is needed.

We should mention eight properties that have been mentioned by others, but
that were not included. Although simplicity is highly desirable, it is very difficult
to define. The ability to deal explicitly with “when” [35] is also difficult to define
and may be captured by historical queries to some degree. Expressive power is
easier to define, yet may be examined more carefully when broken into its
constituent parts: historical queries, rollback, snapshot completeness, aggregates,
and indeterminacy. Efficiency is included under the property of implementation
and optimization strategies.

Economy of logical representation (ELR) [36] was not included because it is
not necessarily even desirable. Relations in a model having this property contain
fewer tuples than relations in a model not exhibiting ELR. Gadia has criticized
non-ELR models as exhibiting “vertical temporal anomalies” and goes on to state
that “one would get a better query language if the distinction between a logical
unit of data and its physical representation is minimized” [36]. The success of
the relational model is generally attributed to exactly that distinction. Codd lists
physical data independence as an essential property of any relational DBMS
[31]. Hence ELR is irrelevant in terms of efficiency, because it only indirectly
affects the size of the physical representation. However, it may negatively affect
such other desirable aspects as having a homogeneous model or having a canonical
model.

Finally, temporal completeness (and its variants minimal completeness and
maximal completeness [35]) was not included because it does not have an accepted
definition. Gadia and Vaishnav have proposed their temporal relational algebra
[35] as a benchmark [38]; however, the issue of why this particular algebra is an
appropriate benchmark for completeness was never discussed. Two reasons why
their algebra is perhaps inappropriate are that it is a multisorted algebra over
relations and temporal domains, and that it only concerns valid time.

A perhaps more satisfying definition of temporal completeness originates from
first principles. Snapshot completeness, as first proposed by Codd [29], is a rather
arbitrary measure of the expressive power of the language. Temporal complete-
ness should be an extension of (1) snapshot completeness. To prove snapshot
completeness, the criteria of (2) a retrieval semantics and (3) an update semantics
are necessary. The adjective temporal implies supporting both valid and trans-
action time, so (4) historical queries and (5) rollback are included. These five
criteria form a minimal definition of temporal completeness, capturing a notion
of expressive power that does not rely on any particular temporal algebra.
We can also define historical completeness as temporal completeness without
the rollback criterion. Working from these definitions, HQuel and Tansel’s
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel 291

algebra are historically complete, IL, and Legol 2.0 come close, and it may be
possible to show that MHM is historically complete. Only TQuel is temporally
complete.

We have compared TQuel with other temporal query languages on many
criteria. An orthogonal set of criteria, less precisely defined but nonetheless
important, arises from a different source: comparing the query language’s ex-
pressive power with that of natural language. In their investigation of how to
encode the temporal aspects of natural language, Maran et al. have proposed
three kinds of natural language metaphors [57]. The first, involving event types,
distinguishes between process versus state, and also between durative or punctual
duration length. Durative lengths may be represented by interval relations;
punctual lengths by event relations. A process may be represented by a collection
of event relations; a state by a collection of interval relations. A heterogeneous
collection of relations can be transformed into a process description by using
the begin of/end of operators, or into a state description by using the extend
operator. The duality between process and state is further explored elsewhere
[741.

The second metaphor concerns event orientation, and differentiates between
onset and terminal boundary references, and between progressive and completive
state of time flows. The onset boundary reference can be expressed as “when
“now” precede end of?“; and the terminal boundary reference can be expressed
as “when end of? precede “now”.” Similarly, the progressive time flow can be
expressed as “when “now” precede begin of?” and the completive time flow
as “when begin of? precede “now”.”

Finally, the metaphor for the speaker’s point of view contrasts witness (i.e.,
present), retrospective (i.e., past), and modal (i.e., future). These can be
represented in TQuel, respectively, as “aa of “now”,” as of “beginning”,” and
“as of “now” through “forever”.”

We have shown that the temporal data model coupled with TQuel can, to a
rough approximation, express the metaphors for time in natural language. The
point here is not that this is or should be the final definition of temporal
completeness or even of the expressive power of natural language concerning
time, but rather that comparisons between temporal query languages and natural
language can be made and that further investigation along these lines is
warranted.

7.2 Further Work

This paper has defined a temporal query language and provided a formal seman-
tics for this language. However, much more research is necessary before a viable
temporal DBMS can be developed.

Many additions are possible to the language itself. The operators available for
e-expressions and temporal predicates are certainly not exhaustive, and new ones
could be added easily to both the language and its semantics. Another possible
addition concerns temporal constants. The temporal constants used in this paper
are absolute, in that they denote a particular time interval. Relative constants
would also be quite useful. The following is a variant of Example 5:

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

292 l Richard Snodgrass

Example 15. Who has been an associate professor for at least 5 years?
range of a is Associates
retrieve into Disgruntled (Name = a.Name)

when (begin of a) precede “5 years” precede (end of a)

The semantics for relative constants is still under study.
Quel supports three attribute types, in multiple sizes: integer (1,2, and 4 bytes

long), floating point (4 and 8 bytes long), and character data (l-255 bytes long).
One necessary extension is a data type with values that vary over the period of
time the tuple was valid (this data type is distinct from the temporal data type
discussed in Section 3.4, which has a constant value for the entire valid interval).
As was stressed in Section 3, caution is needed to ensure that such attributes are
used correctly. Quel also supports scalar functions such as abs, mod, and sin.
Scalar temporal functions, such as duration, which compute time-varying values,
are needed in the language.

A host of other issues must be considered in the design of a temporal query
language. How should time granularity (e.g., hour, work week) be handled [9]?
Temporal constants, as discussed in Section 4.2, provide only a partial answer.
Should valid and transaction time be linear or branching? Branching time,
although more complex than linear time, does have some interesting properties
[ll, 801. How should changes to the schema be incorporated into the language?
How should indeterminacy be incorporated? How should temporal relations be
displayed? High-resolution display devices look quite promising [ll, 731. Should
periodic or cyclic events and intervals (e.g., fiscal year, monthly payments) or
causality be incorporated [ll, 14]? How well does TQuel correspond to the user’s
temporal perception? Further work is necessary in all of these areas.

The prototype described in Section 6 exhibits unacceptable performance as
updates are made to this database. Much more research is needed, particularly
in the areas of new access methods, query optimization techniques, and use of
novel storage devices such as optical disks [l].

Temporal DBMSs in general are at approximately the same stage as snapshot
relational systems were in the early 1970s [49]: Several high-level, nonprocedural
query languages have been designed and formalized, and prototype implementa-
tions exist. All the questions asked concerning snapshot relational databases,
including those that have already been answered, must be asked (and answered)
anew in the context of TDBs.

APPENDIX A. Syntax of the Augmented TQuel Statements
This appendix lists the syntax for the statements where Quel and TQuel differ.
Since TQuel is a strict superset of Quel, all legal Quel statements are also legal
TQuel statements. TQuel augments five Quel statements: create, retrieve, append,
delete, and replace. The Quel statements left unaltered are copy (data into/from
a relation from/into a UNIX’ file), define (subschema: view, permissions, or
integrity constraints), destroy (a relation), help, index, modify (the storage
structure of a relation), print, range, and save (a relation until a date). The

‘UNIX is a trademark of AT&T Bell Laboratories.

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel l 293

following nonterminals are not included in the syntax description because they
are identical to their Quel counterparts:

(boo1 expression)
(expression)

returns a value of type Boolean
returns a value of type integer, floating point, or

temporal
(attribute)
(relation)
(string)
(tuple variable)
(attribute specs)

the name of an attribute
a relation name
a string constant
the name of a tuple variable
a list of the names and types for the user-specified

attributes

Also not shown are the additional temporal functions and predefined relations
found in TQuel.

(TQuel augmented) ::= (create stmt)
1 (retrieve stmt)
1 (append stmt)
j (delete stmt)
1 (replace stmt)

(create stmt)
(persistent)
(history)
(retrieve stmt)
(retrieve head)
(retrieve tail)
(into)

(target list)
(t-list)
(t-elem)
(is)
(append stmt)
Go)
(delete stmt)
(replace stmt)

(mod stmt tail)
(valid clause)
{valid)
(from clause)
(to clause)
(at clause)
(where clause)
(when clause)
(as-of clause)
(through clause)

::= create (persistent) (history) (attribute specs)
::= c 1 persistent
::= t 1 interval I event
::= (retrieve head) (retrieve tail)
::= retrieve (into) (target list) (valid clause)
::= (where clause) (when clause) (as-of clause)
::= E I unique I (relation) I into (relation)

I to (relation)
::= c I ((tuple variable) .all) I ((t-list))
::= (t-elem) I (t-list), (t-elem)
::= (attribute) (is) (expression)
::= is I = I by
::= append (to) (target list) (mod stmt tail)
::= (relation) I to (relation)
::= delete (tuple variable) (mod stmt tail)
::= replace (tuple variable) (target list)

(mod stmt tail)
::= (valid clause) (where clause) (when clause)
::= (valid) (from clause) (to clause) I (valid) (at clause)
::= t I valid
::= E I from (e-expression)
::= t I to (e-expression)
::= at (e-expression)
::= c I where (boo1 expression)
::= t I when (temporal pred)
::= c I as of (e-expression) (through clause)
::= E I through (e-expression)

ACM Transactions on Database Systems, Vol. 12, No. 2, June 198’7.

294 l Richard Snodgrass

(e-expression)

(i-expression)

(either-expression)
(event element)
(interval element)
(temporal constant)
(temporal pred)

::= (event element)
1 begin of (either-expression)
1 end of (either-expression)
1 ((e-expression))
::= (interval element)
1 (either-expression) overlap (either-expression)
1 (either-expression) extend (either-expression)
I((i-expression))
::= (e-expression) 1 (i-expression)
::= (tuple variable)
::= (tuple variable) 1 (temporal constant)
::= (string)
::= (interval element)
1 (event element)
1 (either-expression) precede (either-expression)
1 (either-expression) overlap (either-expression)
1 (either-expression) equal (either-expression)
1 (temporal pred) and (temporal pred)
1 (temporal pred) or (temporal pred)
I((temporal pred))
1 not (temporal pred)

Event elements are tuple variables associated with event relations. Interval
elements are either tuple variables associated with interval relations, or temporal
constants (all temporal constants are intervals).

The where, when, and valid clauses in the delete statement can only refer to
one tuple variable, that referenced at the beginning of the statement. The unary
operators (begin of, end of, not) have the highest precedence, followed in order
by the binary temporal constructors (extend, overlap), the temporal predicate
operators (precede, overlap, equal), and finally the binary logical operators
(and, or). Binary operators of equal precedence are left associative; unary
operators of equal precedence are right associative. The binary temporal construc-
tors, temporal predicate operators, and logical operators are all commutative,
except for precede.

Note that the distinction between (interval element) and (event element)
makes the grammar context sensitive. In practice, this distinction is ignored in
the LALR(l) parser, and the resulting parse tree is type-checked in the semantic
analysis phase.

ACKNOWLEDGMENTS

The author is grateful to Ilsoo Ahn, Santiago Gomez, Bharat Jayaraman, Ed
McKenzie, and Juan Valiente for many helpful discussions on the material in
this paper, to Ilsoo Ahn for implementing the prototype described in Section 6,
and to the referees for insightful observations that greatly improved the paper.

REFERENCES

1. AHN, I. Towards an implementation of database management systems with temporal support.
In Proceedings of the Znternatimul Conference on Data Engineering (Los Angeles, Calif., Feb.).
IEEE Press, New York, 1986, pp. 374-381.

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel 295

2. AHN, I. Performance modeling and access methods for temporal database management systems.
Ph.D. dissertation, Computer Science Dept., Univ. of North Carolina, Chapel Hill, July 1986.

3. AHN, I., AND SNODGFUSS, R. Performance evaluation of a temporal database management
system. In Proceedings of ACM SZGMOD International Conference on Management of Data
(Washington, D.C., May). ACM, New York, 1986, pp. 96-107.

4. ALLEN, J. F. An interval-based representation of temporal knowledge. In Proceedings of the
Znternatianal Joint Conference on Artificial Intelligence (Vancouver, B.C.). 1981, pp. 221-226.

5. ALLEN, J. F. Maintaining knowledge about temporal intervals. Commun. ACM 26, 11
(Nov. 1983), 832-843.

6. ALLEN, J. F. Towards a general theory of action and time. Artif. Zntell. 23, 2 (July 1984),
123-154.

7. ANANTHARAMAN, T. S., CLARKE, E. M., FOSTER, M. J., AND MISHRA, B. Compiling path
expressions into VLSI circuits. In Proceedings of the ACM Symposium on Principles of Program-
ming Languages (New Orleans, La., Jan.). ACM, New York, 1985, pp. 191-204.

8. ANDERSON, T. L. The database semantics of time. Ph.D. dissertation, Univ. of Washington,
Jan. 1981.

9. ANDERSON, T. L. Modeling time at the conceptual level. In Improving Database Usability and
Responsiveness, P. Scheuermann, Ed. Academic Press, New York, 1982, pp. 273-297.

10. ANDLER, S. A. Predicate path expressions: A high-level synchronization mechanism. Ph.D.
dissertation, Computer Science Dept., Carnegie-Mellon Univ., Aug. 1979.

11. ARIAV, G. Preserving the time dimension in information systems. Ph.D. dissertation, Dept. of
Decision Sciences, The Wharton School, Univ. of Pennsylvania, Apr. 1984.

12. hIAV, G. A temporally oriented data model. ACM Trans. Database Syst. 11, 4 (Dec. 1986),
499-527.

13. ARIAV, G., AND MORGAN, H. L. MDM: Handling the time dimension in generalized DBMS.
Work. Pap., Dept. of Decision Sciences, The Wharton School, Univ. of Pennsylvania, May 1981.

14. ARIAV, G., AND MORGAN, H. L. MDM: Embedding the time dimension in information systems.
TR 82-03-01, Dept. of Decision Sciences, The Wharton School, Univ. of Pennsylvania, 1982.

15. BEN-ZVI, J. The time relational model. Ph.D. dissertation, Univ. of California, Los Angeles,
1982.

16. BERZINS, V., AND KAPUR, D. Denotational and axiomatic definitions for path expressions.
Comput. Struct. Group Memo 153-1, Laboratory for Computer Science, Massachusetts Institute
of Technology, Cambridge, Mass., Nov. 1977.

17. BJORK, L. A., JR. Generalized audit trail requirements and concepts for data base applications.
IBM Syst. J. 14,3 (1975), 229-245.

18. BONTEMPO, C. J. Feature analysis of query-by-example. In Relational Database Systems.
Springer-Verlag, New York, 1983, pp. 409-433. “,,

19. BREUTMANN, B., FALKENBERG, E. F., AND MAUER, R. CSL: A language of defining conceptual
schemas. In Data Base Architecture. North-Holland, Amsterdam, 1979.

20. BUBENKO, J. A., JR. The temporal dimension in information modeling. Tech. Rep. RC 6187
26479, IBM Thomas J. Watson Research Center, Nov. 1976.

21. BUBENKO, J. A., JR. The temporal dimension in information modeling. In Arbhitecture and
Models in Data Base Manngement Systems. North-Holland, Amsterdam, 1977.

22. BUBENKO, J. A., JR. Information modeling in the context of system development. In Proceedings
of ZFZP Congress 80 (Oct. 6-17). 1980, pp. 395-411.

23. CERI, S., AND GOT~LOB, G. Translating SQL into relational algebra: Optimization, semantics,
and equivalence of SQL queries. IEEE Trans. Sofkw. Eng. SE-11,4 (Apr. 1985), 324-345.

24. CHEESEMAN, P. A representation of time for planning. Tech. Note 278, Artificial Intelligence
Center, Feb. 1983.

25. CLIFFORD, J., AND CROKER, A. The historical data model (HRDM) and algebra based on
lifespans. In Proceedings of the International Conference on Data Engineering (Los Angeles,
Calif., Feb.) IEEE Press, New York. To be published.

26. CLIFFORD, J., AND TANSEL, A. U. On an algebra for historical relational databases: Two views.
In Proceedings of ACM SZGMOD Znternutionul Conference on Management of Data (Austin, Tex.,
May). ACM, New York, 1985, pp. 247-265.

27. CLIFFORD, J., AND WARREN, D. S. Formal semantics for time in databases. ACM Trans.
Database Syst. 8,2 (June 1983), 214-254.

ACM Transactions on Database Systems, Vol. 12, NO. 2, June 1987.

296 l Richard Snodgrass

28. CODD, E. F. A relational model of data for large shared data banks. Commun. ACM 13, 6
(June 1970), 377-387.

29. CODD, E. F. Relational completeness of data base sublanguages. Data Base Systems. Vol. 6,
Courant Computer Symposia Series. Prentice-Hall, Englewood Cliffs, 1972, pp. 65-98.

30. CODD, E. F. Extending the database relational model to capture more meaning. ACM Trans.
Database Syst. 4,4 (Dec. 1979), 397-434.

31. CODD, E. F. An evaluation scheme for database management systems that are claimed to be
relational. In Proceedings of the International Conference on Data Engineering (Los Angeles,
Calif., Feb.). IEEE Press, New York, 1986, pp. 719-729.

32. COPELAND, G., AND MAIER, D. Making Smalltalk a database system. In Proceedings of ACM
SIGMOD International Conference on Management of Data (Boston, Mass., June). ACM, New
York, 1984, pp. 316-325.

33. DOWT~, D. R. Studies in the logic of verb aspect and time reference in English. Tech. Rep.,
Dept. of Linguistics, Univ. of Texas, Austin, 1972.

34. FAGAN, L. M. VM: Representing time-dependent relations in a medical setting. Ph.D. disser-
tation, Stanford Univ., June 1980.

35. GADIA, S. K. Toward completeness of temporal databases. Unpublished manuscript.
36. GADIA, S. K. Toward a multihomogeneous model for a temporal database. In Proceedings of the

International Conference on Data Engineering (Los Angeles, Calif., Feb.). IEEE Press, New York,
1986, pp. 390-397.

37. GADIA, S. K. Weak temporal relations. In Proceedings of the ACM Symposium on Principles of

Database Systems (Los Angeles, Calif.). ACM, New York, 1986.
38. GADIA, S. K., AND VAISHNAV, J. H. A query language for a homogeneous temporal database. In

Proceedings of the ACM Symposium on Principks of Database Systems (Apr.). ACM, New York,
1985.

39. HABERMANN, A. N. Path expressions. Tech. Rep. Computer Science Dept., Carnegie-Mellon
Univ., June 1975.

40. HAMMER, M., AND MCLEOD, D. Database description with SDM: A semantic database model.
ACM Trans. Database Syst. 6,3 (Sept. 1981), 351-386.

41. HELD, G. D., STONEBRAKER, M. R., AND WONG, E. INGRES-A relational data base system.
In Proceedings of the 1975 National Computer Conference, vol. 44 (Anaheim, Calif., May 19-22).
AFIPS Press, Reston, Va., 1975, pp. 409-416.

42. HIRSCHMAN, C., AND STORY, G. Representing implicit and explicit time relations in narrative.
In Proceedings of the International Joint Conference on Artificial Intelligence (Vancouver, B.C.,
Aug.). 1981, pp. 289-295.

43. IBM. SQL/Data-System, concepts and facilities. Tech. Rep. GH24-5013-0, IBM, Jan. 1981.
44. JAYARAMAN, B. Constructing a parallel implementation from high-level specifications: A case

study using resource expressions. In Proceedings of the 1983 International Conference on Parallel
Processing (Aug. 23-26). IEEE Press, New York, 1983, pp. 416-420.

45. JAYARAMAN, B., AND KELLER, R. M. Resource expressions for applicative languages. In Pm-
ceedings of the 1982 Znternationul Conference on Paralkl Pmcessing (Aug.). IEEE Press, New
York, 1982, pp. 160-167.

46. JONES, S., AND MASON, P. J. Handling the time dimension in a data base. In Proceedings of

the Znternationul Conference on Data Bases (Heyden, July). British Computer Society, 1980,
pp. 65-83.

47. JONES, S., MASON, P., AND STAMPER, R. LEGOL 2.0: A relational specification language for
complex rules. Znf. Syst. 4,4 (Nov. 1979), 293-305.

48. KAHN, K., AND GORRY, G. A. Mechanizing temporal knowledge. Artif. Zntell. 9 (Sept. 1975),
87-108.

49. KIM, W. Relational database systems. ACM Comput. Sum 11,3 (Sept. 1979), 185-211.
50. KIM, W. On optimizing an SQL-like nested query. ACM Trans. Database Syst. 7,3 (Sept. 1982),

443-469.
51. KIMBALL, K. A.. The DATA System. Master’s thesis, Univ. of Pennsylvania, Philadelphia,

1978.
52. KLOPPROGGE, M. R. TERM: An approach to include the time dimension in the entity-

relationship model. In Proceedings of the 2nd Internutionul Conference on the Entity Relationship
Approach (Washington, D.C., Oct. 12-14), 1981, pp. 477-512.

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

The Temporal Query Language TQuel 297

53. KLUC, A. Equivalence of relational algebra and relational calculus query languages having
aggregate functions. J. ACM 29,3 (July 1982), 699-717.

54. LAUER, P. E., AND CAMPBELL, R. H. Formal semantics of a class of high-level primitives for
coordinating concurrent processes. Acta Znf. 5,4 (1975), 297-332.

55. LONG, W. J., AND RUSS, T. A. A control structure for time dependent reasoning. In Proceedings
of the Znternutional Joint Conference on Artificial Intelligence (Karlsruhe, West Germany, Aug.).
1983, pp. 230-232.

56. LUM, V., DADAM, P., ERBE, R., GUENAUER, J., PISTOR, P., WALCH, G., WERNER, H., AND
WOODFILL, J. Designing DBMS support for the temporal dimension. In Proceedings of ACM
SZGMOD Intern&ion& Conference on Manugement of Data (Boston, Mass., June). ACM, New
York, 1984, pp. 115-130.

57. MARAN, L. R., SPOOR, D. T., AND WALTZ, D. L. Encoding the natural language meaning of
time toward a conceptual model for temporal meaning. Work. Pap. 37, Univ. of Illinois, Urbana-
Champaign, May 1983.

58. MCARTHUR, R. P. Tense Logic. Reidel, Hingham, Mass., 1976.
59. MCCAWLEY, J. Tense and Time Reference in English. Holt, Reinhardt and Winston, New York,

1971.
60. MCDERMOTT, D. A temporal logic for reasoning about processes and plans. Cognitive Sci. 6

(Dec. 1982), 101-155.
61. MCKENZIE, E. Bibliography: Temporal databases. ACM SZGMOD Rec. 15, 4 (Dec. 1986),

40-52.
62. MCKENZIE, E., AND SNODGRASS, R. Supporting valid time: An historical algebra and eval-

uation. Tech. Rep. TR87-008, Computer Science Dept., Univ. of North Carolina, Chapel Hill,
1987.

63. MCKENZIE, E., AND SNODCRASS, R. Supporting transaction time in the relational algebra. In
Proceedings of the ACM SZGMOD International Conference on Manugement of Data (San
Francisco, May 1987). ACM, New York, 1987.

64. MONTAGUE, R. The proper treatment of quantification in ordinary Engliih. In Approaches to
Natuml Language. Reidel, Hingham, Mass., 1973.

65. NAVATHE, S. B., AND AHMED, R. A temporal relational model and a query language. Tech.
Rep., Computer and Information Sciences Dept., Univ. of Florida, Apr. 1986.

66. OVERMYER, R., AND STONEBRAKER, M. Implementation of a time expert in a database system.
ACM SZGMOD Rec. 12,3 (Apr. 1982), 51-59.

67. PALLEY, N. A., ET AL. CLINFO user’s guide: Release one. Tech. Rep. R-1543-l-NIH, Rand
Corp., 1976.

68. PRIOR, A. Past, Present, Future. Oxford University Press, New York, 1967.
69. REISNER, P. Human factors studies of database query languages: A survey and assessment.

ACM Comput. Sum I3,l (Mar. 1981), 13-31.
70. Relational Technology. MicroZNGRES Reference Manual. Relational Technology, 1984.
71. RESCHER, N. C., AND URQUHART, A. Temporal Logic. Springer-Verlag, New York, 1971.
72. SERNADAS, A. Temporal aspects of logical procedure definition. Znf. Syst. 5, 3 (1980),

167-187.
73. SHANNON, K. P. The display of temporal information. Master’s thesis, Computer Science Dept.,

Univ. of North Carolina, Chapel Hill, July 1986.
74. SNODGRASS, R. Monitoring distributed systems: A relational approach. Ph.D. dissertation,

Computer Science Dept., Carnegie-Mellon Univ., Dec. 1982.
75. SNODGRASS, R. The temporal query language TQuel. In Proceedings of the ACM Sym-

posium on Principles of Database Systems (Waterloo, Ontario, Apr.). ACM, New York, 1984,
pp. 204-212.

76. SNODGRASS, R. ED. Research concerning time in databases: Project summaries. ACM SZGMOD
Rec. 15,4 (Dec. 1986), 19-39.

77. SNODGRASS, R., AND AHN, I. A taxonomy of time in databases. In Proceedings of ACM SZGMOD
Znternationul Conference on Management of Data (Austin, Tex., May). ACM, New York, 1985,
pp. 236-246.

78. SNODGRASS, R., AND AHN, I. Temporal databases: Computer 19,9 (Sept. 1986), 35-42.
79. SNODCRASS, R., AND GOMEZ, S. Aggregates in the temporal query language TQuel. Tech. Rep.

TR86-009, Computer Science Dept., Univ. of North Carolina, Chapel Hill, Mar. 1986.

ACM Transactions on Database Systems, Vol. 12. No. 2, June 1987.

298 l Richard Snodgrass

80. STONEBRAKER, M., AND KELLER, K. Embedding experts and hypothetical data bases in a
relational data base system. In Proceedings of ACM SIGMOD Znternatianal Conference on
Management of Data (Santa Monica, Calif., May). ACM, New York, 1980.

81. STONEBRAKER, M., WONG, E., KREPS, P., AND HELD, G. The design and implementation of
INGRES. ACM Trans. Database Syst. 1,3 (Sept. 1976), 189-222.

82. TANDEM COMPUTERS. ENFORM Reference Manual. Tandem Computers, Cupertino, Calif.,
1983.

83. TANSEL, A. U. Adding time dimension to relational model and extending relational algebra.
Znf. Syst. To be published.

84. TANSEL, A. U., AND ARKUN, M. E. HQUEL, a query language for historical relational databases.
In Proceedings of the 3rd International Workshop on Statistical and Scientifk Databases (July)
1986.

85. TANSEL, A. U., AND ARKUN, M. E. Aggregation operations in historical relational databases.
In Proceedings of the 3rd International Workshop on Statistical and Scientific Databases (July)
1986.

86. TANSEL, A. U., ARKUN, M. E., AND OZSOYOGLU, G. Time-By-Example query language for
historical databases. Work. Pap., Dept. of Statistics and Computer Information Systems, Baruch
College, City University of New York, 1985.

87. TAYLOR, E. F., AND WHEELER, J. A. Space-Time Physics. Freeman, San Francisco, Calif., 1966.
88. TSOTSOS, J. K. Temporal event recognition: An application to left ventricular performance. In

Proceedings of the International Joint Conference on Artificial Intelligence (Vancouver, B.C.,
Aug.). 1981. pp. 900-907.

89. ULLMAN, J. D. Principles of Database Systems. 2nd ed. Computer Science Press, Rockville, Md.,
1982.

90. VALIENTE, J. Implementing TQuel aggregates. Master’s thesis, Computer Science Dept., Univ.
of North Carolina, Chapel Hill. In progress.

91. VILAIN, M. B. A system for reasoning about time. In Proceedings of the American Association
for Artificial Intelligence (Pittsburgh, Pa., Aug.) 1982, pp. 221-226.

92. WHITROW, G. J. The Natural Philosophy of Time. Oxford University Press, New York, 1980.
93. WIEDERHOLD, G.! FRIES, J. F., AND WEYL, S. Structured organization of clinical data bases. In

Proceedings of the National Computer Conference, vol. 44 (Anaheim, Calif., May 19-22). AFIPS
Press, Reston, Va., 1975, pp. 479-485.

94. ZANIOLO, C. The database language GEM. In Proceedings of ACM SZGMOD Intematianal
Conference on Management of Data (San Jose, Calif., May). ACM, New York, 1983, pp. 207-218.

Received August 1984, revised August 1985; accepted July 1986

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

