
Forensic Analysis of Database Tampering

Kyriacos E. Pavlou

and

Richard T. Snodgrass

University of Arizona

Regulations and societal expectations have recently expressed the need to mediate access to valu-
able databases, even by insiders. One approach is tamper detection via cryptographic hashing.
This paper shows how to determine when the tampering occurred, what data was tampered, and
thus perhaps ultimately who did the tampering, via forensic analysis. We present four successively
more sophisticated forensic analysis algorithms: the Monochromatic, RGBY, Tiled Bitmap, and
a3D Algorithms, and characterize their “forensic cost” under worst-case, best-case, and average-
case assumptions on the distribution of corruption sites. A lower bound on forensic cost is derived,
with RGBY and a3D being shown optimal for a large number of corruptions. We also provide
validated cost formulæ for these algorithms and recommendations for the circumstances in which
each algorithm is indicated.

Categories and Subject Descriptors: H.2.0 [Database Management]: General—security, in-
tegrity, and protection

General Terms: Algorithms, Performance, Security

Additional Key Words and Phrases: a3D Algorithm, compliant records, forensic analysis algo-
rithm, forensic cost, Monochromatic Algorithm, Polychromatic Algorithm, RGBY Algorithm,
Tiled Bitmap Algorithm.

1. INTRODUCTION

Recent regulations require many corporations to ensure trustworthy long-term re-
tention of their routine business documents. The US alone has over 10,000 regu-
lations [11] that mandate how business data should be managed [6; 31] , including
the Health Insurance Portability and Accountability Act: HIPAA [29], Canada’s
PIPEDA, Sarbanes-Oxley Act [30], and PITAC’s advisory report on health care [1].
Due to these and to widespread news coverage of collusion between auditors and
the companies they audit (e.g., Enron, WorldCom), which helped accelerate pas-
sage of the aforementioned laws, there has been interest within the file systems
and database communities about built-in mechanisms to detect or even prevent
tampering.

One area in which such mechanisms have been applied is audit log security. The
Orange Book [8] informally defines audit log security in Requirement 4: “Audit

Authors’ address: Kyriacos E. Pavlou and Richard T. Snodgrass, Department of Computer Sci-
ence, University of Arizona, Tucson, AZ 85721-0077, {kpavlou, rts}@cs.arizona.edu
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2008 ACM 0362-5915/2008/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, September 2008, Pages 1–45.

2 · K. E. Pavlou and R. T. Snodgrass

information must be selectively kept and protected so that actions affecting security
can be traced to the responsible party. A trusted system must be able to record
the occurrences of security-relevant events in an audit log. ... Audit data must be
protected from modification and unauthorized destruction to permit detection and
after-the-fact investigations of security violations.”

The need for audit log security goes far beyond just the financial and medical in-
formation systems mentioned above. The 1997 U.S. Food and Drug Administration
(FDA) regulation “part 11 of Title 21 of the Code of Federal Regulations; Electronic
Records; Electronic Signatures” (known affectionately as “21 CFR Part 11” or even
more endearingly as “62 FR 13430”) requires that analytical laboratories collecting
data used for new drug approval employ “user independent computer-generated
time stamped audit trails” [9].

Audit log security is one component of more general record management systems
that track documents and their versions, and ensure that a previous version of
a document cannot be altered. As an example, digital notarization services such
as Surety (www.surety.com), when provided with a digital document, generate a
notary ID through secure one-way hashing, thereby locking the contents and time
of the notarized documents [14]. Later, when presented with a document and the
notary ID, the notarization service can ascertain whether that specific document
was notarized, and if so, when.

Compliant records are those required by myriad laws and regulations to follow
certain “processes by which they are created, stored, accessed, maintained, and
retained” [11]. It is common to use Write-Once-Read-Many (WORM) storage de-
vices to preserve such records [32]. The original record is stored on a write-once
optical disk. As the record is modified, all subsequent versions are also captured
and stored, with metadata recording the timestamp, optical disk, filename, and
other information on the record and its versions.

Such approaches cannot be applied directly to high-performance databases. A
copy of the database cannot be versioned and notarized after each transaction. In-
stead, audit log capabilities must be moved into the DBMS. We previously proposed
an innovative approach in which cryptographically-strong one-way hash functions
prevent an intruder, including an auditor or an employee or even an unknown bug
within the DBMS itself, from silently corrupting the audit log [27]. This is accom-
plished by hashing data manipulated by transactions and periodically validating
the audit log database to detect when it has been altered.

The question then arises, what do you do when an intrusion has been detected?
At that point, all you know is that at some time in the past, data somewhere in
the database has been altered. Forensic analysis is needed to ascertain when the
intrusion occurred, what data was altered, and ultimately, who the intruder is.

In this paper, we provide a means of systematically performing forensic analysis
after an intrusion of an audit log has been detected. (The identification of the
intruder is not explicitly dealt with.) We first summarize the originally proposed
approach, which provides exactly one bit of information: has the audit log been
tampered? We introduce a schematic representation termed a “corruption diagram”
for analyzing an intrusion. We then consider how additional validation steps provide
a sequence of bits that can dramatically narrow down the “when” and “where.” We

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 3

Audit Log)
(including
Database

Digital

Service
Notarization

User
Application

DBMS

(a) (b)

transactions

transactions
+

hashing

rehash

hash value +
notary ID

result

DBMS

(including
Database

Digital

Service
Notarization

Audit Log)

Validator

hash value

notary ID

Fig. 1. Online processing (a) and Audit log validation (b).

examine the corruption diagram for this initial approach; this diagram is central in
all of our further analyses. We characterize the “forensic cost” of this algorithm,
defined as a sum of the external notarizations and validations required and the
area of the uncertainty region(s) in the corruption diagram. We look at the more
complex case in which the timestamp of the data item is corrupted, along with the
data. Such an action by the intruder turns out to greatly increase the uncertainty
region. Along the way, we identify some configurations that turn out not to improve
the precision of the forensic algorithms, thus helping to cull the most appropriate
alternatives.

We then consider computing and notarizing additional sequences of hash values.
We first consider the Monochromatic Algorithm; we then present the RGBY, Tiled
Bitmap, and a3D Algorithms. For each successively more powerful algorithm, we
provide an informal presentation using the corruption diagram, the algorithm in
pseudocode, and then a formal analysis of the algorithm’s asymptotic run time and
forensic cost. We end with a discussion of related and future work. The appendix
includes an analysis of the forensic cost for the algorithms, using worst-case, best-
case, and average-case assumptions on the distribution of corruption sites.

2. TAMPER DETECTION VIA CRYPTOGRAPHIC HASH FUNCTIONS

In this section we summarize the tamper detection approach we previously proposed
and implemented [27]. We just give the gist of our approach, so that our forensic
analysis techniques can be understood.

This basic approach differentiates two execution phases: online processing, in
which transactions are run and hash values are digitally notarized, and validation,
in which the hash values are recomputed and compared with those previously no-
tarized. It is during validation that tampering is detected, when the just-computed
hash value doesn’t match those previously notarized. The two execution phases
constitute together the normal processing phase as opposed to the forensic analysis
phase. Figure 1 illustrates the two phases of normal processing.

In Figure 1(a), the user application performs transactions on the database, which
insert, delete, and update the rows of the current state. Behind the scenes, the
DBMS maintains the audit log by rendering a specified relation as a transaction-time

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

4 · K. E. Pavlou and R. T. Snodgrass

table. This instructs the DBMS to retain previous tuples during update and
deletion, along with their insertion and deletion/update time (the start and stop
timestamps), in a manner completely transparent to the user application [3]. An
important property of all data stored in the database is that it is append-only:
modifications only add information; no information is ever deleted. Hence, if old
information is changed in any way, then tampering has occurred. Oracle 11g sup-
ports transaction-time tables with its workspace manager [23]. The Immortal DB
project aims to provide transaction time database support built into Microsoft SQL
Server [19]. How this information is stored (in the log, in the relational store proper,
in a separate “archival store” [2]) is not that critical in terms of forensic analysis, as
long as previous tuples are accessible in some way. In any case, the DBMS retains
for each tuple hidden Start and Stop times, recording when each change occurred.
The DBMS ensures that only the current state of the table is accessible to the
application, with the rest of the table serving as the audit log. Alternatively, the
table itself could be viewed by the application as the audit log. In that case, the ap-
plication only makes insertions to the audited table; these insertions are associated
with a monotonically increasing Start time.

We use a digital notarization service that, when provided with a digital document,
provides a notary ID. Later, during audit log validation, the notarization service
can ascertain, when presented with supposedly unaltered document and the notary
ID, whether that document was notarized, and if so, when.

On each modification of a tuple, the DBMS obtains a timestamp, computes a
cryptographically strong one-way hash function of the (new) data in the tuple and
the timestamp, and sends that hash value, as a digital document, to the notarization
service, obtaining a notary ID. The DBMS stores that ID in the tuple.

Later, an intruder gets access to the database. If he changes the data or a
timestamp, the ID will now be inconsistent with the rest of the tuple. The intruder
cannot manipulate the data or timestamp so that the ID remains valid, because the
hash function is one-way. Note that this holds even when the intruder has access to
the hash function itself. He can instead compute a new hash value for the altered
tuple, but that hash value won’t match the one that was notarized.

An independent audit log validation service later scans the database (as illus-
trated in Figure 1(b)), hashes the data and the timestamp of each tuple, provides it
with the ID to the notarization service, which then checks the notarization time with
the stored timestamp. The validation service then reports whether the database
and the audit log are consistent. If not, either or both have been compromised.

Few assumptions are made about the threat model. The system is secure until
an intruder gets access, at which point he has access to everything: the DBMS, the
operating system, the hardware, and the data in the database. We still assume that
the notarization and validation services remain in the trusted computing base. This
can be done by making them geographically and perhaps organizationally separate
from the DBMS and the database, thereby effecting correct tamper detection even
when the tampering is done by highly-motivated insiders. (A recent FBI study
indicates almost half of attacks were by insiders [7].)

The basic mechanism just described provides correct tamper detection. If an
intruder modifies even a single byte of the data or its timestamp, the independent

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 5

validator will detect a mismatch with the notarized document, thereby detecting the
tampering. The intruder could simply re-execute the transactions, making what-
ever changes he wanted, and then replace the original database with his altered
one. However, the notarized documents would not match in time. Avoiding tam-
per detection comes down to inverting the cryptographically-strong one-way hash
function. Refinements to this approach and performance limitations are addressed
elsewhere [27].

A series of implementation optimizations minimize notarization service inter-
action and speed up processing within the DBMS: opportunistic hashing, linked
hashing, and a transaction ordering list. In concert, these optimizations reduce
the run time overhead to just a few percent of the normal running time of a high-
performance transaction processing system [27]. For our purposes, the only detail
that is important for forensic analysis is that at commit time, the transaction’s
hash value and the previous hash value are hashed together to obtain a new hash
value. Thus, the hash value of each individual transaction is linked in a sequence,
with the final value being essentially a hash of all changes to the database since
the database was created. For more details on exactly how the tamper detection
approach works, please refer to our previous paper [27], which presents the threat
model used by this approach, discusses performance issues, and clarifies the role of
the external notarization service.

The validator provides a vital piece of information, that tampering has taken
place, but doesn’t offer much else. Since the hash value is the accumulation of
every transaction ever applied to the database, we don’t know when the tampering
occurred, or what portion of the audit log was corrupted. (Actually, the valida-
tor does provide a very vague sense of when: sometime before now, and where:
somewhere in the data stored before now.)

It is the subject of the rest of this paper to examine how to perform a forensic
analysis of a detected tampering of the database.

3. DEFINITIONS

We now examine tamper detection in more detail. Suppose that we have just
detected a corruption event (or CE), which is any event that corrupts the data and
compromises the database. (Table I summarizes the notation used in this paper.
Some of the symbols are introduced in subsequent sections.)

The corruption event could be due to an intrusion, some kind of human inter-
vention, a bug in the software (be it the DBMS or the file system or somewhere
in the operating system), or a hardware failure, either in the processor or on the
disk. There exists a one-to-one correspondence between a CE and its corruption
time (tc), which is the actual time instant (in seconds) at which a CE has occurred.

The CE was detected during a validation of the audit log by the notarization
service, termed a validation event (or VE). A validation can be scheduled (that is,
is periodic) or could be an ad hoc VE. The time (instant) at which a VE occurred
is termed the time of validation event, and is denoted by tv. If validations are
periodic, the time interval between two successive validation events is termed the
validation interval, or IV . Tampering is indicated by a validation failure, in which
the validation service returns false for the particular query of a hash value and a

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

6 · K. E. Pavlou and R. T. Snodgrass

Table I. Summary of notation used.
Symbol Name Definition

CE Corruption event An event that compromises the database

The validation of the audit log
VE Validation event

by the notarization service

The notarization of a document
NE Notarization event

(hash value) by the notarization service

lc Corruption locus data The corrupted data

tn Notarization time The time instant of a NE

tv Validation time The time instant of a VE

tc Corruption time The time instant of a CE

tl Locus time The time instant that lc was stored

IV Validation interval The time between two successive VEs

IN Notarization interval The time between two successive NEs

Temporal detection Finest granularity chosen to express
Rt

resolution temporal bounds uncertainty of a CE

Spatial detection Finest granularity chosen to express
Rs

resolution spatial bounds uncertainty of a CE

Time of most recent The time instant of the last NE whose
tRVS

validation success revalidation yielded a true result

tFVF Time of first validation failure Time instant at which the CE is first detected

Upper bound of the spatial uncertainty
USB Upper spatial bound

of the corruption region

Lower bound of the spatial uncertainty
LSB Lower spatial bound

of the corruption region

Upper bound of the temporal uncertainty
UTB Upper temporal bound

of the corruption region

Lower bound of the temporal uncertainty
LTB Lower temporal bound

of the corruption region

V Validation factor The ratio IV /IN

N Notarization factor The ratio IN/Rs

notarization time. What is desired is a validation success, in which the notarization
service returns true, stating that everything is OK: the data has not been tampered.

The validator compares the hash value it computes over the data with the hash
value that was previously notarized. A notarization event (or NE) is the nota-
rization of a document (specifically, a hash value) by the notarization service. As
with validation, notarization can be scheduled (is periodic) or can be an ad hoc
notarization event. Each NE has an associated notarization time (tn), which is a
time instant. If notarizations are periodic, the time interval between two successive
notarization events is termed the notarization interval, or IN .

There are several variables associated with each corruption event. The first is
the data that has been corrupted, which we term the corruption locus data (lc).

Forensic analysis involves temporal detection, the determination of the corruption
time, tc. Forensic analysis also involves spatial detection, the determination of
“where,” that is, the location in the database of the data altered in a CE. (Note
that the use of the adjective “spatial” does not refer to a spatial database, but
rather where in the database the corruption occurred.)

Recall that each transaction is hashed. Therefore, in the absence of other in-
formation, such as a previous dump (copy) of the database, the best a forensic

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 7

analysis can do is to identify the particular transaction that stored the data that
was corrupted. Instead of trying to ascertain the corruption locus data, we will
instead be concerned with the locus time (tl), the time instant that locus data (lc)
was originally stored. The locus time specifically refers to the time instant when
the transaction storing the locus data commits. (Note that here we are referring to
the specific version of the data that was corrupted. This version might be the orig-
inal version inserted by the transaction, or a subsequent version created through an
update operation.) Hence the task of forensic analysis is to determine two times,
tc and tl.

A CE can have many lc’s (and hence, many tl’s) associated with it, termed multi-
locus : an intruder (hardware failure, etc.) might alter many tuples. A CE having
only one lc (such as due to an intruder hoping to remain undetected by making a
single, very particular change) is termed a single-locus CE.

The finest spatial granularity of the corrupted data would be an explicit attribute
of a tuple, or a particular timestamp attribute. However, this proves to be costly
and hence we define Rs which is the finest granularity chosen to express the uncer-
tainty of the spatial bounds of a CE. Rs is called the spatial detection resolution.
This is chosen by the DBA.

Similarly, the finest granularity chosen by the DBA to express the uncertainty of
the temporal bounds of a CE is the temporal detection resolution, or Rt.

4. THE CORRUPTION DIAGRAM

To explain forensic analysis, we introduce the Corruption Diagram, which is a
graphical representation of CE(s) in terms of the temporal-spatial dimensions of a
database. We have found these diagrams to be very helpful in understanding and
communicating the many forensic algorithms we have considered and so we will use
them extensively in this paper.

Definition: A corruption diagram is a plot in R
2 having its ordinate associated

with real time and its abscissa associated with a partition of the database according
to transaction time. This diagram depicts corruption events and is annotated with
hash chains and relevant notarization and validation events. At the end of forensic
analysis, this diagram can be used to visualize the regions (⊂ R

2) where corruption
has occurred.

Let us first consider the simplest case. During validation, we have detected a
corruption event. Though we don’t know it (yet), assume that this corruption
event is a single-locus CE. Furthermore, assume that the CE just altered the data
of a tuple; no timestamps were changed.

Figure 2 illustrates our simple corruption event. While this figure may appear
to be complex, the reader will find that it succinctly captures all the important
information regarding what is stored in the database, what is notarized, and what
can be determined by the forensic analysis algorithm about the corruption event.

The x-axis represents when the data are stored in the database. The database
was created at time 0, and is modified by transactions whose commit time is mono-
tonically increasing along the x-axis. (In temporal database terminology [16], the

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

8 · K. E. Pavlou and R. T. Snodgrass

lt

ct

IN= 2

tRVS

INVI

R = 2s

R = 6t

FVFt = UTB

CE

When

Where
USB

 Failure (FVF)
First Validation

NE0

.

16= LSB tFVF

NE1

NE2

NE3

NE4

NE5

NE10

NE11

VE4NE12

NE7

VE2NE6

NE8

VE3
NE9

VE1

22

= 6 = 3 .

18
LTB

24

Fig. 2. Corruption diagram for a data-only single-locus retroactive corruption event.

x-axis represents the transaction time of the data.) In this diagram, time moves
inexorably to the right.

This axis is labeled “Where.” The database grows monotonically as tuples are ap-
pended (recall that the database is append-only). As above, we designate “where”
a tuple or attribute is in the database by the time of the transaction that inserted
that tuple or attribute. The unit of the x-axis is thus (transaction-commit) time.
We delimit the days by marking each midnight, or, more accurately, the time of
the last transaction to commit before midnight.

A 45-degree line is shown and is termed the action line, as all the action in the
database occurs on this line. The line terminates at the point labeled “FVF,” which
is the validation event at which we first became aware of tampering. The time of
first validation failure (or tFVF) is the time at which the corruption is first detected.
(Hence the name: a corruption diagram always terminates at the VE that detected
the corruption event.) Note that tFVF is an instance of a tv, in that tFVF is a specific
instance of the time of a validation event, generically denoted by tv. Also note that
in every corruption diagram, tFVF coincides with the current time. For example, in
Figure 2 the VE associated with tFVF occurs on the action line, at its terminus, and
turns out to be the fourth such validation event, VE4.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 9

The actual corruption event is shown as a point labeled “CE,” which always
resides above or on the action line, and below the last VE. If we project this point
onto the x-axis, we learn “where” (in terms of the locus of corruption, lc) the
corruption event occurred. Hence, the x-axis, which being ostensibly commit time,
can also be viewed as a spatial dimension, labeled in locus time instants (tl). This
is why we term the x-axis the where axis.

The y-axis represents the temporal dimension (actual time-line) of the database,
labeled in time instants. Any point on the action line thus indicates a transaction
committing at a particular transaction time (a coordinate on the x-axis) that hap-
pened at a clock time (the same coordinate on the y-axis). (In temporal database
terminology, the y-axis is valid time, and the database is a degenerate bitemporal
database, with valid time and transaction time totally correlated [17]. For this
reason, the action line is always a 45-degree line. Projecting the CE onto the y-
axis tells us when in clock time the corruption occurred, that is, the corruption
time, tc. We label the y-axis with “When.” The diagram shows that the corruption
occurred on day 22 and corrupted an attribute of a tuple stored by a transaction
that committed on day 16.

There is a series of points along the action line denoted with “NE.” These (nat-
urally) identify notarization events, when a hash value was sent to the notarization
service. The first notarization event, NE0, occurs at the origin, when the database
was first created. This event hashes the tuples containing the database schema and
notarizes that value.

Notarization event NE1 hashes the transactions occurring during the first two
days (here, the notarization interval, IN , is two days), linking these hash values
together using linked hashing. This is illustrated with the upward-right-pointing
arrow with the solid black arrowhead originating at NE0 (since the linking starts
with the hash value notarized by NE0) and terminating at NE1. Each transaction
at commit time is hashed; here the “where” (transaction commit time) and “when”
(wall-clock time) are synchronized; hence, this occurs on the diagonal. The hash
value of the transaction is linked to the previous transaction, generating a linked
sequence of transactions that is associated with a hash value notarized at midnight
of the second day in wall-clock time and covering all the transactions up to the last
one committed before midnight (hence, NE1 resides on the action line). NE1 sends
the resulting hash value to the digital notarization service.

Similarly, NE2 hashes two days’ worth of transactions, links it with the previous
hash value, and notarizes that value. Thus, the value that NE12 (at the top right
corner of Figure 2) notarizes is computed from all the transactions that committed
over the previous 24 days.

In general, all notarization events (except NE0) occur at the tip of a correspond-
ing black hash chain, each starting at the origin and cumulatively hashing the tuples
stored in the database between times 0 and that NE ’s tn.

Also along the action line are points denoted with “VE.” These are validation
events for which a validation occurred. During VE1, which occurs at midnight on
the sixth day (here, the validation interval, IV , is six days), rehashes all the data in
the database in transaction commit order, denoted by the long right-pointing arrow
with a white arrowhead, producing a linked hash value. It sends this value to the

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

10 · K. E. Pavlou and R. T. Snodgrass

notarization service, which responds that this “document” is indeed the one that
was previously notarized (by NE3, using a value computed by linking together the
values from NE0, NE1, NE2, and NE3, each over two days’ worth of transactions),
thus assuring us that no tampering has occurred in the first six days. (We know
this from the diagram, because this VE is not at the terminus.) In fact, the diagram
shows that VE1, VE2, and VE3 were successful (each scanning a successively larger
portion of the database, the portion that existed at the time of validation). The
diagram also shows that VE4, immediately after NE12, failed, as it is marked as
FVF; its time tFVF is shown on both axes.

In summary, we now know that at each of the VEs up to but not including FVF
succeeded. When the validator scanned the database as of that time (tv for that
VE), the hash value matched that notarized by the VE. Then, at the last VE,
the FVF, the hash value didn’t match. The corruption event, CE, occurred before
midnight of the 24th day, and corrupted some data stored sometime during those
twenty four days. (Note that as the database grows, more tuples must be hashed
at each validation. Given that any previous hashed tuple could be corrupted, it is
unavoidable to examine every tuple during validation.)

5. FORENSIC ANALYSIS

Once the corruption has been detected, a forensic analyzer (a program) springs
into action. The task of this analyzer is to ascertain, as accurately as possible, the
corruption region: the bounds on “where” and “when” of the corruption.

From the last validation event, we have exactly one bit of information: validation
failure. For us to learn anything more, we have to go to other sources of information.

One such source is a backup copy of the database. We could compare, tuple-
by-tuple, the backup with the current database to determine quite precisely the
“where” (the locus) of the CE. That would also delimit the corruption time, to
after the locus time (one cannot corrupt data that has not yet been stored!). Then,
from knowing where and very roughly when, the chief information officer (CIO)
and chief security officer (CSO) and their staff can examine the actual data (before
and after values) to determine who might have made that change.

However, it turns out that the forensic analyzer can use just the database itself to
determine bounds on the corruption time and the locus time. The rest of this paper
will propose and evaluate the effectiveness of several forensic analysis algorithms.

In fact, we already have one such algorithm, the trivial forensic analysis algorithm:
on validation failure, return the upper-left triangle, delimited by the when and ac-
tion axes, denoting that the corruption event occurred before tFVF and altered data
stored before tFVF .

Our next algorithm, termed the Monochromatic Forensic Analysis Algorithm
for reasons that will soon become clear, yields the rectangular corruption region
illustrated in the diagram, with an area of 12 days2 (two days by six days). We
provide the trivial and Monochromatic Algorithms as an expository structure to
frame the more useful algorithms introduced later.

The most recent VE before FVF is VE3 and it was successful. This implies that
the corruption event has occurred in this time period. Thus tc is somewhere within
the last IV , which always bounds the “when” of the CE.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 11

To bound the “where,” the Monochromatic Algorithm can validate prior portions
of the database, at times that were earlier notarized. Consider the very first nota-
rization event, NE1. The forensic analyzer can rehash all the transactions in the
database in order, starting with the schema and then from the very first transaction
(such data will have a commit time earlier than all other data), and proceeding up
to the last transaction before NE1. (The transaction timestamp stored in each
tuple indicates when the tuple should be hashed; a separate tuple sequence number
stored in the tuple during online processing indicates the order of hashing these tu-
ples within a transaction.) If that de novo hash value matches the notarized hash
value, the validation result will be true, and this validation will succeed, just like
the original one would have, had we done a validation query then. Assume likewise
that NE2 through NE7 succeed as well.

Of course, the original VE1 and VE2, performed during normal database pro-
cessing, succeeded, but we already knew that. What we are focusing on here are
validations of portions of the database performed by the forensic analyzer after tam-
pering was detected. Computing the multiple hash values can be done in parallel
by the forensic analyzer. The hash values are computed for each transaction during
a single scan of the database and linked in commit order. Whenever a midnight is
encountered as a transaction time, the current hash value is retained. When this
scan is finished, these hash values can be sent to the notarization service to see if
they match.

Now consider NE8. The corruption diagram implies that the validation of all
transactions occurring during day 1 through day 16 failed. That tells us that the
“where” of this corruption event was the single IN interval between the midnight
notarizations of NE7 and NE8, that is, during day 15 or day 16. Note also that
all validations after that, NE9 through NE11, also fail. In general, we observe
that revisiting and revalidating the cumulative hash chains at past notarization
events will yield a sequence of validation results that start out to be true and
then at some point switch to false (TT. . .TF. . .FF). This single switch from true
to false is a consequence of the cumulative nature of the black hash chains. We
term the time of the last NE whose revalidation yielded a true result (before the
sequence of false results starts) the time of most recent validation success (tRVS).
This tRVS helps bound the where of the CE because the corrupted tuple belongs to
a transaction which committed between tRVS and next time database was notarized
(whose validation now evaluates to false). tRVS is marked on the Where axis of the
of the corruption diagram as seen in Figure 2.

In light of the above observations, we define four values,

—the lower temporal bound: LTB := max(tFVF − IV , tRVS),

—the upper temporal bound: UTB := tFVF ,

—the lower spatial bound: LSB := tRVS , and

—the upper spatial bound: USB := tRVS + IN .

These define a corruption region, indicated in Figure 2 as a narrow rectangle, within
which the CE must fall. This example shows that, when utilizing the Monochro-
matic Algorithm, the notarization interval, here IN = 2 days, bounds the “where,”
and the validation interval, here IV = 6 days, bounds the “when.” Hence for this

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

12 · K. E. Pavlou and R. T. Snodgrass

VI

IN= 2

= 2sR

IN
= 6tR

ct

FVF= UTBt

When

Where

NE

NE

NE0

6

9

.

USB= LSB
21

CE

tl

NE

NE2

1

NE

NE4

NE5

NE7

NE8

NE12

VE4

First Validation
 Failure (FVF)

NE10

NE11

VE3

VE2

VE1
3

tRVS

= 6 = 3.

22

LTB
18

24

Fig. 3. Corruption diagram for a data-only single-locus introactive corruption event.

algorithm, Rs = IN and Rt = IV . (More precisely,

Rt = UTB − LTB = min(IV , tFVF − tRVS)

due to the fact that Rt can be smaller than IV for late-breaking corruption events,
such as that illustrated in Figure 3.)

The CE just analyzed is termed a retroactive corruption event : a CE with locus
time tl appearing before the next to last validation event. Figure 3 illustrates an
introactive corruption event : a CE with a locus time tl appearing after the next to
last validation event. In this figure, the corruption event occurred on day 22, as
before, but altered data on day 21 (rather than day 16 in the previous diagram).
NE10 is the most recent validation success. Here the corruption region is a trapezoid
in the corruption diagram, rather than a rectangle, due to the constraint mentioned
earlier that a CE must be on or above the action line (tc ≥ tl). This constraint is
reflected in the definition of LTB.

It is worth mentioning here that the CEs described above are ones which only
corrupt data. It is conceivable that a CEs can alter the timestamp (transaction
commit time) of a tuple. This creates two new independent types of CEs termed
postdating or backdating CEs depending on how the timestamp was altered. An
analysis of timestamp corruption will be provided in Section 7.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 13

6. NOTARIZATION AND VALIDATION INTERVALS

The two corruption diagrams we have thus far examined assumed a notarization
interval of IN = 2 and validation interval of IV = 6. In this case, notarization
occurs more frequently than validation and the two processes are in phase, with IV a
multiple of IN . In such a scenario, we saw that the spatial uncertainty is determined
by the notarization interval and the temporal uncertainty by the validation interval.
Hence, we obtained tall, thin CE regions. One naturally asks, what about other
cases?

Say notarization events occur at midnight every two days, as before, and valida-
tion events occur every three days, but at noon. So we might have NE1 on Monday
night, NE2 on Wednesday night, NE3 on Friday night, VE1 on Wednesday at noon,
and VE2 on Saturday at noon. VE1 rehashes the database up to Monday night
and checks that linked hash value with the digital notarization service. It would
detect tampering prior to Monday night; tampering with a tl after Monday would
not be detected by VE1. VE2 would hash through Friday night; tampering on
Tuesday would then be detected. Hence, we see that a non-aligned validation just
delays detection of tampering. Simply speaking, one can validate only what one
has previously notarized.

If the validation interval were shorter than the notarization interval, e.g. IN = 2,
IV = 1, say every day at midnight, then a validation on Tuesday at midnight could
again only check through Monday night.

Our conclusion is that the validation interval should be equal to or longer than
the notarization interval, should be a multiple of the notarization interval, and
should be aligned, that is, validation should occur immediately after notarization.
Thus we will speak of the validation factor V such that IV = V ·IN . As long as this
constraint is respected, it is possible to change V , or both IV and IN , as desired.
This, however, will affect the size of the corruption region and subsequently the
cost of the forensic analysis algorithms, as emphasized in Section 9.

7. ANALYZING TIMESTAMP CORRUPTION

The previous section considered a data-only corruption event, a CE that does not
change timestamps in the tuples. There are two other kinds of corruption events
with respect to timestamp corruption. In a backdating corruption event, a time-
stamp is changed to indicate a previous time/date with respect to the original time
in the tuple. We term the time a timestamp was backdated to the backdating time,
or tb. It is always the case that tb < tl. Similarly, a postdating corruption event
changes a timestamp to indicate a future time/date with respect to the original
commit time in the tuple, with the postdating time (tp) being the time a timestamp
was postdated to. It is always the case that tl < tp. Combined with the previously
introduced distinction of retroactive and introactive, these considerations induce
six specific corruption event types.

{

Retroactive

Introactive

}

×















Data-only

Backdating

Postdating















ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

14 · K. E. Pavlou and R. T. Snodgrass

For backdating corruption events, we ask that the forensic analysis determine,
to the extent possible, “when” (tc), “where” (tl), and “to where” (tb). Similarly,
for postdating corruption events, we want to determine tc, tl, and tp. This is quite
challenging given the only information we have, which is a single bit for each query
on the notarization service.

It bears mention that neither postdating nor backdating CEs involve movement
of the actual tuple to a new location on disk. Instead, these CEs consist entirely of
changing an insertion-date timestamp attribute. (We note in passing that in some
transaction-time storage organizations the tuples are stored in commit order. If an
insertion date is changed during a corruption event, the fact that that tuple is out
of order provides another clue, one that we don’t exploit in the algorithms proposed
here.)

Figure 4 illustrates a retroactive postdating corruption event (denoted by the
forward-pointing arrow). On day 22, the timestamp of a tuple written on day 10
was changed to make it appear that that tuple was inserted on day 14 (perhaps
to avoid seeming that something happened on day 10). This tampering will be
detected by VE4, which will set the lower and upper temporal bounds of the CE,
shown in Figure 4 as LTB = 18 and UTB = 24. The Monochromatic Algorithm
will then go back and rehash the database, querying with the notarization service
at NE0, NE1, NE2, It will notice that NE4 is the most recent validation
success, because the rehashed sequence will not contain the tampered tuple: its
(altered) timestamp implies it was stored on day 14. Given that the query at NE4

succeeds and that at NE5 fails, the tampered data must have been originally stored
sometime during those two days, thus bounding tl to day 9 or day 10. This provides
the corruption region shown as the left-shaded rectangle in the figure.

Since this is a postdating corruption event, tp, the date the data was altered
to, must be after the local time, tl. Unfortunately, all subsequent revalidations,
from NE5 onward, will fail, then giving us absolutely no additional information as
to the value of tp. The “to” time is thus somewhere in the shaded trapezoid to
the right of the corruption region. (We show this on the corruption diagram as a
two-dimensional region, representing the uncertainty of tc and tp. Hence, the two
shaded regions denote just three uncertainties, in tc, tl, and tp.)

Figure 4 also illustrates a retroactive backdating corruption event (backward-
pointing arrow). On day 22, the timestamp of a tuple written on day 14 was changed
to make it appear that the tuple in question was inserted on day 10 (perhaps to
imply something happened before it actually did). This tampering will be detected
by VE4, which will set the lower and upper temporal bounds of the CE (as in
the postdating case). Going back and rehashing the data at NE0, NE1, . . . the
Monochromatic Algorithm will compute that NE4 is the most recent validation
success. The rehashing up to NE5 will fail to match its notarized value, because the
rehashed sequence will erroneously contain the tampered tuple that was originally
was stored on day 14. Given that the query at NE4 succeeds and that at NE5 fails,
the new timestamp must be sometime within those two days, thus bounding tb to
day 9 or day 10. The left-shaded rectangle in the figure illustrates the extent of the
imprecision of tb.

Since this is a backdating corruption event, the date the data was originally

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 15

tl
tl

ct

FVF= UTBt

IN

IN = 2

= 2Rs

When

 Failure (FVF)
First Validation

NE0

6

Where
= LSBRVS

t
10

CE

NE1

NE2

NE
VE1

3

NE

NE

NE
VE2

5

4

NE7

NE8

NE9

VE3

NE10

NE11

NE12

VE4

t

t

b

p

USB

22

LTB
18

24

VI = 6 = 3

Rt = 6

.

..

14

postdating

backdating

Fig. 4. Corruption diagram for postdating and backdating corruption events.

stored, tl, must be after the “to” time, tb. As with postdating CEs, all subsequent
revalidations, from NE5 onward, will fail, then giving us absolutely no additional
information as to the value of tl. The corruption region is thus the shaded trapezoid
in the figure.

While we have illustrated backdating and postdating corruption events sepa-
rately, the Monochromatic Algorithm is unable to differentiate these two kinds of
events from each other, or from a data-only corruption event. Rather, the algorithm
identifies the RVS, the most recent validation success, and from that puts a two-day
bound on either tl or tb. Because the black link chains that are notarized by NEs
are cumulative, once one fails during a rehashing, all future ones will fail. Thus
future NEs provide no additional information concerning the corruption event.

To determine more information about the corruption event, we have little choice
but to utilize to a greater extent the external notarization service. (Recall that the
notarization service is the only thing we can trust after an intrusion.) At the same
time, it is important to not slow down regular processing. We’ll show how both are
possible.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

16 · K. E. Pavlou and R. T. Snodgrass

RVS
t

tc

FVFt = UTB

IN = 2

= 2Rs

IN

When

NE

NE

0

backdating CE

Where
= LSB USB

3

NE1

NE2

3

VE1

NE

NE4

5

NE6

VE2

NE7

NE8

NE9
VE3

NE10

NE11

First Validation
 Failure (FVF)
VE4NE12

LTB

24

22

18

t

.
VI = 6 = 3

= 2R

.

10

Fig. 5. Corruption diagram for a backdating corruption event.

8. FORENSIC ANALYSIS ALGORITHMS

In this section we provide a uniform presentation and detailed analysis of forensic
analysis algorithms. The algorithms presented are the original Monochromatic
Algorithm, the RGBY Algorithm, the Tiled Bitmap Algorithm [25], and the a3D
Algorithm. Each successive algorithm introduces additional chains during normal
processing in order to achieve more detailed results during forensic analysis. This
comes at the increased expense of maintaining—hashing and validating—a growing
number of hash chains. We show in Section 9 that the increased benefit in each
case more than compensates for the increased cost.

The Monochromatic Algorithm uses only the cumulative (black) hash chains we
have seen so far, and as such it is the simplest algorithm in terms of implementation.

The RGBY Algorithm introduced here is an improvement of the original RGB
Algorithm [24]. The main insight of the previously presented Red-Green-Blue
forensic analysis algorithm (or simply, the RGB Algorithm) is that during nota-
rization events, in addition to reconstructing the entire hash chain (illustrated with
the long right-pointed arrows in prior corruption diagrams), the validator can also
rehash portions of the database and notarize those values, separately from the full

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 17

chain. In the RGB Algorithm, three new types chains are added, denoted with the
colors red, green, and blue, to the original (black) chain in the so-called Monochro-
matic Algorithm. These hash chains can be computed in parallel; all consist of
linked sequences of hash values of individual transactions in commit order. While
additional hash values must be computed, no additional disk reads are required.
The additional processing is entirely in main memory. The RGBY Algorithm re-
tains the red, green, and blue chains and adds a yellow chain. This renders the new
algorithm more regular and more powerful.

The Tiled Bitmap Algorithm extends the idea of the RGBY Algorithm of using
partial chains. It lays down a regular pattern (a “tile”) of such chains over contigu-
ous segments of the database. What is more, the chains in the tile form a bitmap
which can be used for easy identification of the corruption region [25].

The a3D Algorithm introduced here is the most advanced algorithm in the sense
that it does not lay repeatedly a “fixed” pattern of hash chains over the database.
Instead, the lengths of the partial hash chains change (decrease or increase) as the
transaction time increases, in such as way so that at each point in time a complete
binary tree (or forest) of hash chains exists on top of the database. This enables
forensic analysis to be sped up significantly.

8.1 The Monochromatic Algorithm

We provide the pseudocode for the Monochromatic Algorithm in Figure 6. This
algorithm takes three input parameters, as indicated below. tFVF is the time of first
validation failure, i.e, the time at which the corruption of the log is first detected.
In every corruption diagram, tFVF coincides with the current time. IN is the nota-
rization interval while V, called the validation factor, is the ratio of the validation
interval to the notarization interval (V = IV /IN , V ∈ N). The algorithm assumes
that a single CE transpires in each example. The resolutions for the Monochro-
matic Algorithm are Rs = IN and Rt = IV = V · IN . (The DBA can set the
resolutions indirectly, by specifying IN and V .) Hence, if a CE involving a time-
stamp transpires and tl and tp/tb are both within the same IN , such a (backdating
or postdating) corruption cannot be distinguished from a data-only CE and hence
it is treated as such.

The algorithm first identifies tRVS , the time of most recent validation success, and
from that puts an IN bound on either tl or tb. Then depending on the value of
tRVS it distinguishes between introactive and retroactive CEs. It then reports the
(“where”) bounds on tl and tp (or tb) of both data-only and timestamp CEs since it
cannot differentiate between the two. These bounds are given in terms of the upper
spatial bound (USB) and the lower spatial bound (LSB). The time interval where
time of corruption tc lies is bounded by the lower and upper temporal bounds (LTB
and UTB).

It is worth noting here that the points (tl, tc) and (tp, tc)—or (tb, tc)—must al-
ways share the same when-coordinate, since both refer to a single CE. The algorithm
reports multiple possibilities for the CEs, as the algorithm can’t differentiate be-
tween all the different types of corruption. Also, the bounds are given in a way
that is readable and quite simple. The results are captured by a system of linear
inequalities whose solution conveys the extent of the corruption region.

The find tRVS function, which is used on line 2 above, finds the time of most recent

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

18 · K. E. Pavlou and R. T. Snodgrass

// input: tFVF is the time of first validation failure
// IN is the notarization interval
// V is the validation factor
// output: types of and bounds on CE
procedure Monochromatic(tFVF , IN , V):
1: IV ← V · IN

2: tRVS ← find tRVS (tFVF , IN)
3: USB ← tRVS + IN

4: LSB ← tRVS

5: UTB ← tFVF

6: LTB ← max(tFVF − IV , tRVS)
7: if tRVS ≥ (tFVF − IV) then report Introactive CE
8: else if tRVS < (tFVF − IV) then report Retroactive CE
9: report Data-only CE, LSB < tl ≤ USB , LTB < tc ≤ UTB
10: report Postdating CE, LSB < tl ≤ USB , LTB < c ≤ UTB , USB < tp ≤ tFVF

11: report Backdating CE, LSB < tb ≤ USB , LTB < tc ≤ UTB , USB < tl ≤ tFVF

// input: tFVF is the time of first validation failure
// IN is the notarization interval
// output: Schema Corruption if it exists
// tRVS is the time of most recent validation success
procedure find tRVS (tFVF , IN):
1: left ← 1
2: right ← tFVF

3: tRVS ← ⌊(left + right)/2⌋
// since tRVS may not coincide with a NE

4: if (tRVS mod IN) 6= 0 then tRVS ← tRVS − (tRVS mod IN)
5: while (¬ BlackChains[max(1 + (tRVS /IN), 0)] ∨ BlackChains[tRVS/IN])

∧ (right ≥ left) do
6: if ¬ BlackChains [tRVS/IN] then
7: if tRVS = 0 then
8: report “Schema Corruption: cannot proceed. . .”
9: exit
10: if tRVS − IN < 0 then right ← 0 else right ← tRVS − IN

11: else
12: if tRVS + IN > tFVF then left ← tFVF else left ← tRVS + IN

13: tRVS ← ⌊(left + right)/2⌋
14: if (tRVS mod IN) 6= 0 then tRVS ← tRVS − (tRVS mod IN)
15: return tRVS

Fig. 6. The Monochromatic Algorithm.

validation success by performing binary search on the cumulative black chains. It
revisits past notarizations and by validating them it decides whether to recurse to
the right or to the left of the current chain.

In the above algorithm we use an array BlackChains of Boolean values to store
the results of validation during forensic analysis. The Boolean results are indexed
by the subscript of the notarization event considered: the result of validating NE i

is stored at index i, i.e., BlackChains[i]. Since we do not wish to pre-compute all
this information, the validation results are computed lazily, i.e., whenever needed.
On line 7 we report only if there is schema corruption and no other special checks
are made in order to deal with this special case of corruption.

Note that on lines 6 and 11 these are the only possibilities for the validation

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 19

results of the NEs in question. No other case ever arises since the results of the
validations of the cumulative black chains, considered from right to left, always
follow a (single) change from false to true.

The running time of the Monochromatic Algorithm is dominated by the simple
binary search required to find tRVS . It ultimately depends on the number of cumula-
tive black hash chains maintained. Hence, the running time of the Monochromatic
Algorithm is O(lg(tFVF/IN)).

8.2 The RGBY Algorithm

We now present an improved version of the RGB Algorithm that we call the RGBY
Algorithm. RGBY has a more regular structure and avoids some of RGB’s ambigu-
ities. The RGBY chains are of the same types as in the original RGB Algorithm.
The black cumulative chains are used in conjunction with new partial hash chains,
i.e., chains which do not extend all the way back to the origin of the corruption
diagram. Another difference is that these partial chains are evaluated and notarized
during a validation scan of the entire database, and for this reason they are shown
running parallel to the Where axis (instead of being on the action axis) in Figure 7.
The introduction of the partial hash chains will help us deal with more complex
scenarios, e.g., multiple data-only CEs or CEs involving timestamp corruption.

The partial hash chains in RGB are computed as follows. (We assume throughout
that the validation factor V = 2 and IN is a power of two.)

—for odd i the Red chain covers NE2·i−3 through NE2·i−1

—for even i the Green chain covers NE2·i−3 through NE2·i−1

—for even i the Blue chain covers NE2·i−2 through NE2·i

In this new algorithm we simply introduce a new Yellow chain, computed as follows:

—for odd i the Yellow chain covers NE2·i−2 through NE2·i.

In Figure 7 the colors of the partial hash chains are denoted along the When axis
with the labels Red, Green, Blue, and Yellow (the figure is still in black and
white). We use subscripts to differentiate between chains of the same color in the
corruption diagram. Each chain takes its subscript from the corresponding VE. In
the pseudocode instead we use a two-dimensional array called Chain. It is indexed
as Chain[color, number], where number refers to the subscript of the chain while
color is an integer between 0 and 3 with the following meaning.

—if color = 0 then Chain refers to a Blue chain

—if color = 1 then Chain refers to a Green chain

—if color = 2 then Chain refers to a Red chain

—if color = 3 then Chain refers to a Yellow chain

We also introduce the following comparisons.
Chain [color 1,number1] ≺ Chain [color 2,number2] iff

(number1 < number2) ∨ (number1 = number2 ∧ color 1 < color 2)
Chain [color 1,number1] = Chain [color 2,number2] iff

(number1 = number2 ∧ color 1 = color 2)

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

20 · K. E. Pavlou and R. T. Snodgrass

VE1

VE3

VE4

VE5

Y1

G2

Y3

G4

Y5

G6

tFVF= UTB

NI = 2

Rs= 2

VI = 4 = 2
= 4

NI

NE0

Where

CE

B

B

B

= LSBRVS
t

R

R

R

USB

2

1

5

6

3

4

10

NE1

NE2

NE3

NE4

NE5

VE2

NE6

NE7

NE8

NE9

NE10

NE11

VE6NE12

 Failure (FVF)
First Validation

22

20LTB

24

When

.

Rt

.

15

Fig. 7. Corruption diagram for the RGBY Algorithm.

The algorithm requires that V = 2. This is because the chains are divided into
two groups: red/yellow added at odd-numbered validation events and blue/green
added at even-numbered validation events. Note that the find tRVS routine from the
Monochromatic Algorithm is used here. As with the Monochromatic Algorithm,
the spatial detection resolution is equal to the validation interval (Rs = IV) and
the temporal detection resolution is equal to the notarization interval (Rt = IN).

In this algorithm (shown in Figure 8), as well as in all subsequent ones, instead
of using an array BlackChains to store the Boolean values of the validation results,
as that used in find tRVS , we use a helper function called val check. This function
takes a hash chain as a parameter and returns the Boolean result of the validation
of that chain.

During the normal processing the cumulative black hash chains are evaluated
and notarized. During a VE the entire database is scanned and validated while the
partial (colored) hash chains are evaluated and notarized.

On line 2 we initialize a set which accumulates all the corrupted granules (in this
case days). Line 3 computes tRVS and lines 4–7 set the temporal and spatial bounds
of the oldest corruption. On lines 9–10 we compute what is the most recent partial
chain (lastChain) while on lines 11–13 we compute the rightmost chain covering

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 21

// input: tFVF is the time of first validation failure
// IN is the notarization interval
// output: Cset is the set of corrupted granules
// UTB , LTB are the temporal bounds on tc
procedure RGBY(tFVF , IN):
1: IV ← 2 · IN // V = 2
2: Cset ← ∅
3: tRVS ← find tRVS (tFVF , IN)
4: USB ← tRVS + IN

5: LSB ← tRVS

6: UTB ← tFVF

7: LTB ← max(tFVF − IV , tRVS)
8: Cset ← Cset ∪ {tRVS + 1}
9: v ← (tFVF /IV)
10: lastChain ← Chain[1 + v mod 2, v]
11: n← (LSB/IN)
12: s← ⌈(n/2.0)⌉ + 1
13: currChain ← Chain [(n + 3) mod 4, s]
14: while currChain � lastChain do
15: if (currChain.color = Green) ∨ (currChain.color = Yellow) then
16: succChain.number ← currChain.number + 1
17: else succChain.number ← currChain.number
18: succChain.color ← (currChain.color + 1) mod 4
19: if ¬ val check(currChain) then
20: if ¬ val check(succChain) then
21: if currChain.color = Blue ∨ currChain.color = Red then
22: Cset ← Cset ∪ {2 · (currChain.number − 1) · IN + 1}
23: else Cset ← Cset ∪ {2 · currChain.number · IN − IN + 1}
24: currChain ← succChain
25: return Cset, LTB < tc ≤ UTB

Fig. 8. The RGBY Algorithm.

the oldest corruption (currChain). In Figure 7 the oldest corruption is in the IN

covering days 9 and 10 so currChain is Yellow3. The “while” loop on line 14 linearly
scans all the partial chains to the right of tRVS , i.e., from currChain to lastChain
and checks for the pattern . . .TFFT. . . in order to identify the corrupted granules.
To achieve this the algorithm must check the validation result of chainChain and its
immediate successor. Lines 15–18 compute this successor denoted by succChain . If
both the validation of currChain and succChain return false then we have located
a corruption and the appropriate granule is added to Cset (lines 21–23).

The RGBY Algorithm was designed so that it attempts to find more than one
CE. However, the main disadvantage of the algorithm is that it cannot distinguish
between three contiguous corruptions and two corruptions with an intervening IN

between them. In both cases, the pattern of truth values of the validated partial
chains is . . .TFFFFT. . .. Hence, in the latter case the algorithm will report all
three IV × IN rectangles as corrupted. This is not desirable because it introduces
a false positive result. (Appendix B explains this in more detail.)

The running time of the RGBY Algorithm is O(lg(tFVF/IN) + (tFVF/IV)) =
O(tFVF/IV). The lg(tFVF/IN) term arises from invoking find tRVS . The (tFVF/IV)
term is due to the linear scan of all the colored partial chains which in the worst
case would be twice the number of VEs.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

22 · K. E. Pavlou and R. T. Snodgrass

8.3 The Tiled Bitmap Algorithm

Appendix C presents an improved version of the Polychromatic Algorithm [24]
called the Tiled Bitmap Algorithm. The original Polychromatic Algorithm utilized
multiple Red and Blue chains while retaining the Green chain from the RGB Algo-
rithm. These two kinds of chains and their asymmetry complicated this algorithm.
The Tiled Bitmap Algorithm relocates these chains to be more symmetric, resulting
in a simpler pattern.

The algorithm also uses a logarithmic number of chains for each “tile” of duration
IN . The spatial resolution in this case can thus be arbitrarily shrunk with the
addition of a logarithmic number of chains in the group. The result is that for this
algorithm, and not for the previous two, Rs can be less than IN . More specifically,
the number of chains which constitute a tile is 1 + lg(IN/Rs). We denote the ratio
IN/Rs by N , the notarization factor. We require N to be a power of 2. (NB:
In the previous two algorithms N = 1.) This implies that for all the algorithms,
IN = N · Rs and Rt = V · IN = V · N · Rs . Also, because of the fact that Rs can
vary we define D to be the number of Rs units in the time interval from the start
until tFVF , that is, D = tFVF/Rs.

As an example, in Figure 9, Rs = 1, IN = N = 24 = 16, V = 2, Rt = 32, and
D = 64. If we wanted an Rs of, say, 90 minutes (1/16 day), we would need another
4 chains: 1 + lg(IN/Rs) = 1 + lg(16/ 1

16) = 9. (Appendix C explains this figure in
much more detail.)

In all of the algorithms presented thus far, discovering corruption (CEs or post-
dating intervals) to the right of tRVS is achieved using a linear search which visits
potentially all the hash chains in this particular interval. Due to the nature of these
algorithms, this linear search is unavoidable. The Tiled Bitmap algorithm reduces
the size of the linear search by just iterating on the longest partial chains (c(0))
that cover each tile. The running time of the Tiled Bitmap Algorithm is shown in
Appendix C to be O(D).

In addition, the Tiled Bitmap Algorithm may handle multiple CEs but it poten-
tially overestimates the degree of corruption by returning the candidate set with
granules which may or may not have suffered corruption (false positives). The num-
ber of false positives in the Tiled Bitmap Algorithm could be significantly higher
than the number of false positives observed in the RGBY Algorithm. Figure 9 shows
that the Tiled Bitmap Algorithm will produce a candidate set with the following
granules (in this case, days): 19, 20, 23, 24, 27, 28, 31, 32. The corruptions occur
on granules 19, 20 and 27 while the rest are false positives. In order to overcome
these limitations we introduce the next algorithm.

8.4 The a3D Algorithm

We have seen that the existence of multi-locus CEs can be better handled by sum-
marizing the sites of corruption via candidate sets, instead of trying to find their
precise nature. We proceed now to develop a new algorithm that avoids the lim-
itations of all the previous algorithms and at the same time handles the existence
of multi-locus CEs successfully. We call this new algorithm the a3D Algorithm
for reasons that will become obvious when we analyze it. The a3D Algorithm is
illustrated in Figure 10. Even though the corruption diagram shows only VE s, it is

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 23

NE1

NE0

NE2

NE3

NE4

16 32 48

.

VE1

TILE

When

CE1.
CE 2

TILE TILE

64

Where

VE2

TILE (EXPANDED)

IN = 16

IV = 32

= 32R t

= 1R s

Fig. 9. Corruption diagram for the Tiled Bitmap Algorithm.

implicit that these were preceded immediately by notarization events (not shown).
The difference between the Tiled Bitmap Algorithm and a3D is that in the latter
each chain is contiguous, that is, it has no gaps. It was the gaps that necessitated
the introduction of the candidate sets. Figure 10 shows that the corruption regions
in the a3D Algorithm each correspond to a single corruption. All existing corrup-
tions at granules 4, 7, and 10 are identified with no false positives. The difference
between a3D and the other algorithms is a slowly increasing number of chains at
each validation. In Figure 10, the chains are named using letters B for the black
cumulative chains and P for the partial chains. Observe that there is one diagonal
full chain at VE1 and two partial chains. VE2 has a full black chain (B2, with
the subscript the day—Rs unit—of the validation event), retains the chains (P2,0,2

and P2,0,3) and adds a longer partial chain (P2,1,1). (We will explain these three
subscripts shortly.) We add another chain at VE4 (P4,2,1) and another chain at
VE8 (P8,3,1).

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

24 · K. E. Pavlou and R. T. Snodgrass

= 1Rs

= 2Rt

IN = 2VI =

1 2 16 184 6 8 10 12 14
Where

0

VE1

VE

VE3

VE4

VE5

VE6

VE7

VE8

P

2P2,0,2

2,0,3

P2,1,1
4 4,3,0

P

P

6,0,10P

6,2,2

6,1,5

B = P

B = P

P
8,4,08

8,3,1
P8,2,3

8,1,7
P

P

8,0,14 P8,0,15

P4,2,1

4,1,3
P

P

4,0,6

P6,0,11

P4,0,7
B = P2 2,2,0

When

B = P

P1,0,0 P1,0,1

1,1,01

NE

CE1 2
. .CE

Fig. 10. Corruption diagram for the a3D Algorithm.

The a3D Algorithm assumes that given an Rs, tFVF 6= 0, D = tFVF/Rs, and V = 1
(which implies that Rt = IN).

The beauty of this algorithm is that it decides what chains to add based on the
current day/Rs unit. In this way the number of chains increases dynamically, which
allows us to perform binary search in order to locate the corruption. If we dissociate
the decision of how many chains to add from the current day then we are forced to
repeat a certain fixed pattern of hash chains which results in the drawbacks seen
in the Tiled Bitmap Algorithm.

During normal processing the algorithm adds partial hash chains (shown with
white-tipped arrows). These partial chains are labeled as P with three subscripts.
The first subscript is the number m of the current VE, such as P4,2,1 added at
VE4. The second subscript, level, identifies the (zero-based) “vertical” position of
the chain P within a group of chains added at VEm. This subscript also provides
the length of the partial chain as 2level . For example, chain P4,2,1 has length 22 = 4.
The final subscript, comp (for component), determines the “horizontal” position of
the chain: all chains within a certain level have a position comp which ranges from
0 to 2level − 1. For example, hash chain P4,2,1 is the second chain at level 2. The
first chain at level 2 is P2,2,0 which just happens to be the black chain B2; the third
chain at this level is P6,2,2; and the fourth chain is P8,2,3.

The addition of partial hash chains allows the algorithm to perform a bottom-
up creation of a binary tree whose nodes represent the hash chains (see Figure 11).
Depending on when the CE transpires there maybe nodes missing from the complete

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 25

4 4,3,0B = P

B = P2 2,2,0

P2,0,2

P1,0,0 P5,0,8

B = P2 2,2,0

P5,1,4

P4,2,1 P8,2,3

4 4,3,0B = P P8,3,1

8,4,0B = P8

P8,1,7

P8,0,15P7,0,13

P7,0,12

P1,0,1

P2,1,1

P2,0,2

P2,0,3

P6,2,2

P3,1,2

P3,0,4

P3,0,5

P4,1,3 P6,1,5 P7,1,6

P4,0,6

P4,0,7 P5,0,9

P6,0,10

P6,0,11

P8,0,14

Rt = 1

VI = 2NI=

B = P1 1,1,0

1 2 4 6 8 10 12 140

VE1

VE

VE3

VE4

VE5

VE6

VE7

P

2
2,0,3

P2,1,1

NE

P

P

6,0,10P

6,2,2

6,1,5

P4,2,1

4,1,3
P

P

4,0,6

P6,0,11

P4,0,7

Where

When

Fig. 11. The a3D Algorithm performs a bottom-up creation of a binary tree.

tree so in reality we have multiple binary trees which are subtrees of the next
complete tree. In the above example the nodes/chains missing are those in the
shaded region, while there are three complete subtrees each rooted at B4 = P4,3,0,
P6,2,2, and P7,1,6 respectively.

The a3D Algorithm is given in Figure 12. Note that when val check is called
with a hash chain P [m, level , comp] for whom m is a power of 2, level ≥ lg(N),
and comp = 0, these chains are actually black chains whose validation result can
be obtained through BlackChains[m]. All black chains appear only on the leftmost
path from the root to the leftmost child; however, not all chains on this path are
black.

The a3D function evaluates the height of the complete tree, regardless of whether
we have a single tree or a forest (line 5). Then it calls the recursive a3D helper
function which performs the actual search. In the recursive part of a3D helper, the
function calls itself (lines 8–9, 11–12) with the appropriate hash (sub-)chain only if
the current chain does not exist or evaluates to false (line 6). In this case we are
relying on short-circuit Boolean evaluation for correctness. All of the compromised
granules are accumulated into Cset.

The running time of the algorithm is dominated by the successive calls to the
recursive function a3D helper. The worst-case running time is captured by the
recursion T (D) = 2 · T (D/2) + O(1), i.e., we have to recurse to both the left
and right children. The solution to this recursion gives us T (D) = Θ(D), so the
algorithm is linear in the number of Rs units. In the best case, the algorithm
recurses on only one of the two children and thus the running time is O(lg D).

The algorithm takes its name from the fact that for a given D, the algorithm
makes in the worst case 3 · D number of notarization contacts, as shown below.

Total Number of Notarizations = number of chains in tree

+ number of black chains not in tree

= N (D)

+ D/N − (1 + ⌊lg(D/N)⌋) (1)

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

26 · K. E. Pavlou and R. T. Snodgrass

// input: tFVF is the time of first validation failure
// IN is the notarization interval
// Rs spatial detection resolution
// output: Cset is the set of corrupted granules
// UTB, LTB are the temporal bounds on tc
procedure a3D(tFVF , IN , Rs):
1: Cset ← ∅
2: D ← tF VF /Rs

3: N ← IN/Rs

4: m max ← 2⌈lg(D/N)⌉

5: height ← lg N + lg(m max)

6: Cset ← a3D helper(P [m max , height , 0], Cset, N)
7: min ← Cset[0]
8: if min < tFVF − IN then LTB ← tFVF − IN

9: else LTB ← min
10: UTB ← tFVF

11: return Cset,LTB < tc ≤ UTB

// input: P [m, level, comp] is a hash chain that was evaluated on VEm

// and whose length depends on level

// N is the notarization factor
// Cset an empty set in which the corrupted granules will be accumulated
// output: Cset is the set of corrupted granules
procedure a3D helper(P [m, level , comp], Cset, N):
1: if level = 0 then
2: if exists(P [m, level, comp]) then
3: if ¬ val check(P [m, level, comp]) then Cset ← Cset ∪ {comp}
4: return Cset

5: else
6: if ¬ exists(P [m, level, comp]) ∨ ¬ val check(P [m, level, comp]) then
7: if ¬ (level ≤ lg N) then

8: return a3D helper (P [1
2
· (m + m− (2level/N)), level − 1, 2 · comp], Cset, N)

9: return a3D helper (P [m, level − 1, 2 · comp + 1], Cset, N)
10: else
11: return a3D helper (P [m, level − 1, 2 · comp], Cset, N)
12: return a3D helper (P [m, level − 1, 2 · comp + 1], Cset, N)

Fig. 12. The a3D Algorithm.

where

N (D) =















0 , D = 0 (i)
2i+1 − 1 = 2 · D − 1 , D = 2i, i ∈ N, D > 0 (ii)

N (2⌊lg D⌋) + N (D − 2⌊lg D⌋) , Dmod 2 = 0 ∧ D 6= 2i, D > 0 (iii)
N (D − 1) , Dmod 2 = 1 (iv)

N is the number of hash chains which is the same as the number of nodes in the
complete binary tree or the forest.

Case (iv) of the above recursion shows that for odd D, N (D) is always equal to
the number of hash chains of the previous even D. For this reason, we only need
consider the case when D is even. What case (iii) essentially does at each stage of
the recursion is to decompose D into a sum of powers of 2; each such power under
the action of N yields 2i+1 − 1 notarizations. (This is also the number of nodes in

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 27

the subtree of height i.) Thus, to evaluate this recurrence we examine the binary
representation of D. Each position in the binary representation where there is a ‘1’
corresponds to a power of 2 with decimal value 2i. Summing the results of each one
of these decimal values under the action of N gives the desired solution to N (D).
This solution can be captured mathematically using Iverson brackets [13, p. 24]
(here, & is a bit-wise AND operation):

N (D) =

⌊lg D⌋
∑

i=0

(2i+1 − 1) · [D&2i 6= 0] .

The total number of notarizations is bounded above by the number 3 · D. This
loose bound can be derived by simply assuming that the initial value of D is a
power of 2. Assuming also that the complete binary tree has height H = lg D, then

Total Number of Notarizations ≤ 2 · D − 1 + D/N − (1 + ⌊lg(D/N)⌋)

< 2 · D + D/N minimum value of N = 1

≤ 3 · D
8.5 Summary

We have presented four forensic analysis algorithms: Monochromatic, RGBY, Tiled
Bitmap, and a3D.

Assuming worst case scenarios, the running time of the Monochromatic Algo-
rithm is O(lg D); for the rest it is O(D). Each of these algorithms manages the
trade-off between effort during normal processing and effort during forensic anal-
ysis; the algorithms differ in the precision of their forensic analysis. So while the
Monochromatic Algorithm has the fastest running time, it offers no information
beyond the approximate location of the earliest corruption. The other algorithms
work harder, but also provide more precise forensic information. In order to more
comprehensively compare these algorithms, we desire to capture this tradeoff and
resulting precision in a single measure.

9. FORENSIC COST

We define the forensic cost as a function of D (expressed as the number of Rs

units), N , the notarization factor (with IN = N · Rs), V , the validation factor
(with V = IV /IN), and κ, the number of corruption sites (the total number of tl’s,
tb’s, and tp’s). A corruption site differs from a CE because a single timestamp CE
has two corruption sites.

FC(D, N, V, κ) = α · NormalProcessing(D, N, V) + β · ForensicAnalysis(D, N, V, κ)

+ γ · AreaP (D, N, V, κ) + δ · AreaU (D, N, V, κ)

Forensic cost is a sum of four components, each representing a cost that we would
like a forensic analysis algorithm to minimize, and each weighted by a separate
constant factor: α, β, γ, and δ. The first component, NormalProcessing , is the
number of notarizations and validations made during normal processing in a span
of D days. The second component, ForensicAnalysis , is the cost of forensic analysis
in terms of the number of validations made by the algorithm to yield a result. Note
that this is different from the running time of the algorithm. The rationale behind
this quantity is that each notarization or validation involves an interaction with the
external digital notarization service, which costs real money.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

28 · K. E. Pavlou and R. T. Snodgrass

The third and fourth components informally indicate the manual labor required
after automatic forensic analysis to identify exactly where and when the corruption
happened. This manual labor is very roughly proportional to the uncertainty of
the information returned by the forensic analysis algorithm. It turns out that
there are two kinds of uncertainties, formalized as different areas (to be described
shortly). That these components have different units than the first two components
is accommodated by the weights.

In order to make the definition of forensic cost applicable to multiple corruption
events we need to distinguish between three regions within the corruption diagram.
These different areas are the result of the forensic analysis algorithm identifying the
corrupted granules. This distinction is based on the information content of each
type.

—AreaP or corruption positive area is the area of the region in which the forensic
algorithm has established that corruption has definitively occurred.

—AreaU or corruption unknown area is the area of the region in which we don’t
know if or where a corruption has occurred.

—AreaN or corruption negative area is the area of the region in which the forensic
algorithm has established that no corruption has occurred.

Each corruption site is associated with these three types of regions of varying area.
More specifically, each site induces a partition of the horizontal trapezoid bound
by the latest validation interval into three types of forensic area. Figure 13 shows
this for a specific example of the RGBY Algorithm with two corruption events
(CE1, CE2) and three corruption sites (κ = 3). For each corruption site, the sum
of the areas, denoted by TotalArea = AreaP + AreaU + AreaN , corresponds to the
horizontal trapezoid as shown. Hence, TotalArea = (V · N) · (D − (1/2) · V · N).
Moreover, the forensic cost is a function of the number of corruption sites κ, each
associated with the three areas AreaP , AreaU , AreaN . Hence, in evaluating the
forensic cost of a particular algorithm we have to compute AreaP and AreaU for
all κ, e.g., AreaP (D, N, V, κ) =

∑

κ AreaP . The stronger the algorithm the less
costly it is, with smaller AreaP and AreaU . It is also desirable that AreaN is large
but since TotalArea is constant this is achieved automatically by minimizing AreaP

and AreaU .
We now proceed to compute the forensic cost of our algorithms. We ignore the

weights, as these constant factors will not be relevant when we use order notation.

9.1 The Monochromatic Algorithm

In the Monochromatic Algorithm, the spatial detection resolution (Rs) is the no-
tarization interval, IN , i.e., N = 1. Recall that the Monochromatic Algorithm can
only detect a single corruption site, even though there could be κ of them in a single
corruption diagram.

NormalProcessing mono = Number of Notarizations

+ Number of Validations

= D

+ D/V

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 29

Area AreaAreaP UN

(a) First Corruption Site

(b) Second Corruption Site

(c) Third Corruption Site

=UTBFVFt

VE

NE

VE

NE

tFVF=UTB

VE

NE

=UTBFVFt

NE

NE

NE

NE

NE
VE

 Failure (FVF)
First Validation

 Failure (FVF)
First Validation

First Validation
 Failure (FVF)

VE

NE
VE

.2CE

1CE.

Fig. 13. Three types of forensic area for RGBY and κ = 3.

In forensic analysis calculations we require D to be a multiple of V because tFVF is
a multiple of IV and only at that time instant can the forensic analysis phase start.
ForensicAnalysis mono = 2 · lg D since tRVS is found via binary search on the black
chains; the factor of two is because a pair of contiguous chains must be consulted
to determine which direction to continue the search.

For the detected corruption site AreaP has a different shape depending on the
position of the corruption site. As the corruption site moves from left to right
(from earlier days to later days), the shape of the region changes from rectangular,
to trapezoidal, and finally, to triangular. However, since we are dealing with worst
case scenario, the upper bound of AreaP is V · N2 = V . Figure 14 shows such
a worst case distribution of κ corruption sites and how each site partitions the
horizontal trapezoid into different forensic areas. In the worst case, the corruption
detected occurs within the first IN which makes AreaP = 0 of all other corruption
sites because they cannot be detected. This results in

AreaU = (κ − 1) · (TotalArea − V)

= (κ − 1) · [V · (D − (1/2) · V) − V]

= (κ − 1) · V · (D − (1/2) · V − 1)

as shown in Table II.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

30 · K. E. Pavlou and R. T. Snodgrass

κ corruption

.

...

Area Area Area

..

.

PN U

1 corruption
site

2 corruption
sites

sites

Fig. 14. Three types of forensic area for Monochromatic and κ corruption sites.

Table II. The forensic areas for 1 ≤ κ ≤ D corruption sites (Monochromatic).

Corruption Sites AreaP AreaU AreaN

(1 ≤ κ ≤ D)

1 V 0 TotalArea − V

2 0 TotalArea − V V

...
...

...
...

κ 0 TotalArea − V V

Hence the forensic cost for the Monochromatic Algorithm is as follows.

FCmono(D, IN , V, κ) = (D + D/V + 2 · lg D)

+ (V +

κ
∑

i=2

(TotalArea − V))

We consider the forensic cost of a single corruption site (κ = 1) separately from the
cases where κ > 1, the reason being the area breakdown is different in the two cases.
Note that for κ = 1,

∑κ
i=2(TotalArea − V) is an empty sum, equal to zero.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 31

FCmono(D, 1, V, 1) = (D + D/V + 2 · lg D) + V

= O(V + D)

FCmono(D, 1, V, κ ≥ 2) = (D + D/V + 2 · lg D)

+ (V + (κ − 1) · (TotalArea − V)) (2)

= O(κ · V · D)

In order to arrive at the order notation we make, here and in the following sections,
the simplifying assumptions that 1 ≤ V ≤ κ ≤ D and 1 ≤ N ≤ κ ≤ D.

9.2 Summary

In Appendix D we perform a similar worst-case forensic cost analysis for the RGBY,
Tiled Bitmap, and a3D Algorithms; Appendices E and F provide best-case and
average-case analyses, respectively, for all four algorithms.

We summarize the forensic cost for worst-case distribution of corruption sites
of the algorithms in Table III. Tables IV and V summarize the forensic cost for
average-case and best-case forensic cost, respectively. In the first two tables, we
consider the number of corruptions κ = 1 separately from 1 < κ ≤ D for the
Monochromatic Algorithm. Recall that the forensic cost is a function of D, N , V ,
and κ and that for some of the algorithms N or V may be fixed.

In Table III we see in the rightmost column that Monochromatic depends on
the product of κ and D whereas RGBY depends on their sum. Tiled Bitmap has
a complex combination of N and V and a3D adds a lg D multiplier to κ. If we
consider the case when κ = 1 for all algorithms we see that they are generally linear
in D, except for Tiled Bitmap.

Observe that Table IV (average case) mirrors almost exactly the forensic cost of
the worst-case distribution shown in Table III. This is not the case with Table V
where the Monochromatic Algorithm is very cheap under best-case distribution
and thus has a clear advantage over Tiled Bitmap and a3D. However, this only
happens in the unlikely case where the position of the κ corruption sites allows the
Monochromatic Algorithm to definitively identify them all.

In Table V (best case), for the Monochromatic Algorithm we see that the forensic
cost is lowest under best-case distribution while for average-case and worst-case the
forensic costs are asymptotically the same. Specifically, the number of granules D
starts as an additive factor O(κ·V +D) in the best case and becomes a multiplicative
factor O(κ · V · D) in the average and worst cases. The forensic cost of the RGBY
algorithm under all assumed distributions remains the same and is equal O(κ+D).
The forensic cost of the Tiled Bitmap Algorithm differs under each distribution.
The difference lies with the exponent of N in the first term which starts from 1,
goes to lg 3 and then to 2. The a3D Algorithm, like the RGBY Algorithm, is very
stable, with the same forensic cost of O(κ · N + D + κ · lg D) under any assumed
distribution of corruption events.

9.3 Audit System Implementation

A full implementation of the audit system was built on top of the TUC (Tempo-
ral Upward Compatibility), CLK (Clock), and STP (Stamper) modules that were
previously added to an underlying Berkeley DB system so that it could support

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

32 · K. E. Pavlou and R. T. Snodgrass

Table III. Summary of the forensic cost assuming worst-case distribution of corruption
sites.

Worst-Case Forensic Cost
Algorithm

(κ = 1) (1 < κ ≤ D)

Monochromatic O(V + D) O(κ · V ·D)

RGBY O(κ + D)

Tiled Bitmap O(κ · V ·N2 + (D · lg N)/N + lg D)

a3D O(κ ·N + D + κ · lg D)

Table IV. Summary of the forensic cost assuming average-case distribution of corrup-
tion sites.

Average-Case Forensic Cost
Algorithm

(κ = 1) (1 < κ ≤ D)

Monochromatic O(V + D) O(κ · V ·D)

RGBY O(κ + D)

Tiled Bitmap O(κ · V ·N lg 3 + (D · lg N)/N + lg D)

a3D O(κ ·N + D + κ · lg D)

Table V. Summary of the forensic cost assuming best-case distribution of corruption
sites.

Best-Case Forensic Cost
Algorithm

(1 ≤ κ ≤ D)

Monochromatic O(κ · V + D)

RGBY O(κ + D)

Tiled Bitmap O(κ · V ·N + (D · lg N)/N + lg D)

a3D O(κ ·N + D + κ · lg D)

transaction time [27]. A notarization service requester utility and a database val-
idator utility were implemented as separately running programs; both send requests
to and receive responses from an external digital notarization service, in this case
Surety. The existence of the audit system imposed a 15% increase in time in the
worst case when tuples are sufficiently small (10 bytes). The impact on time when
record size and record number were larger was even less than 15%. Hence the
overhead for runtime hashing is small. The Monochromatic forensic analysis algo-
rithm has been incorporated into this system, and the rest of the algorithms are

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 33

Table VI. Settings used in experimental validation of forensic cost assuming worst-case
distribution of corruption sites. (Values in bold are non-configurable.)

Parameters Algorithm
Monochromatic RGBY Tiled Bitmap a3D

Rs 1 1 1 1

N 1 1 8 8

V 8 2 1 1

D 256 256 256 256

in the process of being incorporated. We can make the following observations. We
have an idea of what the overhead is for the Monochromatic Algorithm because the
normal processing part was evaluated before [27]; the only part that is missing is
the forensic analysis phase which revalidates past hash chains. All algorithms have
the same number of I/O operations (and hence performance in terms of time) as
the Monochromatic for the normal processing phase, since for all algorithms the
database is scanned entirely only during validations.

9.4 Illustrating and Validating the Forensic Cost

We have implemented the Monochromatic, RGBY, Tiled Bitmap, and a3D Algo-
rithms in C. The entire implementation is approximately 1480 lines long and the
source code is available at http://www.cs.arizona.edu/projects/tau/tbdb/.
The forensic cost has been validated experimentally by inserting counters in the
appropriate places in the code. More specifically, the forensic cost and its normal
processing component have been validated for values 1 ≤ D ≤ 256 and 1 ≤ κ ≤ 256
as shown in Figures 15, 16, and 17.

To examine the effects of the various parameters on the theoretical cost, we
provide graphs showing the growth of forensic cost against these parameters. These
are drawn on the same set of axes as the graphs derived experimentally. In all
graphs, we have uniformly used D = 256 and Rs = 1. For the Monochromatic
Algorithm, N is required to be 1, so IN = 1, and we also set V = 8. For the
RGBY Algorithm, N is also required to be 1 and V is required to be 2, so this
dictates Rt = 2. For the Tiled Bitmap Algorithm, we set N = 8 which implies four
chains, and we also set V = 1. For the a3D Algorithm, we similarly set N = 8 and
V = 1. All algorithms have Rt = 8 except for RGBY. The settings used in the
experimental validation are summarized in Table VI.

Rather than using the cost formulas in order notation to create the graphs,
we used the more involved (and more accurate) cost functions derived for each
algorithm: equation (2) on page 31 for the Monochromatic Algorithm, equation (3)
on page App–11 for the RGBY Algorithm, and equation (4) on page App–13 for the
Tiled Bitmap Algorithm. For the a3D Algorithm we used the even more precise
recursive formula equation (5) on page App–14 to calculate the cost of normal
processing instead of the one shown within (6) on page App–17. Also, for values of
D that are not a multiple of V · IN we use the largest multiple of V · IN less than
D to calculate the cost of the forensic analysis stage.

Note that all cost plots show both the predicted forensic cost (denoted by “(P)”
in the plot legend) and the actual forensic cost values (denoted by “(A)” in the plot

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

34 · K. E. Pavlou and R. T. Snodgrass

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 50 100 150 200 250

F
or

en
si

c
C

os
t

Number of Corruption Sites (κ)

Mono (P)
Mono (A)

Tiled Bitmap (P)
Tiled Bitmap (A)

a3D (P)
a3D (A)

RGBY (P)
RGBY (A)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 50 100 150 200 250

F
or

en
si

c
C

os
t

Number of Corruption Sites (κ)

(a) 1 ≤ κ ≤ 256

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 5 10 15 20 25 30 35 40

F
or

en
si

c
C

os
t

Number of Corruption Sites (κ)

Mono (P)
Mono (A)

Tiled Bitmap (P)
Tiled Bitmap (A)

a3D (P)
a3D (A)

RGBY (P)
RGBY (A)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 5 10 15 20 25 30 35 40

F
or

en
si

c
C

os
t

Number of Corruption Sites (κ)

(b) 1 ≤ κ ≤ 40

Fig. 15. Forensic cost against κ for D = 256.

legend). The different types of symbols on the curves were added for clarity and
correspond to a subset of the actual data points.

We start by examining the growth of forensic cost of the algorithms against κ,
as shown in the graphs in Figure 15. Figure 15(a) shows how the forensic cost
increases with κ. Most of the predicted forensic costs are very close to the actual
values and in these cases (e.g., a3D algorithm) the two lines overlap. Figure 15(b)

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 35

Table VII. Sample forensic costs for the four implemented algorithms.
Forensic Cost Monochromatic RGBY Tiled Bitmap a3D

Predicted 512352 1934 17610 3128

Actual 512354 1935 16714 3134

is a magnification of the region in Figure 15(a) where κ takes values between 1
and 40. The cheapest algorithm for κ = D is RGBY while the most expensive is
Monochromatic. Observe in Figure 15(b) that for κ = 1 the costs of Monochromatic
and Tiled Bitmap are comparable and have the lowest value of all other algorithms.

Even more interestingly, the RGBY algorithm starts off as being the most expen-
sive algorithm and then becomes the cheapest. This can be explained by observing
that ambiguity in the corruption region (large AreaU for κ > 1) increases the cost of
the Monochromatic Algorithm. The Tiled Bitmap Algorithm suffers considerably
from false positives (for every true corruption site there exist N − 1 false positives)
On the other hand the comparison of a3D to RGBY is more subtle. a3D starts
below RGBY but eventually becomes more expensive. The reason is that initially
RGBY has to linearly scan all its partial chains whereas a3D does not (this hap-
pens only for D/2 ≤ κ ≤ D). However, the overhead of validating the a3D tree
outweighs the impact of the presence of false positives produced by RGBY.

Figure 16 shows how the forensic cost increases with time D for different numbers
of corruption sites, namely, κ = 1, and κ = 2. As expected for κ = 1 (Figure 16(a)),
the Monochromatic Algorithm has the lowest forensic cost for roughly the first half
of the range of values of D. For the second half, the Tiled Bitmap Algorithm
becomes the cheapest because it is able to definitively identify all the corruption
negative areas through a logarithmic number of chains.

When κ = 2 the Tiled Bitmap Algorithm is cheapest, as shown in Figure 16(b).
This is because Tiled Bitmap need only identify a single additional tile, whereas
a3D (the second cheapest algorithm) has to process an entire subtree of maximal
height. Also, for this value of κ the Monochromatic Algorithm becomes the most
expensive algorithm.

Finally, Figure 17 shows how the cost of only the normal processing phase varies
with the number of days D. Note that this cost is independent of κ. Here we
see clearly that the most expensive normal processing phase belongs to the RGBY
Algorithm. a3D is the next most expensive algorithm while Tiled Bitmap is the
cheapest in terms of normal processing. This suggests that shifting the cost/amount
of work done to the normal processing phase may not always pay off during forensic
analysis.

Table VII shows the predicted and actual forensic costs for the four implemented
algorithms when D = κ = 256. The two values in each of the four cases differ
by about 6% for Tiled Bitmap; for the other three the actual and predicted were
nearly identical.

10. A LOWER BOUND FOR FORENSIC COST

We wish to derive a realistic lower bound for the Forensic Cost measure in terms of
κ corruption sites, validation factor V , notarization interval IN , and D days before
the corruption is first detected.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

36 · K. E. Pavlou and R. T. Snodgrass

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 50 100 150 200 250

F
or

en
si

c
C

os
t

Number of Days (D)

RGBY (P)
RGBY (A)

a3D (A)
a3D (P)

Mono (A)
Mono (P)

Tiled Bitmap (A)
Tiled Bitmap (P)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 50 100 150 200 250

F
or

en
si

c
C

os
t

Number of Days (D)

(a) κ = 1

 0

 500

 1000

 1500

 2000

 50 100 150 200 250

F
or

en
si

c
C

os
t

Number of Days (D)

Mono (P)
Mono (A)

RGBY (P)
RGBY (A)

a3D (A)
a3D (P)

Tiled Bitmap (A)
Tiled Bitmap (P)

 0

 500

 1000

 1500

 2000

 50 100 150 200 250

F
or

en
si

c
C

os
t

Number of Days (D)

(b) κ = 2

Fig. 16. Forensic cost against D for κ = 1 and κ = 2.

The optimal value for AreaU is 0 whereas the optimal value for AreaP is
κ · V · IN · w, where w is the width and V · IN = IV is the height of the rect-
angle in which the corruption site is located.

Keep in mind that these algorithms do not aim at reducing the tc uncertainty.
The size of the uncertainty of this temporal dimension depends solely on the size
of the validation interval (IV) and therefore it can be reduced if and only if IV

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 37

 0

 100

 200

 300

 400

 500

 600

 50 100 150 200 250

N
or

m
al

 P
ro

ce
ss

in
g

C
os

t

Number of Days (D)

RGBY (P)
RGBY (A)

a3D (A)
a3D (P)

Mono (P)
Mono (A)

Tiled Bitmap (P)
Tiled Bitmap (A)

 0

 100

 200

 300

 400

 500

 600

 50 100 150 200 250

N
or

m
al

 P
ro

ce
ss

in
g

C
os

t

Number of Days (D)

Fig. 17. Cost of Normal Processing against D.

is reduced. No other factor involving external notarization can have any impact
on it. This is due to the fact that the tc uncertainty is bounded above by the current
time—the time the CE was discovered—and is also bounded below by the last time
we checked the database, the last VE time. This is by definition the validation
interval. Any new strategies introduced which are purely “native” to the system
cannot be trusted and thus violate the working premise of this approach: no extra
assumptions should be made about the system.

To obtain bounds on the Normal Processing and Forensic Analysis phases we start
with a rather optimistic scenario. Suppose that we had a priori knowledge (both
“when” and “where”) of the exact κ granules to be corrupted in the future. Then
the optimal algorithm would notarize κ hash chains of length one each covering
the granule to be corrupted. Similarly, the forensic analysis would validate those κ
hash chains and that would find all corruption sites, each bounded by a rectangle
of height V · IN and width w = 1 granule (where a granule is a unit of Rs). Thus
a lower bound would be

FClower bound1 = (κ + κ)

+ κ · V · IN · 1 = 2 · κ + κ · V · IN .

However, we do not feel it is fair to tax our algorithms with the burden of
precognition. While we still assume that κ and D are known, we have no a priori
knowledge of “where” the corruption sites are going to occur (within D). Given this
information we seek to find the optimal value for n ≥ κ, the number of notarizations
during normal processing. The cost of Normal Processing = n, while the cost
of Forensic Analysis = κ · lg n. This is because for every κ we must perform
binary search in order to locate it. The width w for AreaP is D/2n because each

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

38 · K. E. Pavlou and R. T. Snodgrass

notarization provides a single bit of information in the “where” dimension.

FClower bound2 = (n + κ · lg n)

+ κ · V · IN · D/2n

If we assume that the width w can take a minimum value of w = 1 then it follows
that n = lg D. If we substitute this value of n into the above FC expression we get

FClower bound2 = (lg D + κ · lg lg D) + κ · V · IN .

This lower bound makes fewer assumptions about the information available and
therefore FClower bound1 ≤ FClower bound2 . Our final lower bound is

FClower bound = κ · V · IN + κ · lg lg D + lg D , κ ≤ D

= O(κ · V · N + lg D) .

Table VIII compares this lower bound with the worst-case forensic cost of our
algorithms, characterized for “small κ” and “large κ.” In particular, we eliminate
κ by assuming it is either equal to O(1) or O(D) respectively. Note that for the
Monochromatic Algorithm if κ = O(1), we assume that V ≪ D thus simplifying the
cost from O(V +D) to O(D). Tables IX and X repeat this comparison with average-
and best-case forensic costs derived in Appendices E and F. The lower bound across
all three tables is the same because the only way for the lower bound to decrease
in the best-case and average-case analysis is for the binary search to be faster
during forensic analysis. All other components are essential, i.e., n notarizations
are required, and the width w must equal 1. Binary search in the best-case takes
O(1) eliminating the lg lg D factor which in asymptotic notation is irrelevant. In
the average-case forensic cost the average running time of binary search is O(lg n)
so the lower bound remains the same. Hence, there is only the notion of a single
lower bound.

For best-case forensic cost the Monochromatic algorithm (which requires N = 1)
and the RGBY algorithm (which requires N = 1 and V = 2) are optimal for large κ.
Observe also that the asymptotic forensic cost of both the RGBY Algorithm and
that of the a3D Algorithm (which requires V = 1) for all possible cases (worst,
best, average) is optimal for large κ and is close to optimal for small κ.

11. RECOMMENDATIONS

Given the forensic cost formulæ and the insights from the previous sections, our
recommendation is that it is best to provide users with three algorithms: Monochro-
matic, a3D and, depending on the application requirements, RGBY or Tiled Bitmap.
The reason for considering RGBY and Tiled Bitmap as optional is that both these
algorithms unlike the Monochromatic and a3D suffer from false positives. The
RGBY Algorithm has the same optimal characteristics as a3D and is the cheapest
when a large number of corruptions is expected. On the other hand, the Tiled
Bitmap Algorithm has the lowest forensic cost in the long term for a fixed small
number of corruptions but suffers from more false positives than RGBY which
translates into more human effort when trying to pinpoint the exact corruptions at
a later stage. The Tiled Bitmap Algorithm is also indicated when efficiency during
normal processing is critical.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 39

Table VIII. Worst-case forensic cost and lower bound.

Worst-Case Forensic Cost
Algorithm

Small κ (κ = O(1)) Large κ (κ = O(D))

Monochromatic O(D) O(V ·D2)

RGBY O(D)

Tiled Bitmap O(V ·N2 + (D · lg N)/N + lg D) O(V ·N2 ·D)

a3D O(N + D) O(N ·D)

Lower Bound O(V ·N + lg D) O(V ·N ·D)

Table IX. Average-case forensic cost and lower bound.

Average-Case Forensic Cost
Algorithm

Small κ (κ = O(1)) Large κ (κ = O(D))

Monochromatic O(D) O(V ·D2)

RGBY O(D)

Tiled Bitmap O(V ·N lg 3 + (D · lg N)/N + lg D) O(V ·N lg 3 ·D)

a3D O(N + D) O(N ·D)

Lower Bound O(V ·N + lg D) O(V ·N ·D)

Table X. Best-case forensic cost and lower bound.

Best-Case Forensic Cost
Algorithm

Small κ (κ = O(1)) Large κ (κ = O(D))

Monochromatic O(D) O(V ·D)

RGBY O(D)

Tiled Bitmap O(V ·N + (D · lg N)/N + lg D) O(V ·N ·D)

a3D O(N + D) O(N ·D)

Lower Bound O(V ·N + lg D) O(V ·N ·D)

If only two algorithms are to be used then both Monochromatic and a3D should
be implemented. If only one algorithm is needed the choice would be again between
the Monochromatic and a3D Algorithms. The Monochromatic Algorithm is by

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

40 · K. E. Pavlou and R. T. Snodgrass

far the simplest one to implement and it is best-suited for cases when multiple
corruptions are not anticipated or when only the earliest corruption is desired.
The a3D Algorithm is the second easiest algorithm to implement and it is the
only algorithm which exhibits all three of the most desirable characteristics: (i)
it identifies multiple corruptions, (ii) it does not produce false positives, and (iii)
it is stable and optimal for large κ (and near optimal for small κ). Hence, this
algorithm is indicated in situations where accuracy in forensic analysis is of the
utmost importance.

12. RELATED WORK

There has been a great deal of work on records management, and indeed, an entire
industry providing solutions for these needs, motivated recently by Sarbanes-Oxley
and other laws requiring audit logs. In this context, a “record” is a version of
a document. Within a document/record management system (RMS), a DBMS is
often used to keep track of the versions of a document and to move the stored
versions along the storage hierarchy (disk, optical storage, magnetic tape). Exam-
ples of such systems are the EMC Centera Compliance Edition Content Addressed
Storage System1, the IBM System Storage DR series2, and NetApp’s SnapLock
Compliance3. Interestingly, these systems utilize magnetic disks (as well as tape
and optical drives) to provide WORM storage of compliant records. As such, they
are implementations of read-only file systems (also termed append-only), in which
new files can only be added. Several designs of read-only file systems have been pre-
sented in the research literature [10; 20]. Both of these systems (as well as Ivy [22])
use cryptographic signatures so that programs reading a file can be assured that it
has not been corrupted.

Hsu and Ong have proposed an end-to-end perspective to establishing trustwor-
thy records, through a process they term fossilization [15]. The idea is that once a
record is stored in the RMS, it is “cast in stone” and thus not modifiable. An index
allows efficient access to such records, typically stored in some form of WORM
storage. Subsequently, they showed how the index itself could be fossilized [32].
Their approach utilizes the WORM property provided by the systems just listed:
that the underlying storage system supports reads from and writes to a random
location, while ensuring that any data that has been written cannot be overwritten.

This is an appealing and useful approach to record management. We have ex-
tended this perspective by asserting that every tuple in a database is a record, to
be managed. The challenge was two-fold. First, a record in a RMS is a heavy-
weight object: each version is stored in a separate file within the file system.
In a DBMS, a tuple is a light-weight object, with many tuples stored on a sin-
gle page of a file storing all or a good portion of a database. Secondly, records
change quite slowly (examples include medical records, contacts, financial reports),
whereas tuples change very rapidly in a high-performance transactional database.
It is challenging to achieve the functionality of tracked, tamper-free records with

1http://www.emc.com/products/detail/hardware/centera.htm (accessed April 28, 2008)
2http://www.ibm.com/systems/storage/disk/dr/ (accessed April 28, 2008)
3http://www.netapp.com/us/products/protection-software/snaplock.html (accessed April 28,
2008)

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 41

the performance of a DBMS.
This raises the interesting question: since record management systems often use

relational databases internally, how effective can these systems really be? Given
the central role of audit logs in performing auditing of interactions with the records
(tracking, modifications, exposure), the audit logs themselves are as valuable as the
records they reference. It is critical that such audit logs and tracking information
be correct and unalterable. It is not sufficient to say, “the records we store in our
RMS are correct, because we store all interactions and tracking data in a separate
audit log.” The integrity of the underlying database is still in question. While Zhu
and Hsu [32] provide a partial answer through their fossilized index (mentioned
above), the rest of the database might still be tampered.

Johnson goes back thousands of years to show that in many cases, tamperproofing
is economically inferior to tamper detection: “Often, it’s just not practical to try to
stop unauthorized access or to respond to it rapidly when detected. Frequently, it’s
good enough to find out some time after the fact that trespassing took place” [18].

The first work to show that records management could be effectively merged with
conventional databases was that by Barbará et al. on using checksums to detect
data corruption [4]. By computing two checksums in different directions and using
a secret key, they were able to dramatically increase the effort an intruder would
have to make to tamper the database. Our paper on tamper detection removed
one assumption, that the system could keep a secret key that would not be seen by
insiders [27]. We showed that cryptographic techniques coupled with a carefully-
considered architectural design and an external digital notarization service could
solve one part of the puzzle: detecting tampering. In this paper we consider another
part of the puzzle: forensic analysis once tampering has been detected.

Computer forensics is now an active field, with over fifty books published in the
last ten years4 and another dozen already announced for 2008. However, these
books are generally about preparing admissible evidence for a court case, through
discovery, duplication, and preservation of digital evidence. There are few computer
tools for these tasks, in part due to the heterogeneity of the data. One substantive
example of how computer tools can be used for forensic analysis is Mena’s book [21].
The more narrow the focus, the more specialized tools there are that can help.
Carvey and Kleiman’s book [5] cover just variants of that operating system and
explains how to use the author’s Forensic Server Project system to obtain data
from a Windows system in a forensically sound manner. Closer to home, Schneier
and Kelsey [26] describe a secure audit log system, but do not consider forensic
analysis of such audit logs.

Goodrich et al. introduce new techniques for using indexing structures for data
forensics [12]. The usual way of detecting malicious tampering of a digital object us-
ing cryptographic one-way hashes to store a cryptographic hash of the item and then
to use it later as a reference for comparison. The approach of Goodrich et al. goes
beyond the single bit (true/false) of information provided by a hash: they store
multiple hashes (and attempt to minimize the required number of such values) to
pinpoint which of a given set of items has been modified. They encode authentica-
tion information in the topology of the data structure of items (not in the stored

4http://www.e-evidence.info/books.html (accessed April 28, 2008)

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

42 · K. E. Pavlou and R. T. Snodgrass

values themselves) so that alterations can be detected. This is important because
this approach requires no additional space other than the cryptographic master
key used by the auditing agent. Their techniques are based on a new reduced-
randomness construction for nonadaptive combinatorial group testing (CGT). In
particular, they show how to detect up to d defective items out of a total of n
items, with the number of tests being O(d2 lg n). Moreover, they provide forensic
constructions of several fundamental data structures, including binary search trees,
skip lists, arrays, linked lists, and hash tables.

Several differences exist between Goodrich’s approach and the one outlined in
the current paper.

—The threat model in Goodrich et al. does not allow changes in the topology of
the data structure whereas ours places no such restrictions.

—The objective in Goodrich et al. is to minimize the number of hashes stored that
would allows to identify d corruptions given a particular data structure. In the
current paper we seek a structure of hash chains with the lowest forensic cost,
which includes both normal processing and forensic analysis components.

—Their CGT method is probabilistic whereas ours is deterministic.

—Goodrich et al.’s work applies to main-memory structures, whereas ours applies
to disk-resident data items.

—There exists an upper bound on the number of modified items that can be de-
tected, e.g., for a balanced binary search tree storing n elements the bound is
O(n1/3/ log2/3 n). Our approach can detect up to κ = n corruptions.

Goodrich’s approach in constructing forensic data structures might be generalizable
to detecting changes in key values stored in a B-tree. This could then provide some
information about data values, thereby possibly reducing the number of hashes
needed and thus the forensic cost.

Earlier we introduced the approach of using cryptographic hash functions for tam-
per detection [27] and introduced the first forensic analysis algorithms for database
tampering [24]. The present paper significantly extends that research, with pseu-
docode for one previous algorithm (Monochromatic) and three new algorithms: the
RGBY (a refinement of the previous RGB Algorithm), Tiled Bitmap (a refinement
of the previous Polychromatic Algorithm), and a3D forensic analysis Algorithms.

We refine the definition of forensic strength to arrive at a notion of “forensic cost”
that encompasses multiple corruption events. The objective is to minimize this cost
in order to achieve a higher forensic strength. The definition of forensic cost retains
some of the key characteristics of the original definition [24], while adopting a more
sophisticated treatment of the region and uncertainty areas returned by the forensic
algorithms, and incorporating the notions of temporal and spatial resolution. We
characterize and validate experimentally the forensic cost for all four algorithms
presented in this paper. We also present a lower bound that considers multiple
corruption events.

13. SUMMARY AND FUTURE WORK

New laws and societal expectations are raising the bar concerning stewardship of
stored data. Corporate and governmental databases are now expected and in many

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 43

cases required to mediate access, to preserve privacy, and to guard against tamper-
ing, even by insiders.

Previously-proposed mechanisms can detect that tampering has occurred. This
paper considers the next step, that of determining when, what, and hence indirectly
providing clues as to who, through the use of various forensic analysis algorithms
that utilize additional information (in this case, partial hash chains) computed
during periodic validation scans of the database.

We introduced corruption diagrams as a way of visualizing corruption events and
forensic analysis algorithms. We presented four such algorithms, the Monochro-
matic, RGBY, Tiled Bitmap, and a3D Algorithms, and showed through a formal
forensic cost comparison (with worst-case, best-base, and average-case assump-
tions), validated with an implementation, that each successive algorithm adds ex-
tra work in the form of main-memory processing, but that the resulting additional
precision in the obtained information more than counterbalances this extra work.
Finally, we provided a lower bound for forensic cost and showed that only the a3D
Algorithm is optimal for a large number of corruptions and close to optimal in all
cases, without producing false positives.

Our recommendation is that at an initial stage it is best to provide users with the
Monochromatic and a3D Algorithms. The Monochromatic Algorithm is the easiest
to implement and is indicated when multiple corruptions are not anticipated or
when only the earliest corruption site is desired. The a3D Algorithm is stable
with optimal forensic cost (for large κ), is able to determine the “where”, and
the “when” of a tampering quite precisely and efficiently, and is able to effectively
handle multiple corruption events. The other two algorithms produce false positives
and can be provided as dictated by the application requirements. The RGBY
Algorithm has optimal cost (for large κ) and is cheapest when many corruption
sites are anticipated. The Tiled Bitmap Algorithm has the lowest forensic cost in
the long term for a fixed number of corruptions and is also indicated when efficiency
during normal processing is critical.

We are integrating these algorithms into a comprehensive enterprise solution for
tamper detection and analysis that manages multiple databases with disparate se-
curity risks and requirements. Also, we are examining the interaction between a
transaction-time storage manager and an underlying magnetic-disk-based WORM
storage. As archival pages are migrated to WORM storage, they would be thus pro-
tected from tampering, and so would not need to be rescanned by the validator. It
is an open question how to extend the forensic analysis algorithms to accommodate
schema corruption.

Our challenge is in a sense the dual of that considered by Stahlberg et al. [28]. As
mentioned in Section 2, we utilize a transaction-time table to retain previous states
and perform forensic analysis on this data once tampering is detected. Stahlberg
considers the problem of forensic analysis uncovering data that has been previously
deleted, data that shouldn’t be available. It is an open question as to how to
augment our approach for forensic analysis to accommodate secure deletion.

Finally, it might make sense to augment database storage structures such as
indexes in a manner similar to that proposed for main-memory structures by
Goodrich et al. [12], to aid in forensic analysis.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

44 · K. E. Pavlou and R. T. Snodgrass

ACKNOWLEDGMENTS

NSF grants IIS-0415101, IIS-0639106, and EIA-0080123 and a grant from Mi-
crosoft provided partial support for this work. Huilong Huang, Qing Ju, Melinda
Malmgren, and Shilong (Stanley) Yao contributed to the implementation. We thank
Travis Wheeler for his help with the characterization of forensic cost and thank the
reviewers for their concrete suggestions which helped improve the presentation of
the material.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Li-
brary by visiting the following URL: http://www.acm.org/pubs/citations/

journals/tods/2008-V-N/p1-pavlou. The appendix discusses the subtleties
involved in the forensic analysis of introactive corruption events, and demonstrates
how false positives arise in the RGBY Algorithm. It also describes the Tiled Bitmap
Algorithm, discusses the notion of a candidate set, and gives the running time of the
algorithm. Finally, it analyzes the forensic cost for the algorithms, using worst-case,
best-case, and average-case assumptions on the distribution of corruption sites.

REFERENCES

[1] R. Agrawal, T. Grandison, C. Johnson, and J. Kiernan, “Enabling the 21st Century Health-
care IT Revolution,” Communications of the ACM, 50(2):34–42, February 2007.

[2] I. Ahn and R. T. Snodgrass, “Partitioned Storage Structures for Temporal Databases,”
Information Systems, 13(4):369–391, December 1988.

[3] J. Bair, M. Böhlen, C. S. Jensen, and R. T. Snodgrass, “Notions of Upward Compatibility
of Temporal Query Languages,” Business Informatics (Wirtschafts Informatik) 39(1):25–34,
February 1997.

[4] D. Barbará, R. Goel, and S. Jajodia, “Using Checksums to Detect Data Corruption,” in Pro-
ceedings of the International Conference on Extending Database Technology, Springer Lecture
Notes in Computer Science, vol. 1777, Germany, March 2000.

[5] H. Carvey and D. Kleiman, Windows Forensics and Incident Recovery, Syngres, 2007.

[6] C. C. Chan, H. Lam, Y. C. Lee, X. Zhang, Analytical method validation and instru-
ment performance verification, Wiley-IEEE 2004.

[7] CSI/FBI Tenth Annual Computer Crime and Security Survey, July 2005, http://www.cpppe.
umd.edu/Bookstore/Documents/2005CSISurvey.pdf (accessed April 25, 2008).

[8] Department of Defense, “Trusted Computer System Evaluation Criteria,” DOD-5200.28-
STD, December 1985, http://www.dynamoo.com/orange (accessed April 25, 2008).

[9] F.D.A., “Title 21 Code of Federal Regulations (21 CFR Part 11) Electronic Records; Elec-
tronic Signatures,” 2003, http://www.fda.gov/ora/compliance ref/part11/ (accessed April
28, 2008).

[10] K. Fu, M. F. Kaashoek and D. Mazières, “Fast and secure distributed read-only file system,”
in Proceedings of the USENIX Symposium on Operating Systems Design and Implementation,
pp. 181–196, October 2000.

[11] P. A. Gerr, B. Babineau, and P. C. Gordon, “Compliance: the effect on informa-
tion management and the storage industry,” Enterprise Storage Group Technical Report,
May 2003, http://www.enterprisestrategygroup.com/ESGPublications/ReportDetail.asp?

ReportID=201 (accessed May 4, 2008).

[12] M. T. Goodrich, M. J. Atallah, and R. Tamassia, “Indexing Information for Data Forensics,”
in Proceedings of the Conference on Applied Cryptography and Network Security, Springer
Lecture Notes in Computer Science 3531, pp. 206–221, 2005.

[13] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Second Edition,
Addison–Wesley, September 2004.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · 45

[14] S. Haber and W. S. Stornetta, “How To Time-Stamp a Digital Document,” Journal of

Cryptology 3:99–111, 1999.

[15] W. W. Hsu and S. Ong, “Fossilization: A process for establishing truly trustworthy records,”
IBM Research report RJ 10331, 2004.

[16] C. S. Jensen and C. E. Dyreson (eds), “A Consensus Glossary of Temporal Database
Concepts—February 1998 Version,” in Temporal Databases: Research and Practice,
O. Etzion, S. Jajodia, and S. Sripada (eds.), Springer-Verlag, pp. 367–405, 1998.

[17] C. S. Jensen and R. T. Snodgrass, “Temporal Specialization and Generalization,” IEEE
Transactions on Knowledge and Data Engineering, 6(6):954–974, December 1994.

[18] R. G. Jonson, “Tamper-indicating seals,” American Scientist 94(6):515–524, Nov–Dec 2006.

[19] D. Lomet, R. Barga, M. F. Mokbel, G. Shegalov, R. Wang, and Y. Zhu, “Immor-
tal DB: transaction time support for SQL server,” in Proceedings of the International
ACM Conference on Management of Data (SIGMOD), pp. 939–941, June 2005. See also
http://research.microsoft.com/research/db/immortaldb/ (accessed April 25, 2008).

[20] D. Mazières, M. Kaminsky, M. F. Kaashoek and E. Witchel, “Separating key manage-
ment from file system security,” in Proceedings of the ACM Symposium on Operating Systems
Principles, pp. 124–139, December 1999.

[21] J. Mena, Investigative Data Mining for Security and Criminal Detection, Butter-
worth Heinemann, 2003.

[22] A. Muthitacharoen, R. Morris, T. M. Gil and B. Chen, “Ivy: A Read/Write Peer-to-Peer
File System,” in Proceedings of USENIX Operating Systems Design and Implementation, 2002.

[23] Oracle Corporation, “Oracle Database 11g Workspace Manager Overview,” Oracle
White Paper, June 2007, http://www.oracle.com/technology/products/database/workspace
manager/pdf/twp AppDev Workspace Manager 11gR1.pdf (accessed April 28, 2008).

[24] K. E. Pavlou and R. T. Snodgrass, “Forensic Analysis of Database Tampering,” in Proceed-
ings of the ACM SIGMOD International Conference on Management of Data, pp. 109–120,
Chicago, June 2006.

[25] K. E. Pavlou and R. T. Snodgrass, “The Pre-images of Bitwise AND Functions in Forensic
Analysis,” TimeCenter Technical Report, October 10, 2006.

[26] B. Schneier and J. Kelsey, “Secure Audit Logs to Support Computer Forensics,” ACM
Transactions on Information and System Security 2(2):159–196, May 1999.

[27] R. T. Snodgrass, S. S. Yao, and C. Collberg, “Tamper Detection in Audit Logs,” in Proceed-
ings of the International Conference on Very Large Databases, pp. 504–515, Toronto, Canada,
September 2004.

[28] P. Stahlberg, G. Miklau, and B. N. Levine, “Threats to privacy in the forensic analy-
sis of database systems,” in Proceedings of the ACM SIGMOD International Conference on

Management of Data, Beijing, 2007.

[29] U.S. Dept. of Health & Human Services, The Health Insurance Portability and Account-
ability Act (HIPAA), 1996, http://www.cms.hhs.gov/HIPAAGenInfo/ (accessed April 25, 2008).

[30] U.S. Public Law No. 107-204, 116 Stat. 745, The Public Company Accounting Reform and
Investor Protection Act, 2002.

[31] G. Wingate, ed., Computer systems validation: Quality Assurance, Risk Manage-
ment, and Regulatory Compliance for Pharmaceutical and Healthcare, Companies,
Informa Health Care, 2003.

[32] Q. Zhu and W. W. Hsu, “Fossilized Index: The Linchpin of Trustworthy Non-Alterable
Electronic Records,” in Proceedings of the ACM International Conference on Management of
Data, pp. 395–406, Baltimore, Maryland, June 2005.

...

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · App–1

This document is the online-only appendix to:

Forensic Analysis of Database Tampering
Kyriacos E. Pavlou

and

Richard T. Snodgrass

University of Arizona

ACM Transactions on Database Systems, Vol. V, No. N, September 2008, Pages 1–45.

This appendix has six sections. Appendix A discusses the subtleties involved in
the forensic analysis of introactive corruption events, while Appendix B demon-
strates how false positives arise in the RGBY algorithm. Appendix C describes the
Tiled Bitmap algorithm (pseudocode provided), discusses the notion of a candidate
set, and gives the running time of the algorithm. A more thorough exposition of
the use of candidate sets in forensic analysis may be found elsewhere [25]. The
remaining Appendices D, E, and F provide the forensic cost for the algorithms,
using worst-case, best-case, and average-case assumptions, respectively, on the dis-
tribution of corruption sites.

A. INTROACTIVE CORRUPTION EVENTS

Introactive corruption events were introduced in Section 5. However, subsequent
examples and algorithms do not deal explicitly with the particular challenges raised
by these CEs in forensic analysis. The main challenge stems from the fact that
the partial chains computed during the validation event scan terminating at tFVF

cannot be used to identify introactive CEs. (This holds for all algorithms utilizing
partial hash chains.) The reason is that an introactive CE occurs before these
latest partial hash chains are notarized. Recall that we deferred the partial chain
hashing and notarization during a validation scan in order to decrease the read
overhead. This results in the latest partial chains hashing the corrupted values.
Hence, the validation of the rehashed value corresponding to the entire database
must happen first, and if and only if it returns true are the partial hash chains
notarized. Moreover, because the cumulative black chains perform hashing in real-
time it is impossible for an introactive CE to occur before their creation. This
implies that a single introactive CE can be detected by all algorithms because in
this case we can locate the corruption using only the cumulative black chains. The
problem described above only arises if there are multiple CEs, as in the example
shown in Figure 7 on page 20. In this example partial chains B6 and G6 cannot
be trusted. The analysis and implementation of the algorithms do not deal with

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2008 ACM 0362-5915/2008/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

App–2 · K. E. Pavlou and R. T. Snodgrass

this explicitly. The working assumption in the presentation of the algorithms in
this paper is that all partial chains can be used in forensic analysis. One way to
accommodate introactive CEs is for each algorithm to treat the entire region where
introactive CEs can occur as suspect when dealing with multiple corruptions.

B. FALSE POSITIVES IN THE RGBY ALGORITHM

In this section we discuss the nature of the linear search of the RGBY Algorithm
and show how false positives inevitably arise. Figure 18(a) shows the basic pat-
tern of truth values encountered over a single corruption during the linear scan of
the forensic analysis, namely . . .TFFT. . .. Similarly, if we look at Figure 18(d)
we observe that two corruption sites sufficiently-spaced (i.e., distance two or more
IN apart in the spatial dimension) produce a succession of the same basic pattern
observed in the case where κ = 1, i.e., . . .TFFTFFT. . .. In other words, suffi-
ciently spaced multiple corruption sites can be definitively identified by the RGBY
Algorithm just by seeking the pattern . . .FF. . . during the linear scan.

If however, two corruption sites are less than two IN apart (in the spatial di-
mension) then the situation is more complex. Figure 18(b) depicts two contiguous
corruption sites. The pattern observed here is . . .TFFFT. . .. It is important to
realize that since the linear scan involves a look-ahead of size one (i.e., it needs
to examine the results of two chains at a time to locate . . .FF. . .) and between
each iteration the frame shift is again one, the pattern . . .FFF. . . will be correctly
interpreted by the algorithm as two . . .FF. . . patterns overlapping in the middle,
hence correctly identifying the two contiguous corruption sites.

This does not happen in the the case shown in Figure 18(c) where two corruption
sites are distance IN apart. Here the pattern observed is . . .TFFFFT. . .. Parsing
this string as before, i.e., two values at a time will result in the algorithm identifying
three contiguous corruption sites instead of the correct two. Thus, the corruption is
overestimated and the middle IN × IV rectangle is a false positive. Any attempt to
circumvent this problem by increasing the look-ahead to three chains (i.e. parse four
values at a time) is doomed because the case where there are indeed three contiguous
corruption sites produces the same pattern as the case shown in Figure 18(c),
making the two indistinguishable. For this reason, occurrence of false positives
is inevitable in the RGBY algorithm, and moreover, in the worst case scenario
where corruption sites alternate with corruption-free areas of width IN , RGBY can
produce up to 50% false positives.

C. THE TILED BITMAP ALGORITHM

Here we present an improved version of the Polychromatic Algorithm [24] called the
Tiled Bitmap Algorithm. The original Polychromatic Algorithm utilized multiple
Red and Blue chains while retaining the Green chain from the RGB Algorithm.
These two kinds of chains and their asymmetry complicated this algorithm. The
Tiled Bitmap Algorithm relocates these chains to be more symmetric, resulting in
a simpler pattern.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · App–3

VE1

VE3

VE4

VE5

Y1

G2

Y3

G4

Y5

G6

tFVF= UTB

NI = 2

Rs= 2

VI = 4 = 2
= 4

NI

Pattern: ...TFFT...

NE0

Where

B

B

B

= LSBRVS
t

R

R

R

2

1

5

6

3

4

NE1

NE2

NE3

NE4

NE5

VE2

NE6

NE7

NE8

NE9

NE10

NE11

VE6NE12

 Failure (FVF)
First Validation

22

20LTB

24

When

.

Rt

10

T

USB

T

F F

.

(a) κ = 1

VE1

VE3

VE4

VE5

Y1

G2

Y3

G4

Y5

G6

tFVF= UTB

VI = 4 = 2
= 4

NI

NI = 2

Rs= 2

Pattern: ...TFFFT...

NE0

Where

B

B

B

= LSBRVS
t

R

R

R

2

1

5

6

3

4

NE1

NE2

NE3

NE4

NE5

VE2

NE6

NE7

NE8

NE9

NE10

NE11

VE6NE12

 Failure (FVF)
First Validation

22

20LTB

24

When

.

Rt

10
USB

T

F F

TF

. .

(b) κ = 2; contiguous corruption sites

Fig. 18. The chain patterns and corresponding corruption regions of the RGBY algorithm for one
or two contiguous corruption sites.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

App–4 · K. E. Pavlou and R. T. Snodgrass

VE1

VE3

VE4

VE5

Y1

G2

Y3

G4

Y5

G6

tFVF= UTB

VI = 4 = 2
= 4

NI

Pattern: ...TFFFFT...

NI = 2

Rs= 2

NE0

Where

B

B

B

= LSBRVS
t

R

R

R

2

1

5

6

3

4

NE1

NE2

NE3

NE4

NE5

VE2

NE6

NE7

NE8

NE9

NE10

NE11

VE6NE12

 Failure (FVF)
First Validation

22

20LTB

24

When

.

Rt

10
USB

T

F F

F F

T

..

(c) κ = 2; one IN between corruption sites

VE1

VE3

VE4

VE5

Y1

G2

Y3

G4

Y5

G6

tFVF= UTB

VI = 4 = 2
= 4

NI

NI = 2

Rs= 2

Pattern: ...TFFTFFT...

NE0

Where

B

B

B

= LSBRVS
t

R

R

R

2

1

5

6

3

4

NE1

NE2

NE3

NE4

NE5

VE2

NE6

NE7

NE8

NE9

NE10

NE11

VE6NE12

 Failure (FVF)
First Validation

22

20LTB

24

When

.

Rt

10
USB

T

F F

FT

F
T

..

(d) κ = 2; two IN s between corruption sites

Fig. 18. (continued) The chain patterns and corresponding corruption regions of the RGBY
algorithm for two corruption sites with one or two IN s between the sites. The middle corruption
region rectangle in (c) is a false positive.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · App–5

We proceed to modify the Polychromatic Algorithm by:

—Removing the Green chain altogether.

—Adding two new subchains in the Red and Blue chain groups. For odd i, the
algorithm computes the main red hash chain from NE2·i−3 to NE2·i−1, while
for even i the blue and green chains are computed over the intervals NE2·i−3 to
NE2·i−1 and NE2·i−2 to NE2·i respectively.

—Shifting the first group of Red1 to the right.

Red

Red

Blue

Green

Where

When

NE

NE

NE
3VE

6

5

NE4

2VE

2

VE1

NE1

3NE

Fig. 19. Improvements introduced to the Polychromatic Algorithm.

As Figure 19 shows the main green chain Green0
i is “broken” in half and is

substituted by Red1
i+1 and Blue1

i . The second half of the Green0
i chain becomes

the “missing” Red1
i+1 chain in the next group of red chains in order to complete the

logarithmic number of chains defined in an IV . The first half of the Green0
i chain,

however, covers the complimentary interval of what is missing in the group of blue

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

App–6 · K. E. Pavlou and R. T. Snodgrass

chains. Hence, we first take the complement of this first half and then add it as
the missing Blue1

i chain. This leads to an increase in the number of hash chains by
one per IV . This is the price paid in order to have each group of chains function as
a bitmap and to have the ability to perform the combinatorial bit pattern analysis
suggested below.

Next, in a completely independent step, we shift to the right the Red1 group
of hash chains (which was shorter than the rest). In this way all the remaining
hash chain groups are also shifted to the right by IV /2 days. This has the result of
aligning the hash chain groups, with the actual validation intervals and thus making
the structure of the algorithm more regular. Each hash chain group is repeated and
thus “tiles” the action line and will serve later as a bitmap. Hence the name of this
algorithm: Tiled Bitmap Algorithm.

Finally, we make this algorithm more general by fixing the length of the tile to
cover an IN and have V number of tiles between successive validations as shown in
Figure 9 in Section 8.3.

If the CE is data-only, the result of validating the entire tile of hash chains
(marked with a “ ” in Figure 9) and concatenating the result of each subchain
creates a binary string whose numerical value is the relative position of the com-
promised granule within the tile. In this way we can easily establish a mapping
between the binary string representation of the truth value pattern (1 = Success,
0 = Failure) within each hash chain group and the desired time (granule) down
to Rs.

Let us turn to an example involving a corruption. Consider CE1 in Figure 9. We
find the first tile in which a corruption has occurred via binary search in order to
locate tRVS . In this figure CE1 has tl = 19 and a relative position within the second
IN of 2. If we validate the hash chains of the tile in which the CE transpired then
we get the string 00010 (most significant bit corresponds to the chain which covers
all the days in IN), termed the target bit pattern. The numerical value of the target
string 00010 is 2 which is exactly the relative position of the granule within the
second IN .

Now, let’s see what happens if a timestamp corruption occurs and both tl and
tp are within the same tile. Figure 9 also shows a postdating CE2 with tl = 20
and tp = 27 which are both in the second tile (IN = 16). If each of these were to
appear on their own the target bit patterns produced by the tile validation would
be 0011 (3rd granule within N) and 1010 (10th granule within N). However, since
both occur at the same time within the same IN and the hash chains are linked
together, then the bit patterns given above are ANDed and the target 0010 is the
actual result of the validation, as shown in Figure 20. This target corresponds to
the existence of the two suspect days tl and tp, without being able to distinguish
between the two. (NB: if g is a specific granule while r is its relative position within
IN , then (g − 1) mod N = r.)

In reality the situation is more involved: when dealing with multiple CEs there
might be many combinations of bit patterns which when AND ed can yield the
target bit pattern computed during forensic analysis. Thus even in the simple case
where a single post/backdating CE does not have its endpoints in different tiles can
introduce ambiguity. For example, we cannot distinguish between the two scenarios

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · App–7

t
l

t
p

15131211109876543210 14:r

15131211109876543210 14:r

c

c

c

c

c0

3

1

2

c

c

c

c

1

2

3

4

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

1

1 1

1

1 1

1

1

1

1

1

1

1 1

1

1

1 1

0

1

1

1

1

0

1

1

1

0

1

1

1

1

1

1

10

4

Target
bit pattern

g: 20 27

Fig. 20. The bitmap of a single tile.

shown in Figure 21 because in both cases the target bit pattern is the same. In
the first case, both CE2 and CE3 produce the target bit pattern 0010 because
the AND operation is commutative: 0011 ∧ 1010 = 1010 ∧ 0011. For this reason
we cannot distinguish between CE2 and CE3. Moreover, distinguishing between
CE2, CE3 and CE4, CE5 is also impossible because CE4 and CE5 also produce the
same target bit pattern as before. More specifically, CE4 produces the bit pattern
0010∧ 0111 = 0010 and CE5 produces again 0110∧ 1010 = 0010.

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CE3

CE2

CE4

0 1 2 3 4 5 6 7 8 9 10 11 12 14 1513

CE5

Fig. 21. Examples of CEs resulting in the same target bit pattern.

Hence we introduce the notion of a candidate set [25], because the pre-image
of the target bit pattern under the bit-wise AND function is not unique. More
formally, we define the length l of a binary number b, denoted by |b| = l, as the
number of its digits. We seek to find the pre-images of all the binary numbers of
length l, B = {b : |b| = l}, under a family of bit-wise AND functions whose domain

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

App–8 · K. E. Pavlou and R. T. Snodgrass

// input: tFVF is the time of first validation failure
// IN is the notarization interval
// V is the validation factor
// k is a parameter of the Cset to be created
// output: Cset, an array of binary numbers
// UTB , LTB are the temporal bounds on tc
procedure Tiled Bitmap(tFVF , IN , V , k):
1: IV ← V · IN

2: tRVS ← find tRVS (tFVF , IN)
3: UTB ← tFVF

4: LTB ← max(tFVF − IV , tRVS)
5: target ← 0
6: Cset ← Ctemp ← ∅
7: if tRVS mod IV = 0 then t← tRVS // t must coincide with the start of a tile
8: else t← tRVS − IN

9: while t < tFVF do
10: if ¬ val check(c0(t)) then
11: n← lg IV

12: for i← n to 1 do
13: target ← target + 2n−i·val check(ci(t))
14: Ctemp ← candidateSet(target, n, k)
15: for each r ∈ Ctemp do
16: g ← (r · t)/IV + 1
17: Cset ← Cset ∪ {g}
18: t← t + IV

19: return Cset, LTB < tc ≤ UTB

Fig. 22. The Tiled Bitmap Algorithm.

is a finite Cartesian product.

ANDk : Bk −→ B

ANDk((b1, b2, . . . , bk)) = b1 ∧ b2 ∧ . . . ∧ bk

Observe that the maximum number k of sets participating in the Cartesian prod-
uct is 2l, since if k is allowed to take a value beyond that, it will force a repetition
of one of the binary numbers. This is not informative or useful in any way since re-
peated AND ing operations with the same binary number leave the result invariant
(the operation is idempotent). In other words, repetition is not allowed and hence
for a given k-tuple all its components are distinct. Also note that the value of k
uniquely identifies a specific ANDk function in the above family. The candidate set
is the set of all binary numbers that appear as components in at least one of the
pre-images (i.e., k-tuples) of a specific binary number termed the target .

Ctarget,k = {b ∈ B | ∃ b1, b2, . . . , bk−1 ∈ B (ANDk((b, b1, . . . , bk−1)) = target)} .

This candidate set captures all potential sites of corruption. In the example given
above the candidate set obtained for CE2, CE3 and CE4, CE5 will be the same in
both cases and is equal to

C0010,2 = {0010, 0011, 0110, 0111, 1010, 1011, 1110, 1111} .

The pseudocode for the Tiled Bitmap Algorithm is provided in Figure 22. In this
algorithm, the partial hash chains within a tile are denoted by c0(t), c1(t), . . . , clg N(t),

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · App–9

with ci(t) denoting the ith hash chain of the tile which starts at time instant t. The
algorithm begins looking at the black chains as the Polychromatic Algorithm does.
This bounds tc: LTB < tc ≤ UTB as before. The binary search on the black
chains also finds the value of tRVS . Lines 7 and 8 adjust the start of the iteration
to coincide with the beginning of a tile. On line 9 the algorithm iterates through
the different tiles and checks (line 10) if the longest partial chain c0(t) evaluates
to false. If not, it moves on to the next tile. If the chain evaluates to false (line
10), the algorithm iterates through the rest of the partial chains in the tile (line
12) and concatenates the result of each validation to form the target number (line
13). Then the candidateSet function is called to compute all the preimages of the
target number according to the user-specified parameter k discussed above and in
more detail elsewhere [25].

On lines 15–16 the candidate granules are renumbered to reflect their global
position. The call to find tRVS takes 2 · lg(D/N) time because it performs a binary
search on the cumulative black hash chains in order to locate tRVS . The “while” loop
on line 9 takes ⌈D/N⌉ in the worst case. In reality, because of the “if” statement
on line 10 the body of the loop gets executed only if corruption is initially detected
by using c0(t). Hence, the actual running time of the loop is Θ(F) where F is the
number of times the validation of a c0(t) chain fails. The “for” loop on line 12 takes
lg(IN/Rs) while the candidateSet function takes Ω(lg(IN/Rs) + 2z). The loop on
line 15 takes Θ(2z), where z is the number of zeros in the target binary number.
Hence the run time of this algorithm is as follows.

Ω(lg(D/N) + F · (lg(IN/Rs) + (lg(IN/Rs) + 2z) + 2z))
= Ω(lg(D/N) + F · (lg N + 2z))
= O(lg(D/N) + (D/N) · (lg N + N))
= O(D)

The upper bound is obtained as follows. F in the worst case is O(D/N), that is,
the total number of tiles. 2z in the worst case is N because that is the total number
of granules (Rs units) within a tile.

D. FORENSIC COST FOR WORST-CASE DISTRIBUTION OF CORRUPTION SITES

In Section 9.1 we analyzed the worst-case forensic cost for the Monochromatic
Algorithm. Here we proceed with a similar analysis for the RGBY, Tiled Bitmap,
and a3D forensic analysis algorithms.

D.1 The RGBY Algorithm

As with the previous algorithm, in the RGBY Algorithm, the spatial detection
resolution (Rs) is IN , so after normalizing by Rs, N = 1. Also recall that V = 2
for this algorithm. In this algorithm, during normal processing at each validation
event we validate one chain and notarize two partial chains; hence we have (D/2) ·3
interactions with the digital notarization service during validation.

During forensic analysis we have to perform a linear search which could involve
all partial hash chains previously notarized, i.e., two at each validation event and
hence 2 · (D/2).

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

App–10 · K. E. Pavlou and R. T. Snodgrass

NormalProcessingRGBY = Number of Notarizations

+ Number of Validations

= D

+ 3 · (D/2)

ForensicAnalysisRGBY = Binary search for finding tRVS

+ Linear scan of partial chains

= 2 · lg(D)

+ 2 · (D/2)

The RGBY Algorithm can detect multiple corruption sites which if sufficiently
apart can produce distinct AreaP , each equal to V · N2 = 2. In the worst case,
however, if corruptions alternate with corruption-free areas of spatial dimension IN

then the RGBY algorithm produces false positives by identifying the intervening
corruption-free area as part of AreaP as shown in Figure 23. This makes AreaP = 4
for all κ > 1, and AreaU = 0.

corruptionκ

.

...

Area Area AreaU

.

. .

.

P

1 corruption
site

2 corruption
sites

3 corruption
sites

sites

.

.

.

N

Fig. 23. Three types of forensic area for RGBY and κ corruption sites.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · App–11

Table XI. Forensic areas for 1 ≤ κ ≤ D corruption sites (RGBY).

Corruption Sites AreaP AreaU AreaN

(1 ≤ κ ≤ D)

1 2 0 TotalArea − 2

2 4 0 TotalArea − 4

3 4 0 TotalArea − 4

...
...

...
...

κ 4 0 TotalArea − 4

FCRGBY (D, 1, 2, κ) = (D + 3 · (D/2) + 2 · lg D + 2 · (D/2))

+ (2 +
κ

∑

i=2

4)

For κ = 1, the last term is an empty sum, and thus is equal to zero. Hence:

FCRGBY (D, 1, 2, 1) = (D + 3 · (D/2) + 2 · (D/2) + 2 · lg D) + 2

= O(D)

FCRGBY (D, 1, 2, κ ≥ 2) = (D + 3 · (D/2) + 2 · (D/2) + 2 · lg D)

+ (2 + (κ − 1) · 4) (3)

= O(κ + D)

D.2 The Tiled Bitmap Algorithm

Unlike the previous two algorithms, the Tiled Bitmap Algorithm effects a spatial
resolution (Rs) that is smaller than the notarization interval. Also V and N are
both set by the DBA, and hence appear as variables.

The normal processing component is made up of the number of notarizations
required for the black chains, the number of notarizations for the partial chains
that make up each tile, and the number of validations performed.

NormalProcessing tiled bitmap = Number of black chain notarizations

+ Number of within-tile notarizations

+ Number of validations

For each validation event, during normal processing the Tiled Bitmap Algorithm
contacts the notarization service once to validate the database and then notarizes
all the chains within a tile, which are 1 + lg N in number.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

App–12 · K. E. Pavlou and R. T. Snodgrass

κ corruption
sites

...

Area Area Area

.

.

..

.

UPN

1 corruption
site

2 corruption
sites

Fig. 24. Three types of forensic area for Tiled Bitmap and κ corruption sites.

NormalProcessing tiled bitmap = D/N

+ (1 + lg N) · (D/N)

+ D/(V · N)

For forensic analysis we have to perform a binary search to find tRVS and then a
linear search to locate corruptions for each tile. The linear search could involve κ
tiles in the worst case.

ForensicAnalysis tiled bitmap = Binary search for finding tRVS

+ Number of chains validated within tiles

= 2 · lg(D/N)

+ (1 + lg N) · κ

The algorithm returns a candidate set Ctarget,2 each element of which corresponds
to a distinct corruption region of area V ·N2. The cardinality of the candidate set is
equal to 2 raised to the number of zeros z in the target [25] and thus |Ctarget,2| = 2z.
The maximum value z can take is the length l of the target which is lg N . This
implies that |Ctarget,2| = O(2lg N) = O(N), as it should be (!).

Note that the worst case scenario for the Tiled Bitmap Algorithm occurs when
each of the κ corruption sites occurs in the first granule of each tile as shown with
a • in Figure 24. Subsequent corruption sites (shown with � and N) within the
same tile as the ones in the first tile do not alter the cardinality of the candidate
set and thus do not cause an increase in AreaP . Note that AreaP is the entire tile
in this (improbable) worst case. We still normalize IN and IV by Rs, which implies
that N is larger than 1 (actually, it must be a power of 2).

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · App–13

Table XII. Forensic areas for 1 ≤ κ ≤ D corruption sites (Tiled Bitmap).

Corruption Sites AreaP AreaU AreaN

(1 ≤ κ ≤ D)

1 V ·N2 0 TotalArea − V ·N2

2 V ·N2 0 TotalArea − V ·N2

3 V ·N2 0 TotalArea − V ·N2

...
...

...
...

κ V ·N2 0 TotalArea − V ·N2

FCtiled bitmap(D, N, V, κ) = ((D/N) + (1 + lg N) · (D/N) + D/(V · N)

+ 2 · lg(D/N) + (1 + lg N) · κ)

+ (κ · V · N2) (4)

= O(κ · V · N2 + (D · lg N)/N + lg D)

In this case, even though the cost of normal processing and forensic analysis have
increased because of the increased number of notarizations and validations that
need to be performed, the area has shrunk considerably. The entire AreaU is zero
while AreaP has seen a modest increase.

It is worth noting here that there exists a case when the candidate set will find
the corruption site with perfect precision. This happens when the corruption only
occurs inside the last granule of the tile (shown with N and disregarding the other
corruption sites in that tile). In this case the resulting target bit string uniquely
identifies the corrupted granule so we know that there exists only one corruption
site in the tile, along with its exact location.

D.3 The a3D Algorithm

In the a3D Algorithm, during normal processing, for every validation event we
notarize one cumulative black chain, we validate once the entire database, and we
notarize a number of partial hash chains depending on the Rs unit. The total
number of notarizations performed in D units was calculated in Section 8.4; see
equation (1) in that section. (Recall that we normalize IN and tFVF by Rs, the
spatial detection resolution. Recall also that in the a3D Algorithm V = 1.) There
we proved that the total number of notarizations is equal to O(D).

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

App–14 · K. E. Pavlou and R. T. Snodgrass

NormalProcessing a3D = Total Number of Validations

+ Total Number of Notarizations

= D/N

+ N (D) + D/N − (1 + ⌊lg(D/N)⌋)

= O(D)

The forensic analysis cost depends on the actual distribution of the κ corruption
sites. A worst case scenario arises when each successive corruption site that is added
causes the maximum possible number of validations in the algorithm. To explain
this we utilize the binary tree representation of the hash chains in the algorithm.
The algorithm is forced to perform the maximum number of validations whenever
a new site corrupts a leaf which belongs to a subtree rooted at a node whose
previous validation has yielded a true result and this subtree has maximal height.
Figure 25 shows a tree of height four and the validation results after the addition of
κ = 8 corruptions sites. A (non-unique) sequence of adding corruption sites which
satisfies the condition for worst-case scenario stated above, is given with numbers
underneath the leaves. For example, the first site in Figure 25 is a corruption on
the data covered by hash chain P1,0,0, the second site corrupts data covered by hash
chain P5,0,8, and so on. It’s easy to see that the existence of κ = D/2 properly
distributed corruption sites can force the validation of all the hash chains covering
the first D units.

The number of validations in forensic analysis with each successive addition of a
corruption site satisfies the following recursive formula,

V(κ) = V(κ − 1) + 2 · (H − depth(κ)) , (5)

where V(κ) is the number of hash chains validated by the algorithm when κ cor-
ruption sites exist under a worst-case distribution, the height of the tree H is
lg N + ⌈lg(D/N)⌉ = ⌈lg D⌉, and depth(κ) is the depth of the root of the maximal-
height subtree in which the new corruption site occurs. For κ ≥ D/2, depth(k) = H .
The validation of the hash chain corresponding to this root evaluates to true before
the κth corruption occurs and false afterwards.

The base case for this recursion is V(0) = 1 and corresponds to the case when
the result of the validation of the root of the entire tree (B8 in this case) was
true implying that no corruption has occurred (κ = 0). For V(1) there exists a
single corruption site in the subtree of maximal height which in this case is the
entire complete binary tree. This first corruption site corresponds to the number
‘1’ in Figure 25. The corruption site will thus force the validation of the follow-
ing sequence of hash chains: B8, B4, B2, B1, P1,0,0, P1,0,1, P2,1,1, P4,2,1, P8,3,1. The
number of chains validated (for a specific κ) is by definition V(κ), hence, V(1) = 9.
Alternatively, V(1) = V(0)+2 ·(4− lg 1) = 1+2 ·4 = 9. We now solve this recursion.

Theorem D.1. The solution to the recursion V(κ) = V(κ− 1)+ 2 · (H − depth)
is V(κ) = 2 · κ · (H − ⌈lg κ⌉) + (1 + [κ 6= 2i]) · 2⌊lg κ⌋+1 − 1, for some i ∈ N ∪ {0}.

Proof.

The variable depth denotes the depth of the root of the maximal-height subtree in

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · App–15

P1,0,0 P5,0,8

P5,1,4

P4,2,1 P8,2,3

P8,3,1

P8,1,7

P8,0,15P7,0,13

P7,0,12

P1,0,1

P2,1,1

P2,0,2

P2,0,3

P6,2,2

P3,1,2

P3,0,4

P3,0,5

P4,1,3 P6,1,5 P7,1,6

P4,0,7 P5,0,9

P6,0,10

P6,0,11

P8,0,14P4,0,6

8B

F

FF F

F F F F F F

F F F F F F F F

TT T T T T T T

F

4B

2B

B1

F

F

F

F

1 5 3 6 2 7 4 8Order:

Fig. 25. Worst-case scenario for corruption site distribution (a3D).

which the new corruption occurs. This depth is a function of κ, namely, depth =
⌈lg κ⌉.

V(κ) = V(κ − 1) + 2 · (H − depth)

= V(κ − 1) + 2 · (H − ⌈lg κ⌉)

= V(κ − 2) + 2 · (H − ⌈lg(κ − 1)⌉) + 2 · (H − ⌈lg κ⌉)

...

= V(κ − i) + 2 · (H − ⌈lg(κ − (i − 1))⌉) + . . . + 2 · (H − ⌈lg κ⌉)

So, in order to get a closed form, we unfold the recursion until V(κ − i) = V(0),
which implies κ = i. We substitute i = κ in our recursive formula and get

V(κ) = V(0) + 2 · (H − ⌈lg 1⌉) + . . . + 2 · (H − ⌈lg κ⌉)

= V(0) + 2 ·
κ

∑

j=1

(H − ⌈lg j⌉)

= V(0) + 2 ·
κ

∑

j=1

H − 2 ·
κ

∑

j=1

⌈lg j⌉

= 1 + 2 · κ · H − 2 ·
κ

∑

j=1

⌈lg j⌉ .

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

App–16 · K. E. Pavlou and R. T. Snodgrass

If we expand the last term we find that
∑κ

j=1⌈lg j⌉ = 0 + 1 + 2 + 2 + 3 + 3 + 3 +
3 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + . . . + ⌈lg κ⌉. We observe that the terms of the
sum can be divided into “groups,” each group having the same number repeated
a power of 2 number of times. The numbers repeated are 1, 2, 3, up to ⌈lg j⌉.
Thus, we can evaluate the original sum by summing the sums of each group, e.g,
1 ·1+2 ·22 +3 ·22 +4 ·23 + . . .+ j ·2j−1. If κ is a power of 2 then the last “group” of
numbers will be complete, otherwise we will a partial final “group.” For this reason,

we first add up all the complete “groups” in the sum, i.e.,
∑⌊lg κ⌋

j=1 j · 2j−1. Then we

add what is left over, i.e., κ− 2⌊lg κ⌋ times the last summand which is ⌈lg κ⌉. If we
put all the terms together we get

κ
∑

j=1

⌈lg j⌉ =

⌊lg κ⌋
∑

j=1

j · 2j−1 + (κ − 2⌊lg κ⌋) · ⌈lg κ⌉ .

We then substitute this sum evaluation into V(κ) and get the following.

V(κ) = 1 + 2 · κ · H − 2 · (

⌊lg κ⌋
∑

j=1

j · 2j−1 + (κ − 2⌊lg κ⌋) · ⌈lg κ⌉)

= 1 + 2 · κ · H −

⌊lg κ⌋
∑

j=0

j · 2j − 2 · κ · ⌈lg κ⌉ + 2⌊lg κ⌋+1 · ⌈lg κ⌉

The sum
∑⌊lg κ⌋

j=0 j · 2j is evaluated using a known formula,

n
∑

k=0

k · xk =
x − (n + 1) · xn+1 + n · xn+2

(1 − x)2
, for x 6= 1 .

V(κ) = 1 + 2 · κ · H −
2 − (⌊lg κ⌋ + 1) · 2⌊lg κ⌋+1 + ⌊lg κ⌋ · 2⌊lg κ⌋+2

(1 − 2)2

− 2 · κ · ⌈lg κ⌉ + 2⌊lg κ⌋+1 · ⌈lg κ⌉

= 1 + 2 · κ · H − 2 + ⌊lg κ⌋ · 2⌊lg κ⌋+1 + 2⌊lg κ⌋+1 − ⌊lg κ⌋ · 2⌊lg κ⌋+2

− 2 · κ · ⌈lg κ⌉ + 2⌊lg κ⌋+1 · ⌈lg κ⌉

= 2 · κ · H − 1 + 2⌊lg κ⌋+1 · (⌊lg κ⌋ + 1 − 2 · ⌊lg κ⌋ + ⌈lg κ⌉) − 2 · κ · ⌈lg κ⌉

= 2 · κ · H − 1 + 2⌊lg κ⌋+1 · (⌈lg κ⌉ − ⌊lg κ⌋ + 1) − 2 · κ · ⌈lg κ⌉

= 2 · κ · (H − ⌈lg κ⌉) + (⌈lg κ⌉ − ⌊lg κ⌋ + 1) · 2⌊lg κ⌋+1 − 1

= 2 · κ · (H − ⌈lg κ⌉) + ([κ 6= 2i] + 1) · 2⌊lg κ⌋+1 − 1 , for some i ∈ N ∪ {0}

Here we use Iverson brackets [13, p. 24].

Note that for values of κ between D/2 and D the value of V(κ) is unchanged at
V(D/2) = 2 · D − 1. This is because, as we have seen above, when κ is equal or
exceeds D/2 all the hash chains covering the first D days will have to be validated.

Thus we can calculate the cost during forensic analysis quite simply.

ForensicAnalysis a3D = V(κ)

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · App–17

Table XIII. Forensic areas for 1 ≤ κ ≤ D corruption sites (a3D).

Corruption Sites AreaP AreaU AreaN

(1 ≤ κ ≤ D)

1 N 0 TotalArea −N

2 N 0 TotalArea −N

..

.
..
.

..

.
..
.

κ N 0 TotalArea −N

We now examine the breakdown of the three types of areas in the a3D Algo-
rithm. Each granule corresponds to a distinct region of area of height V · N = N
(normalized) and width 1 (!) and thus, total AreaP = κ · V ·N = κ ·N . Moreover,
since this algorithm will detect all κ corruption sites this implies that AreaU = 0.
The breakdown of the different areas is given in Table XIII.

FCa3D(D, N, 1, κ) = (D/N + N (D) + D/N − (1 + ⌊lg(D/N)⌋)

+V(κ))

+ AreaP

= (D/N + 2 · D − 1 + D/N − (1 + ⌊lg(D/N)⌋)

+ 2 · κ · (⌈lg D⌉ − ⌈lg κ⌉) + (1 + [κ 6= 2i]) · 2⌊lg κ⌋+1 − 1)

+ (κ · N) (6)

= O(κ · N + D + κ · lg D)

In the case of the a3D Algorithm we see an increase in the cost of normal pro-
cessing and forensic analysis, but the area produced by this algorithm is optimal.
AreaU is zero while AreaP achieves its minimum because, by definition, each gran-
ule cannot be shrunk below the spatial resolution Rs (as discussed in Section 8.4).
For a reason why the temporal dimension of the area, i.e., the uncertainty of tc,
cannot be shrunk further, see Section 10.

Finally, when κ > D/2, rather than doing κ binary searches, we can simply scan
the Rr units, reducing the forensic cost to O(κ · N + D + D) = O(κ · N).

E. FORENSIC COST FOR BEST-CASE DISTRIBUTION OF CORRUPTION SITES

We perform an analysis of the forensic cost of the four algorithms assuming a best-
case distribution of κ corruption sites.

E.1 Monochromatic Algorithm

A best-case distribution for the Monochromatic algorithm occurs when each of
the κ corruption sites appears in a different notarization interval at the rightmost
end of the trapezoid in the corruption diagram. This means that the sites occur

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

App–18 · K. E. Pavlou and R. T. Snodgrass

starting from the most recent IN and go back to older notarization intervals in a
contiguous manner, as shown in Figure 26. As in Section 9 we examine how each
corruption site partitions the trapezoid—bound by the last validation event—into
the three types of forensic area, i.e., AreaP , AreaU , and AreaN . Observe that unlike
in the worst-case distribution the corruption sites are examined from right to left.
This, in conjunction with the fact that only one corruption site occurs within each
notarization interval, allows each site to be positively identified. Hence, Table XIV
shows that each site is associated with an AreaP but not with an AreaU .

.. .

...

Area Area AreaPN U

.

.

.

1 corruption
site

2 corruption
sites

sites
κ corruption

.

....

Fig. 26. Three types of forensic area for best-case distribution of κ corruption sites
(Monochromatic).

All the terms in the forensic cost formula remain the same as in the worst case
except for the forensic areas. Summing AreaP over all corruption sites we can
compute the forensic cost for the Monochromatic Algorithm.

FCmono(D, 1, V, κ) = (D + D/V + 2 · lg D)

+ (V +

κ
∑

i=2

V)

= D + D/V + 2 · lg D + V + (κ − 1) · V

= O(κ · V + D)

The forensic cost of the Monochromatic Algorithm for best-case distribution is
asymptotically smaller than cost for worst-case distribution which is O(κ · V · D).

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · App–19

Table XIV. Forensic areas for best-case distribution of κ corruption sites (Monochro-
matic).

Corruption Sites AreaP AreaU AreaN

(1 ≤ κ ≤ D)

1 V 0 TotalArea − V

2 V 0 TotalArea − V

3 V 0 TotalArea − V

.

..
.
..

.

..
.
..

κ V 0 TotalArea − V

E.2 RGBY Algorithm

In the case of the RGBY Algorithm the best case distribution of corruption sites
is exactly the same as in the Monochromatic Algorithm. The sites occur starting
from the most recent IN and go back to older notarization intervals in a contiguous
manner, as shown in Figure 27. Once again because of the assumption of only one
site per IN we have only positive areas associated with each site.

Table XV. Forensic areas for best-case distribution of κ corruption sites (RGBY).

Corruption Sites AreaP AreaU AreaN

(1 ≤ κ ≤ D)

1 2 0 TotalArea − 2

2 2 0 TotalArea − 2

3 2 0 TotalArea − 2

.

..
.
..

.

..
.
..

κ 2 0 TotalArea − 2

Table XV shows the breakdown of the three types of the forensic areas for each
of the κ corruption sites. All the terms in the forensic cost formula remain the
same as in the worst case except for the forensic areas. Summing AreaP over all
corruption sites we can compute the forensic cost for the RGBY Algorithm.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

App–20 · K. E. Pavlou and R. T. Snodgrass

corruptionκ
...

...

Area Area AreaUP

.

.

.

.

1 corruption
site

2 corruption
sites

3 corruption
sites

sites

.

..

....

N

Fig. 27. Three types of forensic area for best-case distribution of κ corruption sites (RGBY).

FCRGBY (D, 1, 2, κ) = (D + 3 · (D/2) + 2 · (D/2) + 2 · lg D)

+ (

κ
∑

i=1

2)

= O(κ + D)

The forensic cost of the RGBY Algorithm for best-case distribution is asymptoti-
cally the same as the cost for worst-case distribution which is also O(κ + D).

E.3 Tiled Bitmap Algorithm

The best-case distribution for the Tiled Bitmap Algorithm happens when the cor-
ruption sites occur one in each tile, tampering the last granule in the tile as shown
in Figure 28. The resulting bit string uniquely identifies the corrupted granule so
we can positively identify the corruption site in the tile with no false positives.

Table XVI shows that each AreaP has area V · N , and thus summing over all
corruption sites yields the new forensic cost.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · App–21

. ..

site
1 corruption

2 corruption
sites

sites
κ corruption

...

Area Area AreaUPN

.

. .

. . .

Fig. 28. Three types of forensic area for best-case distribution of κ corruption sites (Tiled Bitmap).

Table XVI. Forensic areas for best-case distribution of κ corruption sites (Tiled
Bitmap).

Corruption Sites AreaP AreaU AreaN

(1 ≤ κ ≤ D)

1 V ·N 0 TotalArea − V ·N

2 V ·N 0 TotalArea − V ·N

3 V ·N 0 TotalArea − V ·N

...
...

...
...

κ V ·N 0 TotalArea − V ·N

FCtiled bitmap(D, N, V, κ) = ((D/N) + (1 + lg N) · (D/N) + D/(V · N)

+ 2 · lg(D/N) + (1 + lg N) · κ)

+ (κ · V · N)

= O(κ · V · N + (D · lg N)/N + lg D)

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

App–22 · K. E. Pavlou and R. T. Snodgrass

The new cost is asymptotically lower than the corresponding cost for worst-case
distribution. In particular, the κ · V · N2 term in the worst-case cost has lost a
factor of N .

E.4 a3D Algorithm

The best-case distribution of corruption sites for the a3D Algorithm is one in which
the sites occur consecutively in leaves of the tree as shown in Figure 29. The num-
bers labeled with “Order of κ” show the order with which the sites are examined.
This order is such that moving from one site to the next incurs a minimum increase
in the number of chains validated in the tree. This defers the validation of the
entire tree until the last (16th) site has been examined.

P1,0,0 P5,0,8

P5,1,4

P4,2,1 P8,2,3

P8,3,1

P8,1,7

P8,0,15P7,0,13

P7,0,12

P1,0,1

P2,1,1

P2,0,2

P2,0,3

P6,2,2

P3,1,2

P3,0,4

P3,0,5

P4,1,3 P6,1,5 P7,1,6

P4,0,7 P5,0,9

P6,0,10

P6,0,11

P8,0,14P4,0,6

8B

F

FF F

F F F F F F

F F F F F F F F

F

4B

2B

B1

F

F

F

F

F F F F F F F

1

2 3

4 5 6 7

1098 11 12 13 14 15

F

17 18 1916

3 4 5 6 7 8 9 10 11 12 13 14 152κOrder of : 1

20 21 22 23 24 25 26 27 29 3028p : 31

16

Fig. 29. Three types of forensic area for best-case distribution of κ corruption sites (a3D).

The number of validations in the forensic analysis with each successive corruption
site satisfies the following recursive formula,

Vb(κ) = Vb(κ − 1) + 2 · (H − depthb(κ)) for 1 ≤ κ ≤ D , (7)

where Vb(κ) is the number of hash chains validated by the algorithm when κ
corruption sites exist under a best-case distribution, the height of the tree H is
lg N + ⌈lg(D/N)⌉ = ⌈lg D⌉, and depthb(κ) is the depth of the root of the maximal-
height subtree in which the new corruption site occurs, again, under a best-case
distribution. The validation of the hash chain corresponding to this root evaluates
to true before the κth corruption occurs and false afterwards.

To find how depthb depends on κ we first number the nodes of the tree in
a breadth-first manner. The numbers are shown in courier font in Figure 29.
Observe that the leaves under this numbering scheme are labeled by p and the

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · App–23

correspondence between p and κ is p = κ + D − 1. Observe also that we only
need to deal with leftmost paths of subtrees since any site occurring in a leaf of a
rightmost path contributes zero to Vb. Recall that for all nodes in a binary tree if
the parent has index i its children have indices 2 · i and 2 · i + 1. Hence, in order
to find the number of the root (inner node) of the subtree given a p number of a
leftmost leaf we must divide p by 2x where x is the maximum integer such that
2x | p but 2x+1 ∤ p. In other words, x is the zero-based index, counting from the
right end, of the leftmost “1” in the binary representation of p. We can use Iverson
brackets [13, p. 24] to express x as the sum x =

∑

1≤l≤⌊lg p⌋[p mod 2l = 0]. Given
the position of the root we can find its depth by the following formula:

depthb(κ) = ⌊lg(
p

2x
)⌋ (8)

where p = κ + D − 1 and x =
∑

1≤l≤⌊lg p⌋[p mod 2l = 0].

We can now substitute (8) in the recursion, unfold it, and get a closed form:

Vb(κ) = 1 + 2 · κ · lg D − 2 ·
κ

∑

i=1

⌊lg
(

(p − i)/(2
P

1≤l≤⌊lg(p−i)⌋[(p−i) mod 2l=0])
)

⌋

We do not attempt to evaluate the sum but we rather try to find the asymptotic
upper bound for Vb. The idea is to minimize the value of the sum so that the entire
expression can be bounded from above. The minimum value the numerator in the
summand can take is D−1 when i = κ, while the maximum value the denominator
can take is 2H = D, i.e., when we are considering the root of the entire tree. This
makes the sum easy to bound as shown in equation (9).

Vb(κ) = 1 + 2 · κ · lg D − 2 ·
κ

∑

i=1

⌊lg
(

(p − i)/(2
P

1≤l≤⌊lg(p−i)⌋[(p−i) mod 2l=0])
)

⌋

≤ 1 + 2 · κ · lg D − 2 ·
κ

∑

i=1

lg((D − 1)/D)

≤ 1 + 2 · κ · lg D − 2 · κ lg((D − 1)/D) (9)

≤ 1 + 2 · κ · lg D + 2 · κ lg(D/(D − 1))

≤ 1 + 2 · κ · lg D + 2 · κ · lg D ⇒

Vb(κ) = O(κ · lg D)

Putting everything together we can now evaluate the best-case forensic cost of
the a3D Algorithm.

FCa3D(D, N, 1, κ) = (D/N + N (D) + D/N − (1 + ⌊lg(D/N)⌋)

+V(κ))

+ AreaP

= (D/N + 2 · D − 1 + D/N − (1 + ⌊lg(D/N)⌋)

+ κ · lg D)

+ (κ · N)

= O(κ · N + D + κ · lg D)

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

App–24 · K. E. Pavlou and R. T. Snodgrass

Table XVII. Forensic areas for average-case distribution of κ corruption sites
(Monochromatic).

Corruption Sites AreaP AreaU AreaN

(1 ≤ κ ≤ D)

1 V 0 TotalArea − V

2 0 (2 · TotalArea − V)/3 (TotalArea + V)/3

3 0 (3 · TotalArea − V)/4 (TotalArea + V)/4

...
...

...
...

κ 0 (κ · TotalArea − V) · 1
κ+1

(TotalArea + V) · 1
κ+1

The asymptotic forensic cost for the worst-case distribution is thus identical to
that for the best-case distribution of a large number of corruption sites, namely,
O(κ · N + D + κ · lg D).

F. FORENSIC COST FOR AVERAGE-CASE DISTRIBUTION OF CORRUPTION

SITES

In this section we give an analysis of the forensic cost of the four algorithms assum-
ing an average distribution of κ corruption sites. The analysis for the Monochro-
matic and RGBY Algorithms are similar in approach and detail, i.e., for each
corruption site we examine how it partitions the trapezoid bound below by the last
validation event, into the three types of forensic area AreaP , AreaU , and AreaN .
However, to obtain an estimate of the forensic cost of the Tiled Bitmap Algorithm
we employ the average size of the candidate set instead of considering the distribu-
tion of the corruption sites. In the case of the a3D Algorithm the analysis is much
simpler since we have shown that the forensic cost is the same for best and worst
case distributions of corruption sites.

F.1 Monochromatic Algorithm

In order to obtain a bound on the forensic cost of the Monochromatic Algorithm
we assume that the κ corruption sites are evenly distributed in the trapezoid as
shown in Figure 30. Each successive “addition” of a corruption site splits the area
evenly and hence if there are κ sites then each intervening area between them has
size (TotalArea − κ · V)/(κ + 1).

Figure 30 shows that only the first corruption site can be positively identified as
was true in the worst-case distribution. We consider the forensic cost of a single
corruption site (κ = 1) separately from the cases where κ > 1, the reason being the
area breakdown is different in the two cases. Notice that for κ ≥ 2, the last term
in the cost formula (10) is a partial sum of a harmonic series. It is an established
result [13, p. 276] that a partial sum of the harmonic series Hn is bounded above
by ⌊lg n⌋ + 1.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

Forensic Analysis of Database Tampering · App–25

κ corruption
..

...

Area Area AreaPN U

1 corruption
site

2 corruption
sites

sites

− VTotalArea(/ 2

TotalArea

TotalArea 2− V(/ 3

(/ (κ+1)

)

)

κ)− V

.

. .

.
.

Fig. 30. Three types of forensic area for average-case distribution of κ corruption sites (Monochro-
matic).

FCmono(D, 1, V, 1) = (D + D/V + 2 · lg D) + V

= O(V + D)

FCmono(D, 1, V, κ ≥ 2) = (D + D/V + 2 · lg D)

+ (V +
κ

∑

i=2

(i · TotalArea − V)/(i + 1))

≤ D + D/V + 2 · lg D + V + (κ − 1) · TotalArea

−V ·
κ

∑

i=2

1/(i + 1) (10)

≤ D + D/V + 2 · lg D + V + (κ − 1) · TotalArea

−V · (⌊lg(κ + 1)⌋ − 1/2)

= O(κ · V · D)

The forensic cost of the Monochromatic Algorithm for the average case distribution
is asymptotically the same as the cost for worst-case distribution.

F.2 RGBY Algorithm

The forensic cost of the RGBY Algorithm for the worst-case distribution of κ
corruption sites is asymptotically the same as the one for best-case distribution:
O(κ + D). This implies that the forensic cost for the average case distribution of
corruption site is the same.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

App–26 · K. E. Pavlou and R. T. Snodgrass

F.3 Tiled Bitmap Algorithm

To obtain an estimate of the forensic cost of the Tiled Bitmap Algorithm, we do not
consider the distribution of the κ corruption sites. Rather, for each site we must
deduce its relative position within a tile so that the size of the candidate set can
be computed. Furthermore, given a uniform distribution of κ, we have no way of
enforcing that each site will belong to a different tile. For these reasons we consider
the average size of the candidate set instead.

Lemma 1. The average cardinality of the candidate sets for k = 2 and for a

given l = lg N is |C| = 3l−1
2l .

Proof. The average is |C| = 1
2l ·

(

(
∑l

z=0

(

l

z

)

· 2z) − 1
)

.
∑l

z=0

(

l

z

)

· 2z is the

binomial expansion of (2 + 1)l = 3l. So |C| = 3l−1
2l .

Note that |C| = 3l−1
2l < 1.5l = O(1.5l). For l = 10 a candidate set will contain

on average about 5% of the possible binary numbers of length l. For l > 20 a
candidate set will contain on average only about 0.3% of the possible strings. This

is expected since the fraction 1.5l

2l decreases as l increases.
This decrease in candidate set cardinality as l increases has implications for

forensic analysis. Recall that the goal is to determine the set of possible corrup-
tion events implied by a provided target binary number. While the number of
possibilities grows as l gets larger, the percentage of possible granules declines.

We have showed that the average cardinality of all possible candidate sets for a
fixed-length target is |C| = (3l − 1)/2l. Recall that l = lg N .

AreaP =

κ
∑

i=1

|C| · V · N = κ ·
3lg(N) − 1

2lg(N)
· V · N = κ ·

3lg3(N)/ lg3 2 − 1

N
· V · N

= κ · V · (N lg 3 − 1)

Thus the forensic cost of the algorithm, taking the average cardinality of the can-
didate set, is

FCtiled bitmap(D, N, V, κ) = ((D/N) + (1 + lg N) · (D/N) + D/(V · N)

+ 2 · lg(D/N) + (1 + lg N) · κ)

+ (κ · V · (N lg 3 − 1))

= O(κ · V · N lg 3 + (D · lg N)/N + lg D) .

This replaces a factor of N2 with N lg 3 making the average cost asymptotically
lower than in the worst case.

F.4 a3D Algorithm

The forensic cost of the a3D Algorithm for the worst-case distribution of κ cor-
ruption sites is asymptotically the same as the one for best-case distribution:
O(κ · N + D + κ · lg D). This implies that the forensic cost for the average case
distribution of corruption site is the same.

ACM Transactions on Database Systems, Vol. V, No. N, September 2008.

