Temporal Statement Modifiers

MICHAEL H. BOHLEN and CHRISTIAN S. JENSEN
Aalborg University

and

RICHARD T. SNODGRASS

University of Arizona

A wide range of database applications manage time-varying data. Many temporal query
languages have been proposed, each one the result of many carefully made yet subtly
interacting design decisions. In this article we advocate a different approach to articulating a
set of requirements, or desiderata, that directly imply the syntactic structure and core
semantics of a temporal extension of an (arbitrary) nontemporal query language. These
desiderata facilitate transitioning applications from a nontemporal query language and data
model, which has received only scant attention thus far.

The paper then introduces the notion of statement modifiers that provide a means of
systematically adding temporal support to an existing query language. Statement modifiers
apply to all query language statements, for example, queries, cursor definitions, integrity
constraints, assertions, views, and data manipulation statements. We also provide a way to
systematically add temporal support to an existing implementation. The result is a temporal
query language syntax, semantics, and implementation that derives from first principles.

We exemplify this approach by extending SQL-92 with statement modifiers. This extended
language, termed ATSQL, is formally defined via a denotational-semantics-style mapping of
temporal statements to expressions using a combination of temporal and conventional rela-
tional algebraic operators.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—Query
languages; Data description languages (DDL); Data manipulation languages (DML); H.2.4
[Database Management]: Systems—Relational databases; Query processing

General Terms: Languages, Theory

Additional Key Words and Phrases: ATSQL, statement modifiers, temporal databases

This research was supported in part by the Swiss National Science Foundation, the Danish
Technical Research Council grant 9700780 and by the CHOROCHRONOS project, funded by
the European Commission DG XII Science, Research and Development contract FMRX-CT96-
0056, by a grant from the Nykredit Corporation, and by National Science Foundation grants
IRI-9632569 and IRI-9811406.

Authors’ addresses: M. H. Béhlen and C. S. Jensen, Department of Computer Science, Aalborg
University, Aalborg @st, DK-9220, Denmark; email: boehlen@cs.auc.dk; csj@cs.auc.dk; R. T.
Snodgrass, Department of Computer Science, University of Arizona, Tucson, AZ 85721-0077;
email: rts@cs.arizona.edu.

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 2001 ACM 0362-5915/00/1200-0407 $5.00

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000, Pages 407-456.

408 . M. H. Bohlen et al.

1. INTRODUCTION

A wide variety of applications manage substantial amounts of time-varying
data, including financial applications (portfolio management, budgeting,
billing, accounting, and banking); record-keeping applications (personnel,
medical-records, insurance policies, and inventory); travel applications
(airline, train, and hotel reservations); project management applications
(scheduling); and scientific applications (trend analysis). These numerous
database applications manage substantial quantities of time-varying data.
This has held true for as long as databases have been maintained [Wieder-
hold 1973; Snodgrass 1990]. Along with the continued improvement in
storage technologies and new data-intensive applications such as decision
support and data warehousing, old versions of data are retained longer in
databases. This results in very large databases utilizing a prominent
temporal dimension [Jensen and Snodgrass 1999].

When managing time-varying data, two temporal aspects attract special
attention. The valid time of a database fact (e.g., a tuple) is the time that
the fact was or will be true in the modeled reality. The transaction time of a
database fact is the time when the fact is stored as current in the database.
All database facts have a valid time and a transaction time, and we
consider both of these; but a database relation is not required to capture
either of these aspects. The terms temporal or time-varying are used when
one or both valid time and transaction time are captured. For more specific
situations, we use the terms valid-time relation for a relation that records
valid time only; transaction-time relation for a relation that records trans-
action time only; and bitemporal relation for a relation that records both
valid and transaction time. The term nontemporal (or snapshot) relation
indicates a conventional relation that does not capture any temporal aspect
[Jensen and Dyreson 1998].

Relational database technology provides little support for temporal data
management, and is incapable of exploiting time dimension. In response to
this unfulfilled potential, much work on temporal database management
has been conducted over the past two decades, leading to a wide variety of
data models and query languages and to numerous performance-enhancing
implementation techniques [Zaniolo 1997]. Recent query languages (e.g.,
IXSQL [Lorentzos and Mitsopoulos 1997]; TempSQL [Gadia 1988]; and
TSQL2 [Snodgrass 1995]) demonstrate that temporal application develop-
ment may benefit substantially from built-in temporal support in the query
language.

Providing temporal support directly in the query language and underly-
ing DBMS is only half the answer, transitioning easily from existing
technology to the new support is also important. A query language that
facilitates this transition will be more successful than one that requires,
say, a complete rewriting of existing applications. Fortunately, as we will
show, it is possible to have the best of both worlds: powerful temporal
support and a well-defined, straightforward migration path.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 409

Existing temporal query languages, including those in whose design we
have participated, have an unfortunate ad hoc feel to them. They contain
numerous novel constructs, each with more or less justification. Each
language is a confluence of many design decisions, which interact in subtle
ways.

In this article we advocate a different approach to temporal query
language design. We articulate desiderata that constrain and guide the
design, so that, starting from an initial nontemporal query language (e.g.,
SQL-92 [Melton and Simon 1993]; SQL:1999 [Melton 1999]; ODMG [Cattell
et al. 2000]), a syntactic structure and core semantics for a temporal query
language are directly implied. The result is a language design that derives
from first principles.

After presenting the desiderata, the article shows how to employ state-
ment modifiers in the design of a temporal extension. For concreteness, we
apply statement modifiers to SQL-92. In addition to queries (select state-
ments), we also address data definition and modification statements, as
well as integrity constraints. The language is described in two steps. First,
we show how the desiderata shape the skeleton of a language. Second, we
present a formal definition of the query language semantics by means of a
denotational-semantics-style mapping to well-defined algebraic expres-
sions. This mapping assumes a mapping of SQL-92 to relational algebra
and defines temporal statements in terms of their mapping to well-defined
temporal and conventional relational algebra expressions. The temporal
relational algebra used here is efficiently implementable, in that the
evaluation of its expressions relies only on the end points of time periods
associated with argument data and not on intermediate points, making
evaluation granularity independent. We again emphasize that this general
approach is amenable to any initial query language; we focus on the
SQL-92 language to be specific and rigorous. Having defined the temporal
extension based on statement modifiers, we then show that indeed its
definition satisfies the desiderata.

The presentation is structured as follows. The next section formulates
requirements for a temporal data model and query language. Section 3 then
proceeds by illustrating how a sample language, SQL-92, may be systemat-
ically extended with statement modifiers to provide built-in support for
temporal database management. Having provided the rationale and intu-
ition behind the language design, Section 4 gives a concise, yet precise,
semantics for the language, and shows how an implementation in terms of
relational algebra can be extended to a temporal relational algebra. This
provides a solid footing for the exploration of language properties—the
topic of Section 5. Related research is explored in Section 6, and Section 7
summarizes and points to opportunities for future research. Appendices
with detailed technical material complete the paper. TIGER, a prototype
system that implements selected aspects of temporal SQL, is accessible via
URL <www.cs.auc.dk/tiger >. Throughout this article we use snippets
from the following application.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

410 . M. H. Bohlen et al.

Table I. Desiderata Overview

Desiderata facilitating the transition to a temporal DBMS

upward compatibility Aim: to facilitate the migration of legacy code from an existing
DBMS to a new temporal DBMS (Section 2.1).

temporal upward compatibility Aim: to facilitate the coexistence of legacy code and new
temporal code, following migration, by allowing existing data to be rendered temporal
without this affecting the operation of existing applications (Section 2.2).

S-reducibility Aim: to facilitate the reuse of the expertise of application developers, by
offering temporal support that generalizes the non-temporal query language using a
point-based view of a temporal database (Section 2.4).

Desiderata concerning systematic temporal support

S-reducibility described above; also yields a systematic approach to offering point-based
temporal support.

extended S-reducibility Aim: to offer systematic temporal support, by ensuring reducibility
even in statements that explicitly reference time (Section 2.5).

integrated support for point and interval-based views of data

interval preservation Aim: to provide maximal support for an interval-based view of data,
by maximally respecting the intervals of argument tuples in point-based query
language statements (Section 2.6).

nonrestrictiveness Aim: to provide maximal support for an interval-based view of data,
by making it possible to treat interval-valued timestamps as normal values, and vice-
versa (Section 2.7).

Example 1.1 Consider a human resources application that maintains a
database of several SQL-92 relations recording who works in the company,
their current salary and job assignment, as well as other current data. The
application is inherently nontemporal: when someone receives a raise or is
assigned to a different job, the modification is made in place, without
retaining past data. We wish to migrate the application to the next release
of the DBMS, which supports a temporal extension of SQL-92.

2. DESIDERATA FOR A TEMPORAL EXTENSION

The most prominent prospective users of temporal database technology are
enterprises that manage large amounts of time-varying data. The challenge
before us is two-fold: how to ensure that an enterprise can smoothly
migrate from its current DBMS to a temporal DBMS, and how can that
temporal DBMS actually deliver the promised systematic support for
time-referenced data.

Table I summarizes desiderata that aim to ensure that these goals are
achieved; the remainder of this section briefly shows how they, in concert,
cover key language design issues.

Upward compatibility is well known throughout the software industry
and is taken very seriously, for example, in SQL standardization. Specific
to temporal databases, temporal upward compatibility requires that it be
possible to render database relations temporal—to serve new temporal
application code without impacting existing legacy code. The objective is to
make it possible to gradually develop temporally-enabled applications
without invalidating existing applications.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 411

Having adopted a temporal DBMS, it is important that application
developers be able to continue their work without an initial decrease in
productivity. S-reducibility allows all existing SQL statements to be ren-
dered temporal using a simple principle: a relation with a temporal
dimension is perceived as a sequence of nontemporal relations to which
regular SQL statements apply. A regular SQL statement can be rendered
temporal by applying it individually to each snapshot state of a temporal
relation and then combining the results into a single temporal relation.

The remaining desiderata are independent of legacy issues, and instead
guide the design of the temporal extension itself. Extended S-reducibility
ensures that all aspects of the extended query language where temporal
support is meaningful should be given such support. Interval preservation
and nonrestrictiveness aim to preserve intervals as much as possible, and
permit the manipulation of interval-valued timestamps using built-in pred-
icates and functions.

It should be noted that these desiderata are orthogonal to the perfor-
mance properties of the migrated applications. We now formally define
each in turn.

2.1 Upward Compatibility

With the new temporal DBMS, it is fundamentally important that all code
work must without modification, and with exactly the same functionality as
existing DBMS. Upward compatibility captures the essence of what is
needed to make this possible. We assume that the interface of a DBMS is
captured in a data model, and hence discuss the migration of application
code using an existing data model rather than a new data model. We adopt
the convention that a data model consists of two components, namely a set
of data structures and a language for querying data structures [Tsichritzis
and Lochovsky 1982]. For example, the relational model’s central data
structure is the relation, and the central user-level query language is SQL.
Notationally, M = (DS, QL) denotes a data model M, consisting of data
structures DS and query language QL. Thus, DS is the set of all databases,
schemas, and associated instances expressible by M, and QL is the set of all
update and query statements in M that may be applied to some database in
DS. We use db to denote a database; a statement is denoted by s, and is
either a query ¢ or an update u (in SQL-92, any modification statement,
that is, INSERT, DELETE or UPDATE.

A (new) data model is syntactically upward compatible with another
(legacy) data model if all the data structures and legal query expressions of
the latter model are contained in the former model. If that is the case, all
existing application code will remain syntactically correct.

Definition 2.1 (Syntactic upward compatibility). Let M* = (DS*, QL")
and M? = (DS”, QL?) be two data models. Model M? is syntactically
upward compatible with model M~ iff

Vdb* € DS*(db* € DS”) and Vs* € QL*(s* € QL).

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

412 . M. H. Bohlen et al.

In addition, all queries expressible in the existing model must evaluate to
the same results in the new model. For a query language expression s and
an associated database db, both legal elements QL and DS of data model
M = (DS, QL), we let {({s(db)M)) be the result of applying s to db in data
model M. (This result captures all aspects of the interaction between an
application and the DBMS, and thus includes result codes, changes to the
data structures, cursor management, etc.)

Definition 2.2 (Upward compatibility). Let M* = (DS*, QL*) and
MY = (DS?, QL”) be two data models. Model M is upward compatible
with model M~ iff M” is syntactically upward, compatible with M *, and

Vdb* € DS*(Vs* € QL (((s*(db")u= = (s*(db))ar))-

This guarantees that all existing queries compute the same results in the
new system. (As we see in Section 2.3, this has strong implications for the
implementation, down to the details of which error codes are to be re-
turned.) Thus, the bulk of legacy application code is not affected by the
transition to the new system.

Example 2.1 To illustrate upward compatibility (UC) in the context of
SQL-92, consider the following statements.

CREATE TABLE Employee (ID INTEGER CONSTRAINT Employee_pk PRIMARY KEY, Name CHAR(30))
CREATE TABLE Salary (ID INTEGER, Amt INTEGER, FOREIGN KEY (ID) REFERENCES Employee) ;

SELECT E.Name, SAmt FROM Employee AS E, Salary AS S WHERE E.ID = S.D;

CREATE VIEW v AS SELECT * FROM Employee WHERE ID NOT IN (SELECT ID FROM Salary)

These are simple legacy SQL-92 statements that must be supported by any
reasonable (temporal) extension of SQL-92; the semantics is dictated by
SQL-92 [Melton and Simon 1993]. The first data definition statement
defines a table with two columns. A column constraint states that ID is a
primary key. The second statement defines another table with two col-
umns. A table constraint makes Salary.ID reference Employee.ID . The
select statement joins Employee and Salary . The fourth statement defines
a view that returns all tuples in Employee that are not referenced by
Salary .

By requiring that a temporal extension be a strict superset (i.e., only
adding nonmandatory constructs and semantics), it is relatively easy to
ensure that the temporal extension is upward compatible with SQL-92.
Still, upward compatibility does place strict constraints on the temporal
extension: It must be “in the spirit” of and must live with any peculiarities
of the language it extends. As an example, when extending SQL-92 with a
data type for intervals, the string “interval” cannot be used in the extension
because this string has already been used for the duration data type.!

IThis is the reason why we generally use the SQL3 term “period” for time intervals.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 413

Upward compatibility has one unintended ramification. Any extension
that includes new reserved keywords violates upward compatibility, be-
cause legacy query language statements may have employed such keywords
as identifiers. Under the semantics of the new model, such statements are
illegal, but it is impractical to exclude new reserved keywords from tempo-
ral as well as nontemporal extensions. For example, SQL-92 added some
112 reserved keywords to the 115 reserved keywords of its predecessor,
SQL-89.2 To follow current practice and avoid being overly restrictive, we
consider upward compatibility as satisfied even when new keywords are
added.

2.2 Temporal Upward Compatibility

Upon adopting a temporal data model, the benefits of built-in temporal
support are only realized incrementally by modifying existing application
code or developing new application code that exploits temporal capabilities.
Thus, a next step is to formulate desiderata that aim to ensure the
harmonious coexistence of legacy application code and new temporally-
enhanced application code.

To see the point of tension between the two, assume that the new
temporal model is in place. No application code has been modified and all
relations are nontemporal. Now an application needs support for the
temporal dimension of the data in one of the existing relations, and the
existing nontemporal relation is then changed to a temporal one. It is
undesirable to have to change the (legacy) application code that accesses
the previously nontemporal relation. Therefore, we require that the exist-
ing applications on nontemporal relations must continue to work unmodi-
fied when nontemporal relations are rendered temporal. Intuitively, a
query g must return the same result on an associated nontemporal data-
base db as on the temporal counterpart of the database, T(db). Further,
modification statements must ensure that subsequent queries return the
expected results.

Definition 2.3 (Temporal upward compatibility). Let a temporal and a
nontemporal data model be given by M* = (DS?, QL") and M* = (DS®, QL*),
respectively. Also, let 7 be an operator that changes the type of a relation
from nontemporal to temporal. Next, let U = uq, uqg, ..., u, (n =0)
denote a sequence of update operations. With these definitions, model M is
temporal upward compatible with model M? iff M’ is upward compatible
with M*® and

Vdb* € DS*(VU(Vq® € QL ((g*(W(db))ws = ((g*(U(T(db*))uro))))-

The subset of the functionality of a temporal data model that corresponds
to temporal upward compatibility (TUC) consists of all SQL-92 language
2 Melton and Simon [1993] provide a list of ten items with incompatibilities in SQL-89 and
SQL-92, with the keyword being one item.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

414 . M. H. Bohlen et al.

constructs, the means of creating temporal tables, and the ability to apply
SQL-92 queries and updates to temporal tables.

Example 2.2 To illustrate, we assume a temporal DBMS satisfying
upward compatibility and TUC. Just to make things more interesting,
assume for the moment that we have only the executable version of the
human resources application from Example 2.1: we do not have access to
the source code with embedded SQL.

Upward compatibility ensures that the application runs fine. Everything
works as it did before.

Assume that the database state is as shown below.

Employee Salary
ID Name 1D Amt
1 Bob 1 20
3 Pam 3 40
4 Sarah

We now render the database temporal by adding valid-time support to some
of the underlying relations. The sole new construct, which is underlined,
enables us to render a table temporal. (Alternatively, valid time could be
captured by adding a special valid-time column, thus not altering the table
type [Bohlen et al. 1998b].)

ALTER TABLE Employee ADD VT

Let the current time be 7. Altering the Employee table associates with
each row the timestamp 7—NOW. (NOW is a special value that tracks the
current time [Clifford et al. 1997].) The database is consistent since, at time
7, both integrity constraints are satisfied, that is, Employee.ID is a
primary key and Salary.ID references Employee.ID

Temporal upward compatibility ensures that the application still exe-
cutes as it did before. The semantics must take into account that Employee
is temporal, whereas Salary is still nontemporal. Specifically, queries that
retrieved data still retrieve the same data, cursors work exactly as before,
referential integrity-checking still applies as before, and so on. However,
past states are retained automatically. We could implement new applica-
tions that used enhanced statements to query time-varying data; but the
existing application would remain as is, without a single line of code
needing to be changed.

Now let us assume that we do have the code for the application, which
includes the following statements, executed at time 9.

INSERT INTO Employee VALUES (6, Tom’) ;
DELETE FROM Employee WHERE IB- 4,

SELECT * FROM Employee
WHERE NOT EXISTS (SELECT * FROM Salary WHERE Salary.ID = Employee.ID) ;

SELECT * FROM vy

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 415

These statements are all legacy SQL-92 statements, but the semantics has
changed because the underlying data structure, that is, table Employee ,
has changed. For example, the modification statements must adequately
maintain the valid time of Employee [Bair et al. 1997]. The insert state-
ment adds (6, 'Tom’ ||9—NOW) to Employee , and the delete statement
changes (4, 'Sarah’ [1-NOW) to (4, ’Sarah’||1—8). (The vertical double-
bar “|” separates the valid-time attribute V7T from the nontemporal explicit
attributes. We assume closed intervals.)

For the select and view statements, Employee must be restricted to the
current state (which can be achieved in practice by recompiling the view
definition). Both queries return (6, 'Tom’) because, at time 9, the only
value of Employee.ID that does not occur in Salary.ID as well is 6, which
we just inserted.

2.3 Implications of UC and TUC

Upward compatibility and temporal upward compatibility are concerned
with statements in the temporal query language that are also in the initial
nontemporal query language (i.e., legacy statements). Here we summarize
the problems in implementing an upward compatible (in both senses)
temporal extension of SQL-92.

Every statement S in (nontemporal) SQL-92, when evaluated on the
temporal DBMS (TDBMS) being implemented, and referencing only non-
temporal SQL-92 relations should have exactly the same semantics as a
nontemporal DBMS. The semantics is well defined for the SQL-92 standard
[Melton 1992], and includes the resulting tuples, all changes to the under-
lying relation (if the statement is a modification statement), cascading
changes, checking of integrity constraints and assertions, invocation of
defined triggers, impact on the transaction in which the statement exe-
cutes, error conditions and codes returned to the application, and impact on
cursors, etc.

Temporal upward compatibility provides a well-defined semantics for
every statement S in (nontemporal) SQL-92, when evaluated on the TD-
BMS and referencing temporal relations. In interaction with the applica-
tion, that semantics is defined in the SQL-92 standard, and includes, as
before, the resulting tuples, impact on the transaction within which the
statement executes, error conditions and codes, impact on the state of
cursors, etc. For the application in which S occurs, there is no way in which
the application can employ SQL-92 statements to detect whether an
underlying relation is temporal because such statements have exactly the
same effect on nontemporal and temporal relations.

The only difference in evaluating S in the TDBMS on a nontemporal
versus a temporal relation is in the stored state of that relation, that is, a
valid-time history is maintained. Such history can be seen in statements in
the temporal extension of SQL-92, but, again, cannot be observed via legacy
statements.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

416 . M. H. Bohlen et al.

It is the responsibility of the TDBMS implementor to ensure that this
correspondence is preserved at all times. Upward compatibility is easily
ensured by retaining the syntax and implementation of the underlying
nontemporal query language. As a first cut in supporting temporal upward
compatibility, all operations that retrieve data from temporal relations
should include an additional predicate that valid and transaction times-
tamps must now overlap, all operations that logically delete tuples should
set the valid and transaction end times to now, and all operations that
insert tuples should set the valid and transaction start times to now. The
details depend on the underlying query language and DBMS implementa-
tion being extended.

There is another class of applications that by using date or time at-
tributes we would like to migrate, those that store time-varying informa-
tion in conventional relations. There are as many ways of doing this as
there are programmers. (We have examined a diverse spectrum of ap-
proaches elsewhere [Snodgrass 2000].) Upward compatibility ensures that
such applications still run on the temporal DBMS. However, temporal
upward compatibility is less relevant in this situation because the relations
are already storing time-varying information, though this is not apparent
to the underlying DBMS (which has no notion of time-varying information).
What is needed is a way to convert a relation with datetime attributes into
a temporal relation. Such a conversion by necessity involves extended
statements, and is discussed in that context in Section 2.7.

Now that we have dealt with the semantics of statements from the
underlying nontemporal query language, we turn to desiderata for en-
hanced statements, present only in the temporal query language.

2.4 S-Reducibility

Most temporal extensions introduce new language constructs that mirror
existing constructs, while emphasizing the time component. For example,
TOSQL [Ariav 1986] adds a WHILE clause, and TSQL [Navathe and
Ahmed 1989] and TQuel [Snodgrass 1987] each add a WHEN clause,
paralleling the WHERE clause. Instead, we advocate utilizing the existing
syntax and semantics and generalizing them to apply even when time is
present. In this way, syntactically similar snapshot reducibility—called
S-reducibility, for short—aims to protect the investment in programmer
training and to ensure continued efficient, cost-effective application devel-
opment upon migration to a temporal model. This is achieved by exploiting
the fact that programmers are likely to be comfortable with the nontempo-
ral query language, for example, SQL-92.

S-reducibility states that the temporally extended data model’s query
language must offer, for each query in the nontemporal query language, a
syntactically similar temporal query that is its “natural” generalization, in
a precise technical sense. The goal is to make the semantics of temporal
queries easily understandable in terms of the semantics of the correspond-
ing SQL-92 queries on nontemporal relations. The familiar syntax and

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 417

“naturally” extended semantics make it possible for programmers to imme-
diately and easily write a wide range of temporal queries, with little need
for expensive training, few errors, and no significant initial drop in produc-
tivity.

S-reducibility is based on the notion of snapshot reducibility. We use r
and r? for denoting, respectively, a nontemporal and bitemporal relation
instance. Similarly, db and db® are sets of nontemporal and bitemporal
relation instances, respectively. The bitemporal timeslice operator Ti‘fif{)
(e.g., Schueler [1977] and Bohlen and Marti [1994]) takes as arguments a
bitemporal relation r* (in the data model M%) and a bitemporal instant
(¢, ¢"") and returns a nontemporal relation r (in the data model M)
containing all tuples current at time ¢ and valid at time c'‘. In other
words, r consists of all tuples of 7° whose associated time includes the time
instant (¢*, ¢'*), but without the valid and transaction time.

Snapshot reducibility utilizes the so-called point¢-based view, which inter-
prets a temporal relation as a collection of snapshots, each associated with
a point in time. This view is illustrated in the following example.

Example 2.3 Assume schemas P(A|VT) and Q(A|VT) and instances
p(P) = {{a]|21-30)} and q(@) = {{a|28—27)}. Under the point-based
view, p and g denote sequences of relations: po; = ... = pgo = {(a)} and
Qo3 = ... = Q97 = {{a)}. The index indicates the time of a state, that is,
Ppo1 is the state of relation p at time 21. States not shown are empty. The
point-based view can be used to define a wide range of operations. For
example, the point-based valid-time difference » = p*" ¢ is defined as a
sequence of regular differences on database states: r1 = p;\q1, 72 = p2\qo,
etc. With the given instances, we get ry; = rgy = ragg = rgg = rso = {{a)},
which we write as r = {{a, 21—-22), {(a, 28—30)}.

While this example examined a particular algebraic operator, relational
difference, this notion can be expanded to statements in a query language,
and indeed, to the query language as a whole.

Definition 2.4 (Snapshot reducibility) [Snodgrass 1987]. Let M =
(DS, QL) be a nontemporal data model, and let M% = (DS%, QL") be a
bitemporal data model. Data model M % is snapshot reducible with respect
to data model M iff

Vq € QL(3¢" € QLY (Vdb® € DS¥(Vc™, c”t(’r?ﬁj’%(qbi(dbbi)) = q(ﬁfﬁf’ﬁf)(dbbi)))))).

In other words, snapshot reducibility implies that for all query expressions
q in the nontemporal model, there must exist a query ¢ in the temporal
model, such that for all db® and for all time arguments, ¢® reduces to q.

Observe that ¢® being snapshot reducible with respect to ¢ poses no
syntactical restrictions on g%, making it possible for g% to be quite

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

418 . M. H. Bohlen et al.

different from ¢; so ¢ might be very involved even if ¢ is not. This is
undesirable when we would like to obtain a straightforward extension.
Consequently, we require that ¢®" and g be syntactically similar.

Definition 2.5 (S-reducibility). [Bohlen et al. 1995] Given nontemporal
and bitemporal data models M = (DS, QL) and M% = (DS%, QL"%), data

model M % is a syntactically similar snapshot-reducible (S-reducible) exten-
ston of model M iff

(1) data model M*' is snapshot reducible with respect to data model M and

(2) there exist two (possibly empty) strings, S; and S, such that each
query g% in QL% that is snapshot reducible with respect to a query g in
QL is syntactically identical to S1¢.S.,.

If the two strings S; and S, are both the empty string, the extension is
termed a syntactically identical snapshot reducible extension.

The strings S; and S, are termed statement modifiers because they
change the semantics of the entire statement q that they enclose.

If the temporal data model treats temporal relations as new types of
relations, it is possible to use the same syntactical constructs (i.e., %" and g
are identical) for querying nontemporal and temporal relations. In this
case, the types of the argument relations determine the meaning of the
construct. However, if temporal upward compatibility is also satisfied, and
if there is no separate, global context, it is impossible to achieve an
extension that is both temporal upward compatible and syntactically
identical snapshot-reducible.

With S-reducibility satisfied, a reducible, temporal query evaluates to a
result consistent with evaluating its syntactically similar, nontemporal
query at each state of the argument temporal relation, producing a state of
the output relation for each such evaluation. As a result, temporal queries
are easily formulated and understood. This applies also to, for example,
modification statements and integrity constraints.

In the following examples, we prepend statements with the statement
modifier SEQ VT to be described in detail in Section 3. This modifier tells
the temporal DBMS to evaluate statements with sequenced semantics in
the valid-time dimension. We use the term “sequenced” to indicate that the
database is viewed as a time-indexed collection of snapshots. Explanations
follow the example statements.

Example 2.4 We illustrate with a variety of sequenced statements from
our human resources application.
SEQ VTSELECT * FROM Employeg

SEQ VTSELECT E.Name, SAmt FROM Employee AS E, Salary AS S WHERE E.ID = S.D ;

SEQ VT
SELECT ID FROM Employee AS E

WHERE NOT EXISTS (SELEC¥ FROM Salary AS S WHERE E.ID = S.D) ;
CREATE TABLE Positions (ID INTEGER SEQ VT PRIMARY KEY, Position INTEGER) AS VT ;

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 419

The first query simply returns all tuples together with their valid times—
this corresponds to returning the content of Employee at each state (we
requested the timestamp via SEQ V7. The remaining queries assume that
table Salary has also been altered to become a valid-time table and that
the database has the following contents.

Employee Salary
ID Name VTIME ID Amt VTIME
1 Bob 5-8 1 20 4-10
3 Pam 1-3 3 20 6-9
3 Pam 4-12 4 20 6-9
4 Sarah 1-5

The second query joins Employee and Salary at each state of the database.
This amounts to the well-known temporal natural join [Jensen et al. 1994]
and returns {('Bob’, 20(|5—8)}, ('Pam’, 20||6 —9). Conceptually, we get the
result by evaluating the enclosed SQL statement on each state of the
database. Computationally, the interval 6—9 is the result of intersecting
the intervals 4—12 and 6—9 (interval intersection returns those instants
that are contained in both input intervals). Similarly, the third query
evaluates the query and the subquery, on each state of the database,
thereby performing a variant of temporal difference. Again, the modifier
SEQ VTtells the DBMS to compute the difference at each snapshot, and
returns {(3]|]1—-3), (3||[4—5), (3]|]10—12), (4|1 -5)}. Again, we conceptu-
ally evaluate the enclosed statement on each state of the database. Compu-
tationally, we, for example, subtract the interval 6—9 from the interval
4—-12 to get the intervals 4—5 and 10—12.

The last statement defines a table Positions and requires column ID to
be a “temporal” primary key, that is, ID must be a primary key at each
state (but not necessarily across states). Let Positions have the following
contents.

Positions
ID Position VTIME
1 101 3-6
1 204 10-17
2 306 4-8
The database is consistent because at each state Positions.ID is a

primary key. Adding (1, 106]||7—9) to Positions leaves the database in a
consistent state, but adding (2, 106|7—9) violates the constraint, since
Positions.ID would then not be a primary key at times 7 and 8.

These examples illustrate that S-reducible statements are easy to write
and understand because they are simply conventional SQL statements with

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

420 . M. H. Bohlen et al.

the additional prefix SQL VT Despite their natural semantics, these
statements are very difficult to write without statement modifiers. A
skilled SQL programmer would find it quite difficult to formulate even
these simple examples in pure SQL [Snodgrass 2000].

2.5 Extended S-Reducibility

S-reducibility (Definition 2.5) is applicable only to queries of the underlying
nontemporal query language, and does not extend to queries that explicitly
reference the time.

Example 2.5 Consider these two similar queries.

SEQ VT SEQ VT
SELECT E.ID SELECT E.ID, VTIME(S) , VTIME(E)
FROM Employee AS E, Salary AS S FROM Employee AS E, Salary AS S
WHERE E.ID = S.ID WHERE E.ID = S.ID

AND VTIME(E) OVERLAPS PERIOD '1990-2000

The query to the left constrains the temporal join to tuples in Employee
with a valid time that overlaps the period 1990-2000. This condition
cannot be evaluated on individual nontemporal relation states because the
timestamp is not present in these states. Nevertheless, the temporal join
itself can still be conceptualized as a nontemporal join evaluated on each
snapshot, with an additional predicate. The query to the right computes a
temporal join as well, but also returns the original valid times. Again, the
semantics of this query falls outside of snapshot reducibility because the
original valid times are not present in the nontemporal relation states.

DBMSs generally provide predicates and functions on time attributes,
which may be applied to, for example, valid time, and queries such as these
arise naturally. Enlarging the applicability of the SEQ VT modifier to
statements that include predicates and functions on valid and transaction
time offers a higher degree of orthogonality and wider ranging temporal
support.

Intuitively, extended S-reducibility requires that the presence of explicit
time references does not change the S-reducible evaluation mode of the rest
of the statement (cf., Example 2.5). Let tnorm(q’) be the query where each
explicit time reference in ¢’ is replaced by the unit period PERIOD '1-1" .
Let {q'(db"))4”"™ be the result of evaluating ¢’ on db’ in model M?, with
the addition that all explicit time references evaluate to the unit period.

Definition 2.6 (Extended S-reducibility). Let M*® = (DS*, QL®) be a
nontemporal data model, and M’ = (DS?, QL) be an S-reducible extension
of M*s. Model M' is an extended S-reducible extension of M?® iff for any
S-reducible query ¢ in QL' that

Vq; € QL (tnorm(q;) = q' = ((tnorm(g)Mu: = (gii™)-

Extended S-reducibility enlarges the scope of S-reducibility to statements
that cannot be answered by considering the snapshots of a temporal

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 421

database in isolation. This is an important and nontrivial extension. As a
direct consequence, it is no longer possible to define the semantics purely in
terms of individual snapshots. Instead, the semantics of such statements
must be defined explicitly. Statements that may include functions and
predicates on timestamps are defined in Section 4.

2.6 Interval Preservation

Coupling snapshot reducibility (Definition 2.4) with syntactical similarity
(Definition 2.5), and using this property as a guideline to semantically and
syntactically embed temporal functionality in a language, is attractive but
also limited. S-reducibility and extended S-reducibility adopt a point-based
view, and see the intervals associated with data only as convenient repre-
sentations of time points, supporting a point-based view. This view is
pervasive in database research [Tansel et al. 1993]. In contrast, the
interval-based view is quite pervasive in artificial intelligence research
[Allen 1983; van Benthem 1991]. Here, intervals are not merely containers
of points, but are atomic values that cannot be split or merged without
changing the meaning of the data. In particular, S-reducibility is point-
based: it does not distinguish between distinct relations if they contain the
same snapshots, that is, if they are snapshot-equivalent [Jensen et al.
1994]. This means that many separate results of an S-reducible query are
generally possible: the results will be snapshot-equivalent, but will differ in how
the resulting tuples are timestamped. As a simple example, if {(X|[1—5)} is
a possible result of an S-reducible query, so is {(X||1—2), (X||3—5)}. In this
section we delve into the issue of which result(s) should be favored out of
the many possible permitted by S-reducibility.

To illustrate in more detail, consider the following two relations, which
are different and may be given different meanings by the user. Employees
are evaluated every June and December, and bonuses are allocated for the
past six months. Bob’s performance was judged satisfactory, and so his
bonuses were set at 20 for the first and last halves of the year, as shown in
the left relation.

Bonus Bonus 2
ID Name VTIME ID Amt VTIME
1 20 1-6 1 20 1-12
1 20 7-12

Now consider the relation to the right. In spite of the difference between
relations, they are the same in the snapshot reducibility context because a
relation is viewed as no more than a collection of time-indexed nontemporal
relations: the two relations imply exactly the same nontemporal relations.
We thus have an example where two distinct relations—with quite differ-
ent meanings in terms of what is important for the application user—
cannot be differentiated by snapshot-equivalence.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

422 . M. H. Bohlen et al.

The difference between the two relations is that one is coalesced while
the other is not [Bohlen et al. 1996]. In general, two tuples in a temporal
relation with intervals as timestamps are candidates for coalescing if they
have identical explicit attribute values and adjacent or overlapping times-
tamps. Such tuples may arise in many ways. For example, uncoalesced
tuples may have been stored in the database on purpose, update operations
may not enforce coalescing due to efficiency concerns, and some queries
evaluated on a coalesced temporal relation may produce an uncoalesced
result [Bohlen et al. 1996].

When formulating more specific design desiderata for timestamping the
tuples of query results, two possibilities come to mind. One possibility is to
require the results to be coalesced—this solution is attractive because it
defines a canonical representation for temporal relations. Potential disad-
vantages are that timestamps of tuples stored into the database are not
preserved and that with more than one interval-valued time dimension, no
unique coalesced relation exists (as demonstrated in Section 3.2). As the
second possibility, we can preserve, or respect, the timestamps as originally
entered into the database. This approach is faithful to the information
entered by the user and offers more control to the user, but it also moves
the responsibility for maintaining the semantics of the timestamps from
the system to the user.

Because there are advantages to both possibilities, we let statement
modifiers accommodate both possibilities in the same language. The default
is to preserve the timestamps—since it is irreversible, coalescing cannot be
the default.

In the sequel we define interval preservation [Bohlen et al. 1998a], which
intuitively requires that timestamps be changed as little as possible. We
assume valid time relations throughout, and use the following auxiliary
notions. Temporal relations s; and s, are snapshot-equivalent, s; = s, iff
at each point in time their snapshots are identical [Jensen et al. 1994]. Two
tuples are value-equivalent iff their explicit attributes are pairwise-identi-
cal [Bohlen et al. 1996]. Finally, a temporal element is a finite union of
intervals [Gadia 1986].

As first steps, we define three auxiliary notions, namely output points,
required argument tuples, and maximal impact tuples.

Example 2.6 The following database and query are used to illustrate the
definitions.

e Schemas: R1(A|VT), R2(B, C|VT), and R(D|VT).
o rl = {(1/5-8)}, (3[1-3), (3[|4—12), (4]1-5)
e 12 = {(1, 2]|4—10), (3, 26—9), (4, 2|6—9)}

e Q = SEQ VTSELECT A FROM rl1 WHERE NOT EXISTS (SELEGTFROM
r2 WHERE B> A)

o r = {(1]56-5), (3[1-3), (3[4-5), (3[|10-12), (4]1-5)}

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 423

Definition 2.7 (Output points, op). Let @ be a query, r{, ..., r, be
relations, and x be a sequence of explicit attribute values. The output
points is a formula

op(@, 1y, ..., X, A)
where
(1) ry, ..., r, are the argument tuples of query Q;,
(2) A is the set of time points associated with the result tuple x; and
B op@, ry, ..., r,x,A) Dop(@, r, ..., r,,X,A’) > A =A".

We use the output points to define the set of time points that the result of
a temporal query will include. The output points have to be defined for each
query or class of queries individually. Assume the S-reducible query @ =
SEQ VTR' from our running example. For the family of S-reducible que-
ries, the set of output points is defined in terms of the individual snapshots
of the database:

op(Q, 11, ..., 7Ty, X, A)Iff VE(x € Q' (7V(ry), ..., TV(r,)) ©t E A).

The valid-time timeslice operator, 7)°, takes as arguments a temporal
relation r and a time instant ¢ and returns a relation r’ without a
valid-time dimension. The relation r’ contains all tuples that are valid at
time £, that is, those tuples of r whose associated valid time includes the
time point ¢, but without the valid time. The formal definitions can be
found in Appendix B.

Example 2.7 With Qand DBfrom our example, we get the following sets
of output points:

® op(Qrl,r2,(1), {5})
e op(Qrl,r2,(3),{1,2,3,4,5,10, 11, 12})
. Op(Q’ rl ’ rz b <4>? {1’ 2’ 3’ 4’ 5})

The next step is to characterize the set of required argument tuples for
each potential result tuple (x||[). The required argument tuples, s, ... , s,,
are a minimal subset of the argument tuples, such that the output points
still include all the time points of 1.

Definition 2.8 (Required argument tuples, rat). Let ry, ..., r, be the
argument tuples, @ be a query, x be a sequence of attribute values, and [
be an interval. A subset of the argument tuples, s, ..., s,, is required for
the result tuple (x||I) iff x and I can be entirely determined from s, . .., s,,
but not from any proper subset of s, ..., s,.
rat(ry, ..., r,, @, x,1,s,...,s,) iff

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

424 . M. H. Bohlen et al.

1) op(rqy, ..., r,, @, x,A) DI CA O
2)s;Cr;0d...0s,Cr,0o0p(s, ...,8, @, x, A)DICA'0A' CA DO
(8) Vsh, ...,sh(sh Cs;O0...0s,Cs,0Us:c Us; Dop(sh, ..., s,

R, x,A")=> I A" OA" ¢A"))

Line (1) states that only result intervals that are subsets of the set of
output points are considered. (An interval I is a subset of a temporal
element A iff each time pointin [isalsoinA: I C Aiff Vit €I >t € A).)
Line (2) requires that the output points of the required argument tuples
still include all points of the result interval (I C A’) and that no new
points have been introduced (A’ C A). Finally, line (3) ensures that the set
of required argument tuples is minimal for the given result tuple.

Example 2.8 With rl, r2, and Q from our example, the following holds
true.

e rat(rl, r2, Q (3), 1-3, {(3|[1-3)}, {})

e rat(rl, r2, Q (3), 1-2, {(3]|[1-3)}, {})

e rat(rl, r2, Q (3), 4—5, {(3|4—12)}, {(4, 2|6—-9)})

e rat(rl, r2, Q (3), 1-5, {(3||1-3), (3]|4—12)}, {(4, 2|[6—-9)})
e rat(rl, r2, Q (3), 10—12, {(3||4—12)}), {(4, 2|6 —9)}

Not all rat-relationships are equally interesting. First, some relation-
ships do not maximize the output interval I. (The first and second relation-
ships illustrate this.) The reason is that the required argument tuples are
defined for all possible subintervals of a temporal element. For example,
assume a scenario with exactly one required argument tuple: rat(r, @, x,
I, {t}). In this case, rat(r, Q, x, I', {t}) also holds for all subintervals I' C I.

A second property of the required argument tuples is that, for long result
intervals, it is usually necessary to combine multiple argument tuples. (The
fourth relationship illustrates this.) It combines the first and third
rat-relationship into a single relationship.

We use the set maximal impact tuples to characterize the required
argument tuples of interest to us.

Definition 2.9 (Maximal impact tuples, mit). Let ry, ..., r, be argu-
ment relations, @ be a query, x be a sequence of attribute values, I be a
time interval, and sq, ..., s, be required argument tuples. (x|[) is a
maximal impact tuple if I can neither be enlarged nor reduced, that is,

mit(rq, ..., r,, @, x,1,s,...,s,) iff

1) rat(rq, ..., r,, @, x,1,s4,...,s,) O

(2) -3dr'a’ >I0rat(ry, ..., r,, @, x,I',s4,...,s,) O

3) -3r',sy,...,s,I"" clidsy,cry0... Os, Ccr,0Us: c Ur; O
rat(ri, ..., r, @, x,I', s, ..., s)))

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 425

The relationship defined by the maximal impact tuples is a subset of the
relationship defined by the required argument tuples (line (1)). Line (2)
excludes required argument tuples that permit a larger result interval.
This ensures that the result tuple (x||I) is maximal for a given set of
required argument tuples. Line (3) excludes result tuples that are con-
structed by combining independent required argument tuples.

Example 2.9 With rl, r2, Q and r from our example, the following
holds true.
e mit(rl, r2, Q (1), 5—5, {(1]5—8)}), {(3, 2|6—9)}
mit(rl, r2, Q (3), 1-3, {(3[1-3)}, {})
mit(rl, r2, Q (3), 4—5, {(3||4—12)}), {(4, 2]|[6—9)}
mit(rl, r2, Q (3), 10—12, {(3||4—12)}), {(4, 2||6—9)}
mit(rl, r2, Q (4), 1-5, {{(4|1-5)}, {}).

Using the concepts developed so far, we define the notion of interval
preservation.

Definition 2.10 (Interval preservation). A query Q is interval-preserving

iff for all argument tuples, ry, ..., r,, the query result, Q(r, ..., r,),
coincides with the maximal impact tuples:

Vry, oo s T, L IXID EQ(ry, ..., 1) S 384, . .., 8(mit(ry, ..., 70, @, X, 1,81, ..., 8,)).

Example 2.10 1In our example, the set of maximal impact tuples is ¢ =
{(1|5-5)}, (3||1—3), (3|[4—5), (3][10—12), (4]]1—5) (cf., Example 2.9).

The result r = {(1]|[5—5), (3]|]1—-3), (3||4—5), (3]|10—12), (4[|1-5)} is
consistent with @ being interval-preserving because r = ¢.

On the other hand, consider r’ = {(1]5—-5), (3]]1-5), (3][10—12),
(4|1—-5)}, which results from coalescing r. With this result @ is not
interval-preserving because r’ # ¢.

Finally, consider r"” = {(1||5—5), (3|1—-3), (3]4—5), (3][10—12), (4|1—2),
(4/3—5)}, where an interval in r has been split. Again, r'’ # ¢. Thus, @ is
not interval-preserving.

2.7 Nonrestrictiveness

Sequenced statements are attractive because they provide specific built-in
temporal semantics based on viewing a database as a sequence of states.
However, some queries may need different semantics and cannot be ex-
pressed as sequenced queries. We would like to ensure that querying is not
necessarily constrained by sequenced semantics.

Definition 2.11 (Nonrestrictiveness). A temporal query language is non-
restrictive iff it offers statements that manipulate timestamps as regular
(interval) values, with no built-in temporal semantics enforced, and vice
versa.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

426 . M. H. Bohlen et al.

Nonrestrictiveness guarantees the availability of statements with the
standard nontemporal semantics. This is particularly important in the
context of migration, where users are expected to be well acquainted with
the semantics of their nontemporal language. The requirement ensures
that users are able to keep using the paradigm they are familiar with and
to incrementally adopt new features. Moreover, from a theoretical perspec-
tive, any variant of temporal logic—a well-understood language that only
provides built-in temporal semantics—is strictly less expressive than a
language in first-order logic with explicit references to time, that is, a
nonrestrictive language [Toman and Niwiriski 1996].

Example 2.11 We use the modifier NSEQ VTto signal standard SQL
semantics with full explicit control over timestamp attributes, and we term
the resulting statements “nonsequenced” (this choice of this term is dis-
cussed in the next section). Finally, we use the modifier SET VT range to
convert a nontemporal table with interval data into a temporal table.
NSEQ VT

SELECT E.ID FROM Employee AS E, Salary AS S
WHERE_VTIME(E) PRECEDES VTIME(S)AND E.ID = S.D ;

CREATE TABLE Employee2 (ID INTEGER, Per PERIOD);
CREATE VIEW TEmployee2 AS_SET VTPer SELECT ID FROM Employee2;

The query joins Employee and Salary . The join is not performed at each
snapshot. Instead, we require that the valid time of Employee precedes the
valid time of Salary . The result is a nontemporal table. Table Employee2
is a nontemporal table with an explicit period column. TEmployee2 , on the
other hand, is a temporal view of this table, interpreting the Per column as
the implicit timestamp. A range specification (SET VT, cf., Section 3.2.3) is
used to explicitly set the valid time of TEmployee?2 .

This last view is useful in the situation introduced in Section 2.3, in
which the application stores time-varying information in conventional
relations by using date or time attributes. Application programmers can
define temporal views, effectively converting such relations into temporal
relations in order to utilize temporal semantics. As timestamps are encoded
in nontemporal tables in a great variety of ways, a comprehensive approach
to providing temporal support to legacy applications managing time-varying
data cannot be solved entirely via query language design, but requires tools
that help the application developer define appropriate temporal views and
simplify legacy query statements by referencing these views instead.

Unlike S-reducible statements, nonsequenced statements do not offer
built-in support, but offer complete control instead (this is akin to program-
ming in assembly language, where one can do everything, but everything is
hard to do). The query language must provide a set of functions and
predicates for expressing temporal relationships (e.g., PRECEDESand for
performing manipulations and computations on timestamps (e.g., VTIME).
The resulting new query-language constructs are relatively easy to inte-
grate because they only require changes at the level of built-in predicates
and functions.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 427

3. APPLYING STATEMENT MODIFIERS TO SQL-BASED LANGUAGES

The previous section motivated and defined desiderata without making
restrictive assumptions about the properties of particular query languages
and data models—simple SQL-based examples were merely used for illus-
tration.

We now describe the constrained language design space and demonstrate
the practical utility of statement modifiers for meeting the desiderata.
Specifically, this section develops a design for ATSQL, an SQL-based
temporal language. We chose SQL-92 as the concrete context because it is a
rather complex language and is in widespread use. However, statement
modifiers are not restricted to a specific language.

3.1 Global Impact on the Design Space

Upward compatibility dictates that the temporal language contain all
statements of SQL-92, including its temporal features. For example,
SQL-92 contains the data type INTERVAL of duration values. Thus, a new
language should also use INTERVAL for duration, and another keyword
must be chosen for the interval data type—we chose PERIOD As another
implication, the temporal extension must contend with all the facilities of
SQL-92, for example, nested queries, aggregates, and null values. Finally,
built-in facilities for constructing periods and for end-point extraction are
provided along with a host of predicates on the data type (cf., Appendix A).

In order to satisfy temporal upward compatibility, all SQL-92 statements
must work on temporal relations as well as on nontemporal relations, as
described in detail in the previous section. This is achieved by letting
SQL-92 modification statements on temporal relations modify the current
and future states of the relations. Queries, views, and constraints consider
only the snapshot states of the argument, that is, temporal relations that
are current and valid at the times they are evaluated.

The fact that syntactically similar snapshot-reducible temporal counter-
parts of all SQL-92 queries exist also affects the design. For each SQL-92
query, we must be able to pre- or append a fixed text string, that is, a
modifier, to get the corresponding temporal query. We chose SEQ VTfor the
valid time and SEQ TTfor transaction time, emphasizing that a temporal
database is viewed as a sequence of nontemporal databases.

While the built-in semantics of sequenced queries are “natural,” in the
specific technical sense defined earlier, there are many queries that cannot
be formulated using these default semantics. Rather, it must be possible to
formulate a much wider range of queries where the application program-
mer is in complete control of, and responsible for, manipulating the
timestamp. We chose the flags NSEQ VTand NSEQ TTfor such queries. In
these nonsequenced queries, no default timestamp-related semantics is
built into the query language. Rather, the timestamps of temporal relations
are made available in queries as regular, explicit attributes.

To increase the utility of statement modifiers, we extend them with
so-called domain specifications, making it possible to restrict the parts of

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

428 . M. H. Bohlen et al.

the argument tuples in queries to certain time periods. We also add range
specifications that allow the specification of the timestamps of the resulting
tuples.

3.2 Adding Detail to the Design

The desiderata shape the overall design of a temporal extension of SQL as
discussed above. When we move to a more detailed level in the design, good
practice (e.g., generality and orthogonality) guides the design.

3.2.1 Extensions at the Statement Level. A first question is how to
associate modifiers with the different kinds of statements in SQL, that is,
with query expressions, views, assertions, integrity constraints, and modi-
fication statements. Section 2 simply requires that a statement modifier be
placed at the beginning or end of a statement and that it apply to the
statement as a whole. Within these restrictions, there are several possibil-
ities for positioning the statement modifiers for the different types of
statements.

We provide an EBNF syntax for each extension of SQL-92. We focus on
the temporal extensions, and omit some details of SQL-92. In the EBNF
productions, terminals take the form “xxx” , that is, enclosed in quotation
marks. Nonterminals of the form derive from the SQL-92 standard [Melton
and Simon 1993], and new nonterminals are of the form <xxx > . Omitting
these nonterminals yields the original SQL-92 productions.

Table definitions are extended to permit declaration of valid-time, trans-
action-time, and bitemporal tables.
<table definition > 1 = “CREATE” “TABLE” <table name ><table element list >

['AS " VI " ["AND " "TT]] ["AS_" " T1"]

In queries, view definitions, and declare cursor statements, the state-
ment modifiers are placed at the outermost level, outside the query
expression. We specify this by augmenting the definition of the nontermi-
nal.
<query expression’ > o=

<modifiers _><query expression > |

‘(" <modifiers ><query expression > “)_" <coal >

The scope of the semantics implied by the statement modifiers is all parts
of the query (e.g., including nested queries), with the exception of derived
table expressions in the from clause. The nonterminal <coal > is used for
specifying coalescing (to be discussed later in this section). Statement
modifiers can also be associated with query expressions in derived table
expressions in from clauses. The motivation is that derived tables may be
meaningfully computed independently of the remainder of the containing
query. Put differently, derived table expressions have their own scope and
may be replaced by views or auxiliary tables, thus allowing derived tables
expressions to have their own individual statement modifiers.

Note that derived tables in the from clause are quite different from
subqueries in the where clause. Subqueries can be correlated with the main

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 429

query and cannot be evaluated independently. Therefore, separate modifi-
ers are not allowed for subqueries.

In assertions, statement modifiers are placed in front of the assertion by
augmenting the <assertion check > nonterminal.

<assertion check’ > 1 = <modifiers > <assertion check >

Table and column constraints are syntactic shorthands for assertions.
The statement modifiers are placed, respectively, right in front of the table
and column constraints.

<column constraint’ > 1 = <modifiers > <column constraint >

<table constraint’ > 1 = <modifiers > <table constraint >

Finally, as with queries, the modifiers are placed in front of modification
statements.

SQL data change statement > @ =
<modifiers > <insert statement > |
<modifiers > <delete statement > |
<modifiers > <update statement >

3.2.2 Statement Modifiers. We start with an EBNF syntax for state-
ment modifiers, and then discuss their meanings.

[<modifier > [“AND” <modifier >]1][<time-range >
<mode><dimension > [<time-domain >]

"SEQ" | “NSEQ "

period_constant

“SET” “VT " period_expression

<modifiers >
<modifier >
<mode>
<dimension >
<time-domain >
<time-range >

The meaning of a statement modifier naturally divides into four orthog-
onal parts, namely the specification of the core semantics, the time-domain
specification, the time-range specification, and specification of coalescing.
We discuss the core semantics in this section, deferring domain and range
specifications and coalescing to the next sections.

The following three types of modifiers determine the core semantics of
temporal statements. Each type of modifier applies orthogonally to valid
and transaction times.

No modifier. A missing modifier for a time dimension (i.e., valid time or
transaction time) dictates upward compatibility (UC) when none of the
underlying argument relations support that time; otherwise, evaluation
is dictated according to temporal upward compatibility (TUC). The time
dimension will not be present in the result of a query.

SEQ When this keyword is present for a time dimension, evaluation
consistent with sequenced semantics (SEQ), that is, built-in timestamp-
related processing, is dictated for that time dimension. The time dimen-
sion will be present in query results.

NSEQ This keyword signals nonsequenced semantics (NSEQ), that is,
timestamp processing with no built-in semantics enforced by the DBMS.
The affected time dimension is not present in query results (with this

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

430 . M. H. Bohlen et al.

Table II. Basic Usage of Statement Modifiers

Semantics

Syntax vt tt
< SQL-92 > (TYucC (TYUC
SEQ VT<SQL-92 > SEQ (THuc
NSEQ VT < SQL-92 > NSEQ (THuc
SEQ VT<SQL-92 > (TUC SEQ
NSEQ TT<SQL-92 > (TYuC NSEQ
SEQ TT AND SEQ TT< SQL-92 > SEQ SEQ
SEQ TT AND NSEQ TT< SQL-92 > SEQ NSEQ
NSEQ TT AND SEQ TT< SQL-92 > NSEQ SEQ
NSEQ TT AND NSEQ T& SQL-92 > NSEQ NSEQ

modifier, the time becomes an explicit attribute and can be included in
the result, similarly to the inclusion of other explicit attributes).

With two time dimensions, the three cases lead to a total of nine kinds of
statements, as summarized in Table II. The different orderings of the valid-
and transaction-time modifiers are omitted, as they have the same seman-
tics.

3.2.3 Time-Domain and Time-Range Specifications. Statement modifi-
ers also allow for time-domain and time-range specifications. The time
domain is a period constant that may be placed right after the VT and TT
keywords. It restricts the (argument) database to the part that is valid or
current during that period. A domain restriction is applied prior to the
evaluation of a statement, that is, in a preprocessing step.

Example 3.1 Consider the following two statements.

SEQ VT PERIOD '1996-1999'
SELECT E.Name, S.Amt FROM Employee AS E, Salary AS S WHERE E.ID = S.ID;

CREATE TABLE Employee3 (ID INTEGER, SEQ VT PERIOD '10-20' PRIMARY KEY(ID));

The domain restriction in the query says that we are only interested in
facts valid between 1996 and 1999. Similarly, it is possible to restrict
integrity constraints to a certain period. Specifically, the primary key
constraint will only be enforced from time 10 to time 20.

For valid time, it can be meaningful to specify the valid time of the
result, that is, the time range. The SET VT clause is used for this purpose.
Transaction time semantics forbids this kind of user interaction [Snodgrass
and Ahn 1985]. The time range is set in a postprocessing step, that is, after
the evaluation of a query.

Example 3.2

NSEQ VT SET VT PERIOD(BEGIN(VTIME(E)).END(VTIME(S)))
SELECT E.ID, SAmt FROM Employee AS E, Salary AS S
WHERE_VTIME(E) PRECEDES VTIME(S);

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 431

(TT) VD) (TT) (VD) (VT) (TT)

vt vt vt vt

m

The statement joins Employee - and Salary -tuples if the former precedes
the latter. The valid time of the result tuple is set to the period that covers
the valid times of both input tuples, including all time points in between.

t tt tt t

Fig. 1. Different forms of coalescing.

3.2.4 Coalescing. Coalescing merges tuples with overlapping or adja-
cent timestamps and identical corresponding attribute values (termed
value equivalent) into a single tuple. Coalescing is allowed at levels where
modifiers are allowed. In addition, as a syntactic shorthand, a coalescing
operation is permitted directly after a relation name in the from clause. In
this case, a coalesced instance of the relation, rather than the uncoalesced
one, is considered.

<coal > : = “(_” <dimension > *)”

Example 3.3 In the first statement below, we coalesce the results of a
sequenced query. In the second query, we coalesce the relation in the from
clause because we want the condition in the where clause to be evaluated
over maximal valid times.

(SEQ VT SELECT * FROM Employee)(VT) ;
SEQ VT

SELECT * FROM_(SEQ VTSELECT * FROM Employee)(VT) AS cE
WHERE_DURATION(VTIME(CE),YEAR) > 5;

The semantics of coalescing depends on the type of relation it is applied
to. A nontemporal relation cannot be coalesced. A valid-time relation can be
coalesced in valid time only, and the equivalent is true for transaction-time
relations. With a single time dimension, coalescing degenerates to the
merging of value-equivalent tuples with overlapping or adjacent time
periods. In this case, the meaning is straightforward (performance aspects
of one-dimensional coalescing have been studied elsewhere [Bohlen et al.
1996])).

The semantics of coalescing for bitemporal relations is more subtle. Here,
overlapping or adjacent time regions (rectangles) of value-equivalent tuples
must be merged. In the general case, overlapping rectangles do not coalesce
into a single rectangle, which means that several result tuples must be
generated. This can be done in two ways: with the resulting rectangles
maximized in valid time or in transaction time. We use (VT) for the former
and (TT) for the latter. Figure 1 exemplifies bitemporal coalescing. The
first segment of Figure 1 displays the rectangular shapes defined by the
timestamps of four value-equivalent tuples. The second and third segments

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

432 . M. H. Bohlen et al.

illustrate the two basic coalescing operations; coalescing in transaction
time and coalescing in valid time. These two basic operations can be
combined into (TT) (VT) , which means that we first coalesce in transaction
time and then in valid time. As exemplified by the last two segments, the
sequence of coalescing operations matters. Sequence (TT) (VT) results in
maximal valid-time periods, whereas (VT)(TT) results in maximal transac-
tion-time periods.

4. A FORMAL SEMANTICS

The previous section showed how statement modifiers can be used to
generalize a nontemporal query language to one that includes temporal
support, in a manner that satisfies the desiderata stated in Section 2.
While this approach was exemplified in SQL-92, it is amenable to any
nontemporal query language.

Just as the desiderata imply specific syntactic extensions, they also imply
a specific semantics for those extensions, and interestingly also imply a
way to extend an existing implementation of the original nontemporal
query language to support the augmented temporal language. In this way,
we can start with a nontemporal query language and implementation, and
thus derive a temporal language semiautomatically, including its seman-
tics and implementation.

As the details depend on the underlying language, we examine the
augmentation process using the temporal extension of SQL-92 presented in
previous sections. The temporal semantics [(construct)].,, is expressed in
SQL-92 semantics [(construct)]sqr-92. In a similar way, the semantics for
a temporal extension of language X, [(X)];n,, can be expressed in the
underlying semantics, [{(X)]x.

In the case of SQL-92, we express its semantics in the standard rela-
tional algebra. For current and nonsequenced queries, we utilize new
algebraic operators (7%, 7%, SNV, SN*) that convert temporal relations to
conventional relations. For sequenced queries, we generalize each rela-
tional algebra operator O to three sequenced variants, O/, 0%, and 0%, that
effect the appropriate semantics. We could apply the same approach to any
procedural implementation of a nontemporal query language to arrive at an
implementation of a temporal extension of that language, demonstrating
that statement modifiers are amenable to a concise and precise definition of
the semantics.

4.1 Translating Temporal Statements to Relational Algebra Expressions

The translation to (temporal) relational algebra expressions consists of two
parts. The first step is the translation of constructs at the level of functions
and predicates. This step is straightforward, and is discussed in the first
section. The second step is the translation at the statement level, that is,
the translation of statements enhanced with statement modifiers, which is
much more involved (and important!) and is covered in the subsequent
three sections.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 433

4.1.1 Constructs for Timestamp Manipulation. Temporal query lan-
guages generally define a variety of constructs to manipulate their various
timestamp types, including constructors (to create instances of the times-
tamp types), extractors (to extract constituent parts from timestamps),
predicates (Boolean-valued, for comparison), and operations (to create new
timestamps from existing ones). Many constructs exist in the literature
[Snodgrass 1995]. They are relatively easy to define, and adding one more
construct to a language has only a localized effect on language design.
Hence we only define a relatively small number of constructs here.

We assume the most common timestamp representation, namely four
TIMESTAMP attributes representing valid time and transaction time, re-
spectively. This representation leads to the definitions given in Appendix
A, which we use throughout this article, relational algebra expressions
included, for example, in selection predicates. It is straightforward to adapt
these definitions to different representations, for example, a representation
that is based on the PERIODdata type of the evolving SQL/Temporal part of
the SQL3 standard.

4.1.2 Query Expressions. We define the meaning of temporal query
expressions by translating them into well-defined algebraic expressions. As
a precursor, we introduce the notation used in the algebra expressions.

We use (t), (t|VT), (¢|TT) and (t|VT, TT) to denote tuple variables
ranging over nontemporal, valid-time, transaction-time, and bitemporal
relations, respectively. The vertical double bar “|” separates the explicit
attributes from the implicit timestamps, and VT and T'T denote valid time
and transaction time, respectively.

In the definitions, we need auxiliary operators that time-slice relations
and turn timestamps into regular, explicit attributes. These operators,
defined formally in Appendix B, are overloaded to apply to valid-time,
transaction-time, and bitemporal relations, and they have variants for both
valid and transaction times. There are two time-slice operations. The first,
7.5, selects all tuples in the argument relation with a timestamp that
overlaps time point £p. The time dimension used in this selection is omitted
in the result relation. The second timeslice operation, §,.,, returns all
argument tuples that overlap with period per. The timestamp of a result
tuple is the intersection of per with the tuple’s original timestamp. The
snapshot operation SN turns a time dimension into an explicit attribute.
This operation is not needed at the implementation level, where all
attributes are explicit. With these conventions in place, Table III gives the
semantics for core statements (cf., Table II).

In the table, [(SQL-92)]sqz.92 evaluates to the standard relational alge-
bra expression that corresponds to (SQL-92) [Ceri and Gottlob 1985; Van
Gelder and Topor 1991]. [(SQL-92)];, where T' € {vt, tt, bi} evaluates to
the same algebraic expression as [[(SQL-92)]]sqr.92, except that every
nontemporal relational algebra operator (e.g., X, o,) is replaced by the
corresponding temporal relational algebra operator (e.g., X', o**, 7"%). The

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

434 . M. H. Bohlen et al.

Table III. Core Semantics

[<SQL-92>]liemp(r1, - - - 5) £ [<SQL-92>Jsqroa(7 o (Thbu (7)), - 5 Thow(Th6u(ra))
[SEQ VEKSQL-92>]imp(r1s - - o, 1) 2 [<SQL-92>],(74, (1), « .., 75,(r0)
[NSEQ VESQL-92>lieny(r1, - - ., ra) £ [<SQL-92>[sq1-00(T o (SN (r1)), . . ., 7 (SNY(r,)))
[SEQ TKSQL-92>imp(ry, - .., ry) £ [<SQL-92>](100,(r1), - . ., Thbu(rn)
[INSEQ TESQL-92>1omp(r1s - -+, 1) 2 [<SQL-92>]sqr92(700 (SN (r1)), . .., 75, (SN(r,)))
[SEQ VT AND SEQ HSQL—92>]]MmP(r1, L,) 2 [<SQL-92>],:i(ry, ..., L)
[SEQ VT AND NSEQ FISQL-92>[ienp(r1, ..., 1) £ [<SQL-92>],.(SN*(ry), ..., SN%(r,))
[NSEQ VT AND SEQ FSQL-92>]epp(rs, . ..,) £ [<SQL-92>],(SN"(ry), ..., SN¥(r,)
[NSEQ VT AND NSEQ {‘SQL-92>]]temp(r1, L, 2
[<SQL-92>]lsq1-02(SN (SN *(r1)), ... , SN*(SN¥(r,)))

algebras are defined in Section 4.2. Due to space limitations, we only
consider queries (i.e., the select statement), and then only those statements
that can be mapped into the five basic algebra operators. This approach can
be generalized to other operators, such as aggregation, and to other types of
statements, such as modifications statements, view definitions, and asser-
tions and integrity constraints.

The following three examples illustrate mapping from the temporal
extension to the augmented algebra. The argument relations are assumed
to be bitemporal.

Example 4.1 We start with a current query, termed @;.

SELECT E.Name, S.Amt
FROM Employee AS E, Salary AS S
WHERE E.ID = S.ID

This query is defined by the relational algebra expression

[[Ql]]temp(Employee ’ Salary) = TE.Name, S.Amt(O-E.ID:S,ID(
Thow(Trow(EMployee /E)) X i, (th,,(Salary /S))))

Note that the mapping from SQL-92 queries to relational algebra is still the
same. The only change is at the innermost portion of the expression, where
each bitemporal table is rendered nontemporal by time-slicing on valid and
transaction times, thereby ensuring temporal upward compatibility.
The query below, termed @, is an example of a nonsequenced query.
NSEQ VT
SELECT E.ID, S.Amt
FROM Employee AS E, Salary AS S
WHERE E.ID = S.ID
AND VTIME(E) PRECEDES VTIME(S)

This query is defined by the relational algebra expression,

[[Q2]]temp(Emp|oyee ’ Salary) =

TE.ID, s.Amt(O' E.ID:S.ID(O' VTIME(E) PRECEDES VTIME(S)(
SN*(r},,(Employee /E)) X SN*(r},,(Salary /S)))))

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 435

Table IV. Definition of Time-Domain Restrictions

[<mode> VT <time-domain> q'lump (71, - . . , 7)) =

HM(ITﬂttzmp(8?time—domain>(r1): L) 8”<‘time—dumain>(rn))
[<mode> TT <time-domain> q'lump(r1, - - . , 7)) =

HMqTI]tzmp(82time-domain>(rl), L) 8t<ttime-domam>(rn))

The temporal predicate in the second selection can be viewed as a syntactic
shorthand for a standard selection condition (cf. Table IX). The only
additions are the “adjustments” of the relations (SN'* and 7%,,) to the
nonsequenced evaluation mode for valid time and the temporal upward-
compatible evaluation mode for transaction time.

The following query, termed @3, is sequenced in both valid and transac-
tion times.

SEQ VT AND SEQ TT
SELECT E.Name, S.Amt

FROM Employee AS E, Salary AS S
WHERE E.ID = S.D

It is defined by the temporal relational algebra expression below.

[[Q3]]temp(Emp|oyee ’ Salary)

= Wg‘i.Name, s.am(0% m—sp(Employee /E x* Salary /S))

Apart from the superscripts on the operators, the translation from SQL-92
queries to relational algebra expressions remains the standard one.

4.1.3 Domain and Range Specifications. A time-domain restriction con-
strains the argument relations in a query to contain only those tuples that
are valid during a specific period, and only the parts of the tuples that
intersect with the time-domain restriction are considered in the query. This
is formalized in Table IV.

Next, it is possible to specify time ranges (using the modifier “SET VT
range” where range is period-valued) that determine the valid times of the
result tuples. There are two different situations. First, if the core statement
is a SEQ VTstatement, then the automatically computed valid time is
replaced by the value resulting from evaluating the time-range specifica-
tion. Second, for all other core statements, prepending SET VTrange results
in the inclusion of valid time into the result. Because these core statements
return results that do not contain valid-time timestamps, the type of the
result is changed. The valid time of a tuple is that resulting from evaluat-
ing range. The details are given in Table V.

4.1.4 Coalescing. Any query that returns a temporal relation may be
coalesced. To define coalescing, let g7 denote any temporal query. If this
query returns a valid-time relation, it may be modified to (g7)(VT), to
return the coalesced version of the valid-time relation. The obvious corre-
sponding result holds when replacing valid time by transaction time. If the

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

436 . M. H. Bohlen et al.

Table V. Definition of Time-Range Specifications

[[Mrange qT]]temp(rlv LI rn) £
({<t|\VT>D<t> € [q emp(rs, - .., r2) OVT = range(t)}
if[q"Niemp(71s - - . , 7,) evaluates to a nontemporal relation
(VDY VT) € [emp(r1s - - . 5 1) OVT = range(t)}
if[q iemp(r1, - - -,) evaluates to a valid-time relation
{@IVT, TTYCTT) € [q liemp(T1, - - - » 7o) OVT = range(t)}
if[q7liemp(r1, - . ., 7,) evaluates to a transaction-time relation
{@VT, TTYZ VT Y € [q"emp(r1, - - - 5 1) OVT = range(t)}
\ if[q7Niemp(r1, - - ., 7,)evaluates to a bitemporal relation

Table VI. Definition of Coalescing

H(QT)Mtemp(rl, R O =

CoalUt(ﬂqT]]temp(rly L] rn))
if[q"liemp(r1s - - ., 7,) evaluates to a valid-time relation

coal{:;(l{qT]]temp(rl;) 7',,))
L if[q"Niemp(715 - - . , 7,) evaluates to a bitemporal relation

[[(QT)(TT) temp(rl, EEE rn) £

coaltt(lqu]]lemp(rly L) rn))
if[q"liemp(r1, - . ., 7,) evaluates to a transaction-time relation
Coalftl(lqu]]temp(rl, IR rn))
L if[q"Niemp(r1s - - ., 7,) evaluates to a bitemporal relation

query returns a bitemporal relation, it may be coalesced in valid time, in
transaction time, or in a combination of the two. Table VI provides the
definitions. A representative version of the algebraic coalescing operator,
coal, will be defined shortly.

4.2 The Temporal Relational Algebra

Having provided mappings from the temporal extension of SQL to a
combination of conventional and temporal relational algebra expressions,
the next step is to define the algebra operators that may occur in these
expressions.

Codd’s relational algebra is given in Table VII, where c is a predicate and
[is a generalized projection function that roughly corresponds to the select
list of an SQL-92 statement.

The temporal relational algebra generalizes this nontemporal relational
algebra, in two very specific senses: (1) each temporal operator must be
snapshot-reducible to its nontemporal counterpart (cf., Section 2.4), even in
the presence of constructs that explicitly reference the time (cf., Section
2.5); and (2) each temporal operator must be interval-preserving (cf.,

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 437

Table VII. The Nontemporal Relational Algebra

o.(r) L2 (tx € r Oc(t)}

o (r) & {tDEts(t, € r Oty = f(£2))}
rMUry, & txer 0t €ry

ri X ry = {tiotyl¥; € ry Oty € 1y}
ri\ry L2 txer, 0t ¢&ry

Section 2.6). Hence the desiderata in Table I significantly constrain the
design even of the temporal relational algebra.

Figure 8 contains the definition of the valid-time version of the temporal
relational algebra. The transaction-time version is omitted because it is
similar to the valid-time version, the only difference being that the tempo-
ral operations are performed on the transaction-time attribute rather than
on the valid-time attribute. The definition uses function intersect (on two
periods) and the predicate overlaps (on two periods), both of which are
defined in Table IX. Symbol “” denotes tuple concatenation.

The most complex operator is the temporal difference. In the general
case, three tuples are required to determine one result tuple, namely one
tuple from r; and two tuples from r,, as shown in Figure 2. The second line
of the definition in Table VIII identifies all potential starting points for
periods of result tuples. Result periods may start where a period from an r;
tuple starts and where a period of an r, tuple ends. The third line then
identifies all potential end points of periods of result tuples. The last line of the
definition excludes “false” result tuples, by eliminating meaningless combina-
tions of starting and ending points, as well as tuples with excessive periods.

Coalescing is the only operation without a nontemporal counterpart. It is
also special because it destroys the representation of timestamps in order
to enforce a particular representation (maximum periods). Coalescing
merges overlapping or adjacent value-equivalent tuples, as illustrated in
Figure 3 and defined next.

coal’(r) £ {t|[VT)} | VT IVTL({[VTy) € r O{[VTy)) € r O

VI; <VT;OVT =VT; OVT* = VT O

YVTy(|[VTs) € r OVT~ < VT* =

IVT,(t|VTy) € r OVT; < VT3 < succ(VT;))) O

S 3AVT(t|VTsy €er O(VT 5 < VT~ <succ(VT3) Opred(VT ;)<= VT*+<VT})))}
The two tuples introduced in the first line define the start (V1) and end
(VT3) points of a coalesced tuple, as specified in the second line. The third
and fourth lines ensure that there are no gaps between VT'~ and VT *. This
is done by ensuring that every tuple with a start time between VT~ and
VT ™ is extended towards VT ~, that is, there must exist another tuple with
a valid time containing its start time. Finally, the last line ensures that the

valid time of the result tuple is maximal, that is, there must not exist
another tuple that contains either VT'~ or VT *.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

438 . M. H. Bohlen et al.

Table VIII. Valid-Time Algebra

a(r) £ {IVD)TEVT) € r Oc(t, VT)}

i (r) 2 {@ VD) DBt ((|IVT) € r Oty = f({ts, VIN)}

riU%r, 2 (VDXL VT) € ry O{VT) € 1y}

ri X%y 2 {{(ty, VTh) o (ty, VT)|[VT)Et4|[VTy) € ry O(ts|VTy) € 12 O
VT = intersect(VT,, VTy) O VT, overlaps VT}

ri\ry L2 {|vTymBVT(t|VTy) € ry O

(AVT(|[VTy) € 7 OVT; = VT OVT~ = suce(VT3)) OVT~ = VT;) O
(AVTS(t|VTy) € ry OVT = VT, OVT* = pred(VT,;)) OVT* = VT{) O
VT~ =VT* 0-3VT(t|VTy € ry O VT4 overlaps VT))}

VT1

CVT2 : VT3

VT
Fig. 2. Valid-time difference.

VT1

VT2

VT

coal(r) -

Fig. 3. Coalescing a valid-time relation.

While it is not possible to compute arbitrary transitive closures in
SQL-92, coalescing is possible in SQL-92 because time is linear [Bohlen et
al. 1996; Celko 1995].

The bitemporal relational algebra is a natural extension of the valid-time
(and transaction-time) algebra. However, both time dimensions must be
handled simultaneously, meaning that rectangles rather than periods must
be considered. This does not change the basic ideas, but does add to the
complexity of the definitions, which can be found in Appendix C.

We note that care was taken to consider end points of valid and
transaction timestamps only when defining the operators—intermediate
time points are never used. This allows for a granularity-independent
implementation, which is a precondition for an efficient execution of these
operators.

5. PROPERTIES OF THE STATEMENT MODIFIER-EXTENDED SQL

We now evaluate the syntax and semantics of temporal statement modifi-
ers applied to SQL-92. We argue that the extension does indeed satisfy the
compatibility and reducibility properties introduced in Section 2. For
brevity and to avoid tedious detail, we cover the valid-time dimension only.

® Upward compatibility with respect to SQL-92 is fulfilled by design. The
approach adopted for defining the syntax and semantics emphasizes this
property: The syntax is given by extending the syntax of SQL-92 with

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 439

nonmandatory constructs. Thus, the new language contains all legal
SQL-92 statements. The approach taken to define the semantics also
makes it straightforward to verify that all SQL-92 statements retain
their original semantics. Specifically, the first definition in Table III
covers SQL-92 statements, and ascribes to such statements the conven-
tional SQL-92 semantics when applied to nontemporal relations.

® Temporal upward compatibility with respect to SQL-92 is ensured by the
first definition in Table III. This definition includes SQL-92 statements
when evaluated on temporal relations, and ascribes to such statements
the conventional SQL-92 semantics on the current state. Note that care
must also be taken to ensure TUC in the definition of SQL-92 modifica-
tion statements (covered in detail elsewhere [Bair et al. 1997]) when
applied to temporal relations.

® S-reducibility with respect to SQL-92 again follows from the definition of
the language. Definition 2.5 constrains the differences between an SQL
query and the corresponding syntactically similar snapshot-reducible
temporal query to be at most two fixed strings (i.e., the statement
modifiers), prepended and appended, respectively, to the SQL query. The
fixed strings given in Section 3.2, specifically, <modifiers > do not
depend on the particular query, but are the same for all queries. Hence,
S-reducibility holds for a language design that carefully applies state-
ment modifiers only before or after a conventional statement.

® Extended S-reducibility requires that S-reducibility apply even when
sequenced queries include functions and predicates on timestamps (cf.,
Section 2.5). Functions on the timestamps can appear in the projection
list and in the where clause; predicates on timestamps can appear in the
where clause. We accommodate this in the temporal algebra in the 7"
and o operators (and their transaction time and bitemporal variants),
as well as by ensuring that the timestamps are retained in the temporal
Cartesian product operator. We must still demonstrate that these opera-
tors remain snapshot-reducible; we will turn to this question shortly.

® [nterval preservation requires that timestamps are left unaltered, unless
modification is required by the set of output points as, for example,
defined by S-reducibility (cf., Section 2.6). For the relational model, this
means that the query result coincides with the maximum impact tuples.
This is proven below.

® Nonrestrictiveness requires that the timestamps be manipulable as regu-
lar values, and that conventional data be accessible with temporal
semantics (cf., Section 2.7). NSEQsemantics, specifically the SN and
SN functions in Table III, provide the former functionality; the SET VT
semantics in Table V provides the latter, both utilize statement modifiers.

Hence, the extension using the statement modifier satisfies all the de-
siderata listed in Table I.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

440 . M. H. Bohlen et al.

5.1 S-Reducibility

We now examine extended S-reducibility in more detail. Recall the defini-
tion of snapshot-reducibility (Definition 2.4). As the first step, we show
that, with respect to relational algebra, valid-time relational algebra al-
most has this property.

THEOREM 5.1 Valid-time relational algebra (Table VIII) satisfies the
reducibility properties below with respect to relational algebra (Table VII).

Vip(ri,(0l(r) & ou(Ti,(r)))
® Vip(rip(mi'(r) © ml7i,(r)))

th(”'vt(rl U ry) © 75(ry) U T%(U))

tp tp

i th(w;l.VT, rz.VT(T?‘zi(rl X'ry)) & Ttvli("l) X T%(’é))

® Vip(tip(ri \" ry) & 15(r1) \ 71,(rs)

tp P

Recall that tp, ¢, and f denote a time point, a predicate, and a projection list,
respectively. The equivalences hold for arbitrary relations, with the only
restrictions being that, in the first two equivalences, ¢ and f refer to explicit
attributes only, and that the relations be union-compatible in the third and
fifth equivalences. Also, wx(r) is given by m, «\x(r). where r.* denotes all the
attributes of r.

The proofs of these properties may be found in Appendix D. It follows
that the valid-time selection, projection, union, and difference operators are
snapshot-reducible to their nontemporal counterparts. Thus, all valid-time
algebra statements involving only these operators are snapshot-reducible
to the algebra statements obtained by simply removing the vt superscripts.

However, the equivalence involving the Cartesian product is not reduc-
ible to the nontemporal Cartesian product! While it is straightforward to
define a snapshot-reducible temporal Cartesian product, we have chosen a
definition that violates snapshot-reducibility. Let us explore the rationale
for this design decision.

First, note that the “problem” with our temporal Cartesian product is
that it retains the implicit valid-time attributes of its argument relations
and turns them into explicit attributes. The operator 7~ is introduced to
eliminate these “extraneous” attributes. Now, when mapping a (sequenced)
temporal query to its algebraic equivalent, we would like to exploit the
standard mapping when mapping SQL queries to relational algebra.

Example 5.1 Consider the following query.

SEQ VT
SELECT p.X, VTIME(p)
FROM p, q, r
WHERE_DURATION(VTIME(p),DAY) + DURATION(VTIME(Q),DAY) < DURATION(VTIME(r),DAY)

We would like to map this query to

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 441

vt vt vt vt
T %, p v\ DURATION(p VT, DAY)+ DURATION(q VT, DAY)<DURATIONG-vT, pAY)((P X Q) X¥*1).

With our definition of the valid-time Cartesian product, the timestamps of
the argument tuples are retained as explicit attributes, and they can be
referenced in the projection.

Using a snapshot-reducible Cartesian product would make it impossible
to construct a correct expression for the temporal projection operator, and
the information required to evaluate the predicate would be lost. This
observation holds for any timestamped tuple and any homogeneous at-
tribute-value timestamped data model [Gadia 1988].

One approach to retain the simple mapping and also retain a snapshot-
reducible temporal Cartesian product is to introduce an additional (infor-
mation-preserving) Cartesian product that produces results with two im-
plicit valid times. Note, though, that this returns results that are not
valid-time relations, and thus breaks the closedness property of the alge-
bra. This approach was adopted in the algebra for the HSQL data model
[Sarda 1993], including both a reducible “Concurrent Product” and an
information-preserving “Cartesian product.”

Another approach is to introduce an n-ary valid-time join that can then
be defined to be snapshot-reducible [Soo et al. 1995].

Example 5.2 The transformation of the SQL in Example 5.1 to such a
temporal algebra resulted in the following expression:

vt vt
Wp.X,p.VT(DqDURATION(p.VT, DAY)+DURATION(q.VT, DAY)<DURATION(r.VT, DAY)(p7 q ’ r))

While the added complexity of an n-ary operator may be undesirable, there
is still the problem of not having access to the valid timestamp of p. With
the n-ary join approach, the original valid times of tuples cannot be
inferred from the results of the join. With our Cartesian product, the
needed values are readily available.

Most temporal algebras have operators that are snapshot-reducible with
respect to the nontemporal Cartesian product (e.g., the TJOIN [Navathe
and Ahmed 1989]; the Concurrent Product Operator [Sarda 1993]; the
cross-product [Nair and Gadia 1993]; (temporal) equijoin [Clifford et al.
1993]; and the valid-time Cartesian product® [Snodgrass 1993]; McKenzie
and Snodgrass [1991] give a survey). The simple binary-temporal Cartesian
product defined here permits the use of the standard mapping from SQL to
algebra, without imposing any restrictions on the contents of the SELECT
and WHERElauses. Specifically, the nonreducibility of the operator does not
lead to violations of S-reducibility to SQL. In SQL-based languages, Cartesian

3This operator is defined in a nonhomogeneous attribute-value timestamped data model.
Unlike any other temporal Cartesian product we have seen, the nonhomogeneous Cartesian
product operator reduces to the nontemporal Cartesian product, and yet does not have the two
deficiencies.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

442 . M. H. Bohlen et al.

products are specified using the FROMclause from the query specifications
[Melton and Simon 1993]. For a temporal query to be reducible, the result
of evaluating it must not include the implicit valid-time attributes of
argument tuples as explicit attributes. In S-reducible queries, it is not
possible to select a time dimension of a relation; and defaults (e.g., SELECT*)
do not expand to include the implicit time attributes. Thus, the additional
explicit time attributes in the results of Cartesian products do not compro-
mise the S-reducibility property due to the presence of subsequent projec-
tions.

5.2 Interval Preservation

THEOREM 5.2 The valid-time relational algebra is interval-preserving,
that is,

® (x|I) € o' (r) & Is(mit(r, ¥, x, I, s))
® x||I) € wji(r) © Is(mit(r, w}', x, I, s))
® (xX|I) € (ry U ry) © dsy, so(mit(ry, 1y, UY, X, I, 54, 83))
® (x|I) € (ry X" ry) & sy, so(mit(ry, re, XYV, X, I, 81, 83))
® (x||I) € (ry \"' ry) & Tsyq, so(mit(ry, ry, \", X, I, 51, S5))

Proor. We start with valid-time selection. The output points are de-
fined by the valid-time selection operator in Figure 8: op(r, o'/, x, A) iff
A = Ui((x|lI)) € r Oc({x, I))In particular, if r contains exactly one tuple
that satisfies condition ¢, then A = I. We show that a maximal impact
tuple is given by a formula of the form mit(r, o¥', x, I, {{x|I)}), that is,
there is exactly one argument tuple required, and the timestamp of the
maximal impact tuple and the timestamp of the required argument tuple
are identical.

® mit(r, o', x, I, {{x||I')}) OI C I, that is, a situation where the time-
stamp of the maximal impact tuple is smaller than the timestamp of the
required argument tuple, is impossible due to line (2) in Definition 2.9.

® mit(r, o, x, I, {{x||I')}) OI D I, that is, a situation where the time-
stamp of the maximal impact tuple is larger than the timestamp of the
required argument tuple, is impossible due to line (2) in Definition 2.8.

vt

® mit(r, o', x, I, s) OlIsl > 1, that is, a situation with more than one
required argument tuple, is impossible due to line (4) in Definition 2.9
(which forbids combining argument tuples in order to yield a larger
result interval); and line (3) of Definition 2.8 (which forbids argument
tuples that do not uniquely contribute a point to the result interval).

Thus, each tuple that satisfies the selection condition is a result tuple of

o, and is a maximal impact tuple. Therefore, (x||I) € o'(r) &

ds(mit(r, o', x, I, s)), and intervals are preserved.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 443

Projection and union exhibit the same properties, that is, there is always
exactly one argument tuple required, and the timestamp of this tuple and
the timestamp of the maximal impact tuple are identical. Therefore, both
operations are interval-preserving as well.

The maximal impact tuples of the valid-time Cartesian product are given
by the formula mit(ry, ry, XY, x, I, {{x4{[[1)}, {{X|l[s)}) O = 1, N I,.
The required argument tuples consist of exactly two tuples: one from the
left and one from the right argument relation. The timestamps of these two
tuples must overlap, and the timestamp of the result tuple is the intersec-
tion of the timestamps of the required argument tuples. It follows that the
result tuples of X"’ and the maximal impact tuples coincide, and that the
valid-time Cartesian product is interval-preserving.

The maximal impact tuples of the valid-time difference are given by a
formula of the form, mit(rq, ro, \", x, I, {{X|I")}, {x|I1), ..., (X|I,)}) O
I -1, — -+ — I, The set of required argument tuples consist of
exactly one tuple from the first argument relation and a set of value-
equivalent tuples from the second relation, which overlap with the tuple
from the first relation. Subtracting the interval timestamps of the tuples
from the second relation from the interval timestamp of the first relation
yields a set of intervals. These intervals are used to timestamp maximal
impact tuples. Because the tuples from the first argument relation are
considered individually and the intervals of these tuples are only split if
required by the tuples in the second relation, valid-time difference is
interval-preserving. [

6. RELATED WORK

This section covers related work on requirements, statement modifiers, and
temporal SQL extensions.

6.1 Query Language Requirements

Few precise query language requirements have been proposed by other
authors. While the phrase “upward compatibility” has been used widely
and in many contexts (e.g., Ariav [1986, p. 513]; Navathe and Ahmed [1993,
p. 99]; Sarda [1993, pp. 123, 125]; Lorentzos and Mitsopoulos [1997,
p-480]), we have found no precise definition of it.

We have encountered one temporal relational proposal that aims at
satisfying a requirement that has some similarity with temporal upward
compatibility. The TempSQL language (e.g., Gadia and Nair [1993]) intro-
duces notions of so-called classical and system user types. System users see
the full temporal database, while classical users see only the current
snapshot of the database. If applications are classical by default and if
individual statements, rather than all statements issued by a user, can
independently be made temporal, this would essentially (providing that a
number of other design decisions are made correctly) yield a temporal
upward-compatible SQL extension.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

444 . M. H. Bohlen et al.

Formulating the notion of S-reducibility uses the fundamental notion of
snapshot-reducibility [Snodgrass 1987], and was inspired by an informal
concept presented in the context of the ChronoLog language. S-reducibility
was formalized during the process of solving problems identified in TSQL2
[Bohlen et al. 1995], the goal was to develop a proposal for the SQL/
Temporal part of SQL3 [Snodgrass et al. 1996a; 1996b; 1998].

The language desiderata beyond S-reducibility, that is, interval preserva-
tion, extended S-reducibility, and nonrestrictiveness, do not appear to have
been studied by other authors. Theoretical aspects of interval preservation
are the subject of Bohlen et al. [1998a].

6.2 Statement Modifiers

Temporal statement modifiers represent a new approach to adding tempo-
ral support to an existing language. A primitive form of statement modifier
was used in ChronoLog [Bohlen 1994], a temporal extension of a Datalog-
based language.

Earlier decendants of the work described in this article are the change
proposals submitted to the SQL/Temporal part of SQL3 [Snodgrass et al.
1996a; 1996b; 1998] (also cited above). The change proposals evolved
through extensive interactions with the ANSI and ISO standardization
committees. This interaction led to syntactical and semantic changes aimed
at making the proposals conformant in the context of the standard and its
associated peculiarities

6.2.1 Existing Temporal Extensions of SQL. To complete the coverage of
related research, we evaluate existing temporal SQL proposals, including
SQL-92, and relate their design to the statement modifier-based approach.
We report compliance with desiderata if claimed in the proposal’s documen-
tation, or if noncompliance cannot be proved. We consider each SQL in turn
and in chronological order. UC is satisfied by all proposals, and a more
detailed study of TUC can be found elsewhere [Bair et al. 1997].

TOSQL [Ariav 1986] extends SQL with the specification of a query’s time
aspects. The extensions include AT, WHILE, DURING, BEFORE, AFTER,
ALONG, and AS_OF clauses. The default options are defined syntactically
such that a query that omits the temporal portion retains the standard
meaning of the corresponding SQL select operation. TUC, while not defined
explicitly, was clearly a concern when designing TOSQL. A large part of
TOSQL respects TUC, but statements of the form select = fromr violate
TUC because they also return the relation’s timestamp(s). S-reducibility is
not supported. The built-in time-related processing is restricted to the
above clauses and can be overwritten by stating the clauses explicitly,
which makes TOSQL nonrestrictive and interval-preserving.

TSQL [Navathe and Ahmed 1987; 1989; 1993] is a superset of SQL,
extending the latter with, for example, WHEN, TIME-SLICE, and MOV-
ING WINDOW clauses. TSQL satisfies neither TUC (no adequate defaults
for the above-mentioned clauses) nor S-reducibility. The restriction to

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 445

coalesced relation instances also breaks interval preservation. Apart from
enforced coalescing, TSQL is nonrestrictive.

HSQL [Sarda 1990; 1993] is again a superset of SQL. The retrieval
facilities are enhanced with facilities for coalescing (COALESCES, COA-
LESCE ON), concurrent products, time-slicing (FROMTIME t1 TOTIME
t2), and unfolding (EXPAND). The concurrent product provides built-in
snapshot-reducible semantics for joins (and products), but not for subque-
ries, aggregates, set difference, and integrity constraints, for instance. Like
TOSQL, the design of HSQL takes TUC into consideration. For the same
reasons as TOSQL, it does not achieve complete satisfaction. HSQL is
interval-preserving and nonrestrictive. It does not support S-reducibility.

SQL-92 [Melton and Simon 1993] provides only quite limited support for
temporal data. SQL-92 is not temporal upward-compatible with itself
(legacy statements are not restricted to the current time). The S-reducibil-
ity property is not satisfied (no built-in processing of temporal joins, for
example). Because SQL-92 does not treat time with special semantics, it is
trivially interval-preserving and nonrestrictive.

TempSQL [Bhargava and Gadia 1993; Gadia and Bhargava 1993; Gadia
and Nair 1993] is an extension of SQL defined over relations where
attribute values are temporal assignments, that is, partial functions from
time into some value domain. A temporal expression [. . .]|, which extracts
the time domain of attribute values or relations, is a prominent feature of
TempSQL. Temporal expressions can be used in (nested) expressions. The
SELECT-FROM-WHERE statement is extended with a WHILE clause that
may be used for specifying the time domain of a tuple [Gadia and Nair
1993]. As discussed previously, TUC is only satisfied for so-called classical
users that see only the current state of all relations. When a classical user
needs access to past states of a relation and is made a so-called system
user, the full application must be rewritten—breaking TUC. S-reducibility
is not supported. TempSQL is restrictive in the sense that set operations
have an enforced, built-in temporal semantics. TempSQL provides auto-
matic coalescing, violating interval preservation.

IXSQL [Lorentzos and Mitsopoulos 1997] provides support for generic
interval data in SQL. It extends SQL-92 with a REFORMAT AS and a
NORMALIZE ON clause. The reformat clause is used to specify a sequence
of UNFOLD and FOLD operations, which convert a set of intervals into a
set of constituent points, and vice versa. The NORMALIZE operation is a
syntactic abbreviation of the reformat clause, and it coalesces a relation.
For the same reason as for SQL-92, it does not satisfy TUC. No support for
S-reducibility is provided. IXSQL is nonrestrictive and, to some degree, it is
also interval-preserving (intervals are not preserved by UNFOLD because
interval boundaries are lost when unfolding a relation).

ChronoSQL [Bohlen and Marti 1994] was designed to show how to carry
over the predecessor of our statement modifiers from a deductive to an
SQL-based language. ChronoSQL includes a REDUCE construct, with

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

446 . M. H. Bohlen et al.

which it is possible to achieve S-reducibility. TUC is not achieved. Chrono-
SQL is interval-preserving and nonrestrictive.

TSQL2 [Snodgrass 1995] employs syntactic defaults. It adds a VALID
clause to SQL-92 for specifying the timestamp of the result. If the VALID
clause is omitted from a query, intersection semantics is assumed. By
default, TSQL2 returns valid-time relations. To retrieve a nontemporal
relation, SELECT SNAPSHOT has to be specified. TSQLZ2 neither satisfies
TUC (valid-time relations are returned by default) nor S-reducibility (e.g.,
subqueries violate this [Boéhlen et al. 1995]). TSQL2 is not interval-
preserving because coalesced instances are enforced. While some opera-
tions come with built-in, implicit temporal semantics (e.g., set operations
applied to temporal relations), TSQL2 is nonrestrictive because implicit
timestamps can be rendered explicit.

SQL/TP [Toman 1998] utilizes instant timestamping in its semantics,
thereby achieving sequenced semantics. Concerning TUC, the author states
that “while SQL/TP itself does not literally follow these requirements, the
compatibility can be easily achieved using a very simple syntactic manipu-
lation of the source queries and adding tags to distinguish the particular
compatibility modes” [Toman 1998, p. 214]. These “tags” could be the
statement modifiers discussed in the present article. Extended S-reducibil-
ity and nonrestrictiveness are not satisfied because the intervals in the
representation cannot be directly accessed by queries. Interval preserva-
tion is not guaranteed because timestamps are not specified.

The change proposals submitted to the SQL standardization committee
[Snodgrass et al. 1996a; 1996b; 1998] describe early work on temporal
statement modifiers (cf., above). They were designed to fulfill TUC and
S-reducibility. Interval preservation is not guaranteed because timestamps
of snapshot-reducible queries are left unspecified in the nondeterministic
definition of the language. Nonrestrictiveness is achieved via nonsequenced
statements. Extended S-reducibility is not satisfied because sequenced
modifiers may only be applied to statements without explicit references to
time dimensions.

7. SUMMARY AND RESEARCH DIRECTIONS

This article discusses how to extend an existing query language with
temporal statement modifiers, enabling the language to better manage
time-referenced, or temporal, information. We started by defining a number
of syntactic and semantic desiderata, motivated by real-world concerns,
that enable a temporal query language to contend with legacy applications,
permit the coexistence of nontemporal and temporal data, and exploit the
programmers’ expertise in extending the existing nontemporal language.
The desiderata are independent of any particular query language. No
existing temporal language satisfies all of these desiderata. In particular,
this article is the first to formulate requirements that combine salient
features of temporal languages (snapshot-reducibility, temporal upward-

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 447

compatibility) with salient features of nontemporal languages (interval
preservation, nonrestrictiveness).

As the next step, this article explores and exemplifies how these de-
siderata shape a temporal extension to SQL-92. A statement modifier-
based extension makes it possible to adopt a black-box approach to defining
the new language, leading to a concise definition of a temporal query
language that covers core as well as advanced language features, for
example, views, integrity constraints, assertions, data definition, aggrega-
tion, and coalescing. The language supports both point- and interval-based
semantics, with intervals preserved by default.

The introduction of statement modifiers makes it possible to obtain
built-in time-related processing. The statement modifier’s semantic ap-
proach is preferable to syntactic temporal extensions because statement
modifiers ensure availability of built-in temporal support. The same (sim-
ple) statement modifier may be applied to an arbitrarily complex query to
obtain built-in temporal processing. No other approaches known to the
authors achieve temporal support using language extensions that are
essentially independent of the complexity of the underlying nontemporal
language being extended.

This article shows how to define the semantics of a temporal statement
modifier-extended SQL in terms of the semantics of SQL and a mapping
from SQL to the relational algebra. For this purpose, valid-time, transac-
tion-time, and bitemporal counterparts of the standard relational algebra
operators are provided. Finally, this article examines the properties of the
extended language, verifying that the language satisfies the desiderata.

One interesting direction for future research is the application of this
approach to other nontemporal query languages. ODMG [Cattell et al.
2000] would be a particularly appealing starting point, due to its prevalent
use in practice.

It would also be useful to generalize statement modifiers to dimensions
other than time—for example, spatial dimensions in spatial and spatio-
temporal databases, the “dimensions” in data warehousing, or the new
kinds of multidimensional data models. Providing general solutions that
support the specific semantics associated with the new dimensions is an
important challenge.

The notion of temporal upward compatibility assumes that the databases
of existing DBMSs are extended with a temporal dimension only when the
DBMS is replaced with a temporal DBMS. Other scenarios exist as well,
indeed, many existing databases already record time-referenced data. For
such databases to benefit from the built-in temporal support provided by
the new DBMS, the time references must be recorded in the timestamp
attributes with built-in semantics. How to (semiautomatically) migrate
application code on a database that records its time references using
regular attributes to a database where time references are captured in the
special timestamp attributes remains an open problem. As we emphasized
in Section 2.5, while temporal views offer a part of the solution, fully
addressing this problem will require sophisticated tools.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

448 . M. H. Bohlen et al.

Table IX. Definition of Constructs for Timestamp Manipulation

Syntax Semantics

[PERIODp1 ~tpoTemp TIMESTAMPp ;, TIMESTAMP:p,°

HFIRST()]]temp min(tph th)

[LAST(TIMESTAMPp ¢, max(¢py, tps)

TIMESTAMPD 5) Lremp

IVTIME() Lremp TIMESTAMPr.VT ~*, TIMESTAMPr. VT *¢

[TTIME(") Lremp TIMESTAMPr.TT ~*, TIMESTAMP-.T'T **

IIBEGIN(per)]]temp HFIRST(ﬂper]]temp)]]temp

HENuper)]]temp [[LAST(Hper]]temp)]]temp

[[perl PRECEDE$er2]]temp [[ENQperl)]]temp < [[BEGIN(perZ)]]temp

[[perl MEETﬁjerZ]]temp [[ENQperl)]]temp = [[BEGIN(perZ)7gmnulel]]temp

[[perl OVERLApsgerZ]]temp IIEN[Iperl)]]temp = [[BEGIN(perZ)]]temp 0
[[ENuperZ)]]temp = HBEGIN<per1)]]£emp

[per; CONTAINSpers]omp [BEGIN(pera)]iemy < [BEGIN(peri)lmp, U
[[ENuperZ)]]temp = HENuperl)]]temp

[per + INTERVALZU [emp [BEGIN(per)lemy + iv,
[[ENuper)]]temp

[[INTERSECT(perly per2)]]lemp max([[BEGIN(perl)]]tempy HBEGIN(perZ)]]temp);
min([[ENuperl)]]temp, [[ENDperZ)]]temp)

[DURATIONper, granule)]em, [[EN[Iper)]][e;%‘;””l‘" = [BEGIN(per)lemp)

Yet another future direction is the study of efficient implementation
techniques. The current implementation of the temporal SQL proposed
here illustrates the feasibility of a layered architecture [Torp et al. 1997].
This architecture can be used to identify bottlenecks in current database
technology with respect to temporal database applications, and these
findings may then prompt the development of new DBMS algorithms (e.g.,
as in Bohlen et al. [1996]).

Implementing functions, as in, for example, user-defined ADTs and
PM/SQL modules, is another interesting research topic. Specifically, func-
tion calls are affected by statement modifiers, so that the semantics of a
function call will depend on whether it is used in a temporal upward-
compatible, a sequenced, or a nonsequenced context.

APPENDIX

A. PREDICATES AND FUNCTIONS ON TIMESTAMPS

Table IX gives a brief overview of the constructs used for timestamp
manipulation. In the table, ¢p and iv, possibly indexed, denote a time point
of type TIMESTAMP[Melton and Simon 1993] and a time duration of type
INTERVAL [Melton and Simon 1993], respectively. Also, p is shorthand for
PERIOD 'tp,—tpy,’ and granule € {YEAR MONTH WEEK DAY, HOUR
MINUTE SECONDdenotes a granularity.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 449

Table X. Time-Slice Operators on Nontemporal Relations

Function Semantics if r is a nontemporal relation
TiH(r) r if tp = now; undefined, otherwise
Ti(r) r if tp = now; undefined, otherwise

B. AUXILIARY ALGEBRAIC OPERATORS

Tables X and XI define the auxiliary operators that time-slice relations and
turn timestamps into regular, explicit attributes. Unlike the other alge-
braic operators defined in this article, these operators are overloaded to
apply to valid-time, transaction-time, and bitemporal relations, meaning
that the type of an argument determines the operation performed. This
property was exploited to more concisely define the semantics of core
statements in Table III.

The functions have variants for both valid and transaction times. For
example, the valid-time version of the first time-slice operation, 77, selects
all tuples in the argument relation with a timestamp that overlaps time
point ¢p. The time dimension used in this selection is not present in the
result relation. If valid time is not supported by the relation, the function
degenerates to the identity function. The second time-slice operation, §,,,,
returns all argument tuples that overlap with period per. The timestamp of
a result tuple is the intersection of per with the tuple’s original timestamp.
The snapshot operation SN turns a time dimension into an explicit
attribute. This operation is not needed at the implementation level where
all attributes are explicit.

C. BITEMPORAL RELATIONAL ALGEBRA

As the valid-time algebra is a natural generalization of the relational
algebra, so is the bitemporal algebra a natural generalization of the
valid-time algebra, and it satisfies the same snapshot reducibility proper-
ties as the valid-time algebra; it differs from this algebra only in that it
deals with bitemporal rectangles rather than periods. Bitemporal selection,
projection, set union, and Cartesian product (see Figure 4) are straightfor-
ward extensions.

Bitemporal difference is substantially more complex. It is defined in
terms of three auxiliary predicates [Bohlen and Jensen 1996]. The idea
behind the operator’s definition is illustrated in Figure 5, where the large
rectangle with the solid frame represents the time region of an r;-tuple,
and the black ones are rectangles associated with value-equivalent
ro-tuples. The result of the difference r; \% r, is a set of value-equivalent
tuples, one for each of the eleven white rectangles identified by the dashed
and solid lines in combination.

The determining time lines associated with r,-tuples play a crucial role
in splitting r;-tuples, and thus in defining the result tuples. The determin-
ing time lines start at each vertex (corner) of an r,-tuple, and extend until

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

450 . M. H. Bohlen et al.

Table XI. Time-Slice and Snapshot Operators on Temporal Relations

Function Semantics if r is a valid-time relation

Tie(r) {&)yMVT(t|VT) € r OVT overlaps tp)}
tt
Tip(7) r
8v (r) K| VTYWBVT ((¢|VT') € r OVT overlaps per O VT = intersect(VT', per))}

per

8 (r) r

per

SN(r) {t, VI)X¢|VT) € r}

SN*(r) r

Function Semantics if r is a transaction-time relation
Ti(r) r

Ti(r) {)yMWBTT(t|TT) € r OVT overlaps tp)}
Si.(r) 1

84, (1) {TTYDEBTT (| TT' Y € r OTT overlaps per OTT = intersect(TT', per))}
SN"(r) r
SN(r) {(t, TT)X|TT) € r}

Function Semantics if r is a bitemporal relation

To(r) {|TTYWVT(¢|VT, TT) € r O VT overlaps tp)}

Ti(r) {|VTYOITT(t||VT, TT) € r O TT overlaps tp)}

8yt (1) {|VT, TTYMVT (¢|VT',TT) € r OVT overlaps per OVT = intersect(VT', per))}
84, (1) {¢|VT, TTYMTT ((¢|VT,TT) € r OTT overlaps per OTT = intersect(TT’, per))}
SN*(r) ¢, VTITT)X| VT, TT) € r}

SN“(r) ¢, TT|VT)X| VT, TT) € r}

oli(r) = {{IVT,TT) | ({IVT,TT) € r Ac({|]VT,TT))}
wr) 2 {(B|VT,TT) |3t ((4|VT,TT) € r Aty = F({t|VT, TT)))}
rWipy 2 {|\VT, TT) | VT, TT) € r1 V {|VT, TT) € r2}
r1 xYry 2 {((t1, VT1, TTh) o {t2, VTo, TT)|[VT, TT) |
<t1||VT17TT1) [SESWA (tz"VTz,TTz) €rs A
VT = intersect(VT1,VTe) ANTT = intersect(TT:, TT2) A
VT overlaps VTo AN TTy overlaps TT»}
m\Y e = {@VT,TTY | 3V, TT (| VT, TTL € i A

candidate_tuple(t, VI, TT1,ro, VT, TT) A
non_overlapping (¢, VT, TT,r2) A
unsplittable(t, VT, TT, VT, TT, rs))

Fig. 4. Bitemporal algebra.

they are blocked by a value-equivalent r,-tuple or reach the border of the
ri-tuple. The definition in Figure 4 identifies three requirements for a
result tuple X.

(1) The time coordinates of X are derived either from the time coordinates
of an r;-tuple or from an overlapping ry-tuple with a determining line

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 451

Fig. 5. Bitemporal difference.

that defines a time coordinate of X. The predicate candidate_tuple(t,
vT,, TT,, ry, VT, TT) is used to ensure that VT and T'T satisfy these
restrictions with respect to ¢, VT, TT,, and r,.

(2) X does not temporally overlap with any value-equivalent r,-tuple. The
predicate non _overlapping(t, VT, TT, r,) ensures this.

(3) No determining time lines defined by r,-tuples that are value-equiva-
lent to X cross its time rectangle, that is, unsplittable(t, VT, TT;,
VT, TT, r,).

The formal definitions of these predicates can be found elsewhere [Bohlen
and Jensen 1996].

The final operation is the coalescing of bitemporal relations. Transaction-
time coalescing, coal’, guarantees maximal transaction-time periods, and
is illustrated in Figure 6. The five white rectangles illustrate the times of
five value-equivalent tuples in the uncoalesced relation. The gray tuple is
one of the tuples resulting from coalescing in transaction time. Transac-
tion-time coalescing ensures (a) maximal expansion in the transaction-time
dimension and (b) no coalescing in the valid-time dimension. Valid-time
coalescing of a bitemporal relation r, coal’i(r), follows the same principle,
the only difference being that the roles of valid time and transaction time
are reversed. The formal definitions of coalescing bitemporal relations are
given in Bohlen and Jensen [1996].

D. PROOF OF THEOREM 5.1

To prove Theorem 5.1 (S-reducibility of sequenced queries), we consider
each equivalence in turn. We use the definitions in Tables VII, VIII, and XI
to substitute algebraic expressions to prove their equivalence.

Selection:
Ti(at(r)) = {t | ¢|VT) € r Oc((t, VT)) OVT overlaps tp}

o (tu(r)) = {t | {¢{[VT) € r OVT overlaps tp Oc(t)}

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

452 . M. H. Bohlen et al.

VTt [|
Ll \ \ TTr

tt

Fig. 6. Transaction time for coalescing a bitemporal relation.

To show that these definitions are equivalent, we first exploit the
commutativity of conjunction to rewrite “ VT overlaps tp Oc(¢)” to “ c(t)
O VT overlaps tp.” Since the formulation of the theorem disallows the use
of VT in predicate ¢, ¢({¢, VT)) and c(¢) are equivalent, the equivalence
follows.

Projection:
To(mi(r) = {t: | (@ VT) € r Oty = f{ty, VT))) O VT overlaps tp}

w1 (r) = {t1 | Fto((E|VT) € r OVT overlaps tp Ot = f(t,))}

tp

The only difference with respect to selection is that we are dealing with a
projection function, not a selection predicate. We commute two terms and
then observe that VT may be omitted as an argument of f because its use in
f is disallowed in the theorem, making f({¢,, VT)) and f(¢,) equivalent.

Union:
To(ry U ry) = {t | ((¢|VT) € ry Ot|VT) € ry) OVT overlaps tp}

To(r) U 7ii(ry) = {¢ | (¢|VT) € ry OVT overlaps tp) O(t|VT) € ry
O VT overlaps tp)}

Transforming the first formula into disjunctive normal form proves the
equivalence.

Cartesian product:

T T, v Top(r1 XY rg)) = {t1 0 £y | &|VTy € ry O@|VTy) € r, OVT,
overlaps VT, OVT = intersect (VT,, VTy) OVT overlaps tp}

To(ry) X, Th(re) = {ty oty | (&4||[VTy) € ry OVT, overlaps tp O(to|VTy) € 1y

P

O VT, overlaps tp}

After the usual initial reordering of the terms of the formula, we are left
with the proof of the equivalence between “VT, overlaps VT, OVT =

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 453

intersect (VT,, VTy) O VT overlaps tp” and “VT;overlapstp OVT,
overlaps tp.” We consider each formula in turn.

VT, overlaps VT, OVT = intersect (VT,, VTy) OVT overlaps tp
J (elimination of VT)
VT overlaps VT, Ointersect (VTq, VTy) overlaps tp
J (replace periods with points, cf. Table IX)
VI{=VT, OVTy =VT; Omax(VT{, VT;) < tp Omin(VT{, VT3) > tp
J (max(A,B) =C=A=C0OB=C), minA,B)=C=A=CU0B=0C)
VI{=VT,OVIly=VT{OVT; =tpOVT, <stpOVT{ =tp OVT; =tp

Next, we rewrite the second formula.

VT, overlaps tp 00 VT, overlaps tp
J (replace periods with points, cf. Table IX)
VI =tpOVT] =tp OVT, =tp OVT; = tp
JVA=COB=C=>B=A)
VI{<tpOVT{ =tp OVT, =tp OVTy =tp O VI'{ = VT, OVT; = VT,
Apart from the order of the terms, the rewritten formulas are identical.

Difference:
To(ri \Y ry) = {t | ¢y}

To(r1) \ Th(rs) = {t | g}
where ¢, is defined as

SVT, VT,(E|VTY) € ry O
AVTL([VTy) € ry OVT; = VT3 OVT~ = suce(VT]) OVT~ = VT;) O
AVTL(|[VTs) € ry OVT; = VT; OVT* = pred(VT;)) OVT* = VT;) [
VI~ <VTr*tQg
- 3IVT,(t|VT,) € r, OVT, overlaps VT) [
VT overlaps tp

and ¢, is defined as

AVT,(¢|VT,) € ry OVT, overlaps tp) 0= AVT,({t|VTs) € r, OVT, overlaps tp).

To prove the two sets equivalent, we have to show that the defining
formulas are equivalent, that is, ¢; = ¢,. We do so by proving two

implications ¢, > ¢y and ¢; & ¢y in turn. The step-by-step proof can be
found in B6hlen and Jensen [1996].

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

454 . M. H. Bohlen et al.

ACKNOWLEDGMENTS

We greatly appreciate the contributions of Renato Busatto, Robert Marti,
and Andreas Steiner. Renato Busatto contributed to the formalization of
interval preservation, bitemporal negation, and the proof of Theorem 5.1.
Robert Marti took part in early work on statement modifiers. Andreas
Steiner implemented a core part of this language. We also appreciate Won
Kim’s extensive comments, which significantly improved the paper.

REFERENCES

ALLEN, J. F. 1983. Maintaining knowledge about temporal intervals. Commun. ACM 26, 11
(Nov.), 832—-843.

Ariav, G. 1986. A temporally oriented data model. ACM Trans. Database Syst. 11, 4 (Dec.),
499-527.

BAIRr, J., JENSEN, C. S., SNODGRASS, R. T., AND BOEHLEN, M. 1997. Notions of upward
compatibility of temporal query languages. Business Inf. 39, 1 (Feb.), 25-34.

BHARGAVA, G. AND GADIA, S. K. 1993. Relational database systems with zero information
loss. IEEE Trans. Knowl. Data Eng. 5, 1 (Feb.), 76-87.

BoHLEN, M. H., BusaTTo, R., AND JENSEN, C. S. 1998a. Point- versus interval-based temporal
data models. In Proceedings of the 14th IEEE International Conference on Data Engineering
(Orlando, FL, Feb. 23-27). IEEE Computer Society Press, Los Alamitos, CA, 192-200.

BoHLEN, M. H., JENSEN, C. S., AND SKJELLAUG, B. 1998b. Spatio-temporal database support
for legacy applications. In Proceedings of the 1998 ACM Symposium on Applied Computing
(Atlanta, GA, Feb.). ACM Press, New York, NY, 226-234.

BoHLEN, M. H. AND JENSEN, C. S. 1996. Seamless integration of time into SQL. Tech. Rep.
R-96-2049. Aalborg Univ., Aalborg, Denmark.

BOHLEN, M. H., SNODGRASS, R. T., AND So0, M. D. 1996. Coalescing in temporal databases. In
Proceedings of the 22nd International Conference on Very Large Data Bases (VLDB ’96,
Bombay, Sept.). Morgan Kaufmann Publishers Inc., San Francisco, CA, 180-191.

BOHLEN, M. H., JENSEN, C. S., AND SNODGRASS, R. T. 1995. Evaluating the completeness of
TSQL2. In Proceedings of the International Workshop on Recent Advances in Temporal
Databases (Zurich, Sept.), S. Clifford and A. Tuzhlin, Eds. Springer-Verlag, New York, NY,
153-172.

BOHLEN, M. AND MARTI, R. 1994. On the completeness of temporal database query languages.
In Proceedings of the First International Conference on Temporal Logic (ICTL’94, Bonn,
July). Springer-Verlag, Secaucus, NJ, 283-300.

BoHLEN, M. 1994. Managing temporal knowledge in deductive databases. Ph.D.
Dissertation. ETH, Zurich, Switzerland.

CATTELL, R. G. G., BARRY, D. K., BERLER, M., EASTMAN, dJ., JORDAN, D., RUSSELL, C., SCHADOW,
O., STANIENDA, T., AND VELEz, F. 2000. The Object Data Standard OMDG 3.0. Morgan
Kaufmann Publishers Inc., San Francisco, CA.

CLIFFORD, J., CROKER, A., AND TUZHILIN, A. 1993. On the Completeness of Query Languages for
Grouped and Ungrouped Historical Data Models. Benjamin/Cummings, Redwood City, CA.

CLIFFORD, dJ., DYRESON, C., IsaAkowITz, T., JENSEN, C. S., AND SNODGRASS, R. T. 1997. On the
semantics of NOW in databases. ACM Trans. Database Syst. 22, 2, 171-214.

CELKO, J. 1995. SQL for Smarties: Advanced SQL Programming. Morgan Kaufmann
Publishers Inc., San Francisco, CA.

CERI, S. AND GOTTLOB, G. 1985. Translating SQL into relational algebra: Optimization,
semantics, and equivalence of SQL queries. IEEE Trans. Softw. Eng. SE-11, 4 (Apr.),
324-345.

Gapia, S. K. AND BHARGAVA, G. 1993. SQL-like seamless query of temporal data. In
Proceedings of the International Workshop on Infrastructure for Temporal Databases (Ar-
lington, TX, June), R. T. Snodgrass, Ed.

GaDIA, S. K. AND NAIR, S. S. 1993. Temporal databases: A prelude to parametric data. In
Temporal Databases: Theory, Design, and Implementation, A. Tansel, J. Clifford, S. Gadia,

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

Temporal Statement Modifiers . 455

S. Jajodia, A. Segev, and R. Snodgrass, Eds. Benjamin/Cummings, Redwood City, CA,
28-66.

GaADIA, S. K. 1988. A homogeneous relational model and query languages for temporal
databases. ACM Trans. Database Syst. 13, 4 (Dec.), 418—-448.

Gapia, S. K. 1986. Weak temporal relations. In Proceedings of the ACM Symposium on
Principles of Database Systems (PODS ’86, Cambridge, MA). ACM Press, New York, NY.
DYRESON, C., GRANDI, F., KAFER, W., KLINE, N., LORENTZOS, N., MITSOPOULOS, Y., MONTANARI,
A., NoONEN, D., PEREssI, E., PERNIcI, B., RopDICK, J. F., SARDA, N. L., ScaLAs, M. R., SEGEV,
A., SNODGRASS, R. T., Soo, M. D., TANSEL, A., TiBERIO, P., AND WIEDERHOLD, G. 1994. A

consensus glossary of temporal database concepts. SIGMOD Rec. 23, 1 (Mar.), 52—64.

JENSEN, C. S. AND SNODGRASS, R. T. 1999. Temporal data management. IEEE Trans. Knowl.
Data Eng. 11, 1 (Jan./Feb.), 36—44.

JENSEN, C. S., Soo, M. D., AND SNODGRASS, R. T. 1994. Unifying temporal data models via a
conceptual model. Inf. Syst. 19, 7 (Oct.), 513-5417.

LoORENTZOS, N. A. AND MiTsorouLos, Y. G. 1997. SQL extension for interval data. IEEE
Trans. Knowl. Data Eng. 9, 3 (May/June), 480—-499.

MCcKENZIE, L. E. AND SNODGRASS, R. T. 1991. Evaluation of relational algebras incorporating
the time dimension in databases. ACM Comput. Surv. 23, 4 (Dec.), 501-543.

MELTON, J. 1999. Information technology, database languages, SQL.

MELTON, J. 1992. Information technology, database languages, SQL.

MELTON, J. AND SIMON, A. R. 1993. Understanding the New SQL: A Complete Guide. Morgan
Kaufmann Series in Data Management Systems. Morgan Kaufmann Publishers Inc., San
Francisco, CA.

NAIR, S. AND GADIA, S. 1993. Algebraic optimization in a relational model for temporal
databases. In Proceedings of the International Workshop on Infrastructure for Temporal
Databases (Arlington, TX, June), R. T. Snodgrass, Ed.

NAVATHE, S. B. AND AHMED, R. 1993. Temporal extensions to the relational model and
SQL. In Temporal Databases: Theory, Design, and Implementation, A. Tansel, J. Clifford, S.
Gadia, S. Jajodia, A. Segev, and R. Snodgrass, Eds. Benjamin/Cummings, Redwood City,
CA, 92-109.

NAVATHE, S. B. AND AHMED, R. 1989. A temporal relational model and a query language. Inf.
Sci. 49, 1, 2 & 3 (Oct./Nov./Dec.), 147-175.

NAVATHE, S. B. AND AHMED, R. 1987. TSQL-A language interface for history databases. In
Proceedings of the Conference on Temporal Aspects in Information Systems (May). Assn.
Francaise pour Cybern. Econ. Tech., Montreuil, France, 113-128.

SARDA, N. 1993. HSQL: A historical query language. In Temporal Databases: Theory, Design,
and Implementation, A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass,
Eds. Benjamin/Cummings, Redwood City, CA, 110-140.

SARDA, N. L. 1990. Algebra and query language for a historical data model. Computer J. 33,
1 (Feb.), 11-18.

SCHUELER, B. 1977. Update reconsidered. In Architecture and Models in Data Base
Management Systems, G. M. Nijssen, Ed. North-Holland Publishing Co., Amsterdam, The
Netherlands.

SNoDGRASS, R. T. 2000. Developing Time-Oriented Database Applications in SQL. Morgan
Kaufmann Publishers Inc., San Francisco, CA.

SNODGRASS, R. T., BOHLEN, M. H., JENSEN, C. S., AND STEINER, A. 1998. Transitioning
temporal support in TSQL2 to SQL3. In Temporal Databases: Research and Practice:
State-of-the-Art Survey, O. Etzion, S. Jajodia, and S. Sripada, Eds. Springer-Verlag, New
York, NY, 150-194.

SNoDGRASs, R. T., BOHLEN, M. H., JENSEN, C. S., AND KLINE, N. 1996a. Adding valid time to
SQL/Temporal. ANSI X3H2-96-501r2, ISO/IEC JTC1/SC21/WG3 DBL MAD-146r2.

SNODGRASS, R. T., BOHLEN, H., JENSEN, S., AND STEINER, A. 1996b. Adding transaction time to
SQL/Temporal: Temporal change proposal. ANSI X3H2-96-152r, ISO-;ANSI SQL/ISO/
IECJTC1/SC21/WG3 DBL MCI-143.

SNDOGRASS, R. T., Ep. 1995. The TSQL2 Temporal Query Language. Kluwer Academic
Publishers, Hingham, MA.

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

456 . M. H. Bohlen et al.

SNODGRASS, R. T. 1993. An overview of TQuel. In Temporal Databases: Theory, Design, and
Implementation, A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass,
Eds. Benjamin/Cummings, Redwood City, CA, 141-182.

SnoDGRaAss, R. T. 1990. Temporal databases status and research directions. SIGMOD Rec.
19, 4 (Dec.), 83—89.

SNODGRASS, R. T. 1987. The temporal query language TQuel. ACM Trans. Database Syst. 12,
2 (June), 247-298.

SNODGRASS, R. T. AND AHN, I. 1985. A taxonomy of time in databases. In Proceedings of the
ACM SIGMOD Conference on Management of Data. ACM Press, New York, NY, 236-246.
Soo, M. D., JENSEN, C. J., AND SNODGRASS, T. 1995. An algebra for TSQL2. In The TSQLZ2
Temporal Query Language, R. T. Sndograss, Ed. Kluwer Academic Publishers, Hingham,

MA, 505-546.

TANSEL, A., CLIFFORD, J., GADIA, S., JAJODIA, S., SEGEV, A., AND SNODGRASS, R., EDs. 1993.
Temporal Databases: Theory, Design, and Implementation. Benjamin/Cummings, Redwood
City, CA.

ToMaN, D. AND N1wiNskI, D. 1996. First-order queries over temporal databases inexpressible
in temporal logic. In Proceedings of the Fifth International Conference on Extending
Database Technology (Avignon, France). Springer-Verlag, New York, NY, 307-324.

ToMaN, D. 1998. Point-based temporal extensions of SQL and their efficient implementation.
In Temporal Databases: Research and Practice: State-of-the-Art Survey, O. Etzion, S.
Jajodia, and S. Sripada, Eds. Springer-Verlag, New York, NY, 211-237.

Torp, K., JENSEN, C. S., AND BOHLEN, M. H. 1997. Layered implementation of Temporal
DBMSs: Concepts and techniques. In Proceedings of the 5th International Conference on
Database Systems for Advanced Applications (Melbourne, Australia, Apr.), R. Topor and K.
Tanaka, Eds. World Scientific Publishing Co., Inc., River Edge, NJ.

TsicHRITZIS, D. C. AND LOoCcHOVSKY, F. H. 1982. Data Models. Prentice-Hall, New York, NY.

VAN BENTHEM, J. 1991. The Logic of Time. 2nd ed. Kluwer Academic Publishers, Hingham,
MA.

VAN GELDER, A. AND ToPOR, R. W. 1991. Safety and translation of relational calculus queries.
ACM Trans. Database Syst. 16, 2 (June), 235-278.

WIEDERHOLD, G. 1973. How to write a schema for a time oriented medical record data bank.
Tech. Rep. Stanford University, Stanford, CA.

ZAaNioLo, C., CErI, S., FALouTsos, C., SNODGRASS, R. T., SUBRAHMANIAN, V. S., AND ZICARI, R.
1997. Advanced Database Systems. Morgan Kaufmann Publishers Inc., San Francisco, CA.

Received: April 1998; revised: April 2000; accepted: September 2000

ACM Transactions on Database Systems, Vol. 25, No. 4, December 2000.

