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Recently, attention has been focused on temporal datubases, representing an enterprise over time. We 
have developed a new language, TQuel, to query a temporal database. TQuel was designed to be a 
minimal extension, both syntactically and semantically, of Quel, the query language in the Ingres 
relational database management system. This paper discusses the language informally, then provides 
a tuple relational calculus semantics for the TQuel statements that differ from their Quel counterparts, 
including the modification statements. The three additional temporal constructs defined in TQuel 
are shown to be direct semantic analogues of Quel’s where clause and target list. We also discuss 
reducibility of the semantics to Quel’s semantics when applied to a static database. TQuel is compared 
with ten other query languages supporting time. 
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1. INTRODUCTION 

Most conventional databases represent the state of an enterprise at a single 
moment of time. Although the contents of the database continue to change as 
new information is added, these changes are viewed as modifications to the state, 
with the old, out-of-date data being deleted from the database. The current 
contents of the database may be viewed as a snapshot of the enterprise. 

Recently, attention has been focused on temporal dutubases (Z’DBs), repre- 
senting the progression of states of an enterprise over an interval of time. In 
such databases changes are viewed as additions to the information in the 
database. TDBs are thus generalizations of conventional (termed snapshot) 
databases and their underlying snapshot relational model. 

We have developed a new language, TQuel (Temporal QUEry Language), to 
query a TDB [75]. TQuel is a derivative of Quel [41], the query language for the 

This research was sponsored by the National Science Foundation under Grant DCR-8402339, and 
was supported by an IBM Faculty Development Award and by a UNC-CH Foundation Junior Faculty 
Development Award. 
Author’s address: Department of Computer Science, University of North Carolina, Chapel Hill, NC 
27514. 
Permission to copy without fee all or part of this material is g-ranted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 
0 1987 ACM 0362-5915/87/0600-0247 $00.75 

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987, Pages 247-298. 



248 l Richard Snodgrass 

Ingres relational database management system [81]. TQuel was designed to be a 
minimal extension, both syntactically and semantically, of that language. This 
design decision has three important ramifications: All legal Quel statements are 
also valid TQuel statements, such statements have an identical semantics in 
Quel and TQuel when the time domain is fixed, and the additional constructs 
defined in TQuel to handle time have direct analogues in Quel. TQuel is, then, a 
natural extension of a conventional relational query language to a temporal 
relational query language. 

Major portions of the language have been formalized and implemented. This 
paper will focus on the syntax and semantics of TQuel. The concept of TDBs 
is introduced in Section 2, and an overview of the language is provided in 
Section 3. A formal definition, semantics, and the prototype implementation of 
TQuel are the subjects of Sections 4-6, respectively. The final section summarizes 
the results, compares TQuel to other query languages, and indicates future work. 
The Appendix gives the complete syntax of the augmented TQuel statements. 

2. TEMPORAL DATABASES 

Temporal information has been stored in computerized information systems for 
many years; payroll and accounting systems are typical examples. In these 
systems the attributes involving time are manipulated solely by the application 
programs; the DBMS interprets dates as values in the base data types. For 
example, the ENFORM database management system encodes dates and times 
in character arrays [82]; the Query-by-Example system supports both date and 
time domains directly [ 181; and Ingres has been extended to convert dates to and 
from an internal format and to perform comparisons and arithmetic operations 
on these domains [66, 701. However, none of these systems interprets temporal 
domains when deriving new relations. 

The need to handle time more comprehensively surfaced in the early 1970s in 
the area of medical information systems, where a patient’s medical history is 
particularly important. The model supported by the Time Oriented Databank 
[93] and several other medical DBMSs (e.g., CLINFO [67]) views the database 
as a set of entity-attribute-value-time quadruples, where the time portion indi- 
cates when the information represented by the tuple became valid. In these 
systems the query language is used to select subsets of quadruples from the three- 
dimensional database of entities (i.e., patients), attributes, and times. 

In the last five years, interest in the area of TDBs has increased. A recent, 
\ extensive bibliography [61] contained 80 articles from 1982 to 1986. At least 

25 research groups are studying time in databases [76]. This activity may be 
classified loosely into three emphases: the formulation of a semantics of time at 
the conceptual level, the development of a model for TDBs analogous to the 
relational model for snapshot databases, and the design of temporal query 
languages. However, the problems inherent in the modeling of time are not 
unique to information processing; a significant literature exists on related issues 
in artificial intelligence (c.f., [4-6,24,34,48,55, 60,88,91]), linguistics (c.f., 133, 
42, 59,64]), logic (c.f., [58,68, 71]), philosophy (c.f., [92]), and physics (c.f., [87]). 

Bubenko [20, 211 specified a TDB and examined two possible implementation 
strategies, in the binary and n-ary relational models. Since the appearance of 
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these papers, various semantic models have been proposed that incorporate the 
temporal dimension to varying degrees [8,9,19,22,30,40,52]. 

At least two possible approaches to the development of a model for TDBs have 
been suggested. One is to extend the semantics of the relational model to 
incorporate time directly. The other is to base TDBs on the snapshot model, 
with time appearing as additional attribute(s). The first has been applied suc- 
cessfully by Clifford and Warren [27], with the entity-relationship model used to 
formulate the intensional logic IL,. This logic serves as a formalism for the 
temporal semantics of a TDB much as the first-order logic serves as a formalism 
for the snapshot relational model. Sernadas has taken the same approach in 
defining the temporal process specification language DMTLT, which incorpo- 
rates a special modal tense logic [72]. 

In the second approach, the snapshot relational database model [28] serves as 
the underlying model of the TDB. Each temporal relation is embedded in a 
snapshot relation containing an additional temporal attribute(s). In this approach 
the logic of the model does not incorporate time at all; instead, the query language 
must translate queries and updates involving time into retrievals and modifica- 
tions on the underlying snapshot relations. In particular, the query language 
must provide the appropriate values for these attributes in the relation being 
derived. In Ben-Zvi’s Time Relational Model, for example, five additional attri- 
butes are appended to each relation [15]. Other researchers have also utilized 
this technique [13, 32, 38, 471. 

Several query languages incorporating time have been designed over the last 
decade. In Section 7.1 TQuel is compared with these other proposals. 

Most databases incorporating time support only one aspect of time-the time 
when the information is valid. This aspect is termed valid time. Two other aspects 
of time should be supported by a temporal query language: transaction time and 
user-defined time. The remainder of this section will characterize these aspects 
briefly; a more complete discussion may be found in [ 771, and a comprehensive 
example may be found in [78]. The presentation is more of an intuitive nature 
than a formal characterization of TDBs; Section 5.1 will show how to embed a 
temporal relation in a snapshot relation, thereby providing a precise definition. 
We take the second approach to modeling TDBs: utilizing the snapshot model. 

2.1 Snapshot Databases 

Conventional databases model the dynamic real world, as a snapshot at a 
particular point in time. A state or an instance of a database is its current 
contents, which does not necessarily reflect the current status of the real world, 
since changes to the database will always lag behind changes in the real world. 
Updating the state of a database is performed using data-manipulation operations 
such as insertion, deletion, or replacement, taking effect as soon as it is commit- 
ted. In this process past states of the database, and those of the real world, are 
discarded and forgotten completely. We term this type of database a snapshot 
database. 

In the snapshot relational model, a database is a collection of relations. Each 
relation consists of a set of tuples with the same set of attributes and is usually 
represented as a two-dimensional table (see Figure 1). As changes occur in the 
real world, changes are made in this table. 
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Fig. 1. A snapshot relation. 

2.2 Rollback Databases 

Snapshot databases relying on snapshots are inadequate for many situations. For 
example, they cannot answer queries on past states. Without system support in 
this respect, many applications were forced to maintain and handle temporal 
information in an ad hoc manner. One approach to resolve these deficiencies is 
to store all past states, indexed by time, of the snapshot database as it evolves. 
Such an approach requires a representation of transaction time, the time the 
information was stored in the database. A relation under this approach can be 
illustrated conceptually in three dimensions (Figure 2) with transaction time 
serving as the third axis. The relation can be regarded as a sequence of snapshot 
relations (termed snapshot states) indexed by transaction time. One can get a 
snapshot of the relation as of some time in the past (a snapshot state) and make 
queries on that state by moving along the time axis and selecting this relation. 
The operation of selecting a snapshot state is termed rollback, and a database 
supporting it is termed a rollback database. A rollback to a time t, where t is 
between two transaction times tl and t2 represented in a rollback database, selects 
the most recent snapshot state in effect at that time (i.e., the one at tl). Changes 
to a rollback database may only be made to the most recent snapshot state. The 
(single) relation illustrated in Figure 2 had three transactions applied to it, 
starting from the null relation: (1) the addition of three tuples, (2) the addition 
of a tuple, and (3) the deletion of one tuple (which was entered in the first 
transaction) and the addition of another tuple. Each transaction results in a new 
snapshot state being appended to the right; once a transaction has completed, 
the snapshot states in the rollback relation may not be altered. Transaction time 
is represented by transaction identifiers: monotonically increasing integers gen- 
erated by the DBMS. We assume that the DBMS maintains information mapping 
transaction identifiers into the clock time when the transaction was executed, 
for querying and display purposes. 

2.3 Historical Databases 
One limitation of supporting transaction time is that the history of database 
activities is recorded, rather than the history of the real world. A tuple becomes 
valid as soon as it is entered into the database as in a snapshot database. 
Retroactive/proactive changes are not recorded, and errors in past tuples cannot 
be corrected. Errors can sometimes be overridden (if they are in the current 
state), but they cannot be forgotten. 

Whereas rollback databases record a sequence of snapshot states, historical 
databases record a single historical state per relation, storing the history as is best 
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987. 
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Fig. 2. A rollback relation. 

Fig. 3. An historical relation. 

known. As errors are discovered, they are corrected by modifying the database. 
Previous states are not retained, so the database may not be viewed as it was in 
the past. No record is kept of the errors that have been corrected; historical 
databases are similar to snapshot databases in this respect. Thus historical 
databases must represent ualicE time, the time that the stored information models 
reality. Historical databases support historical queries, which may utilize infor- 
mation from the past. 

Historical databases may also be illustrated in three dimensions (see Figure 3) 
[12, 15, 27, 561. The label of the time axis has been changed to valid time, and 
the semantics are more closely related to reality, rather than update history. The 
state of the world being modeled remains unchanged between the individual 
snapshot slices found in the historical relation; this is termed the step function 
continuity assumption [27] or the principle of temporal density [ll]. The infor- 
mation present in the snapshot database slice at one valid time u1 is assumed to 
be valid for all time between that valid time and the next one, u2. Hence, the 
tuples in the relation are valid for the interval of time [ul, u2). 

As the model now stands, only states that exist for a finite interval of time 
may be represented, while events, occurring instantaneously, are more difficult 
to model. Our representation of an event is a tuple that exists for exactly one 
valid time, with the snapshot slices of the previous and next valid times not 
containing the tuple. This representation is problematic because time is contin- 
uous: It is misleading to talk about the previous and next time values. Of course, 
any implementation will encode valid time in some discrete fashion; the proposed 
representation for events then reduces to an interval of the ualid-time granularity 
of the encoding (say, seconds, or microseconds). In effect, we are defining 
instantaneous to be any occurrence over a time interval that is less than the 
valid-time granularity. In the examples that appear later in the paper, the valid- 
time granularity is one month: Any occurrence over a period of less than a month 
is considered instantaneous. Snapshot relations as defined in Section 2.1 cannot 
represent events at all, precisely because they are instantaneous. 
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Fig. 4. A temporal relation. 

Since an update to a historical relation must specify the valid time it concerns, 
more sophisticated operations are necessary to manipulate and query valid time 
adequately, compared to the simple rollback operation, since they apply to the 
entire historical relation, rather than a single snapshot slice. 

2.4 Temporal Databases 

Benefits of both approaches can be combined by supporting both transaction 
time and valid time. Whereas a rollback database views tuples as being valid at 
some time as of that time, and a historical database always views tuples as being 
valid at some moment as of now, a temporal DBMS makes it possible to view 
tuples as being valid at some moment relative to some other moment, completely 
capturing the history of retroactive/proactive changes. r-- 

We use the term temporal database to emphasize the need fir both valid time 
and transaction time in handling temporal information. Since two time axes are 
now involved, four dimensions are required to represent a temporal relation 
(Figure 4 shows a single temporal relation). A temporal relation may be thought 
of as a sequence of historical states, each of which is a complete historical 
relation. The rollback operation on a temporal relation selects a particular 
historical state, on which a historical query may be performed. Each transaction 
creates a new historical state; hence, temporal relations are append only. How- 
ever, the transaction must specify the valid time(s) it concerns, as in a historical 
database. The temporal relation in Figure 4 is the result of four transactions, 
starting from a null relation: (1) Three tuples were added, (2) one tuple was 
added, (3) one tuple was added and an existing one deleted, and (4) a previous 
tuple (with an earlier valid time) was deleted (presumably it should not have 
been there in the first place). Each update operation involves copying the 
historical relation, then applying the update to the newly created historical 
relation. 

User-defined time [46] is necessary when additional temporal information, not 
handled by transaction or valid time, is stored in the database. The values of 
user-defined temporal attributes are not interpreted by the DBMS and are thus 
the easiest to support; all that is needed is an internal representation and input 
and output functions. The transaction and valid times are needed in any case in 
temporal relations. 

In this model four types of databases were defined: snapshot, rollback, histor- 
ical, and temporal. Each may be associated with a class of query languages. 
A snapshot query language supports queries over multiple snapshot relations. A 
rollback query language also supports rollback. A historical query language does 
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not support rollback, but it does support historical queries, which combine 
information from multiple valid times and possibly multiple relations. A temporal 
query language supports both rollback and historical queries. The next section 
will informally introduce the temporal query language TQuel. 

3. OVERVIEW OF TQUEL 

TQuel is a superset of Quel [41], the query language for Ingres [al]. Quel was 
chosen for several reasons: It is well known, and implementations are widely 
available; it is particularly simple, but rather powerful; and it has a simple and 
well-defined semantics. The leading contender, SQL [43], is more complex and 
has a rather complicated semantics [23, 501. An important goal in the design of 
TQuel was that it be a minimal extension, both syntactically and semantically, 
of Quel. This objective has three important ramifications: All legal Quel state- 
ments are also valid TQuel statements, such statements have an identical 
semantics in Quel and TQuel when the time domain is fixed, and the additional 
constructs defined in TQuel to handle time have direct analogues in Quel. 

TQuel will be illustrated using example queries on the database shown in 
Figure 5. The Faculty relation lists the faculty members and their ranks (one of 
the values Assistant, Associate, or Full); the Submitted relation lists those papers 
submitted. In the discussion that follows, we assume the reader is familiar with 
Quel. 

The Quel retrieve statement consists of two basic components: the target list, 
specifying how the attributes of the relation being derived are computed from 
the attributes of the underlying relations, and a where clause, specifying which 
tuples participate in the derivation. The following query produces the relation 
shown in Figure 6 when applied to the sample database: 

Example 1. List the associate professors. 
range of f is Faculty 
retrieve into Associates (Name = f.Name) 

where f.Rank = “Associate” 

The range statement associates tuple variables with relations; this binding 
remains in effect until a new range statement tiith the same tuple variable is 
executed. 

The relations shown in Figures 5 and 6 are snapshot relations. Although the 
graphical representation of a temporal relation as a sequence of three-dimensional 
structures is conceptually elegant, it is not convenient for displaying the contents 
of a temporal relation. For the purposes of this section, the temporal relations 
will be embedded in a snapshot relation by appending two additional temporal 
attributes. The value of the first attribute specifies the valid time: when that 
tuple was valid. For event relations, which consist of tuples representing instan- 
taneous occurrences, this attribute contains a single time value (at). For interval 
relations, which consist of tuples representing a state valid over a time interval, 
the attribute contains two time values delimiting the interval (from, to). Although 
we will argue that events and intervals are quite similar semantically, there are 
compelling arguments for presenting both to the user [57]. The second temporal 
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Faculty (Name, Rank): 

Fig. 5. A snapshot database. 
Submitted (Author. Journal): 

Merrie 
Merrie 
Tom 

CACM 
TODS 
JACM 

Associates (Name): 
Name 
Merrie 
Tom 

Fig. 6. Results of a query on a snapshot database. 

attribute specifies the transaction time: when the information was entered into 
the TDB. Two time values are always associated with the transaction time: the 
time the tuple was entered into the TDB (start), and the time it was removed 
(stop). Hence, data are current from the start time to just before the stop time, 
when it becomes no longer current. Figure 7 illustrates the Faculty relation 
extended to become an interval relation, and the Submitted relation extended to 
become an event relation. Note that Tom was entered into the database as an 
associate professor in August 1975; this error was corrected two months later. 
No errors have been corrected in the Submitted relation, since the stop t&c fo; 
all tuples is 03. Both intervals, for valid and transaction time, are closed on the 
left and open on the right. The granularity of valid-time values is arbitrary; in 
this section we assume for simplicity a granularity of one month. We also assume 
that the DBMS has been instructed to display the transaction time to the nearest 
month, again for simplicity. Tuples are assumed to be coalesced, in that tuples 
with identical values for the explicit attributes (termed due-equimdent tuples 
[62]) neither overlap nor are adjacent in time. 

Since TQuel is a strict superset of Quel, the identical query, executed in 
September, 1983 on this sample TDB, produces the relation shown in Figure 8. 
The transaction time specifies when the relation was created; subsequent updates 
will alter the transaction time of individual tuples. 

Since the additional temporal attributes are an artifact of embedding a tem- 
poral relation in a snapshot one, users must be constrained in how they use these 
attributes. The query language must be designed so that temporal attributes are 
used correctly. The approach taken here is to make the temporal attributes 
implicit in the query language (except is one very restricted case), and to provide 
facilities in the language for manipulating this implicit attribute. That these 
additional attributes are implicit is indicated in the figures by a double vertical 
line and parentheses surrounding the names of the attributes. To manipulate 
these attributes, TQuel augments the retrieve statement with three components, 
analogous to the components of the Quel retrieve statement, one specifying how 
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987. 
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Name Rank 

Jane Assistant 
Jane Associate 
Jane Full 
Merrie Assistant 
Merrie Associate 
Tom Associate 
Tom Assistant 
Tom Associate 

Submitted (Author, Journal): 
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Valid time Transaction time 
(from) (to) (start) (stop) 

9-71 12-76 9-71 m 
12-76 11-80 12-76 01 
11-80 m 

t 

lo-80 m 
9-77 12-82 8-77 Ca 

12-82 m 

t 

12-82 Q) 
9-75 01 8-75 10-75 
9-75 12430 10-75 m 

12-80 00 11-80 00 

11 Valid time 11 
(at) 

11-79 
9-78 
5-79 

12-82 

Author 

Jane 
Merrie 
Merrie 
Tom 

Journal 

CACM 
CACM 
TODS 
JACM 

Transaction time 
(start) (stop) 

11-79 m 
9-78 QI 
5-79 m 

12-82 cc 

Fig. 7. A temporal database. 

Associates (Name): 
Valid time Transaction time 

Name (from) @) (St-Q (stop) 

Jane 12-76 11-80 9-83 Ca 
Merrie 12-82 co 9-83 Ca 
Tom 12-80 03 9-83 01 

Fig. 8. The same query on a temporal database. 

the implicit valid temporal attribute is computed, and two specifying the temporal 
relationship of the tuples participating in the derivation. 

3.1 The When Clause 

The when clause is the temporal analogue to Quel’s where clause. This clause 
consists of the keyword followed by a temporal predicate on the tuple variables, 
representing the implicit time attributes of the associated relations. The syntax 
is similar to path expressions, which are regular expressions augmented with 
parallel operators [ 10,391. 

The overlap operator specifies that the events and/or intervals overlap in 
time: 

Example 2. List the associate professors in September. 
range of a is Associates 
retrieve into FirstDayAssociates (Name = a.Name) 

when a overlap “September” 

In this case the query specifies that the interval when the faculty member was 
an associate professor should include September (of the current year), which is 
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also a time interval (strings, enclosed in double quotation marks, are temporal 
constants). We mention in passing that the overlap operator is also used in 
another context, as illustrated in Section 3.2 and discussed more deeply in 
Section 4.3. The result is Merrie and Tom. 

Another example of the when clause follows: 

Example 3: What papers were written by associate professors? 
range of a is Associates 
range of s is Submitted 
retrieve into AssocPapers (Name = s.Author, Journal = s.Journal) 

where a.Name = s.Author 
when s overlap a 

The time that the paper was submitted must overlap with the time interval when 
the faculty member was an associate professor. Jane submitted a paper to CACM, 
and Tom submitted a paper to JACM. 

Intervals include two time values in the implicit attribute: a starting time and 
a stopping time. These values may be indicated by the unary operators begin of 
and end of: 

Example 4. Who were the full professors when Tom was promoted to associate? 
range of fl is Faculty 
range of a is Associates 
retrieve into Full (Name = fl.Name) 

where a.Name = Tom and fl.Rank = “Full” 
when fl overlap begin of a 

This query returns Jane. 
Sequentiality may be tested with the precede operator: 

Example 5. Who has been an associate professor for the last five years? 
range of a is Associates 
retrieve into Disgruntled (Name = a.Name) 

when (begin of a) precede “January 1980” 
and “January 1985” precede (end of a) 

This example also illustrates the and operator; the or and not operators are 
allowed as well. Fortunately there are no disgruntled professors. 

3.2 The Valid Clause 

The valid clause serves the same purpose as the target list: specifying the value 
of an attribute in the derived relation. In this case the attribute in question is 
the implicit time attribute. There are two variants to this clause. If the derived 
relation is to be an event relation, the valid at variant specifies the value of the 
single time in the temporal attribute. 

Example 6: When were the associate professors promoted to this rank? 
range of a is Associates 
retrieve into AssociatePromotions (Name = a.Name) 

valid at begin of a 
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Jane was promoted on 12-76, Merrie on 12-82, and Tom on 12-80. In this query 
the underlying relation, Associates, is an interval relation. One time value, the 
start time, was selected as the time value in the derived (event) relation. The 
valid clause contains an e-expression, also syntactically similar to path expres- 
sions. The operators begin of, end of, overlap, extend, and precede may be 
used in e-expressions. The binary Boolean operators and and or and the unary 
Boolean operator not are not allowed, since they introduce ambiguity as to which 
time value is desired. 

The second variant of the valid clause, valid from . . . to . . . , also contains 
e-expressions and is used when the derived relation is to be an interval relation: 

Example 7. Who got promoted from assistant to full professor while at least one 
other faculty remained at the associate rank? 
range of fl is faculty 
range of f2 is faculty 
range of a is Associates 
retrieve into Stars (Name = fl.Name) 

valid from begin of f 1 to begin of f2 
where f l.Name = f2,Name and f l.Rank = “Assistant” and f2Rank = “Full” 
when (f 1 overlap a) and (f2 overlap a) 

Tuples in the derived relation Stars indicate the interval of time from joining 
the faculty as assistant professors to becoming full professors. There are currently 
no full professors. 

The operators found in temporal predicates and e-expressions may be applied 
more generally than shown above; as an example, the e-expression 

valid at begin of (fl overlap a) 

specifies that the time value returned should be the first instant when both tuples 
are valid. E-expressions must have begin of or end of as top-level operators. 

3.3 The As-Of Clause 

The when and valid clauses are used to express historical queries. To express 
rollback, the as-of clause is used: 

Example 8. What stars were known at the end of 1984? 
range of fl is Faculty 
range of f2 is Faculty 
range of a is Associates 
retrieve into Starsofl984 (Name = fl.Name) 

valid from begin of f 1 to begin of f 2 
where fl.Name = f2.Name and fl.Rank = “Assistant” and f2.Rank = “Full” 
when (f 1 overlap a) and (f2 overlap a) 
as of end of “1984” 

The as-of clause rolls buck the database to the state it was at midnight on 
December 31, 1984, and evaluates the rest of the query using the information 
known only to that point. Additions and error corrections made after that time 
would not be included in the resulting relation. 
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Submitted (Author. Journal): 

Author 

Jane 
Merrie 
Merrie 
Tom 
Tom 

CACM 11-79 11-79 
CACM 9-78 9-78 
TODS 5-79 5-79 
JACM E-82 12-82 
TOPLAS l-83 10-85 

Fig. 9. An updated temporal relation. 

Journal 
Valid time 

(at) 
Transaction time 

(start) (stop) 

cc 

cc 
m 

lo-85 
m 

The as-of clause is similar to the where and when clauses, in that it provides 
an additional constraint on the underlying tuples participating in the query. 
Most of the time the user will be interested in the most up-to-date information 
in the database and will rely on the default for the as-of clause: aa of “now”. To 
rollback to a previous historical database, the as-of clause as illustrated above 
would be used. To examine a sequence of transactions occurring over a period of 
time, a third variant is used: 

as of (Y through B 

3.4 Temporal Data Type 

TQuel provides a temporal data type to support user-defined time. As discussed 
previously the values of user-defined temporal attributes are not interpreted by 
the temporal DBMS; only the internal representation and the input and output 
functions are provided. 

3.5 Modification Statements 

Quel has three modification statements: append, delete, and replace. These 
statements in TQuel do not have an as-of clause, because the transaction time is 
computed automatically by the temporal DBMS as the current time (recall that 
temporal databases are append only; hence the modification applies to the current 
historical state). However, the valid and when clauses may be employed in these 
statements. In October 1985 it was learned that Tom had submitted a paper not 
to JACM, but to TOPLAS, a month later than previously thought. 

Example 9. Tom submitted a paper to TOPLAS, not to JACM. 

range of s is Submitted 
replace s (Journal = “TOPLAS”) 

where s.Author = “Tom” and s.Journal = “JACM” 
valid at begin of “January 1983” 

This results in the relation shown in Figure 9, which should be compared with 
Figure 7. 

4. FORMAL DEFINITION 

The description of TQuel in the previous section was presented informally to 
help the reader develop an intuitive understanding of the language. This section 
and the next will provide a more precise definition and semantics for the language. 
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Quel has some 14 statements; TQuel augments 5 of them: the create, retrieve, 
append, delete, and replace statements. The statements will be discussed in this 
order. The syntax for the retrieve statement will be presented in a bottom-up 
fashion, discussing expressions before clauses, in contrast to the top-down 
presentation of the previous section, where the clauses were emphasized. The 
Appendix includes the syntax of the five statements. 

4.1 Schema Definition 

The create statement defines a new relation and provides a scheme for that 
relation; the statement 

create persistent interval Faculty (Name = ~20, Rank = ~10) 

would define the Faculty relation shown in Figure 7 (the contents of this relation 
would have to be provided through the copy or append statements). The Quel 
create statement does not include the persistent, interval, or event keywords. 
Each of these keywords is optional in TQuel (see the Appendix for details on the 
syntax). If the persistent keyword is used, then the relation is either a rollback 
or a temporal relation, and the as-of clause may be used in queries. If the 
interval or event keyword is used, the relation is either a historical or temporal 
relation, and the when and valid clauses may be used. If none of these keywords 
is used, the relation is a conventional snapshot relation. The four types of 
relations (snapshot, rollback, historical, temporal) are thereby specified. The 
domain specifications are similar to those in Quel (integers, floating-point num- 
bers, and fixed-length character strings, as used above, are supported), with the 
addition of a temporal data type. 

Associated with all rollback and temporal relations is a pair of transaction 
time values, start and stop. Although these values are closely associated with 
clock time, they are actually transaction identifiers. Tuples created or removed 
by two different. transactions will have different transaction times, even if the 
transactions started and completed at identical moments in time. 

Associated with all historical and temporal event relations is a single valid 
time value, at, and with all historical and temporal interval relations, a pair of 
valid time values, from and to. These values are equal to the clock time when the 
tuple was valid. In contrast to transaction time, two tuples entered into the 
database at different times may have the same valid times. 

4.2 Constants and Predefined Functions 

Quel supports numeric and character string constants. TQuel augments these 
with temporal constants. Strings appearing in the valid, when, and as-of clauses 
are interpreted as temporal constants denoting a particular time interval. The 
string “September 1, 1983” denotes an interval from midnight of September 1, 
1983, to midnight of September 2, 1983; “September 1983” denotes the entire 
month; and “4:O0 PM September 1, 1983” denotes a 60-second interval. Events 
may be approximated with very short intervals. The exact format of these 
constants is similar to that specified for the time expert [66] or the Ingres system 
[ 701. The constants “beginning,” “now,” and “forever” are also available, with 
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both transaction and valid time values, distinguished by the context in which 
they are used. 

The implicit temporal attributes are available through the functions “validat,” 
“validfrom,” and “validto” (valid time), and “transactionstart” and “transaction- 
stop” (transaction time), for use only in the target list and where clauses. These 
functions, as well as the temporal data type, are provided in part for auditing 
purposes [17]; a simple example is as follows: 

Example 10. When was Tom entered incorrectly as an associate professor? 
range of f is Faculty 
retrieve into Mistake (MistakeDate = transactionstart( 

CorrectedDate = transactionstop(f )) 
where f.Name = “Tom” and f.Rank = “Associate” 
as of “1975” 

Tom was entered incorrectly on 8-75, and his rank was corrected on 10-75. The 
MistakeDate and CorrectedDate attributes cannot be used in subsequent when, 
valid, or as-of-clauses; to the temporal DBMS, these attributes are just other 
user-defined attributes. Perhaps the temporal data type’s most useful function is 
to be displayed with the other user-defined attributes (as in the example above). 
TRM also provides restricted access to the time attributes [15]. 

As the other statements, retrieve, append, delete, and replace, all incorporate 
the when, valid, and as-of clauses, we will first discuss the expressions found in 
these clauses. 

4.3 Temporal Expressions 
A temporal constructor is a unary or binary operator that takes one or two events 
or intervals as arguments and returns an event or interval. If either of the 
arguments to the temporal constructors is an event, then it is coerced into an 
interval that starts and ends at the event’s time value. The unary prefix temporal 
constructors are begin of and end of, both returning events. The binary infix 
temporal constructors are overlap and extend, both returning intevals. 
overlap is undefined if there are no time values that are in both underlying 
intervals. The overlap operator may be thought of as a temporal intersection 
operator, in that it returns the points in time when both arguments are valid: 
The predicate 

(a overlap b) precede c 

is true when the overlap of the intervals represented by the tuple variables a and 
b precedes the event or the start of the interval represented by c. However, the 
extend operator is more like a temporal union, in that it returns the points in 
time when either of the arguments are valid; the predicate 

(a extend b) precede c 

is true when the ends of both a and b precede the start of c. The difference 
between overlap and extend is illustrated with the time lines in Figure 10. 

An e-expression is simply an expression containing tuple variables, temporal 
constants, and temporal constructors, with the constraint that the expression 
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Time 

b 

c 

(a overlap b) precede c = True 

a extend b 

(a extend b) precede c = False 

Fig. 10. The difference between overlap and extend. 

must result in an event. E-expressions are used in the valid and as-of clauses. 
Since the as-of clause specifies rollback to a particular transaction time, the 
e-expression in an as-of clause must evaluate to a temporal constant. An equiv- 
alent constraint is that an e-expression within an as-of clause must not contain 
a tuple variable. 

An i-expression is an expression containing tuple variables, temporal constants, 
and temporal constructors that evaluates to an interval. 

A temporal predicate operator is a binary infix operator that takes events or 
intervals as arguments and returns a Boolean value. The three temporal predicate 
operators are precede, overlap, and equal. The overlap operator is an over- 
loaded operator, in that it is both a temporal constructor and a temporal predicate 
operator. This overloading also occurs in English: One may ask whether two 
intervals overlap, or may ask for the overlap of two intervals, expecting a yes or 
no to the first query and an interval for the second request. CY precede fi is true 
if the event (end of CY) is before the event (begin of p). One event is before a 
second event if the time value of the first, expressed as an integer or real value, 
is less than or equal to (I) the time value of the second. In this formulation an 
event overlaps itself. CY overlap /3 is true if the event (begin of (Y) is before the 
event (end of ,6?) and the event (begin of p) is before the event (end of CY). An 
equivalent formulation is (end of (begin of (Y extend begin of /3)) precede 
(begin of (end of (Y extend end of ,L?)). (Y equal /3 is true if (II and p are two 
events that occurred at the same time (within the valid-time granularity) or if cx 
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and B are two intervals that began and ended at the same time. An event is never 
equal to an interval. 

A temporal predicate is an expression containing logical operators (and, or, 
not) operating on expressions containing a temporal predicate operator 
(precede, overlap, or equal), operating on e-expressions and i-expressions. 
This constraint is motivated by consideration of the types in a temporal predicate. 
In particular, e-expressions evaluate to events, and i-expressions evaluate to 
intervals. A temporal predicate operator maps pairs of intervals or events to a 
Boolean value, which may be operated on by the logical operators. Temporal 
predicates are used only in when clauses. 

We envision that additional temporal constructors and temporal predicates 
would be supported in an implementation. 

4.4 Unique 

Resulting relations are always coalesced (cf., Section 3) when they are stored. 
This behavior is analogous to Ingres removing duplicates when storing relations. 
If the retrieve statement does not name a destination relation, the tuples are not 
coalesced, and duplicates are not removed, for performance reasons. The user 
can insist on coalescing and duplicate elimination by specifying retrieve unique. 

4.5 Augmented Quel Statements 

The TQuel retrieve statement and the three TQuel modification statements- 
append, delete, and replace-augment their Quel counterparts with (optional) 
valid clauses and when clauses; the retrieve statement also allows an optional 
as-of clause. See the Appendix for details on the syntax. A retrieve statement 
always generates a new historical state, unless all the underlying relations are 
snapshot or rollback relations, in which case a new snapshot state is generated. 

4.6 Defaults 

The defaults assumed in the language will be important for the semantics to be 
presented shortly. Quel defaults the where clause to “where true.” The defaults 
for the additional clauses in TQuel should be natural to the user. The retrieve 
statement will be handled first. If only one tuple variable (say, I) is used, and it 
is associated with an interval relation, then the defaults are as follows: 

valid from begin of I to end of I 
when I overlap “now” 
as of “now” 

These defaults say that the result tuple is to start when the underlying tuple 
started and stop when the underlying tuple stopped and that the query is to be 
executed on the current historical state. The valid from and valid to defaults are 
distinct; one can be stated explicitly by the user, and the other will be supplied 
as a default. When an event relation is associated with the one tuple variable 
(say, E) the default is 

valid at E 
when true 
as of “now” 
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specifying simply that the result tuple was valid at the same instant the under- 
lying tuple was valid. The first TQuel query given (Example 1) thus has the 
following default clauses: 

Example 11. The first query, with defaults. 
range of f is Faculty 
retrieve into Associates (Name = f.Name) 

valid from begin of f to end of f 
where f.Rank = “Associate” 
when f overlap “now” 
as of “now)) 

When two or more tuple variables are used, the situation is more complex. 
If the tuple variables associated with interval relations involved in the query 
are tl, t2, . . . , tk, then the default temporal clauses are the following: 

valid from begin of (tI overlap - . - overlap tk) to end of (tl overlap . - - 
overlap tk) 
when (tI overlap - . - overlap tk) overlap “now” 
as of “now” 

These clauses state that the underlying tuples must be consistent; that is, they 
are all valid for the entire interval the resulting tuple is valid. Tuple variables 
associated with event relations are ignored in this case. 

For the append statement, the defaults are as follows: 

valid from “now” to “forever” 
when (tl overlap - - . overlap tk) overlap “now” 

Informally, this means that the tuples used to supply values for the new tuples 
to be appended should be currently valid, and that the new tuples should be 
considered to have become valid immediately. Again, tuple variables associated 
with event relations are ignored. For the delete statement, the defaults are as 
follows: 

delete to 
valid from “now” to end of to 
when (to overlap tl overlap . . . overlap tk) overlap “now” 

The tuple variables tl . . . tk are from the where, when, and valid clauses. These 
defaults imply that the deletion only applies to information valid now or in the 
future. If to was associated with an event relation, the default is as follows: 

delete to 
valid at to 
when (tl overlap . . . overlap tk) overlap “now” 

And, finally, for the replace statement, the defaults are as follows: 

replace to 
valid from “now” to end of to 
when (to overlap . . . overlap tk) overlap “now” 
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These defaults follow from the fact that a replace is roughly equivalent to a 
delete followed by an append. The situation where to is associated with an event 
relation is handled similarly to the delete statement. 

Note that when one or more of these clauses are not provided by the user, it is 
assumed to be as discussed above. The user should be careful when only a few 
clauses are defaulted, because the defaulted clause(s) may be inappropriate. 

5. FORMAL SEMANTICS 

TQuel statements manipulate information in a TDB composed of a sequence of 
historical states indexed by transaction time, with each historical state consisting 
of a sequence of snapshot slices indexed by valid time (i.e., the four-dimensional 
structure). The semantics of TQuel must specify how this relation is modified 
through an update command or is created through a retrieve command. The 
semantics of TQuel uses the snapshot relational database model as the underlying 
model of the TDB (Section 2 discussed one alternative: extending the semantics 
of the relational model to directly incorporate time). Several benefits accrue from 
using the snapshot relational model: The relational database model is simple and 
is based on the well-developed formalisms of set theory and predicate calculus; 
database models directly incorporating time are significantly more complex and 
are based on newer and less well-understood logics such as Montague, multiple 
transition, and temporal logics. Extensions involving aggregates and indetermi- 
nacy are easier to formulate in the standard model (these extensions will be 
discussed in a later paper). Finally, a TDB based on the relational model can be 
implemented directly on conventional relational DBMSs. Many of the same 
advantages resulted from a similar approach in the design of GEM, a query and 
update language for a (snapshot) semantic data model [94], and in the specifi- 
cation of the semantics of the snapshot query language SQL [23]. 

5.1 Embedding a Temporal Relation in a Snapshot Relation 

The snapshot relational database model is utilized as the underlying model 
of the TDB by embedding the four-dimensional temporal relation in a two- 
dimensional snapshot relation. The semantics of operations on four- 
dimensional temporal relations will be specified by stating their effect on the 
two-dimensional snapshot relations. In this way the semantics can be expressed 
in a traditional tuple calculus formalism. 

This embedding can be accomplished in several ways. The most straightforward 
is to append two attributes, each containing a single time value, to the user- 
defined attributes, thereby specifying the valid and transaction times for each 
tuple. Figure 11 shows a portion of the temporal relation in Figure 7 under this 
representation. In Figure 11 the tuples comprising a historical state at a particular 
transaction time are separated by horizontal lines, and the tuples comprising a 
snapshot slice at a particular valid time are separated by dots. The snapshot 
relation in Figure 11 contains a temporal relation consisting of five historical 
states (each associated with a unique transaction time), each consisting of 
snapshot slices (each associated with a unique valid time). The last historical 
state, with a transaction time value of 8-77, consists of four snapshot slices, 
totaling 8 tuples. That each transaction creates a copy of the most recent 
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Faculty (Name 
Name 
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Jane 
. . . 
Jane 
Tom 
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. . . 
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. . . 
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. . . 
Jane 
Tom 

Jane 
. . . 
Jane 
Tom 
. . . 
Jane 
Tom 
. . . 
Jane 
Tom 
Merrie 

ank): 
Rank 

Assistant 

Assistant 
. . . 

Assistant 
Associate 

Assistant 
. . . 

Assistant 
Assistant 

Assistant 
. . . 

Assistant 
Assistant 

. . . 
Associate 
Assistant 

Assistant 
. . . 

Assistant 
Assistant 

. . . 
Associate 
Assistant 

. . . 
Associate 
Assistant 
Assistant 

Valid time Transaction time 

9-71 

9-71 
. . . 
9-75 
9-75 

9-71 
. . . 
9-75 
9-75 

9-71 
. . . 
9-75 
9-75 

9-71 

a-75 
. . . 
6-75 
6-75 

10-75 
. . . 

10-75 
10-75 

12-76 
. . . 

12-76 
12-76 

. . . . . . 
12-76 12-76 
12-76 12-76 

9-71 
. . . 
9-75 
9-75 
. . . 

12-76 
12-76 

. . . 
9-77 
9-77 
9-77 

6-77 
. . . 
a-77 
a-77 
. . . 
6-77 
a-77 
. . . 
6-77 
8-77 
a-71 

Fig. 11. Embedding a temporal relation, version 1. 

historical state, mentioned in Section 2.4, can be seen clearly in this represen- 
tation. The full embedding of Figure 7 would contain eight historical states, since 
the temporal relation was the result of eight transactions. The last historical 
state would contain seven snapshot slices and a total of 30 tuples. The entire 
snapshot relation embedding the temporal relation in Figure 7 would contain 102 
tuples! The historical relations of Clifford and Warren are similar to this 
embedding [ 271. 

Another way to embed a temporal relation in a snapshot relation is to append 
two attributes, each containing two time values, denoting intervals of valid and 
transaction time. Temporal relations in this version were illustrated in Figures 7 
and 8. Such a representation was proposed by Ariav in his Temporally Oriented 
Data Management System [ 121. Still a third way is to add a total of five additional 
attributes: the time the tuple became valid (Z’,,, the effective-time-start), the 
time T,, was recorded in the database (T,, the registration-time-start), the time 
the tuple became invalid (T,, the effective-time-end), the time T, was recorded 
in the database (T,, the registration-time-end), and the time the entire tuple 
was removed from the database, as it was no longer correct (Td, the deletion 
time). Such a representation was proposed by Ben-Zvi in his Time Relational 
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Faculty (Name. Rank): 
Name 

Jane 
Jane 
Jane 
Merrie 
Merrie 
Tom 
Tom 
Tom 

R&k 

Assistant 
Associate 
Full 
Assistant 
Associate 
Associate 
Assistant 
Associate 

T, T, T, T* 

9-71 12-76 9-71 12-76 
12-76 11-80 12-76 lo-80 
11-80 - lo-80 - 

9-77 12-82 8-77 12-82 
12-82 - 12-82 - 
9-75 - 8-75 - 
9-75 12-80 10-75 11-80 

12-80 - 11-80 - 

Fig. 12. Embedding a temporal relation, version 3. 

Td 
- 
- 
- 
- 
- 

10-75 
- 
- 

Model [El. Figure 12 illustrates the canonical example in this representation. 
This example contains the same number of tuples as the representation illustrated 
in Figure 7; generally it will contain somewhat fewer tuples (if Tom leaves the 
department, one tuple would have to be added to Figure 7, whereas only Td of 
one existing tuple would have to be changed in Figure 12). The effective time in 
the time relation model (TRM) is equivalent to valid time in our model; the three 
registration and deletion times encode the same information as our two trans- 
action times. 

A fourth way to embed a temporal relation in a snapshot relation is to associate 
time values with the attributes themselves [35, 381. Within a tuple the value of 
an attribute is no longer restricted to be a single value, but may take on different 
values at different points in time. Figure 13 illustrates the same temporal relation 
in this representation, without considering the transaction time. In this repre- 
sentation the snapshot relation is no longer in first normal form. 

Finally, the most space efficient representation was proposed by Kimball in 
the DATA system; only the transactions are recorded [51]. Valid time was not 
considered, but may be added as another attribute (see Figure 14). Determining 
the tuples valid at a particular time as of another time involves replaying the 
transctions in order from the beginning (optimizations are of course possible). 
Updates, on the other hand, are easy to formalize and implement using this 
representation. 

We have chosen the second representation, with each tuple containing four 
additional time values, upon which to base our semantics. We assume that 
relations are coalesced, as defined in Section 3. The advantages of this represen- 
tation include ease of formal manipulation and the promise of rapidly prototyping 
a temporal DBMS on top of a conventional snapshot DBMS. We emphasize, 
however, that an equivalent semantics could be generated for the other represen- 
tations. The semantics of TQuel originates from the model of TDBs developed 
in Section 2, not from any particular representation. 

Since TQuel is a superset of Quel, its semantics will be based on the semantics 
for Quel. We first review how Quel’s semantics has been specified, then show 
how this treatment can be applied to TQuel. 

5.2 Quel Semantics 

Although no complete formal semantics of Quel has been specified, Ullman 
has defined a tuple relational calculus semantics for Quel statements without 
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Faculty (Name, Rank): 
Name Rank 

Jane [9-71, co) Assistant [9-71, 12-76) 
Associate [12-76, 11-80) 
Full [ll-80, m) 

Merrie [9-77, =J) Assistant [9-77, 12-82) 
Associate [12-82, QI) 

Tom [9-75, m) Assistant [9-75, 12-80) 
Associate [12-80, a) 

Fig. 13. Embedding a temporal relation, version 4. 

Rank): 
Transaction 

time 

~ 9-71 Assistant 
8-75 Associate 

10-75 Assistant 
12-76 Associate 

~ 8-77 Assistant 
lo-80 Full 
11-80 Associate 
12-82 Associate 

Fig. 14. Embedding a temporal relation, version 5. 

Jane 
Tom 
Tom 
Jane 
Merrie 
Jane 
Tom 
Merrie 

Name 
Valid 
time 

9-71 
9-75 
9-75 

12-76 
9-77 

11-80 
12-80 
12-82 

aggregates [89], and Klug has treated aggregates in the more general case [53]. 
The tuple calculus semantics for TQuel associates a tuple calculus statement 
with each TQuel retrieve statement, ensuring that each construct has a clear and 
unambiguous meaning. 

Tuple relational calculus statements are of the form 

(t”’ I WI) 

where the variable t denotes a tuple of arity i, and t)(t) is a first-order predicate 
calculus expression containing only one free tuple variable t. t)(t) defines the 
tuples contained in the relation specified by the Quel statement. The tuple 
calculus statement for the skeletal Quel statement 

range of tl is RI 
. . . 
range of tk is Rk 
retrieve (ti, .Dj,. . . . , ti,sDi,) 

where I) 

is 

which states that each ti is in Rip that each result tuple u is composed of r 
particular components, that the mth attribute of u is equal to the jmth attribute 
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(having an attribute name of Dj,,,) of the tuple variable ti,,,, and that the condition 
+’ (+ trivially modified for attribute names and Quel syntax conventions) holds 
for U. The first line corresponds to the relevant range statements, the second to 
the target list, and the third to the where clause. The skeletal Quel statement is 
not quite correct syntactically, since attribute names for the derived relation 
must be provided in the target list, and attribute values may be expressions. We 
ignore such details for the remainder of this paper. 

The semantics of a query on a TDB will be specified by providing a tuple 
calculus statement that denotes a snapshot relation embedding a temporal 
relation that is the result of the query. The tuple calculus statement for a TQuel 
retrieve statement is very similar to that of a Quel retrieve statement; additional 
components corresponding to the valid, when, and as-of clauses are also present. 
Although the expressions appearing in all three clauses are similar syntactically, 
having their origins in path expressions, their semantics are quite different. 

As an alternative the semantics could have been specified by showing how any 
TQuel query can be transformed into an equivalent relational algebra expression, 
for which a semantics has been defined [53]. This method has been used to 
express the semantics of SQL statements [23]. The tuple calculus was used 
instead for several reasons. The first is pragmatic: since TQuel is a minimal 
extension of Quel, its semantics should also be a minimal extension of Quel’s 
semantics, which has been partially specified in tuple calculus, as discussed 
above. The second reason is that the tuple calculus expressions resulting from 
the transformation can themselves be easily transformed into relational algebra 
expressions, so no generality has been lost. Third, the tuple calculus statements 
are closer in form to statements in the query language, making the semantics 
more comprehensible. Finally, if an algebra is desired, it should probably be a 
temporal algebra. There is no generally accepted temporal algebra; proposals 
include [26], [35], and [62]. 

The next subsection will provide the semantics of e-expressions as functions 
on time values or pairs of time values, ultimately yielding a time value. The 
following subsection examines the steps necessary to transform a temporal 
predicate into a conventional predicate for the when clause; the next subsection 
will do the same for the as-of clause. Section 5.6 uses these results to provide 
a tuple calculus semantics for the retrieve statement. The final subsections con- 
sider the modification statements and demonstrate a reduction to the Quel 
semantics. 

5.3 The Valid Clause 
As discussed previously the valid clause specifies the time during which the 
derived tuple is valid. For derived intervals the valid-from-to variant is used; for 
derived events, the valid-at variant is used. In both cases an e-expression is used 
to specify a time value. The time value returned by the e-expression will in fact 
be one of the time values contained in one of the tuples associated with the 
variables involved in that expression. Hence the e-expression is not actually 
deriving a new time value from the given time values; rather, it is selecting one 
of the given time values. Similarly, an i-expression selects two time values from 
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those given. Of course, the selection criteria can, and indeed usually do, depend 
on the relative temporal ordering of the original events. 

Several researchers have proposed a formal semantics for particular variations 
on path expressions, involving denotational and axiomatic definitions [16, 453, 
or transformations into Petri nets [54], parallel programs [lo, 441, or even VLSI 
circuits [7]. Since these semantics express the active nature of path expressions, 
that of constraining the occurrence of the relevant events, they are not applicable 
in the context of TQuel. The approach taken here associates each temporal 
constructor with a function on one or two intervals, returning an interval. Tuple 
variables are replaced with their associated valid time values. The result of an 
e-expression will hence be one of these time values. Individual time values will 
be represented as integers (a mapping from times and dates to integers is 
assumed); intervals will be represented as ordered pairs of integers. Anderson 
has developed a model of time at the conceptual level that is slightly more 
restrictive, yet has several nice properties [9]. 

We define the temporal constructors after first defining a few auxiliary func- 
tions on integers (First, Last) or tuple variables (event, interual): 

pl 

First(a, /3) = 
a if Before(a, /3) 
P otherwise 

Lr&(LY, p) = P if Before(a, P) 
(Y otherwise 

event(t) = (t&, td) 

interval(t) = (tr,,, t,) 

Wmf((a, P 1) = (a, a) 
edof((a, P)) = (A B> 

overhp((a, 8), (-~,a)) = bk.h, Y), First@, 6)) 
extend((a, P), (-~,a)) = (Firstb, Y),~t(P, 6)) 

A few comments are in order. First, if the e-expression is a correct one, that is, 
if it results in an event, then the denotation of the expression will be defined to 
be the time value appearing as the first element of the ordered pair resulting 
from the application of these functions on the underlying tuples. The constraints 
assure us that the first element will be identical to the second element. The 
reader should verify that these definitions do indeed result in the correct time 
value. Second, as mentioned in Section 4.3, the Before predicate is the “5” 
predicate on integer time values. However, we wish to retain the Before predicate, 
because its semantics will be altered when indeterminacy is considered (in a later 
paper). Third, the translation is syntax directed: The semantic functions are in 
correspondence with the productions of the grammar (given in the Appendix) for 
e-expressions [23]. And, finally, the definition of the overlap function assumes 
that the intervals do indeed overlap; if this constraint is satisfied, then the 
ordered pairs ( CY, 0) generated by these functions will always represent intervals, 
that is, the ordered pairs will satisfy Before(a, 8). Invalid e-expressions will be 
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handled with an additional clause in the tuple calculus statement presented in 
Section 5.6. 

As an example, the e-expression 

begin of (a overlap b) 

is transformed into 

beginof(ouerlap(interual(a), inter&(b))) 

(We assume that the tuple variables a and b are associated with interval relations.) 
Applying the functions defined above results in the following: 

+ begimfbuerlap((a+,, ato), (bf,,, h,))) 
+ begimf((htb~m,, b~,d, Firstbm, bd)) 
+ (ht(ati,, Tim), ht(ati,, b-d) 
Hence the denotation of this expression is Last(ar,,, bf,.,,,). The use of this time 
value will be discussed shortly. 

5.4 The When Clause -3 

The when clause is the temporal analogue of the where clause. The temporal 
predicate in the when clause determines whether the tuples may participate in 
the derivation by examining their relative order. Expressing this formally involves 
generating a conventional predicate on the temporal attributes of the tuples in 
the underlying relations. This predicate is generated in three steps: First, the 
tuple variables and the temporal constructors are replaced by the functions 
defined in the previous subsection. Second, the and, or, and not operators are 
replaced by the logical predicates. Finally, the temporal predicate operators 
are replaced by analogous predicates on ordered pairs of integers as follows: 

precede((a, 8), (7, 6)) = Before(B, 7) 
ouerlrrp((a, 8), (7, 6)) = Before(a, 6) A Befmdr, 8) 

ew.W(a, B), (7, 6)) = Before& Y) A Before(r, a) A Before@, 6) 
A Before(6, /3) 

The result is a conventional predicate on the valid times of the tuple variables 
appearing in the when clause. 

As an example, applying the first step to the temporal predicate 

(begin of (a overlap b)) precede c or (c precede a) 

results in 

+ (begimf (ouerhp(interual(a), interuaZ(b))) precede interval(c)) 
or (interval(c) precede interval(a)) 

+ (begimf (ouerlap((ati,, ati), (bti,, ho))) w-de (qmm, c,)) 
or ((cfmm, cto > precede (qmm, aa )I 

+ (begimf ((Last(af,,, btid, J’iMam, b,))) precede (cti,, cm)) 
or ((cfmm, cb) w--de (afirn, a,)) 

+ ((ht(atim, b.d, htbfmm, &A) pr=ede (ctirn, c,)) 
or ((cfmm, ct, ) precede (a@,,,, a, ) 1. 
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The second step results in 

((ht(afmm, b.d, ~t(a~mm, bf,,)) precede (cfmm, c,)) 
v ((qmn, cm) precede (afmm, a,)), 

and third step results in 

5.5 The As-Of Clause 

The temporal constructors appearing in the as-of clause can be replaced with 
their functions on ordered pairs of transaction identifiers, and the temporal 
constants (strings) can be replaced by their corresponding ordered pairs of 
transaction identifiers. The result can be evaluated at “compile time,” resulting 
in a single transaction identifier, for the aa of variant, and two transaction 
identifiers in the as of through variant. For convenience, these times will be 
converted into an interval by interpreting through as extend. 

as of begin of “1984” through “October 1984” 

will, by using the functions defined in Section 5.3, be converted to the following: 

extemf(beginof( (1009, 1021)), (1018,1019)) 
+ extend( (1009,1009), (1018,1019)) 
+ (First( (1009, 1018)), Last( (1009, 1019))) 
+ (1009,1019) 

5.6 The TQuel Retrieve Statement 

A formal semantics for the TQuel retrieve statement can now be specified. Let 
Cp, be the function corresponding to the e-expression c as generated in the process 
discussed in Section 5.3. Let I’, be the predicate corresponding to the temporal 
predicate 7 as generated by the process discussed in Section 5.4. Note that 0, 
and I’, will contain only the functions First and Last and the predicates Before, 
A, V, 1; the rest of the functions, and @m entirely (where (Y appears in an as-of 
clause), can be evaluated at “compile time.” Of course, the defaults provide the 
appropriate expressions when a clause is not present in the query. Given the 
query 

range of tl is RI 
. . . 
range of tk is Rk 
retrieve (ti,.Dji, . . . , t&aDi,) 

valid from Y to x 
where rC, 
when 7 
as of a! through j3 
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the tuple calculus statement has the following form: 

b (r+4) 1 (31) * - - (3t/J(&(t1) A * - - A R&k) 
A u[l] = &[jl] A . . . A uIr] = &,[j,] 

A u[r + l] = a, A u[r + 21 = +x A Before(u[r + 11, u[r + 21) 
A u[r + 31 = current transaction id A u[r + 41 = 00 
A V 
A I-‘, 
A (Vl)(l s 1 I k.(Before(+,, tl[stop]) A Before(tJstart], Cps))) 
11 

The first line states that each tuple variable ranges over the correct relation, and 
is from the Quel semantics. The resulting tuple is of arity r + 4 and consists of 
r explicit attributes and four implicit attributes (from, to, start, and stop). The 
second line, also from the Quel semantics, states the origin of the values in the 
explicit attributes of the derived relation. The third line originates in the valid 
clause and specifies the values of the from and to valid times. Notice that these 
times must obey the specified ordering. The fourth line specifies the values of 
the start and stop transaction times. “current transaction id” is replaced with the 
integer corresponding to the current transaction; this integer must be monoton- 
ically increasing. The transaction time is calculated by the concurrency control 
mechanism. “a? is replaced with a distinguished integer, say, 0, which must not 
correspond to a valid transaction. The next line originates in the where clause 
and is from the Quel semantics. The fifth line is the predicate from the when 
clause. The last line originates in the as-of clause and states that the tuple 
associated with each tuple variable must have a transaction interval that overlaps 
the interval specified in the as-of clause (a, and $ will be constant time values, 
i.e., specific integers). 

Note that Cp,, Gp,, I+?‘, and r, are functions over the from, to, and explicit 
attributes of a subset of the tuple variables. If t is a tuple variable associated 
with an interval relation and appears in an e-expression or temporal predicate, 
then the from and to time values are passed to the relevant function; if t is 
associated with an event relation, then only the at time value is used. The 
superscript (r + 4) indicates that the tuple u has r explicit attributes and 
4 implicit attributes, the starting and stopping time values for the valid and 
transaction intervals; events will have only 3 implicit attributes. The entire 
transformation from a TQuel query to a tuple calculus expression may be 
considered to be syntax directed, as discussed briefly in Section 5.3. 

The resulting relation is not required by this semantics to be coalesced, 
although a coalesced result relation is one of the acceptable solutions. Minor 
changes to the semantics are necessary when changing the type of the relation, 
for example, deriving a historical relation from a snapshot relation. This is a 
simple case of schema evolution, which is discussed elsewhere [63]. 

We complete the discussion of the semantics of the retrieve statement with 
two examples-one realistic, but somewhat simple; the other contrived, yet more 
comprehensive. The first is the semantics of the query shown in Example 8. We 
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assume this retrieve statement was executed on January 1, 1985, yielding a 
transaction identifier of 12345. 

lu (l+*) ] (Ilfl)(3f2)(3a)(Faculty(fl) A Faculty(f2) A Associates(a) 
A u[l] = fl[l] 
A u[2] = f1[3] A u[3] = f2[3] A Before(u[2], u[3]) 
A u[4] = 12345 A u[5] = 0 
A fl[l] = f2[1] A f1[2] = “Assistant” A f2[2] = “Full” 
A Before(f1[3], a[3]) A Before(a[2], f1[4]) A Before(f2[3], a[3]) 

A Before(a[2], f2[4]) 
A Before(1020, f1[6]) A (Before(f1[5]), 1020) 

A Before(1020, f2[6]) A (Before(f2[5], 1020) 
A Before(1020, a[5]) A (Before(a[4], 1020) 

)I 

The second example, which includes several temporal expressions used as 
examples in previous sections, is given below. 

Example 12. A Contrived Example 
range of a is A 
range of b is B 
range of c is C 
retrieve (a.M, b.0, c.Q) 

valid from begin of (a overlap b) to end of (a overlap b) 
where a.N = b.P and b.P = c.R 
when (begin of (a overlap b)) precede c or (c precede a) 
as of begin of “1984” through “October 1984” 

This query references relations containing the following attributes: 

A [M N (from to start stop)] 
B [0 P (from to start stop)] 
C [Q R (from to start stop)] 

The implicit temporal attributes are in parentheses (A, B, and C are all interval 
relations). The query then has the following semantics (note that the current 
transaction identifier has been incremented by one): 

b (3+4) ] (Ba)(3b)(S)(A(a) A B(b) A C(c) 
A u[l] = a[l] A u[2] = b[l] A u[3] = c[l] 
A u[4] = Last(a[3], b[3]) A u[5] = First(a[4], b[4]) A Before(u[4], u[5]) 
A u[6] = 12346 A u[7] = 0 
Aa[2]=b[2]Ab[2]=c[2] 
A UWore(h~(aM, bPl), cL31) V JWore(cWl, at31)) 
A Before(1009, a[6]) A Before(a[5], 1019) 

A Before(1009, b[6]) A Before(b[5], 1019) 
A Before(1009, c[6]) A Before(c[5], 1019) 

11 
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The correspondence between the Quel and TQuel tuple calculus semantics is 
striking. The tuple calculus statement for the Quel retrieve statement consists of 
a component associated with the tuple variables appearing in the query (the first 
line), a component associated with the target list (the second line), and a 
component associated with the where clause (the fifth line). The tuple calculus 
statement for the TQuel retrieve statement adds four additional lines, one each 
associated with the valid clause (the third line), the when clause (the sixth line), 
and the as-of clause (the last line), and one specifying the transaction time for 
the derived tuples (the fourth line). The additional lines in the tuple calculus 
statement are also similar in form to those associated with the analogous Quel 
statements: The where, when, and as-of clauses all generate predicates, and the 
target list and valid clause generate equalities. 

5.7 Modification Statements 

In specifying the semantics of the TQuel modification statements, we will again 
proceed by examining the tuple calculus semantics of the analogous Quel state- 
ments. These have never appeared in the literature; fortunately, they are easy to 
derive (such is not the case for the other major snapshot relational query language 
SQL [23]). The skeletal Quel append statement, 

append to R ( til Dj,, . . . , tirDjr) 
where tc, 

has the following tuple calculus semantics: 

R’ = R u {u”’ I (3h) - - - (%)(R~(td A - -. A R&d 
A (Vl)(I. I 1 5 F.24[1!] = t,[jl]) 

A Ir/‘)l 

The set being appended is identical to that for the Quel retrieve statement (see 
Section 5.2). Note that the set being appended may contain tuples already in R. 
We assume that the integrity constraints, particularly those relating to keys, 
have already been checked and that the resulting relation R’ will satisfy these 
constraints. 

The semantics for the skeletal TQuel append statement 

range of tl is RI 
. . . 
range of tk is & 
append to R (ti, Bj,, . . . , ti,Bj,) 

valid from u to x 
where I) 
when T 

is somewhat complicated, because the set to be unioned with the existing relation 
should only contain tuples that are not valid in the existing relation. We cannot 
depend on the union working correctly when the tuples being appended are 
identical to tuples in the current historical relation. For example, if on 9-85 we 
execute: 
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Example 13. Merrie actually joined the department a month earlier. 

append to Faculty (Name = “Merrie”, Rank = “Assistant”) 
valid from “8-77” to “12-82” 

then we will have to append the following tuple: 

Valid time Transaction time 
Name Rank (from) w (start) (stop) 

Merrie Assistant 8-77 9-77 9-85 00 

Note that the to time is 9-77, since a tuple already exists in the relation valid 
from 9-77 to 12-82 (cf., Figure 7). 

We now give the tuple calculus statement for the skeletal TQuel append 
statement. As before, we assume that the integrity constraints have been checked 
previously. 

R’ = R U (u(‘+~) 1 (31) - - - (%)(Rl(tl) A - - * A R&J 
A (Vi!)(l I 15 r.U[Z] = ti,[ jj]) 

A u[r + 3]= current transaction id A u[r + 4]= OQ 
Ati’ 
A r, 
A (VZ)(l 5 1~ k.ti[stop] = m) 
A ((3s)(R(s) A (W)(l 5 1 I r.s[Z] = u[Z]) A (CT V C; V Cf V C’S) 

V (1 (3s)(R(s) A (V1)(1 I IS r.s[l] = u[l]) A u[r + l] = ap, 
A u[r + 2]= Cp,)) 

11 

where 

CY = (Before(s[r + 11, 0,) A Before(@“, s[r + 21) A Before(s[r + 21, ax) 

A u[r + l] = s[r + 21 A u[r + 2]= @),) 

C% = (Before(&, s[r + 11) A Before(s[r + 21, ax) 

A ((u[r + l] = Cp, A u[r+ 2]= s[r + 11) V (u[r + l] = s[r + 21 A u[r + 2]= a),))) 

Cg = (Before(+“, s[r + 11) A Before(s[r + 11, @‘,) A Before($, s[r + 21) 

A u[r + l] = au A u[r + 2]= s[r + 11) 

A False) 

Again, the set being appended is similar to the TQuel retrieve statement (see the 
previous section), with two major changes. The first is that the as-of clause is 
assumed to be as of “now,” since the statement should only modify the current 
historical relation (c.f., the sixth line); recall that an explicit as-of clause is not 
permitted in any modification statement. The second change is the rather 
complicated computation of the valid times for the tuples to be added, appearing 
as the last three lines of the tuple calculus statement, which replace the third 
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ct C$ c1 cs 
Existing s[r + 11 s[r + 21 s[r + l] s[r + 21 s[r + 11 s[r + 21 s[r + l] s[r + 21 

tuple 
‘---A !--! I i I I 

Tuple to cp. t ax a%. io, *, t 9, 9. 8, 
be added I I I : I I : I H . . . . . . . . . . . . . . . . . . . . . . . , , . . . . , . . . . . . 

Actual tuple(s) . . 

added i-i .i-i i-i k-i (none added) 

Fig. 15. Calculating the valid time in an append statement. 

line in the tuple calculus statement for the retrieve statement. The four clauses 
cy,..., CZ in the seventh line handle the various overlap situations between the 
tuples to be added and the tuples identical in the explicit attributes that already 
exist during this valid interval. In particular, Ci states that, if the tuple already 
exists in R over the entire valid time, there is no need to add it. The last line 
states that the valid times are as specified in the valid clause if no such tuples 
exist during this valid interval. Figure 15 shows the overlap handled by each 
clause, and the resulting valid interval(s). Note that one, two, or no tuples are 
added, depending on the valid clause specified and the tuples already present in 
the relation. 

The semantics of the delete statement shows a similar increase in complexity. 
The Quel statement 

range of tI is R, 
. . . 
range of tk is Rk 
range of s is R 
delete s 

where I) 

has the following tuple calculus semantics: 

R’ = (d’) 1 (3,) a*- (%k)(%)(R(S) A RI(h) /\ -** A R&k) 
A 3’)) 

We first look at an example of the TQuel delete statement before delving into 
its semantics. 

Example 14. Jane left the department in March 1981. 
range of f is Faculty 
delete f 

where f.Name = “Jane” 
valid from “3-81” 
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This statement will modify the transaction stop time of the last tuple in 
Figure 7 and will append an additional tuple (we give both here): 

Valid time Transaction time 
Name Rank (from) (to) (start) (stop) 

Jane Full 11-80 lo-80 9-85 
Jane Full 11-80 311 9-85 m 

Hence the delete statement will probably change some transaction stop times 
from 00 to now, if the where and when clauses are true at some point, and will 
probably also add tuples with a transaction start time of now, if any of the tuples 
to be deleted do not completely cover an existing tuple. For the skeleton TQuel 
delete statement 

range of tI is RI 
. . . 
range of tk is Rk 
range of s is R 
delete s 

valid from u to x 
where # 
when T 

the tuple calculus statement is 

R’ = (LJ(‘+~) 1 (ihI) - * - (i!tk)(%)(Rl(tl) r\ * - - /\ R&k) 
A (VZ)(l 5 1 s k.t&top] = 03) 
A (Vl)(l 5 15 r.u[l] = s[l]) A u[r + l] = s[r + l] 

A u[r + 21 = s[r + 21 A u[r + 31 = s[r + 31 
A ((iAffected A u[r + 41 = s[r + 41) 

V (Affected A u[r + 41 = current transaction id))) 
U (u('+~) 1 (3tl) - - * (iitk)(3S)(&(tl) A * - - A R&k) 

A (Vl)(l s 1 s k.tJstop] = m) 
A (VZ)(l 5 I c r.u[l] = s[Z]) 
A Affected A (Cf V C$ V C$ V C$) 

A u[r f 31 = current transaction id A u[r + 41 = 00)) 

where 

Affected=(R(s)AJ/‘AI’,As[r+4]=mABefore(s[r+1],+X) 

A Before(+v, s[r + 21)) 

C!f = (Before(s[r + 11, @“) A Before(+v, s[r + 21) A Before(s[r + 21, @J 

Au[r+l]=s[r+l]Au[r+2]=%) 

C$ = (Before(@,, s[r + 11) A Before(s[r + 21, @,) 

A False) 
Ct = (Before(@,, s[r -I- 11) A Before(s[r + 11, @X) A Before(+,, s[r + 21) 

Au[r+1]=@XAu[r+2]=s[r+2]) 
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Cf = (Before(s[r + 11, %) A Before(Gx, s[r + 21) 

A((u[r+l]=s[r+l]Au[r+2]=cP,) 

V (u[r + 11 = ax A u[r + 2]= s[r + 21)) 

Both sets are similar in the first two lines, placing conditions on the underlying 
tuple variables. The only difference is in the manner in which the implicit time 
attributes are determined. The first set contains all tuples in past historical 
relations of R and all tuples in the current historical relation of R that are not 
Affected, that is, that do not satisfy the predicate in the where or when clauses 
or whose valid intervals do not overlap with the specified valid interval. These 
tuples remain unchanged by the delete statement. This statement also deals with 
the Affected tuples, effectively removing them by setting their stop time to current 
transaction id. The stop time of these tuples was previously 00; no other attributes, 
implicit or explicit, are modified. The second set deals with the existing tuples 
that only partially should be deleted, in a manner similar to that employed in 
the semantics of the append statement. Those portions that should not have 
been deleted are added back in the second set. The clauses Ci, . . . , Cf calculate 
the valid times of the tuples to be added back. In the situation covered by C$, 
the tuple to be deleted starts after the existing tuple starts, but still overlaps the 
existing tuple (see Figure 15). The existing tuple is broken into two intervals, the 
first, which remains (i.e., is added back by the second step), and the second, 
which is removed (i.e., is not added back by the second set). This is the situation 
illustrated in the example above where Jane leaves the department. In the 
situation covered by C$, the tuple to be deleted overlaps the existing tuple 
completely, so the existing tuple is deleted (i.e., no tuple is added back). C$ is 
similar to Cf. In the situation covered by C2, the existing tuple is partitioned 
into three intervals, and only the middle one is deleted (i.e., the left and right 
remaining tuples are added back). In all cases the tuples added back have a from 
time of now and a to time of 00. 

The semantics of the replace statement is even more complex. The replace 
statement has a semantics similar to that of a delete statement followed by an 
append statement. It is not equivalent to a delete followed by an append when 
the expressions in the target list mention the primary tuple variable. Hence the 
semantics of the replace statement must be considered separately. The skeletal 
Quel replace statement 

range of tl is RI 
. . . 
range of tk is Rk 
range of s is R 
replace S(tilBjl, . . . , ti,Bj,) 

where I) 

has the following tuple calculus semantics: 

R’ = (d’) 1 (%)(3tI) . . - (%)(R(s) A Rl(tI) A . -. AR/&k) 

A ((u=sA l#‘) 
V ((Vt!)(l I II r.u[l] = ti,[jl) A 9’)) 

11 
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Note that the second line is very similar to the tuple calculus semantics of the 
Quel delete statement, and that the third line is identical to the semantics of the 
Quel append statement. The same strategy can be used in TQuel. The tuple 
calculus semantics of the skeleton TQuel replace statement 

range of tl is RI 
. . . 
range of tk is Rk 
range of s is R 
replace S (ti, Alj,, . . . , ti,Bj,) 

valid from u to x 
where rc/ 
when T 

is the following: 

R’ = j~(‘+~)) (3t,) -. . (3tJ(3s)(Rl(tl) A . . - R&) 
A (Vl)(l % 15 kA&op] = 00) 
A (VI)(l 5 1 I r.u[l] = s[Z]) A u[r + l] = s[r + l] A u[r + 21 = s[r + 21 

A u[r + 31 = s[r + 31 
A (1Affected A u[r + 41 = s[r + 41) 

V (Affected A u[r + 41 = current trunsaction id))) 
u (u(‘+4) 1 (31) . . . (3tk)(3s)(Rl(tJ A . . . A R&k) 

A (Vl)(l s 1 I k.tJstop] = 00) 
A (Vl)(l zz 1 5 r.u[l] = s[l]) 
A Affected A CC< V C$ V C$ V Cqd) A u[r + 31 = current transaction id 

A u[r + 41 = m)) 
U (u(‘+~) 1 (3t,) . -. (3t,J(Rl(tJ A . -. A R,&) 

A (Vl)(l 5 15 k.tJstop] = m) 
A (VI)(l s 1% r.u[l] = ti,[jl]) A u[r + 31 = current trunsaction id 

A u[r + 41 = w 
/\+‘/\I’, 
A ((Ss)(R(s) A (Vl(1 I 1 I r).s[l] = u[l]) A (CY V C% V C$ V Cq)) 

V (1(3s)(R(s) A (Vl)(l 5 15 r.s[l] = u[l])) A u[r + l] = +” 
A u[r + 21 = ax)) 

5.8 Reduction to the Quel Semantics 

If a TQuel statement does not contain a valid, when, or as-of clause, then it looks 
identical to the analogous standard Quel retrieve statement; thus it should have 
an identical semantics. However, an Ingres database is not temporal; it is a 
snapshot database. Hence the tuples participating in a Quel statement are in the 
snapshot relation that is the result of the last transaction performed on the 
database (i.e., are current) and are valid at the time the statement is executed. 
Note that the statement must not refer to any tuple variables associated with 
event relations. The tuples in such relations are valid for only an instant and 
hence would not ever appear in a snapshot database (this is discussed further in 
Section 2.3). 
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(Figure 7) TDB 
slice at 7 

+ snapshot DB (Figure 18) 

W&e1 
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slice at 7 v 

wRs = RB (Figure 17) 

(Figure 6) 

Fig. 16. Outline of the reduction proof. 

We will show that the TQuel semantics just presented reduces to the standard 
Quel semantics when applied to a snapshot datdmse slice (all current tuples valid 
at a particular time) of the TDB. A snapshot database slice at time 7 is formed 
by first eliminating the event relations (since snapshot relations cannot represent 
events at all), eliminating all tuples with a start time greater than 7 and with a 
stop time less than T, eliminating all tuples not valid at 7, and finally removing 
the implicit time attributes. 

The reduction proof will be illustrated on a simple retrieve statement; the 
interactions are illustrated in Figure 16. Assume that Q is a syntactically correct 
Quel retrieve statement. (Example 1 is such a statement). Then Q is also a 
syntactically correct TQuel statement. Q may be applied to a TDB (e.g., the one 
given in Figure 7) at time 7 to define a derived temporal relation RT (the one in 
Figure 8). In processing the query Q, the defaults for the valid, when, and as-of 
clauses discussed in Section 4.6 will be applied. A snapshot database slice at time 
7 of this derived temporal relation results in a conventional relation, R,+ For 
example, assume that the query Q is executed on January 1,1964, on the relation 
in Figure 7. The database slice at 7 = January 1, 1964, of the Associates relation 
of Figure 8 is shown in Figure 17. Now, the query Q may also be applied to a 
snapshot database slice at the same time 7 of the entire TDB (shown in 
Figure 18) to arrive at another snapshot relation, Rb. To show that the TQuel 
semantics reduces to the standard Quel semantics when applied to a snapshot 
database slice, we must show the following: 

Rs = Rb 

The reduction implies that Figures 6 and 17 are identical. 
The proof of this equality revolves around the defaults for the valid, when, and 

as-of clauses specified in Section 4.6. The defaults effectively take a database 
slice at T = new, which is the time the query is executed. The default when and 
valid clauses state that all the underlying tuples are valid for the entire interval 
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Associates (Name): 
Name 
Merrie 
Tom 

Fig. 17. Slice of the associates relation at January 1,1984. 

Faculty (Name, Rank): 

Fig. 18. A database slice at January 1,1984. 
Merrie 

I 
Associate 

Tom Associate 

the resulting tuple was valid. The resulting tuples are guaranteed to be current 
by the tuple calculus semantics of the retrieve statement. This intuition supports 
the easily shown equality (actually, identity) of the tuple calculus semantics for 
Rs and R,&. 

A similar reduction can be argued concerning the modification statements, as 
their defaults were specifically chosen to ensure their reducibility to the standard 
Quel semantics. Figure 16 still applies if Q is interpreted to denote a valid Quel 
modification statement. The modification statement Q executed at time T will 
cause a new historical state to be appended to one of the temporal relations (we 
assume that Before(sturt, 7) for all historical states in the database). A snapshot 
slice at T on this historical state will result in the same snapshot state as if the 
modification statement, with its Quel semantics, had been executed on a snapshot 
slice of the original temporal database. 

The benefit of these reductions is that the intuition and understanding gained 
by using Quel on a snapshot database applies to TQuel on a TDB. A second 
benefit is that it forces the definition of the defaults to support this intuition. 

5.9 The Nondeletion Property 

In Section 2 we argued that rollback and temporal relations were append only: 
An update to such a relation would result in a new snapshot state or historical 
state, respectively, being appended to the existing relation. As there are several 
means of embedding a four-dimensional temporal relation (see Section 5.1) and 
several ways to define the semantics of the modification statements given a 
particular embedding, it is not necessary for the semantics to be append only, as 
long as the model remains append only. However, the semantics presented above 
is append only, with one qualification: The transaction stop time of some existing 
tuples is changed from 00 to now by a delete or replace statement. This distinction 
is not important in a practical sense, in that a transition from 00 to now can be 
effected by a write-once storage device such as an optical disk drive through the 
considered selection of the encoding for 00 (an encoding of all zeros is sufficient). 
However, to be precise, we will term a semantics with this qualification a 
nondeletion semantics, in contrast to an append-only semantics. 

It is easy to prove that the semantics just presented has the nondeletion 
property. The append statement is truly append only, so it trivially has this 
property. In the deletion semantics, the first set is equivalent to the original 
relation with the exception of the Affected tuples, of which only the stop attribute 
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(the r + 4 attribute) is changed to now. An examination of the definition of 
Affected reveals that the previous value of this attribute was CQ. Hence the deletion 
semantics has the nondeletion property! The same argument applies to the 
replace statement. 

6. IMPLEMENTATION 

The formulation of the TQuel semantics as tuple relational calculus expressions 
offers a straightforward means to implement a temporal DBMS. A TQuel query 
(or update statement) can be mapped into a tuple calculus statement, which may 
then be mapped into a Quel statement on the snapshot relations that embed the 
temporal relations. The TQuel query in Example 8 would be mapped into the 
equivalent Quel query 

range of fl is Faculty 
range of f2 is Faculty 
range of a is Associates 
retrieve into Starsofl984 (Name = fl.Name, validfrom = fl.validfrom, 

validto = f2.validfrom, transactionstart = 123, transactionstop = 0) 
where fl.Name = f2.Name and fl.Rank = “Assistant” and f2.Rank = “Full” 

and f l.validfrom I a.validto and a.validfrom I fl.validto 
and f2.validfrom I a.validto and a.validfrom 5 f2.validto 
and 1020 I f Ltransactionstop and f l.transactionstart I 1020 

and 1020 I f2.transactionstop and f2.transactionstart I 1020 
and 1020 5 a.transactionstop and a.transactionstart I 1020 

using the formal semantics as given in Section 5.6, on the following snapshot 
schemas: 

Faculty (Name, Rank, validfrom, validto, transactionstart, transactionstop) 
Associates (Name, validfrom, validto, transactionstart, transactionstop) 

This conversion can always be done if two functions, First and Last, both taking 
two integers as arguments, are added to Quel (Example 12 would require the use 
of these functions). It should be emphasized that the conversion from TQuel to 
Quel is an entirely separate process from the reduction to the Quel semantics 
discussed in Section 5.8. 

We have extended the Ingres DBMS [81] along somewhat different lines [3]. 
Our prototype adopts the scheme of augmenting each tuple with two transaction 
time attributes for a rollback and a temporal relation, and one or two valid time 
attributes for a historical and temporal relation depending on whether the relation 
models events or intervals. The parser was modified to accept TQuel statements 
and generate an extended syntax tree with subtrees for valid, when, and as-of 
clauses. Some of the query evaluation modules were changed to handle the newly 
defined node types and implicit time attributes. Functions to handle temporal 
operators start of, end of, precede, overlap, extend, and equal were added 
in the one-variable query processing interpreter. The system relation was modi- 
fied to support various combinations of implicit time attributes, which depend 
on the type of a relation as specified by its create statement. A time attribute is 
represented as a 32-bit integer with a resolution of 1 second. It has a distinct 
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type, so that imput and output can be done in human-readable form by automat- 
ically converting to and from the internal representation. Various formats of 
date and time are accepted for input, and resolutions ranging from a second to a 
year are selectable for output. 

The prototype supports all the augmented TQuel statements: retrieve, 
append, delete, replace, and create. The valid, when, and as-of clauses are 
fully supported, though default values for these clauses are not yet supplied. The 
copy statement was modified to perform batch input and output of relations 
having time attributes. It also supports all four types of databases: snapshot, 
rollback, historical, and temporal. Coalescing, aggregates, and schema evolution 
are not yet supported. 

For a rollback relation, an append operation inserts a tuple with the 
transaction-start and transaction-stop attributes set to the current time 
and “forever,” respectively. A delete operation on a tuple simply changes the 
transaction-stop attribute to the current time. A replace operation first executes 
a delete operation, then inserts a new version with the transaction-start attribute 
set to the current time. A historical relation follows similar steps for append, 
delete, and replace operations with the valid-from and valid-to attributes as the 
counterparts of transaction-start and transaction-stop attributes. 

For a temporal relation, an append operation inserts a tuple with the transac- 
tion start of the current time, and transaction stop of “forever.” Attributes valid 
from and valid to are set as specified by the valid clause, or defaulted if it is 
absent. A delete operation on a tuple sets the transaction-stop attribute to the 
current time indicating that the tuple was virtually deleted from the relation. 
Next, a new version with the updated valid-to attribute is inserted indicating 
that the version has been valid until that time. A replace operation first executes 
a delete operation as above, then appends a new version marked with appropriate 
time attributes. Therefore, each replace operation in a temporal relation inserts 
two new versions. This scheme has a high overhead in terms of space, but 
completely captures the history of retroactive and proactive changes. In addition, 
all modification operations for rollback and temporal relations in this scheme 
have the nondeletion property, so write-once optical disks can be utilized. 

The prototype was constructed in about three person-months over a period of 
a year; this figure does not include familiarization with the Ingres internals or 
with TQuel. Most changes were additions, increasing the source by 2,900 lines, 
or 4.9 percent (our version of Ingres is approximately 58,800 lines long). 

A benchmark set of queries was run to study the performance of the prototype 
[3]. As expected, the performance rapidly deteriorated as information was added 
to the database. Access methods such as sequential scan, hashing, and ISAM all 
suffered. In addition, reorganization did not help shorten overflow chains, because 
all versions of a tuple share the same key. These results indicate that new storage 
structures are needed for TDBs to obtain adequate performance. 

7. CONCLUSION 

This paper has presented the syntax and formal semantics for the augmented 
statements in TQuel. The discussion proceeded in an incremental fashion for 
both the syntax and semantics. First, the Quel syntax was presented informally. 
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Temporal analogues for the where clause and the target list were examined. A 
more formal presentation, including a digression on constants and defaults, 
completed the presentation of TQuel’s syntax. 

After a short review of tuple calculus, the semantics of e-expressions was 
described as functions on time values or pairs of time values, ultimately yielding 
a time value. A transformation system provided the semantics of temporal 
expressions, yielding a conventional predicate on the tuples participating in the 
expression. At that point a tuple calculus expression for TQuel retrieve state- 
ments without aggregates was presented. The semantics of the modification 
statements were discussed. The semantics reduces to the standard Quel semantics 
when the time attribute is fixed at a particular time. Finally, a prototype 
implementation was described. 

7.1 Other Query Languages Incorporating Time 

In order to compare TQuel with the other query languages supporting time, we 
introduce 17 properties and rate each query language on these criteria. Each 
property is defined below; a summary of the analysis appears in Table I. Four of 
the properties are essential; we contend that no query language not having all 
4 essential properties should be considered to be a well-defined temporal query 
language. The remaining 13 properties are desirable; the ideal temporal query 
language would also possess all of these properties. Many criteria have been 
suggested to evaluate and compare temporal query languages; we have chosen 
these because they are well defined, are independent of any specific query 
language, are not logically implied by other criteria, and are demonstrably 
beneficial. Other criteria not sharing these properties will be discussed later. 

We evaluate the following query languages on these criteria: 

-Tansel’s algebra, also operating on non-first-normal-form (NlNF) relations, 
but not requiring homogeneity [26]; and HQuel, his extension to Quel along 
similar lines [83,84]; 

-the homogeneous temporal query language (HTQuel), an extension of Quel 
operating on NlNF relations consisting of attributes containing one or more 
(value, interval) pairs (this representation was discussed in Section 5.1); 
the intervals within a tuple must be identical for all attributes (termed 
homogeneity) [38]; 

-the query language for the multihomogeneous model (MHM), an extension of 
the homogeneous model where homogeneity is required only for subsets of the 
attributes within a tuple [36]; 

-natural language as formalized in the intensional logic IL, [27]; 
-Legal 2.0 [46, 471, a language based on relational algebra used to formalize 

legislation; 
-Ariav’s time oriented structured query language (TOSQL) [ll, 121, an exten- 

sion of SQL [43]; 
-the query language utilizing Ben-Zvi’s time relational model (TRM), discussed 

briefly in Section 5.1; this language, also an extension of SQL, was the first to 
support more than one kind of time [15]; 

-TSQL [65], another extension of SQL, 
-the algebra of Clifford and Croker accompanying their Historical Relational 

Data Model (HRDM) [25]. 
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TQuel Tansel HQuel HTQuel MHM IL. Leg01 TOSQL TRM TSQL HRDM 
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Historical queries 
Rollback 
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Operational semantics provided 
Snapshot completeness 
Snapshot reducibility 
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Nonprocedural query language 
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Implementation exists 
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We omit Time-By-Example [86] in this comparison due to its similarity to 
HQuel. 

The first requirement is that a temporal query language must be well defined. 
More specifically, it should have a formal retried semantics. Without a formal 
semantics, the meaning of each construct, and the interaction between constructs, 
is unclear. A check in this category means that a formal retrieval semantics has 
been presented in the literature (as a published or working paper). TQuel is 
formalized in this paper using the tuple calculus. Gadia claims that HTQuel may 
be formalized using a special temporal relational calculus [38]. Tansel’s algebra 
is formalized in conventional set theory [83], and HQuel is formalized in this 
algebra. IL, is itself a typed, higher order lambda calculus incorporating indexical 
semantics. The semantics of TRM is specified by utilizing a formally defined 
“time view” operation to extract a snapshot slice from the TDB, on which an 
SQL query (which itself has a formal semantics [23]) is applied. Finally, HRDM 
is also formalized in conventional set theory. Here the situation is better in TDBs 
than with conventional relational databases, whose early query languages were 
often not well defined. 

A temporal query language must support historical queries, and hence valid 
time. By “supporting valid time,” we mean specifically that queries can be 
formulated that derive information (i.e., tuples) valid at a point in time from 
information in underlying relations valid at other points in time, much as 
snapshot query languages can derive information concerning entities or relation- 
ships from information in underlying relations concerning other entities or 
relationships. Two aspects are thereby captured: the ability to refer to the time 
that the information was valid and the ability to perform “join-like” operations 
on valid time; a check in this category means that both aspects are present in 
the language. TQuel accomplishes this through its valid and when clauses. 
HTQuel does not satisfy this criterion because tuples valid at different times 
cannot be used in deriving new tuples; its extension, MHM, was defined precisely 
to circumvent this restriction [36]. TOSQL falls short because only one relation 
may participate in the query, although aggregates, which are only mentioned, 
may provide a measure of valid-time support. Because the valid time is eliminated 
early in the processing of TRM queries, this language also does not fully support 
valid time. Legol 2.0 supports historical queries via the while, since, until, and 
during operators; Tansel’s algebra and HQuel support them via Cartesian product 
and implicit Cartesian product, respectively. It is unclear whether HRDM sup- 
ports historical queries, as the valid time for the result of a Cartesian product is 
not specified. 

A temporal query language must support rollback, and hence transaction time. 
A query language supporting historical queries but not rollback is properly termed 
historical, rather than temporal [78]. Some papers have confused the two terms; 
we differentiate these terms for clarity. Only three query languages support 
rollback, all through as-of clauses. Transaction time could be added to the 
remaining query languages without difficulty [ 631. 

Finally, a temporal query language must be implementable, if it is to be of more 
than theoretical value. This property may be demonstrated formally through a 
semantics based on a well-defined algebra or, practically, through an implemen- 
tation. A box in this category means that neither has (yet) been presented in the 
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literature. TQuel has both a prototype implementation [3] and an algebra [62]. 
HTQuel, HQuel, and TRM each have an algebra; Tansel’s language and HRDM 
are algebras; and Legol2.0 both is an algebra and has a prototype implementation. 

The other properties are desirable; a temporal query language need not neces- 
sarily exhibit any particular property. These properties are listed approximately 
in order of importance. 

A temporal query language should have a well-defined operational semantics. 
By this we mean that a formal temporal algebra should be defined along with a 
proof of equivalence of the semantics of the query language. Of course, if the 
query language it itself a formally specified algebraic language, this property is 
a priori satisfied. A check in this category means that a formal algebra and 
equivalence proof are available in the literature. An incremental algebra has been 
developed, formalized, and proved equivalent to the tuple calculus semantics of 
TQuel [62, 631. An algebra is provided for HTQuel, HQuel, and TRM; Tansel’s 
language and HRDM are algebras. Clifford (IL,) and Ariav (TOSQL) do not 
provide an algebra; Legol2.0 is an algebra, but does not have a formal semantics. 
Finally, an algebra is defined with TSQL, but the correspondence of the calculus- 
based TSQL and the algebra was not discussed. 

The issue of completeness naturally arises whenever a new query language is 
proposed. A query language is said to be complete if it can simulate tuple relational 
calculus, as defined by Codd [29]. We capture this aspect in the snapshot 
completeness property, which implies that the temporal query language, when 
applied to a snapshot of the database, is at least as powerful as existing conven- 
tional query languages that are complete according to Codd’s definition. Note 
that this property involves both the retrieval and the update semantics. One 
language, TOSQL, is not snapshot complete, because only one relation may 
participate in a query. 

Snapshot reducibility is a related property, requiring that the language be 
intuitive, based on one’s understanding of snapshot query languages. More 
precisely, it should be possible to prove that the snapshot relation obtained by 
applying a temporal query to a TDB and then taking a snapshot is identical to 
the relation obtained by taking a snapshot of the TDB and applying the analogous 
snapshot query (in a conventional query language) to the resulting snapshot 
database. A box in this category means that such a proof is not possible; a 
question mark means that the proof may be possible, but has not yet been 
presented in the literature. Snapshot reducibility for TQuel was shown in 
Section 5.8. The proofs for HTQuel and TRM are simpler, because their algebras 
are defined in terms of snapshots. That Tansel’s algebra, HQuel, and HRDM are 
not snapshot reducible may be seen by the following, which holds in these 
algebras: 

(((John, 1, 3))) - H(John, 1, f-3)) = (((John, 1, 3))) 

where {((John, 1, 3))) p re resents a relation containing one tuple containing a 
single attribute, with a value of John valid from time 1 to time 3. A snapshot at 
time 2 yields 

((John)] - ((John)] = ((John)), 

which is clearly not the semantics of the snapshot relational difference operator. 
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A temporal query language should have a well-defined update semantics. As 
temporal relations model reality as it evolves over time, it is especially important 
that the evolution of the relations is specified. A language satisfying this property 
will have a formal semantics for the append, delete, and modification statements. 
A check means that the update semantics for the language has been presented 
in the literature. Although most languages include update statements, the formal 
semantics of these statements is left unspecified. 

User studies have shown that nonprocedural (e.g., calculus-based) query lun- 
guages are often easier to use than procedural (e.g., algebraic) query languages 
[69]. Only two languages, Tansel’s and Legol2.0, are algebraic. 

A temporal query language should have a homogeneous model. This property, 
first identified by Gadia, requires that the periods of validity of all the attributes 
in a given tuple of a temporal (or historical) relation are identical [38]. Since 
TQuel is based on a model with time-stamped tuples, its model is clearly 
homogeneous. Such a model has two substantial benefits. A snapshot of a 
temporal relation in a homogeneous model is well defined; in particular, it does 
not contain nulls. In a nonhomogeneous model, a tuple in a snapshot might only 
contain values for a subset of the attributes; the remaining attributes are 
problematic. More importantly, relations in a homogeneous model have a partic- 
ularly simple intuitive semantics: Each tuple models some portion of reality 
during the period(s) of validity of the tuple. Note that this intuition depends on 
a well-defined snapshot. Relations in a nonhomogeneous model have a more 
complicated intuitive semantics; indeed, the intuitive semantics for these models 
is never explicitly stated. 

The desirability of a homogeneous model is controversial. We feel the reason 
this criterion is not generally accepted is that it is confused with several related 
properties. One such property is economy of logical representation, discussed 
below. A second property confused with a homogeneous model is a homogeneous 
representation. In the prototype implementation of TQuel, the representation 
was indeed homogeneous, but an implementation based on the historical algebra 
[62] would not be. It is also important to note that homogeneity does not 
necessarily conflict with the ability to perform “join-like” operations on valid 
times (c.f., the historical queries criterion discussed above). TQuel, HTQuel, IL,, 
Legol2.0, TOSQL, TRM, TSQL, and HRDM, while having homogeneous models, 
all support historical queries. MHM and the models of HQuel and Tansel’s 
algebra are nonhomogeneous. 

A temporal query language should have a canonical model, in which relations 
are identical if and only if all of their snapshots are identical. In models not 
satisfying this property, two relations can be radically different, yet their infor- 
mation content, as identified in the snapshots of the relations, can be the same. 
This situation is confusing to users, who must study the relations to abstract the 
information contained in the relations. Gadia’s use of weak equality, which 
partitions relations into equivalence classes [37], violates this property; in a 
canonical model, each such equivalence class contains exactly one relation. If the 
language is based on a model that is tuple time-stamped and requires coalesced 
relations, then it has a canonical model. A question mark means that, although 
coalescing was not discussed in the presentation of the model, the model is in 
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fact canonical if coalescing is imposed, and a box means that coalescing was 
explicitly disallowed. Hence TQuel definitely has a canonical model, whereas IL,, 
Legol 2.0, TOSQL, TRM, and HRDM potentially satisfy this property. On the 
other hand, HTQuel, MHM, HQuel, and Tansel’s algebra do not satisfy this 
criterion, in part because they employ attribute time stamping. 

A temporal query language should have an implementation, which can provide 
many clues to desirable and undesirable features of the language. Although a 
formal semantics is much more important, temporal query languages that have 
not been implemented should be viewed with caution. A check means that an 
implementation has been completed and is discussed in the literature. Only two 
languages, TQuel and Legol2.0, have been implemented, both as prototypes. 

A temporal query language should support an evolving schema, where the 
schema is allowed to change over transaction time, and where past versions are 
accessed according to the schema in effect at the time the version was stored. 
TQuel supports this feature to the extent that its algebra supports it; the TQuel 
statements are still being designed. HRDM also supports schema evolution, but 
couples the lifetime of an attribute in the schema (an interval in transaction 
time) with the lifetime of a value of that attribute in the relation instance (an 
interval in valid time). Although the remaining languages include no support for 
schema evolution, this feature could easily be added to many of them following 
the approach used in TQuel’s algebra [63]. 

The language implementation should include optimization strategies. A good 
language will aid in defining such strategies; a poor language will present 
impediments to potential optimizations. Unfortunately, there has been little 
work in optimization strategies for processing temporal queries. Ahn is actively 
investigating this aspect in the context of TQuel and has generated some 
results [l, 21. 

Nondeletion was defined in Section 5.9 as the property of a model or language 
semantics being append only with the exception that a transition from a time of 
forever to a time of now be allowed. In that section we proved that the TQuel 
semantics satisfies this criterion. A check means that this assertion is proved for 
the update semantics; a box means that the update semantics violates the 
assertion; and a question mark means that the status of the assertion is unclear 
from existing explanations of the language, if, for example, no update semantics 
was given. Since a language must at least have a well-defined update semantics 
to have this property, HTQuel, MHM, IL,, TOSQL, TSQL, and Legol 2.0 are 
immediately rejected. It is possible to prove that Tansel’s algebra and HQuel 
violate the nondeletion criterion and that TRM satisfies it. 

The language should include aggregates. Such aggregates should be an exten- 
sion of snapshot aggregates, be time varying just as the relations are time varying, 
be well defined (i.e., possess a formal semantics), and be integrated into the 
operational semantics. Aggregates in TQuel are defined, formalized, and opera- 
tionalized elsewhere [62, 74, 79, 901. Aggregates are defined in several other 
languages, but are not given a formal semantics, except in Tansel’s algebra and 
HQuel [85]. 

Finally, the language and its semantics should support temporal indeterminacy, 
that is, events for which the time of occurrence is not precisely known. This 
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requirement increases in importance as the valid-time granularity shrinks. The 
granularity of the examples in this paper was 1 month. A more reasonable 
granularity would be 1 second or even 1 millisecond. However, it is unreasonable 
to expect that the time of occurrence of every event (e.g., the promotion of a 
faculty member) be known to that precision. TSQL’s model allows a default value 
of NULL for the valid-to time. Nontemporal attributes can also have a value of 
NULL, but the handling of such values is not discussed in detail. A modification 
to the formal semantics to incorporate indeterminacy was proposed for TQuel 
[74]; more work is needed. 

We should mention eight properties that have been mentioned by others, but 
that were not included. Although simplicity is highly desirable, it is very difficult 
to define. The ability to deal explicitly with “when” [35] is also difficult to define 
and may be captured by historical queries to some degree. Expressive power is 
easier to define, yet may be examined more carefully when broken into its 
constituent parts: historical queries, rollback, snapshot completeness, aggregates, 
and indeterminacy. Efficiency is included under the property of implementation 
and optimization strategies. 

Economy of logical representation (ELR) [36] was not included because it is 
not necessarily even desirable. Relations in a model having this property contain 
fewer tuples than relations in a model not exhibiting ELR. Gadia has criticized 
non-ELR models as exhibiting “vertical temporal anomalies” and goes on to state 
that “one would get a better query language if the distinction between a logical 
unit of data and its physical representation is minimized” [36]. The success of 
the relational model is generally attributed to exactly that distinction. Codd lists 
physical data independence as an essential property of any relational DBMS 
[31]. Hence ELR is irrelevant in terms of efficiency, because it only indirectly 
affects the size of the physical representation. However, it may negatively affect 
such other desirable aspects as having a homogeneous model or having a canonical 
model. 

Finally, temporal completeness (and its variants minimal completeness and 
maximal completeness [35]) was not included because it does not have an accepted 
definition. Gadia and Vaishnav have proposed their temporal relational algebra 
[35] as a benchmark [38]; however, the issue of why this particular algebra is an 
appropriate benchmark for completeness was never discussed. Two reasons why 
their algebra is perhaps inappropriate are that it is a multisorted algebra over 
relations and temporal domains, and that it only concerns valid time. 

A perhaps more satisfying definition of temporal completeness originates from 
first principles. Snapshot completeness, as first proposed by Codd [29], is a rather 
arbitrary measure of the expressive power of the language. Temporal complete- 
ness should be an extension of (1) snapshot completeness. To prove snapshot 
completeness, the criteria of (2) a retrieval semantics and (3) an update semantics 
are necessary. The adjective temporal implies supporting both valid and trans- 
action time, so (4) historical queries and (5) rollback are included. These five 
criteria form a minimal definition of temporal completeness, capturing a notion 
of expressive power that does not rely on any particular temporal algebra. 
We can also define historical completeness as temporal completeness without 
the rollback criterion. Working from these definitions, HQuel and Tansel’s 
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algebra are historically complete, IL, and Legol 2.0 come close, and it may be 
possible to show that MHM is historically complete. Only TQuel is temporally 
complete. 

We have compared TQuel with other temporal query languages on many 
criteria. An orthogonal set of criteria, less precisely defined but nonetheless 
important, arises from a different source: comparing the query language’s ex- 
pressive power with that of natural language. In their investigation of how to 
encode the temporal aspects of natural language, Maran et al. have proposed 
three kinds of natural language metaphors [57]. The first, involving event types, 
distinguishes between process versus state, and also between durative or punctual 
duration length. Durative lengths may be represented by interval relations; 
punctual lengths by event relations. A process may be represented by a collection 
of event relations; a state by a collection of interval relations. A heterogeneous 
collection of relations can be transformed into a process description by using 
the begin of/end of operators, or into a state description by using the extend 
operator. The duality between process and state is further explored elsewhere 
[741. 

The second metaphor concerns event orientation, and differentiates between 
onset and terminal boundary references, and between progressive and completive 
state of time flows. The onset boundary reference can be expressed as “when 
“now” precede end of?“; and the terminal boundary reference can be expressed 
as “when end of? precede “now”.” Similarly, the progressive time flow can be 
expressed as “when “now” precede begin of?” and the completive time flow 
as “when begin of? precede “now”.” 

Finally, the metaphor for the speaker’s point of view contrasts witness (i.e., 
present), retrospective (i.e., past), and modal (i.e., future). These can be 
represented in TQuel, respectively, as “aa of “now”,” as of “beginning”,” and 
“as of “now” through “forever”.” 

We have shown that the temporal data model coupled with TQuel can, to a 
rough approximation, express the metaphors for time in natural language. The 
point here is not that this is or should be the final definition of temporal 
completeness or even of the expressive power of natural language concerning 
time, but rather that comparisons between temporal query languages and natural 
language can be made and that further investigation along these lines is 
warranted. 

7.2 Further Work 

This paper has defined a temporal query language and provided a formal seman- 
tics for this language. However, much more research is necessary before a viable 
temporal DBMS can be developed. 

Many additions are possible to the language itself. The operators available for 
e-expressions and temporal predicates are certainly not exhaustive, and new ones 
could be added easily to both the language and its semantics. Another possible 
addition concerns temporal constants. The temporal constants used in this paper 
are absolute, in that they denote a particular time interval. Relative constants 
would also be quite useful. The following is a variant of Example 5: 
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Example 15. Who has been an associate professor for at least 5 years? 
range of a is Associates 
retrieve into Disgruntled (Name = a.Name) 

when (begin of a) precede “5 years” precede (end of a) 

The semantics for relative constants is still under study. 
Quel supports three attribute types, in multiple sizes: integer (1,2, and 4 bytes 

long), floating point (4 and 8 bytes long), and character data (l-255 bytes long). 
One necessary extension is a data type with values that vary over the period of 
time the tuple was valid (this data type is distinct from the temporal data type 
discussed in Section 3.4, which has a constant value for the entire valid interval). 
As was stressed in Section 3, caution is needed to ensure that such attributes are 
used correctly. Quel also supports scalar functions such as abs, mod, and sin. 
Scalar temporal functions, such as duration, which compute time-varying values, 
are needed in the language. 

A host of other issues must be considered in the design of a temporal query 
language. How should time granularity (e.g., hour, work week) be handled [9]? 
Temporal constants, as discussed in Section 4.2, provide only a partial answer. 
Should valid and transaction time be linear or branching? Branching time, 
although more complex than linear time, does have some interesting properties 
[ll, 801. How should changes to the schema be incorporated into the language? 
How should indeterminacy be incorporated? How should temporal relations be 
displayed? High-resolution display devices look quite promising [ll, 731. Should 
periodic or cyclic events and intervals (e.g., fiscal year, monthly payments) or 
causality be incorporated [ll, 14]? How well does TQuel correspond to the user’s 
temporal perception? Further work is necessary in all of these areas. 

The prototype described in Section 6 exhibits unacceptable performance as 
updates are made to this database. Much more research is needed, particularly 
in the areas of new access methods, query optimization techniques, and use of 
novel storage devices such as optical disks [l]. 

Temporal DBMSs in general are at approximately the same stage as snapshot 
relational systems were in the early 1970s [49]: Several high-level, nonprocedural 
query languages have been designed and formalized, and prototype implementa- 
tions exist. All the questions asked concerning snapshot relational databases, 
including those that have already been answered, must be asked (and answered) 
anew in the context of TDBs. 

APPENDIX A. Syntax of the Augmented TQuel Statements 
This appendix lists the syntax for the statements where Quel and TQuel differ. 
Since TQuel is a strict superset of Quel, all legal Quel statements are also legal 
TQuel statements. TQuel augments five Quel statements: create, retrieve, append, 
delete, and replace. The Quel statements left unaltered are copy (data into/from 
a relation from/into a UNIX’ file), define (subschema: view, permissions, or 
integrity constraints), destroy (a relation), help, index, modify (the storage 
structure of a relation), print, range, and save (a relation until a date). The 

‘UNIX is a trademark of AT&T Bell Laboratories. 
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following nonterminals are not included in the syntax description because they 
are identical to their Quel counterparts: 

(boo1 expression) 
(expression) 

returns a value of type Boolean 
returns a value of type integer, floating point, or 

temporal 
(attribute) 
(relation) 
(string) 
(tuple variable) 
(attribute specs) 

the name of an attribute 
a relation name 
a string constant 
the name of a tuple variable 
a list of the names and types for the user-specified 

attributes 

Also not shown are the additional temporal functions and predefined relations 
found in TQuel. 

( TQuel augmented) ::= (create stmt) 
1 (retrieve stmt) 
1 (append stmt) 
j (delete stmt) 
1 (replace stmt) 

(create stmt) 
(persistent) 
(history) 
(retrieve stmt) 
(retrieve head) 
(retrieve tail) 
(into) 

(target list) 
(t-list) 
(t-elem) 
(is) 
(append stmt) 
Go) 
(delete stmt) 
(replace stmt) 

(mod stmt tail) 
(valid clause) 
{valid) 
(from clause) 
(to clause) 
(at clause) 
(where clause) 
(when clause) 
(as-of clause) 
(through clause) 

::= create (persistent) (history) (attribute specs) 
::= c 1 persistent 
::= t 1 interval I event 
::= (retrieve head) (retrieve tail) 
::= retrieve (into) (target list) (valid clause) 
::= (where clause) (when clause) (as-of clause) 
::= E I unique I (relation) I into (relation) 

I to (relation) 
::= c I (( tuple variable) .all) I ((t-list)) 
::= (t-elem) I (t-list), (t-elem) 
::= (attribute) (is) (expression) 
::= is I = I by 
::= append (to) (target list) (mod stmt tail) 
::= (relation) I to (relation) 
::= delete (tuple variable) (mod stmt tail) 
::= replace (tuple variable) (target list) 

(mod stmt tail) 
::= (valid clause) (where clause) (when clause) 
::= (valid) (from clause) (to clause) I (valid) (at clause) 
::= t I valid 
::= E I from (e-expression) 
::= t I to (e-expression) 
::= at (e-expression) 
::= c I where (boo1 expression) 
::= t I when (temporal pred) 
::= c I as of (e-expression) (through clause) 
::= E I through (e-expression) 
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(e-expression) 

(i-expression) 

(either-expression) 
(event element) 
(interval element) 
(temporal constant) 
(temporal pred) 

::= (event element) 
1 begin of (either-expression) 
1 end of (either-expression) 
1 ( (e-expression) ) 
::= (interval element) 
1 (either-expression) overlap (either-expression) 
1 (either-expression) extend (either-expression) 
I( (i-expression) ) 
::= (e-expression) 1 (i-expression) 
::= (tuple variable) 
::= (tuple variable) 1 (temporal constant) 
::= (string) 
::= (interval element) 
1 (event element) 
1 (either-expression) precede (either-expression) 
1 (either-expression) overlap (either-expression) 
1 (either-expression) equal (either-expression) 
1 (temporal pred) and (temporal pred) 
1 (temporal pred) or (temporal pred) 
I( (temporal pred) ) 
1 not (temporal pred) 

Event elements are tuple variables associated with event relations. Interval 
elements are either tuple variables associated with interval relations, or temporal 
constants (all temporal constants are intervals). 

The where, when, and valid clauses in the delete statement can only refer to 
one tuple variable, that referenced at the beginning of the statement. The unary 
operators (begin of, end of, not) have the highest precedence, followed in order 
by the binary temporal constructors (extend, overlap), the temporal predicate 
operators (precede, overlap, equal), and finally the binary logical operators 
(and, or). Binary operators of equal precedence are left associative; unary 
operators of equal precedence are right associative. The binary temporal construc- 
tors, temporal predicate operators, and logical operators are all commutative, 
except for precede. 

Note that the distinction between (interval element) and (event element) 
makes the grammar context sensitive. In practice, this distinction is ignored in 
the LALR(l) parser, and the resulting parse tree is type-checked in the semantic 
analysis phase. 
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