
826 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERlNG, VOL. 5, NO. 5, OCTOBER 1993

Aggregates in the Temporary Query Language TQuel
Richard T. Snodgrass, Santiago Gomez, and L. Edwin McKenzie, Jr.

Abstract- This paper defines new constructs to support ag-
gregation in the temporal query language TQuel and presents
their formal semantics in the tuple relational calculus. A formal
semantics for Que1 aggregates is defined in the process. Multiple
aggregates; aggregates appearing in the where, when, and valid
clauses; nested aggregation; and instantaneous, cumulative, mov-
ing window, and unique variants are supported. These aggregates
provide a rich set of statistical functions that range over time,
while requiring minimal additions to TQuel and its semantics. We
show how the aggregates may be supported in an historical alge-
bra, both in a batch and in an incremental fashion, demonstrating
that implementation is straightforward and efficient.

Index Terms- Aggregate, correlation query, moving window
aggregate, Quel, query language, temporal database, temporal
partitioning, TQuel, tuple calculus, valid time.

I. INTRODUCTION

GGREGATE operators in relational database query lan- A guage compute a scalar froma collection of tuples. Most
commercially available relational database management sys-
tems (DBMS’s) provide several aggregate operations [lo],
[13], [24], [38], [54]. Recently attention has been focussed
on temporal databases (TDB’s) that represent the progression
of states of an enterprise over time. We have developed a
new language, TQuel (Temporal QUEry Language), to query
a TDB [47]. TQuel is a derivative of Quel [21], query language
for the Ingres DBMS [50]. TQuel was designed to be a
minimal extension, both syntactically and semantically, for
that language. Since Quel is fairly comprehensive in its support
of aggregates, a goal in the TQuel design was to extend those
aggregates to operate over temporal relations.

This paper defines and formalizes aggregaes in TQuel. We
begin in Section I1 by describing the Quel aggregates. A n intu-
itive introduction to the TQuel aggreggates is given in Section
111. The resulting language subsumes all aspects of aggregates
appearing in other proposals. Section IV is devoted to a formal
semantics of Quel aggregates. As the core of the retrieve
statement and the modification statements were previously
formalized in [54] and [47], respectively, this completes the
formal definition of Quel. Section V extends these semantics
to TQuel. The result is a complete formal semantics for TQuel

Manuscript received May 7, 1992. This work was supported in part by NSF
grants DCR-8402339 and IRI-8902707, by ONR contract N00014-86-K-0680,
and by a Junior Faculty Development Award from the UNC-CH Foundation.
The first author was supported in part by an IBM Faculty Development Award.
The third author was sponsored in part by the U.S. Air Force.

R. T. Snodgrass is with the Department of Computer Science, University
of Arizona, Tuscon, AZ 85721.

S.L. Gomez is with Centro Nacional de Computacion, Asuncion, Paraguay.
L.E. McKenzie, Jr. is with AFCAUSY, Hanscom Air Force Base, MA

IEEE Log Number 9211306.
01731.

TABLE I

Name (Rank lsulary
Jane I Full I44000
Merrie I Associate I40000

and its snapshot subset Quel. A complete formal semantics for
no other relational query language, conventional or temporal,
has been defined. We then examine how aggregates may be
supported in an historical algebra, demonstrating that tech-
niques for processing convention1 aggregates may be extended
in a straightforward manner to process temporal aggregates,
and that incremental evaluation of temporal aggregates is
available for improved efficiency. The final section compares
TQuel aggregates with those of several other query languages
supporting time.

11. AGGREGATES IN QUEL

In this section we present an informal specification for
the Quel aggregates. The Quel operations for aggregation
are c o u n t , any, sum, avg, min, and max. Thsese
operators can be used in two types of aggregation.

1) Scalar aggregates, yielding a single value as the result.
2) Aggregate functions, producing several values deter-

mined by calculating the aggregate over a subset of the
relation. Each subset consists of the tuples such that the
contents of one or more attributes grouped in a by-list
are the same. Hence the result of an aggregate function is
a relation whose number of tuples equals the number of
different values in the by-list. (Since a scalar aggregate
is in fact a function, this terminology is confusing: we
adhere to it only because it has become established [9]).

While scalar aggregates are independent of the query in
which they are nested, aggregate functions are not. Since each
value computed by such a function carries information on part
of a relation, tuple variables in the by-list must be linked to the
corresponding tuple variables, if any, in the outer query-that
is, they should refer to the same part of the relation. (The inner
query, as opposed to the outer query, is the one consisting of
the attribute to be aggregated, the by-list, and the inner where
clause.)

Aggregation performed over the set of strictly different
values in an attribute is called unique aggregation. Quel
supports three unique aggregates: countU, sumu, and avgu.
Unique versions of any, max and min are not necessary.

As an example, suppose the relation Faculty holds relevant
data, say name, rank and salary, about the professors in a
university department (see Table I).

1041-4347/93$03.00 0 1993 IEEE

- r

SNODGRASS er al.: AGGREGATES IN THE TEMPORARY QUERY LANGUAGE

Rank I NumFaculty I NumRanks I NumInRank
Full 12 12 I1
Associate 12 12 11

Fig. 1. Result of a query containing aggregates.

The following query computes the number of faculty mem-
bers, the total numbers of ranks, and the number of faculty
members at each rank.'
range of f is Faculty
retrieve (f.Rank,

NumFaculty=count(f.name),
NumRanks=countU(f.Rank),
NumInRank=count

(f.Name by f.Rank))
The range statement declares a typle variable f that will

be associated with the Faculty relation. The retrieve statement
contains the target list of attributes to be derived for the output
relation (attributes are denoted by a tuple variable followed by
a period followed by the attribute name). The output relation
(Fig. 1) contains as many tuples as actual values exist in the
by-list. If there had been no by-list, NumInRank would be
2 in all the derived tuples. Also note that the NumFaculty
and NumRanks values are independent of the Rank, since a
by-clause was not used in their definition.

By their very nature, both scalar aggregates and aggregate
functions operate on the entire relation. However, they can
be locally restricted via a where clause to operate only on
certain tuples of the relation. The local or inner where clause
is processed separately from the outer one of the query.

111. TEMPORAL AGGREGATES IN TQUEL

In the previous section we have seen the various Quel
aggregates. We now introduce TQuel aggregates in an intuitive
way through examples. We first give an overview of the TQuel
language and then turn to aggregages.

TQuel is an extension of Quel, augmented to handle the
time dimension [47]. TQuel supports valid, transaction, and
user-defined time, and thus supports temporal queries [46].
Of the three, valid time, modeling the real world occurrence
of an event, is by far the hardest to support in aggregates.
Transaction time, modeling the storage of information in a
database, may be supported through one additional term in
the tuple calculus semantics. User-defined time, an encoding
whose semantics is maintained by application programs, is
handled in an identical manner to more conventional data types
such as integers and character strings; all that is necessary
are input, output, and comparison functions. To simplify the
exposition, we will not use transaction or user-defined time
in the example queries or in their formal semantics. In the
general formal semantics, we will include transaction time, to
illustrate how easy it is to support.

Temporal relations are four dimensional. Multiple tuples
containing multiple attribute values contribute two dimensions;

'Thoughout the paper, a fixed-width font is used for operators in the query
language (e.g., count); a bold, fixed-width font is used for keywords (e.g.
year); and italics is used for functions in the formal semantics (e.g., count). '

827

valid and transaction time contribute the other two dimen-
sions. For both the examples and the semantics, we embed
these four-dimensional structures into two dimensional tables,
appending additional, implicit time attributes (generally two
valid attributes, from and to) that are not directly accessible
to the user. Other embedding are possible (five are given in
[47]), but will not be used here. The degree (deg) of a temporal
relation is the number of explicit attributes.

The TQuel retrieve statement augments the standard Quel
retrieve statement by including

a when clause, paralleling the already existing where
clause, to select tuples whose temporal attributes satisfy
desired temporal constraints;
a valid-at clause that permits the assignment of a non-
default and possibly computed value to the valid-time
attribute of a target event relation;
valid-from and valid-to clauses that permit the same kind
of assignment to the valid-time attributes of a target
interval relation; and
an as-of clause to specify rollback to a previous transac-
tion or series of transactions.

A. Adding Aggregates to TQuel

In defining aggregates in TQuel, we kept several goals in
mind. First, TQuel aggregates should include all of Quel's
aggregates, so that TQuel remains a strict superset of Quel.
Second, the snapshot reducibility of TQuel to Quel (proven
elsewhere [47]) should be maintained, so that the TQuel
version of a Quel aggregate will perform the same fundamental
operation. This will ensure that the intuitive semantics of
Quel applies to TQuel. This goal impacts the design of both
the syntax and the semantics of the new constructs. Third,
the most needed strictly temporal aggregates, including those
that evaluate to scalar values and those that evaluate to time-
stamps, should be provided. Fourth, the semantics should be
independent of the time-stamp granularity. Finally, features
introduced in other temporal query languages should also
be available in TQuel, and be accommodated in its formal
semantics.

There are some differences between Quel and TQuel aggre-
gates. Historical and temporal databases are characterized by
the changing condition of their relations: at time tl a relation
contains a set of tuples, and at time t 2 the same relation
may contain a different set. Since aggregates are computed
from the entire relation, this in turn causes the value of an
aggregate to change from, say, v1 to v2. Hence, while in
Quel an aggregate with no by-list (scalar aggregate) returns
a single value, in TQuel the same aggregate returns, generally
speaking, a sequence of values, each associated with its valid
time. For an aggregate with a by-list, a sequence of values for
each value in the by-list is generated.

Let us apply the example query on the historical relation
in Table I1 (since TQuel is a superset of Quel, that query is
a valid TQuel query).

With the default when clause (when f overlap now
and valid clause (valid from begin of f to end of
f), the example query

828 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 5, OCTOBER 1993

Assistant 1 1 1
range of f is Faculty Assistant 2 1 2

Assistant 2 2 1 retrieve (f.Rank,
Associate 2 2 1

NumRanks=countU(f.Rank), Assistant 3 2 2
Associate 3 2 1 NumFaculty=count(f.Name),

NumInRank=count Full 3 2 1

(f.Name by f.Rank)) Full 2 2 1

2 1
2 1 would result in the relation in Table 111, which is identical to

~ ~ ~ ~ ~ ~ a ~ e

TABLE I1 TABLE I11

9-71 9-75
9-75 12-76
12-76 9-77
12-76 9-77

9-77 12-80
9-77 11-80

11-80 12-80
12-80 03

12-80 12-82
12-82 03

Name Rank Salary
Jane Assistant 25000
Jane Associate 33000
Jane Full 34000
Jane Full 44000
Merrie Assistant 25000
Merrie Associate 40000
Tom Assistant 23000

om to Rank NumFaculty NumRanks NumlnRank from to
9-71 12-76
12-76 11-80 Full 2 2 1 12-83 03

11-80 12-83 Associate 2 2 1 12-82 03

12-83 30

9-77 12-82

~

Defaults are discuss in detail elsewhere [48]; these defaults
must be defined carefully to ensure snapshot reducibility. To
extract the history of the requested count, simply use an
explicit when clause: when true. The altered query yields
the tuples in Table IV.

The count may change only when a Faculty tuple is
created, or becomes invalid. As can be seen, for each rank
there can be more than one related count over time.

Quel allows an inner where clause to preselect tuples for the
computation of the aggregate; otherwise, aggregates always
operate on the entire relation. Similarly, in TQuel the inner
where, when, and as-of clauses serve the same purpose. An
inner valid clause is not allowed, because the interval of
validity for the value calculated by the aggregate is indirectly
specified using the for clause, to be discussed shortly.

The above example illustrates our approach to computing
TQuel aggregates. To aid in understanding temporal aggre-
gation, we now present one possible way to compute an
aggregate over a given attribute of relation R. Note that this
description is at a logical level; the implementation is free to
perform aggregation in any manner that is consistent with the
semantics to be presented later.

Determine the periods of time during which R remained
“constant” that is, no new tuples entered the relation
(and, if R is an interval relation, no tuples became
invalid).
For each constant set of tuples in R, select the tuples that
satisfy all the qualifications required by the inner where,
when, and as-of clauses, if any. Defaults are used if
those clauses are not present.
If there is a by-list with this aggregate, partition each
constant set of tuples into subsets, each subset corre-
sponding to one value of the by-list attributes. Each
group of selected tuples is called an aggregation set.
Compute the aggregate for each aggregation set, pro-
ducing a single value.
Associate the result with each combination of tuples par-
ticipating in the original query, with the aggregation set

selected a) using the values indicated in the by-clause,
b) using the valid time of the underlying aggregation
set, and c) using the interval or event specified in the
valid clause.

The basic strategy consists of reducing a TQuel aggregate
to a series of Quel-style aggregates, each applied on a period
of time when the relation does not change its contents. Each
value of the aggregate is associated with an assignment of
values to the by-list attributes, and is attached to the particular
period of time it was valid. At each point in time, there is
exactly one value of the aggregate for each combination of
values of the by-list attributes.

This approach is necessarily more complex than that for
Quel aggregates. In TQuel, for each interval during which
all base relations participating in the aggregate(s) remain
“fixed,” an aggregate tuple is computed for each aggregation
set. In Quel, all base relations are already fixed, since the
relations do not vary over time. This aggregate tuple, along
with tuples from the base relations that are valid over the
interval, determine the output tuples for the interval. Whereas
Quel uses only the explicit attribute values via the by-clause to
connect the aggregate tuple with the participating tuples in the
retrieve statement, TQuel also uses the implicit time values.
Any combination of aggregate and base-relation tuples that
satisfy all qualifications required by the outer where and when
clauses, and also overlap, produce an output tuple. In addition,
the valid time of each output tuple is required to be the overlap
of the interval or event specified by the valid clause with the
overlap of the aggregate tuple and base-relation tuples named
in the aggregate.

The restriction that the valid time of the output tuple be
the intersection of the valid times of some of the participating
tuples and the aggregate tuple as well as the time specified
by the valid clause does not limit the range of queries that
TQuel can support. To support queries whose output is derived
from aggregate and base-relation tuples valid over different
intervals, we can simply pre-compute the aggregates and treat
them as ordinary historical relations in the main TQuel query.

P

SNODGRASS er al.: AGGREGATES IN THE TEMPORARY QUERY LANGUAGE 829

B. Cumulative versus Instantaneous Aggregates value at 6-81 associated with for each instant counts

A n aggregate may or may not take into account tuples that
are no longer valid. The following definitions are useful [27].

Cumulative Aggregate: an aggregate whose value for each
point t i n time is computed from all tuples that have been valid
in the past, as well as those valid at r.

Instantaneous Aggregate: an aggregate whose value for each
point t in time is computed only from the tuples valid at time t.

These aggregates act differently when applied to an event
or an interval relation. For an event relation, as the length
of the time unit (the time-stamp granularity) is reduced, the
probability of finding any valid tuples decreases. Aggregates
such as count, applied at a given instant, would thus return
different results depending upon the granularity of valid time.
On the other hand, it is always possible to count the events
that have occurred in the past, or in a given period of time,
in a cumulative fashion. For an interval relation, tuples are
valid over an interval of time which is at least as long as
the time-stamp granularity, and therefore the above problem
does not exist. We therefore restrict aggregate operators over
event relations to be cumulative, while aggregate operators
over interval relations can have both an instantaneous and a
cumulative version. However, each value of an aggregate, be
it instantaneous or cumulative, is valid during a period of time.

For cumulative aggregates, the user must specify how far in
the past to include tuples used to compute a value at time t . The
for clause is used for this purpose. Instantaneous aggregates
(the default) are specified using for each instant . If
all previous tuples are to participate, f o r ever is used.
Intermediate cases, such as using only those tuples valid at
some point in the previous year, are specified using for each
< span >, e.g., for each year for each day. If, say,
count (for each year) is used, then the aggregate,
when computing a value valid at a particular month m, will
operate over all tuples that were valid sometime during the
year up to and including the month m. The value at 3-76 will
include all tuples valid sometime during 4-75 through 3-76;
the value at 4-76 will include the (potentially different) tuples
valid sometime during 5-75 through 4-76. The interval used
(in this case, year) is termed the window, and such aggregates
are termed moving-window aggregates. Such aggregates were
first proposed in TSQL [36].

Fig. 2, which shows the results of the following query, illus-
trates the difference between the various kinds of aggregates
on an interval relation. We have specified when true to obtain
the entire history of the counts.
r e t r i e v e

(Cl=count(f.Rank for each i n s t a n t) ,
C2=count(f.Rank for each y e a r) ,
C3=count(f.Rank for e v e r) ,
CQ=countU(f.Rank for each i n s t a n t) ,
CS=countU(f.Rank for each y e a r) ,
C6=countU(f.Rank for e v e r))

when true
Note that the values associated with for each year (e.g.,

C2) are in a sense between the values associated with for
each instant (e.g., Cl) and for ever (e.g., C3). The

an Assistant Professor (Merrie) and a Full Professor (Jane), for
a total of 2; for each year counts 2 Assistants (Merrie
and Tom), one Associate (Jane), and one Full (also Jane, since
her promotion occurred within the year before 6-81), for a
total of 4; and for ever counts 3 Assistants (Jane, Tom,
and Merrie), one Associate (Jane), and one Full (Jane), for a
total of 5. The unique aggregate for each year (C5)
counts one Assistant (Tom or Merrie), one Associate (Jane),
and one Full (also Jane), for a total of 3, since all three ranks
were represented over the previous year. The values associated
with for ever are monotonically increasing.

C. New Aggregates

All Que1 aggregates have a TQuel counterpart. There are
also some aggregates unique to TQuel. The first, stdev,
which computes the standard deviation, is quite similar to avg,
applying both to snapshot relations and temporal relations. The
remaining new aggregates are strictly temporal.

Quel’s aggregates may be classified as a) select a particular
value from the underlying relation (e.g., min and max); b)
compute a new value of the domain of the attribute from
the values in the underlying relation (e.g., avg and sum);
and c) compute a non-dimensional quantity (e.g., count and
any). For temporal aggregates, these three generalize directly
into five categories; TQuel aggregates exist in each. In the
first category, aggregates select a value from the underlying
relation based on time.
first This aggregate returns, at each point in time, the oldest

value of the given attribute, that is, the one associated
with the first valid tuple. If two tuples have the same
from value, one is arbitrarily selected.

last This aggregate is analogous to first.
One could also envision an aggregate to select the ith occurring
interval, for a given i such an aggregate was proposed in
HQuel [17].

Aggregates in the second category compute a new value of
the domain of the attribute from the values of the underlying
relation, based on time.
rate This aggregate computes the average growth or decrease

experienced by values of an attribute over time. This
aggregate is only applicable to numeric attributes in
event relations. It returns a value indicating growth per
time unit, e.g., feet/hour, or dollars/month. The time
unit can be optionally specified by the user by means
of the per clause (see the syntax in the appendix):
per hour, per month, per 3 months.
This aggregate compares the attribute value of each
tuple with the attribute value of its chronologically
previous tuple, relative to the time elapsed, and smooths
the comparisons by taking their arithmetic mean. This
aggregate was first proposed by Tansel and Arkun for
HQuel [51]. This aggregate is useful in statistical time
series analysis.

Aggregates in the third category compute a nondimensional
quantity, based on time.
var VARiability of time spacing: the degree of inequality of

830

Stock Price

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 5, OCTOBER 1993

at

8 I 1 1 I I I I

I I I I I
3 C1 + count(f.Rank for hfpat1 I I

I I

I
6 I 9-24 !W

NRC 40
NRC 35
DCE 125
NRC 37
NRC 39
DCE 122
NRC 40
NRC 41
NRC 40
DCE 121
DCE 120
NRC 39
NRC 38
DCE 118

, NRC 39

1 . .
I I I I I

I I , I I I
I I ,I I I

I I

' 71 ' n ' n ' Y ' 7s ' n ' n ' U ' n w ' n ' s i ' I) ' U

9:OO
9:05
9:15
9:15
9:20
9:30
9:30
9:35
9:40
9:45
1o:oo
1o:oo
10:os
10:15
10:15

, 0 I I I
I 0 I I 8
t 0 I I 1

I I I

C2 i count(f.Rank for e& yed) ; I

1

I I ,I I I I 1 II I ,

' 7 1 ' n ' n ' U ' i s ' n ' n ' m ' n ' t o ' SI ' n ' n ' U

I I I I ,
I I I
I I ,

I 1 II I I
I I

I , 3 1 3 ; 3 C6 i countU(f.Rank for i I I , I I 2 1
I I 2 I I
1 11 I I

I I ; 1 ' ! I I I

I , I 8 4 2-4 I I I I, I
' 7 1 ' 72 ' n ' Y ' i s ' n ' n ' U ' n ' to ' SI ' n ' a U

fig. 2 Comparison of six aggregate variants.

TABLE V

TABLE VI

9:15

NRC 0.33 0.20 9:05 9:30
NRC 0.35 0.13 9:05 9:35
NRC 39 0.57 0.00 10:05 10:15

9:05

- r

SNODGRASS er al.: AGGREGATES IN THE TEMPORARY QUERY LANGUAGE 83 1

the time spacing within a given set of events (the argu-
ment to this aggregate is an event expression evaluating
to an event). This aggregate returns a nondimensional
quantity which has the same value for each attribute.
A value of 0 indicates the tuples are perfectly spaced.
This aggregate also considers the tuples in chronological
order. It finds the ratio of the standard deviation of the
time lengths from one tuple to the next, to the average
of those time lengths. A ratio is used to ensure that the
measure is independent of time-stamp granularity. This
aggregate is useful in statistical time series analysis.

The last two categories consist of aggregates that evaluate to
valid time. Aggregates in the fourth category select events or
intervals from the events or intervals in the underlying relation.
earliest The oldest time period of an interval relation,

that is, the first from-to interval, or the oldest
event, that is, the first ut event. If two tuples of
an interval relation have the same from value, the
one with the earlier to time is considered to be
older.

latest This aggregate is analogous to earliest.
An aggregate in the fifth category computes a new time

from events in the underlying relation.
rising The maximal interval culminating in the final event

of the underlying relation in which values of all
events occurring at a particular time are greater
than or equal to values of all events occurring
immediately previously. If it is applied to an interval
relation, it uses only the starting times.

The requirement that all events be rising may seem overly
restrictive. However, by combining the operator with other
constructs, the restrictions may be effectively relaxed. First,
if a by clause on a key is used, then there will be only one
value valid at any time. Applying the aggregate to the value
of min or max, as in rising (max(A.price)), also
ensures only one value valid at a time. Finally, determining the
interval when the value is falling is easily done by applying
the aggregate to the inverse, as in

range of s is stocks
retrieve (

Stock = s.stock, Price = s.Price,
VarSpacing = var

GrowthRate = rate
(x for ever by s.Stock),

(s.Price per minute
for each 15 minutes by s.
Stock))

valid from begin of rising (s. Price by s.
Stock) to s when true

Since we want the history, we override the default when
clause. The result is the relation in Table VI.

The interval indicates how long the stock had been rising.
The Price and the VurSpucing apply to the terminating event.
Note that all of the aggregates are computed on a per-stock
basis. The DCE stock does not appear because its price never
rises.

Computation of the variability of time spacing, for any
attribute, consists of a) sorting the relevant tuples by their
ut attribute and b) considering every pair of chronologically
consecutive tuples, Si and finding the coefficient of
variation of the length of time from event Si to event &+I,
that is,

The values of VurSpucing in the first four tuples is fairly
small because the intervening interval for the NRC stock
oscillates between 5 and 10 minutes. For the last tuple, the
VurSpucing almost doubles, due to the anomalous 20 minute
interval ending at 1O:OO. Incidentally, the VurSpacing for the
DCE stocks are all 0, because the records are precisely spaced
at 15-min intervals.

To compute the rate, we a) again sort the tuples by their ut
attribute, and b) for each pair of chronologically consecutive
tuples Si and Si+l, compute the increment of the value
Si+l[Yield] - Si[YieZd], averaged over previous pairs (for
each 15 minutes), and then normalize over a minute (per

rising(min(-A. price)). minute). The GrowthRate at 9: 15 is negative even thought

These last three aggregates are called the stock’s price is rising then because the net effect over the
previous was a drop in price (from 40 to 37). The
GrowthRate at 10:15 is 0 because the price at the end of the

interval; nevertheless, at 10:15 the stock’s price was rising.
The rate is greatest at 9:203 when the stock experienced an
increase of 4 points over the previous 15 minutes.

constructors because they return a time interval as their result.
They can be employed by the to specify conditions in the

clause). TO adhere to the syntax of temporal expressions and
predicates, these aggregates take an interval expression, rather
than a scalar valued expression, as an argument.

temporal qualification (when clause) or the valid time (valid (39) is to the price at the beginning Of the

We give one example here that uses the var, rate,
and rising aggregates. Examples that employ the other
new aggregates, and that demonstrate nested aggregation,
aggregates appearing outside the target list, and a when clause
within an aggregate, are given elsewhere [48].

This example references the event historical relation
stocks, (Stock, Price):

containing the tuples in Table V.
The following query determines, for those stocks that have

been rising in price, how equally spaced the quotations are in
time, and how fast the price grew over the previous fifteen
minute interval.

D. Defaults

Defaults must be chosen carefully to maintain the snapshot
reducibility to Quel, thereby allowing TQuel aggregates to be
used in exactly the same way as Quel aggregates. Each default
may be overridden with the explicit use of the clause. There are
two places where default clauses may apply: the outer retrieve
statement and within the aggregate. The default clauses in the
outer retrieve statement without aggregates was given in [47].

valid from begin of
(t k overlap . . . overlap t k)

to end of (t l overlap . . . overlap t k)

832 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 5, OCTOBER 1993

where true
when tl overlap . . . overlap tk
as of now

where tl, tk are the tuple variable appearing in the query.
When aggregates are included in the query, we must distin-

guish between the tuple variables appearing inside and outside
the aggregate. Tuple variables are included in the default when
and valid clauses only if they appear outside an aggregate. If
no tuple variable appears outside an aggregate, the default
clauses are as follows.

valid from
valid from beginning to forever
where true
when true
as of now
The following defaults are assumed within each non-

temporal aggregate, and are quite similar to the defaults used
in the outer query.

for each
for each instant
where true
when tl overlap . . . overlap tk

as of Q through ,I3
where t l , . . . ,tk are the tuple variables appearing in the
aggregate, and Q and p are the expressions (or their defaults)
appearing in the retrieval statement itself. The temporal ag-
gregates differ in that their default for clause is for ever.
The default per clause is the span specified in the for clause.
If the for clause is not specified, or is for ever, then the
rate aggregate must have an explicit per clause.

Iv. TUPLE CALCULUS SEMANTICS OF QUEL AGGREGATES

Our approach to the semantics is based on Klug’s method,
which was used in a separate, more formal tuple relational
calculus [30]. In this approach, each aggregate is associated
with a function. This function is applied to a set of r-
tuples, resulting in a single tuple containing r attribute values,
with each attribute value equivalent to applying the aggregate
over that attribute. By applying the function to the set of
complete tuples, the distinction between unique and non-
unique aggregation can be preserved.

Let R be a relation of degree r containing n and n 2 0.
let t be a tuple variable associated with R. For example,
associated with the count aggregate is the function count(R) A
(7 1 , n) , which yields a tuple whose r components equal n.
The functions for the remaining Quel aggregates have similar
definitions, and are given elsewhere, as are restrictions on the
domains required by the aggregates [48].

These functions are used in the tuple calculus semantics.
Let F be any of the aggregates defined in Section I1 and III-
A. Quel queries with one aggregate function in the target list
are of the form
range of tl is R1

1

in which

where Attr (d i) is the set of attributes associated with the
relation associated with the tuple variable di Although values
in a target list can be expressions, rather than simply attributes,
we ignore that detail here for simplicity of notation. There is
also the restriction that the tuple variable(s) mentioned in $1

must be either el or one of the tuple variables appearing in
the by-clause: e2, . . . , el. Otherwise, there may be many more
tuples participating in the aggregate, i.e., those from additional
tuple variables, thereby generating unexpected results from
the aggregate. The attributes outside the aggregate, a l , . . . , aj,
and the attributes used within the aggregate, b2, . . . , bl usually
overlap, but need not.

Informally, this aggregate
1) gathers all combinations of tuples from the relations

associated with the tuple variables appearing in the
aggregate,

2) removes all resulting tuples that do not satisfy the
condition in the where clause of the aggregate,

3) partitions the resulting tuples by the values of the
attributes listed in the by-clause,

4) applies the aggregate to each partition,
5) and finally associates the result with each combination

of tuples participating in the original query that satisfy
the outer where clause, with the partition selected using
the values indicated in the by-clause.

We specify the partition of the relations associated with the
tuple variables appearing in the aggregate. Initially assume
that the tuple variables e l , . . . , el are all distinct. Let us first
consider the case where no by-clause is present. The aggregate
is applied to the following set.

where Re, is the relation associated with tuple variable el
and p A deg(R,,) is the degree of Re, , that is, the number
of attributes in each tuple of R e , . In the tuple calculus, R(e)
states that e is a tuple in R. We use $; instead of $1 to indicate
modifications for attribute names and Quel syntax conventions.
For the first aggregate in the example, count(f.Name),
there is no where clause (the default is where true).

= {(Jane, Full, 40000), (Merrie, Associate, 40000))

range of tk is R k

retrieve (dl.al,. . . ,dj.aj,
y = F(e1 .bl by e2.b2, . . . , el.bl where $1))

Let F be the aggregate operator defined above correspond-
ing to the Quel aggregate F (e.g., if F is count, F is count).
A term of the form F (R) will denote the tuple obtained from where II,

-- I

SNODGR4SS er ai.: AGGREGATES IN THE TEMPORARY QUERY LANGUAGE 833

the application of aggregate operator F to relation R. The
operator F applies the same aggregate to every attribute in R.
Let F (P) [m] denote the m-th attribute of the tuple evaluated
by F (P) . For the example query, count(P') = { (2 , 2 , 2) }
and count(P')[Name] = 2.

The aggregates as defined cannot do unique aggregation
directly, because they operate on relations, not on attributes. It
turns out, however, that a slight change of the partition solves
the problem. Let the modified partition be defined in terms
of P as

with bl being the attribute over which the aggregate is per-
formed. Attribute values that are components of tuples may
be selected in two ways in the tuple calculus: with brackets
enclosing the index of the attribute, e.g., 411, or with brackets
enclosing the name of the attribute, e.g., w[bl] , rank]. The
net effect of this is the elimination of all duplicate values
from the attribute upon which aggregation will be performed.
The tuple calculus semantics of unique aggregates is simply
obtained by substituting U for P in the main formula of the
previous section, and using the previously defined operators

aggregate has to be applied. The tuple calculus statement will
supply each combination of values existing in the attributes
specified by the by-clause, as will be seen shortly. One can
verify from the definition that every tuple in the cross product
of the underlying relations is in one set of the partition, that
there are no extraneous tuples present, and that the sets do
not overlap, making P a true partition. For a query involving
several aggregates, a separate partition is defined for each
aggregate.

The partition for the third aggregate in the example is
particularly simple.

f(3) I Faculty (f) A f [Rank] = x2

For this particular Faculty relation, there are two pos-
sible values for the Rank attribute: Associate and Full.
P3(Associate)= { (Merrie, Associate, 40000)) and P3(Full)
= {(Jane, Full, 44000)). All other subsets yield empty sets,
e.g., P3(Assistant)=0.

The general Quel query with one aggregate has the follow-
ing tuple calculus statement.

1 &+I) I (3ti) . . . (gtrc)(Ri(ti) A . . . A &(tlc)

A w[1] = dl [all A . . . A w[j] = d, [a,] A u i [j + I] count, sum, and avg. For the countU aggregate of the
example,

I \ = F(P(e2[b21,. . . , el[bll))[bll

u(l) 1 (3 w) (w E P2 A u[l] = w[Rank])

= {(Associate), (Full)}

When count is applied to this set, the result is 2.
When a by-clause is present, as in the third aggregate in the

example, count (f . N a m e by f .Rank) , we must partition
the set and apply the aggregate to each partition. To ensure
that the correct partition is used in the primary tuple calculus
expression, we label each of the partitions with the attribute
values used to define it. Define a partition P on the underlying
relations named by the aggregate in the query as a collection
of sets of tuples, with each set identified by n, - 1 values
a2,. . ' ,01.

u (p) I (3e1) . . . (3e l) (Re , (e1)

A . . . A Re, (el)
A U e l 1 1 . . . 1 1 el
A e2[b2] = x2 A . . . A el[bl] = zl

where 1 1 denotes concatenation and p xz1 deg(Rlz). If
there is no by-clause, then P is a set of p-tuples over which

This is a simple extension of the Quel semantics without
aggregates defined by Ullman [54]. This statement specifies
that the result tuple U J is composed of j + 1 attributes (line
one), that the tuple t , is in the relation Rt (also line one), that
the ith attribute of iii is copied from the n,th attribute of the
tuple variable b, (line two), and that the participating tuples
are determined by the restriction $' (line three).

Line two also computes the aggregate. The appropriate
partition is selected by the indicated attribute values found in
the underlying relations (i.e., the values e2[b2], . . . , ~ [b l]) . If
the tuple variables appearing in the aggregate are not distinct,
then the first two lines in the definition of P should be altered
to eliminate duplicate tuple variables. Also, if tuple variable el
does not appear outside of the aggregate or in the by-clause,
then that tuple variable should be removed from the first two
lines of the statement just given.

The tuple calculus statement for the example is

the aggregate is to be applied, as discussed above. Otherwise,
each of the combinations of values x2, . . * ,xl of attributes
appearing in the by-clause produces one partition on which the

In using tuple calculus to formalize Quel (and shortly, TQuel),
we assume duplicate elimination in the resulting relation, since
relations are formalized as sets. '

834 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 5, OCTOBER 1993

There are six fundamental operators that perform aggre-
gation in Quel. The grouping and selection of tuples to be
aggregated is done by the partition, which also determines
whether the standard or the unique version is being used.
The semantics for aggregates in the outer where clause, for
arbitrarily nested aggregation, and for expressions in aggre-
gates is given elsewhere [48]. While only the semantics for
the retrieve statement has been given, it is easy to extend
it to specify aggregates in the Quel modification statements
(append, delete, and replace) [47].

v. TUPLE CALCULUS SEMANTICS OF TQUEL AGGREGATES

It is convenient to base the semantics of TQuel on the
conventional (snapshot) relational database model, especially
because of the available mathematical foundation supporting
the latter [8]. Thus the semantics of the augmented operations
are expressed using traditional tuple calculus notation.

We first review the transformation of the time-specific
constructs of TQuel into the tuple calculus, and briefly give the
semantics of the TQuel retrieve statement, which is needed in
order to introduce the semantics of temporal aggregates. This
review is a condensation of [47]. The semantics of the TQuel
aggregates is then developed, for the Quel analogues followed
by the new TQuel aggregates.

A. Review of TQuel Semantics

As stated in the overview of TQuel in Section 11, TQuel
augments Quel by adding a valid clause to specify the validity
time(s) of tuples, a when clause to specify the relative time
ordering of the participating tuples, and an as-of clause to
specify rollback in time.

The semantics makes use of several auxiliary functions:
temporal constructor functions that take one or two intervals
and compute an interval, and temporal predicate functions
(including overlap) that take two intervals and compute a
boolean value. All of them are ultimately defined in terms
of the predicates Before and Equal and two functions first and
last.

The temporal predicate 7 in the when clause, containing the
precede, overlap, and, or, and not operations,
is transformed into a standard tuple calculus predicate rT
containing only the Before, Equal A, V, and 1 operations.
The valid clause is transformed into the functions av and
ax each evaluating to an event, and containing the functions
first and last. The as-of clause is in fact a special when clause
stating that the transaction times of the underlying tuples must
overlap the (constant) interval specified in the as-of clause. The
constants @e and represent the endpoints of this interval
from the expressions a and p. As a consequence, the query
range of t l is RI

range of t k is Rk
retrieve (dl.al,...,d,.aj)

valid from U to x
where II,
when T
as of Q through P

is translated into the tuple calculus statement

The superscript indicates that the tuple w has j explicit
attributes and 4 implicit attributes, indicating an interval
relation. The semantics for an event relation is similar, but
with only 3 implicit attributes, since the to time is not present.

B. The Constant Interval Set

As we have seen, aggregates change their values over time.
This will be reflected as different values of an aggregate being
associated with different valid times, even in queries that look
similar to Quel queries with scalar aggregates, in which no
inner when or as-of clauses exist. In TQuel, the role of the
external or outer where, when and as of clauses will be similar
to that of the outer where in Quel: they determine which tuples
from the underlying relations participate in the remainder of
the query. These selected tuples are combined with the tuples
computed from the aggregation sets to obtain the final output
relation.

Aggregates always generate temporary interval relations,
even though an aggregated attribute can appear in an event
relation. This temporary relation has exactly one value at any
point in time (for an aggregate function, the interval relation
has at most one value at any point in time for each value of
attributes in the by list). It is convenient to determine the points
at which the value changes. Let us first define the transition
event set of a set of relations, R1, ' . . , R k , relative to a given
window function, w to be defined shortly, as

The transition event set brings together all the times when
the aggregate's value could change. These times include the

SNODGMSS er a1 : AGGREGATES IN THE TEMPORARY QUERY LANGUAGE 835

beginning time of each tuple, the time following the ending
time of each tuple, and the time when a tuple no longer falls
into an aggregation window.

The window function w is specified in the for clause. maps
each time into its aggregation window size. f o r each in-
s t a n t implies V t , w (t) = 0; for ever implies V t , w (t) =
00; and f o r each < spanr implies a window size dependent
on the time-stamp granularity. In the examples, an underlying
granularity of month has been used. Hence, for each
month is equivalent to f o r each instant (Vt. w(t) = 1-
1 = 0); f o r each quarter implies (Vt. w (t) = 3-1 = 2);
and for each decade implies (Vt, w(t) = 120- 1 = 119)
subtracted because the window is inclusive. In all of these
cases, the window function yields the same value for any
input. If, however, a granularity of day is used, for each
month, for each quarter, and f o r each decade
would require non-constant window functions. For example,
f o r each month would require w(January 31, 1980) =
31 - 1 = 30, ~(February 28, 1980) = 28 - 1 = 27, and w
(March 20, 1980) = 28 - 1 = 27 (since February 21, 1980,
the first day in the aggregate window, was 27 days before
March 20). The last line of the definition of T is somewhat
complex because the aggregation window must be defined in
terms oft, not in terms of to]. If r[to] was February 21, 1980,
then T would contain March 20, 1980 if for each month
were specified. However, if t to] was February 28, 1980, then
T would only contain March 31, 1980, even though March
28-30 all satisfy t - w (t) = r[to] .

If two times y and z are neighbors (i.e., y and z are in
T(R1.. . . . Rk, m), and no intervening time is in T) , then the
time interval from y to z did not witness any change in the
set of relations, or in other words, all the relations remained
“constant.” Define then the Constant interval set as

Con,stant(R1,. . . , Rk, 711)

y

+

z A Before (y. z) A (Ve)(T(Rl. Rk, w) (e)

Before(e. y)VEqual (e . y) vBe fore (z . e)VEqual(z. e))

The last two lines state that there is no event in the time
between y and t. The constant interval set allows us to treat
each constant time interval (y, z) separately, thus reducing
the inner query to a number of queries, each dealing with a
constant time interval. Hence, we will be able to follow the
same steps as in the snapshot Quel case. For each time interval
[y; 2) in the constant interval set a value of the aggregate, valid
from y to z , will be computed and will potentially go into the
result. This value is guaranteed to be unique and unchanging
by the definition of Constant.

C. Aggregates in the Target List

For a multirelational query with one aggregate in the target
list, we will take the approach used in the Quel semantics:
tuples from the aggregate operation will be computed first via

a partition. Initially, let F be any of the aggregate operators also
defined in Quel. Consider the TQuel query with one aggregate
function in the target list,

range of t l i s R I

range of tk i s Rk
r e t r i e v e (d l . a l , . . . , dj.aj,

y = F(el.bl by e2.b2,. . . ,el.bl
for w
where Q’1

when r1

a s of cy1 through P I))
v a l i d f r o m U to x
where Q’
when r
a s of (Y through ,b’

As with Quel, the where predicate should refer only to the tuple
variable el or the tuple variables appearing in the by clause.
The same restriction holds for the when clause appearing in the
aggregate: no tuple variables are permitted in the as-of clause.

Here, the partition will be based upon the four clauses that
modify the aggregate (the by, where, when, and as-of clauses).
Using the same notation employed in the TQuel semantics, we
may define the partition as shown at the bottom of the next
page, where y and z are valid times, with Before(y, z) and
p = (E:=, deg(R,,)) + 4 (p includes the implicit attributes
of el only). This definition assumes that the tuple variables
e l , . . . , el are distinct. If they are not, then the duplicate tuple
variables should be removed. In comparing this with the Quel
partition, notice first that this partition is indexed both by the
by-clause attribute values and by a time interval [y. z) . Also
note that three additional lines appear here. Line 6 translates
the when clause, similarly to the where clause line in the
semantics of the Quel retrieve statement. Line 7 translates
the as-of clause, specifying that the transaction times of all
tuples of the inner query, including those in the inner where
and when clauses, must overlap the rollback time specified in
the as-of clause. This is similar to the as-of line in the outer
query in TQuel, which will be shown shortly. The window
function w’ corresponds to the keyword found in the retrieve
statement. Line 8 indicates that all tuples participating in the
aggregate must overlap the interval [y, 2). From the definition
of the Constant interval set, which supplies the intervals [y, z) ,
it is not difficult to see that the overlapping is total. This
way, aggregates will always be computed from the tuples that
were valid during that interval. In determining the overlap,
the window function w‘ is used in a similar fashion to the
definition of the transition event set. In particular, if f o r
ever is specified, then w’ is the constant function returning 00

if, and every appropriate tuple valid before time z will appear
in P, yielding a cumulative aggregate. If Re, in line 8 is an
event relation, the predicate should be

836 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 5 , OCTOBER 1993

The output relation from a query with a single aggregate in
the target list is

3
4
5
6

7
8
9
10

11

. . . . ,
[y, z) E Constant (R e , , . . . , Re, U')
A(Vi)(l 5 i 5 j) (overlap ([y,z). [e ipom] .e i [to])))

~ . r u [j + 11 = F(P(e2[b2], el[b~].y. z)) [b l]
Aw[j + 21 = last (y , @,,)A
w = first (2 , a.,) A Before (w[j + 21. w [j + 31)
A w [j + 41 = current transaction time A w [j + 51 = 00

A *'
ArT
A(vi)(l 5 Z 5 k)

(overlap([QO. @J) . [t z [start]. t i [s t o p])))

A w [~] = d l [a l] A . . . A ~ [j] = d,[aj]

A comparison with the tuple calculus expression for the
TQuel retrieve statement given earlier reveals that lines three
and five are new and lines one, two and six are altered. In
line 2 , the Constant interval set provides the interval [y,z)
during which the tuples are constant. It involves the relations
appearing in the aggregate; the relation whose attribute is being
aggregated plus all the different relations in the by-list; other
relations cannot affect the aggregate. Again, these relations are
assumed to be distinct for notational convenience. The window
function w' appears explicitly as an argument to the Constant
interval set and implicitly in P. Line three ensures that the
tuple variables aggregated over and those specified in the by-
clause overlap with the interval during which the aggregate is
constant. Line five computes the aggregate. Note that the same
aggregate operator F as in the Quel semantics is used; what
is different are the two additional parameters to P ,y , and z ,
which restrict the tuples in that partition. Line six ensures that
the valid time of the result relation is the intersection with the
specified valid time and the interval [y, z) .

Two slight modifications as required for special cases. If the
valid at v variant is used, line 6 should be replaced with

Secondly, as with the Quel semantics, if eldoes not appear
outside of the aggregate or in the by-clause, it should also not

appear in lines 1 and 2 (it will appear in the definition of the
Constant interval set). Also, tuple variables mentioned in the
aggregate that do not appear outside the aggregate should not
appear in line 3. Unique aggregation is handled in a manner
analogous to Quel's semantics.

Let us translate the original example into the tuple calculus.

range of f is Faculty
retrieve(f.Rank, NumFaculty=count(f.Name),

NumRanks=countU(f.Rank),
NumInRank=count(f.Name by f.Rank))

We first define a partition for each aggregate.

A window size of 0 is used because the default is for each
instant. Some instances of the values of the third partition
are

P3(Assistant, 9 - 71,9 - 75)

P3(Assistant, 9 - 75,12 - 76)
= {(Jane, Assistant, 25000, 9 - 71,12 - 76))

= {(Jane, Assistant, 25000, 9 - 71,12 - 76),
(Tom, Assistant, 23000, 9 - 75,12 - 80)).

The output relation is

{ ~(~+~)l(lf>(3y)(3z)(Faculty (f) A [y, 2) E constant

(Faculty 10) A overlap([y, z) , [f[f7-04, fb.1))

A w[2] = count (~ l (y , z)) [~ a m e]
A ~ [l] = f[Rank]

A w[3] = count (u2(y, z))[l]

SNODGRASS et al.: AGGREGATES IN THE TEMPORARY QUERY LANGUAGE

A w[4] = count (P 3 (f [R a n k] , y, z)) [N a m e]
A w[5] = last (y, f [f r o m])
A w[6] = f i r s t (z , f [t o]) A Before (w [5] , w[6])

A overlap ([f [f r o m] , f [t o]) , [now, now + 1))

The last two lines correspond to the default valid and when
clauses. Since the underlying relations are historical, the lines
involving transaction time are not necessary.

The semantics of unique aggregation, of multiple aggre-
gation, of aggregates in the outer where, when, and valid
clauses, of aggregates with no by-clause, and of arbitrarily
nested aggregation in TQuel is given elsewhere [48].

D. Operators for the New TQuel Aggregates

Let us specify the semantics of the new aggregates intro-
duced in Section 11-C by specifying their aggregate operators.
As discussed above, the aggregate operators, e.g., count, for
the Quel aggregates, e.g., count, which are also permitted in
TQuel, are identical to their Quel counterparts.

Let R be an event relation of degree j (the degree only
concerns the explicit attributes) with n tuples, n > 2, and let
t be a tuple variable associated with R. Since R is an event
relation, it contains an implicit valid-at time-stamp attribute,
denoted at. All except risingi compute a single snapshot tuple
of degree j . We first define a function that induces a total
ordering on the tuples in a relation.

S chronorder (R)
Definition:

e (V i) (l 5 i 5 IS1)((3t)(R(t) A t = S i))
A Before (si - 1 [at] , si [a t])

where IS1 is the length of the sequence S , and Si is the i th
element of S. Each element of S is a full tuple from R, and
the elements of S are ordered by the at times of R. If several
tuples in R show identical ut times, only one of them is taken
into S. Hence, the length of S is less than or equal to n. We
use the Before predicate rather than ‘Y” to later accommodate
indeterminacy.

Definition:

A S i - l [4 # Sz[atl)

where S = chronorder (R) and IS(> 1. Each attribute of the
result tuple equals the average increment (positive or negative)
in the values of the corresponding attribute in R, per unit
of time (the default is the time-stamp granularity, defined in
Section 11). An optional per clause can be used to specify
the span desired; this causes multiplication of the result by a
fixed conversion factor. For example, if time-stamp granularity
was a millisecond and the user specified “per month” then
the computed result is multiplied by the conversion factor of
milliseconds to months (2.592 x 10’) before being output.

837

Definition:

war (R) sd (G (R)) / m e a n (G (R))

where G (R) &< gl,...,gIsI-l > (i.e., the ordered se-
quence of durations of the tuples in R), such that S =
chronorder (R) , (SI > 1, implies that (3 i) (l 5 i 5 (SI -
1 A gi = Si+l[at] - &[at]) , and m e a n (X) and s d (X)
respectively denote the arithmetic mean and the arithmetic
standard deviation of the real numbers in the set X . Each
attribute of the result tuple equals the variability of the spacing
between the ut times among the tuples in R. This is in fact the
coefficient of variation of the set G (R) . Note that var returns
a single value, rather than a tuple.

Observe that mean (D (R)) is never zero since Si[ut] and
Si+l[at] are distinct. Not necessarily all tuples from R will
make their way into S ; S was so defined in order to ensure
that rate or var will not attempt a division by zero. Should
the user need to specify which of the tuples from T has to be
chosen for the chronological order, one of the other aggregates
can be used to create a temporary relation R that contains the
relevant tuples, and then rate or var may be applied to T .

Definition: f irstagg (R) A t f i r s t , where tfirstsatisfies the
predicate

R(tfirst) A (vt)(R(t) A t # t f i r s t * Before (t f irst[at], t [a t])
vEqual(tfirst[at1, t[atI)) .

The resulting tuple is the tuple whose valid times contain the
earliest time of a tuple in R, more specifically, no other tuple in
R began before t f i r s t . If R is empty, t f i r s t = (0, . . . , 0, 0, m).
The firstagg function supports the first aggregate.

Definition: earliest (R) e tfirst[at],where t f i r s t satisfies
the predicate given above. The result is the event represented
by the earliest tuple in the relation. lastagg and latest, and
earliest over intervals, have analogous definitions [48].

The last function supports the rising aggregate over the
attribute with the index i .

Definition: rising; (R) [earliest (maximal i (R)) ,
latest (R)) , where maximal; (R) satisfies the predicate
latest (R) E maximal; (R)
Avt l , t2 E maximal(R)(Before(tl,t~) + tl[Z] 5 tz[Z])
A3tl E maximal;(R)3t2 E R
13t3 E R (B e f o r e t z [a t] , t s [a t]) A Before(t3 , t l)
A i Equal (t z [a t] , t 3 [~ t]) A 7 Equal (t 3 , t i) A t2[i] > t i [i]))

The first predicate states that the interval terminates at
the last event. The second predicate states that the value is
indeed rising, and the third predicate states that the interval is
maximal, that is, that in an immediately preceding event the
attribute fell.

In summary, aggregate operators exist for all TQuel aggre-
gates. The semantics of aggregates appearing in all possible
positions within the retrieve statement has been specified.
This semantics is easily extendible to the append, delete, and
replace statements in TQuel.

VI.. IMPLEMENTATION ASPECTS

TQuel and its semantics are declarative in nature. In order to
implement the language, a more operational form is required.

- ~~ 7

838 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 5, OCTOBER 1993

We have defined an algebra for historical relations [34].
In this section, we discuss how aggregates are supported
in this algebra and show how TQuel statements containing
aggregates may be translated into the historical algebra. We
also examine how the aggregate operators in the algebra may
be implemented, focusing on incremental materialization.

A. Aggregates in the Historical Algebra

The historical relational algebra, an extension of the
conventional relational algebra, supports valid time. Unlike
TQuel’s data model, historical relations manipulated by this
algebra are attribute-value time-stamped, though it is a simple
matter to convert between that representation and tuple time-
stamping. The historical relational algebra contains historical
versions of the projection, selection, union, difference and
Cartesian product operators: e. &,6, and 2. A new operator,
historical derivation (j), that performs a combination of
historical selection and projection, is also available.

We also defined two new operators, A and AU, that
perform aggregation over historical operators. The aggregate
operator is denoted by Af, W . N , X , N ! (Q, R); its unique variant
is A^Uf, J-, S , .y,(Q. R) . R and Q are historical relations.
N is the attribute (in R’s schema) on which the aggregate
is applied. Q supplies the values that partition R and X
denotes the attributes on which the partitioning is applied, with
the restrictions that Attr (Q) C Attr (R) and { N } U X C
Attr (Q). f is the name of the aggregate operator, e.g., count
for the count aggregate.

If X is empty, the historical aggregate operators simply
calculate a single distribution of scalar values over time for an
arbitrary aggregate applied to attribute N of relation R. The
computed value is appended to each tuple of R, and is given
the name N’ . The interval(s) of validity of the aggregate is
recorded in that attribute’s time-stamp. When X is empty, the
tuples in Q are ignored.

If X is not empty, the operators calculate, for each subtuple
in Q formed from the attributes X , a distribution of scalar
values over time for an aggregate applied to attribute N of
the subset of tuples in R whose values for attributes X match
the values for the same attributes of the tuple in Q. Hence,
X corresponds to the by-list. Generally X = Attr (Q) and
Q = n-y(R), but these constraints are not dictated by the
formal definition of A.

Let us translate the original example into the algebra.
I range of f is faculty

retrieve (f.Rank,
NumFaculty = count (f.Name),
Numranks = countU(f.Rank),
NumInRank = count(f.name by f.Rank))

+Rank, NumFaculty, NumRanks, NumInRank(

srNamenNumFacultynNumRanksnNumInRank(
ORank = Agg.Rank(

F aCu1 t y

Acount, 0, Name, 0, NumFaculty(Faculty, 0, ’ Aucount. 0, Rank, I, NumRanks(Facdty, @),
Acount, 0, Name, {Rank), NumInRank(

Faculty, ?Rank(FaCdty)))))

where I’ is aJempora1 predicate equivalent to the default when
clause, and 6 performs temporal selection and projection, and
ensures that each resulting tuple has identical time-stamps for
all attributes (allowing conversion back into a tuple time-
stamped representation). For all three aggregates we used a
constant window function of 0, corresponding to for each
instant (the default). For the first two aggregates, which
contain no by clause, the fourth subscript to the aggregate
operator is an empty set, as is the second parameter. The
third aggregate does have a by clause, so we project out
those attributes from the Faculty relation to provide the second
parameter to the aggregate operator, and also link the body of
the retrieve statement with this aggregate through the selection
predicate.

Elsewhere we give the tuple calculus semantics of the A
and AU operators, as well as the algebraic equivalents of the
TQuel retrieve statement with aggregates in its target list, in
its where, when, and valid clauses, and in the where and when
clauses within another aggregate, and argue that this method of
converting TQuel aggregates to their algebraic equivalents can
also handle an arbitrary level of nesting of aggregates [48]. We
also prove that the tuple calculus semantics of the algebraic
translation of a TQuel retrieve statement is equivalent to the
tuple calculus semantics of the original statement, and argue
that the same holds for TQuel retrieve statements containing
an arbitrary number of aggregates. This proved the theorem
that the language formed by embedding the historical algebra
(which only supports valid time) in the commands used
to support transaction time (given elsewhere [33]) has the
expressive power of TQuel.

B. Implementing the A and AUOperators

Epstein has developed an aggregate processing strategy for
Que1 aggregates [151. Briefly, the strategy for each aggregate
proceeds as follows.

1.

2.

3.

4.

5.

6.

If it is an aggregate function (i.e., has a by-list), then
create a temporary to hold the results.
If the aggregate function has a qualification, project the
by-list into templ, with the result attribute initialized
appropriately, e.g., to 0 for count.
If the aggregate is multivariable or unique project the
qualifying tuples into tempz.
If the aggregate is unique, remove duplicates from
temp2.
Compute the aggregate by scanning temp;!, looking up
the tuple in temp1 with the same by-list values and
updating the aggregate value in templ. If the aggregate
is a scalar aggregate, then simply update its value as
temp2 is scanned.
If it is an aggregate function, link temp1 into the outer
query by equating the by-list attributes.

In the tuple calculus semantics presented in Sections IV and
V, the partition P(z;!, . . . , ~ l) parti9oned the temp2 relation.
In the algebraic operators A and AU, the first parameter R is
temp;! and the second parameter Q is templ. For multiple
and nested aggregation, Epstein advocates using multiple

- r

SNODGRXSS er al.: AGGREGATES IN THE TEMPORARY QUERY LANGUAGE 839

temporary relations. The approach discussed here to support in
the tuple calculus semantics aggregates in various locations in
the retrieve statement, and nested aggregation, is an application
of that general idea.

To extend this strategy to accommodate time-varying re-
lations, conceptually we need a version of temp1 for every
time interval in which R remained constant. In fact, the
tuple calculus semantics effectively does this by making the
end points of the constant interval [y, z) arguments to the
partitioning function. The algebraic operator may do this
more effectively by recording multiple intervals, with each
interval associated with a single aggregate value (for aggregate
functions, each combination of by-list values in the temp1
relation would be associated with multiple intervals). As each
tuple in temp2 processed, the interval-value pairs would be
updated. As an example, let’s simulate the processing of the
first few tuples in the Faculty relation for the instantaneous
aggregate c o u n t (f .Rank for each i n s t a n t) . This is
a scalar aggregate, so there is only one collection of intervals,
initialized to the single interval [-CO, CO), with a value of 0.
When the first tuple, (Jane, Assistant, 25000, 9-71, 12-76), is
processed, we divide the single interval into three: ([-m, 9 -
71). 0). ([9 - 71. 12 - 76), l), ([12 - 76, CO), 0). The second
tuple, (Tom, Assistant, 23000, 9-75, 12-80), overlaps two of
these intervals, and thus results in one additional interval.

([-X. 9 - 71). 0). ([9 - 71, 9 - 75), I),
([9 - 75. 12 - 76), 2), ([12 - 76,12 - 80), l),

([12 - 80. x). 0)

This process continues for each tuple of temp2. For the
cumulative aggregates, the effect of each tuple extends into
the future. For count(f.Rank for each year) , the first
tuple divides the initial interval into the three intervals.

([- ~ . 9 - 71).0).([9 - 77. 12 - 77), l), ([la - 77, CO), 0)

Note that the second interval ends at 12-77, rather than
12-76 for the instantaneous version. Unlike conventional
aggregates, the space requirements of temp1 are not fixed
after step 2, above. However, the effects of this expansion
can be ameliorated somewhat by pre-allocating storage, and
by exploiting any temporal ordering or locality contraints in
the underlying relations [26].

C. An Incremental Aggregate Operator

A promising approach to achieve greater efficiency in
temporal DBMS’s is that of incremental view materialization
[6], [19], [20], [40]. This process brings the view up-to-date
following the update of one of its underlying relations by
identifying the tuples that must be inserted into, and the tuples
that must be deleted from, the view’s old state for the view’s
new state to be consistent with the new states of its underlying
relations, without having to recompute the view itself. The net
changes that an update operation makes to a stored relation,
either a base relation or a materialized view, is termed the
relation’s differential.

multaneously: 1) the number of queries against a view is
sufficiently higher than the number of updates to its underlying
relations, 2) the sizes of the underlying relations are suffi-
ciently large, 3) the selectivity factor of the view predicate is
sufficiently low, and 4) the percentage of the view retrieved by
queries is sufficiently high. Since these conditions are rather
restrictive in practice, commercial DBMS’s do not support
incremental view materialization.

One reaches a different conclusion when considering histor-
ical relations. The storage structure may be organized in such a
way that updates are more costly than those to a conventional
relation by perhaps only a constant factor. However, retrievals
are more costly by a factor that is roughly sublinear to
linear in the size of the relation [2], [3]. While update cost
remains fairly constant, retrieval costs increases monotonically
over time. At some point, probably quite soon, incremental
view materialization becomes beneficial for most temporal
views. An added benefit of incremental view materialization
is a greatly reduced response time, which is critical in some
applications, such as process control and the stock market. For
example, if the query of the stocks relation given previously
was implemented incrementally, tuples such as those shown
in Table VI1 could be displayed as soon as the underlying data
was received, in this case perhaps a few seconds after 9:20.

Hence, it is desirable that the historical algebra be able to
support incremental view materialization. We have defined an
alternate, incrementa! semantics for the historical operators,
including A and AU, In this semantics, each operator is
defined as a mapping from one (or two) relation states and
its (their) differential onto a resulting relation state and its
corresponding differential [32].

The output differential for this operator depends on an input
relation’s state just before an update as well as the input
relation’s differential for the update. Hence, both relation states
and differentials are required as inputs to the incremental
operators. Furthermore, because the output of one operator
must acceptable as input to another operator, the output must
include, for definitional purposes, its output relation’s state just
before an update, as well as its output relation’s differential
for the update. Note, however, that this requirement need
not be extended to an implementation of the algebra. If an
implementation were to cache, either virtually or physically,
the input relations to each operator, only differentials would
need to be computed and passed among operators.

Some aggregates, such as sum and coun t , need not cache
the input relation at all; others, such as avg, need only
cache summary information needed to compute the aggregate.
Aggregates such as min and ear l ies t may require the
entire input relation to be cached. If the tuple containing
the value of the min aggregate is deleted, then the original
relation would need to be consulted to compute the new
minimum. To improve the efficiency of maintaining aggregates

TABLE VI1

Incremental view materialization is more efficient than Stock Price VarSpacing GrowthRatel from to
processing without views if four conditions are satisfied si- NRC 39 0.35 0.27 I9:05 9:20

7- ~

840 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 5. OCTOBER 1993

of this latter type, Hanson suggest that a queue of possibly
duplicate candidate aggregate values, rather than a single
value, be maintained [19]. Then, if a change to an aggregate’s
underlying relation changes or deletes a tuple containing the
aggregate’s value, the aggregate’s new value could be assumed
to be the next element in the queue. Only if the queue were
empty would the aggregate have to be recomputed. This
technique can be extended to apply to historical aggregates
by maintaining queues for each constant interval. Appropriate
data structures for maintaining such queues have yet to be
studied.

Another optimization is to merge the processing of the
aggregate operator and the (incremental) projection operator
present in the second argument of the aggregate operator when
a by-list is specified, e.g., computing the NumInRank attribute
in the example presented earlier. The projection operator is
not required to cache the entire input relation; instead it need
retain only the number of input tuples contributing to each
output tuple. Differentials containing added tuples increase
this number; deleted tuples reduce this number. The number
can be stored as another attribute of templ . In fact, for the
instantaneous count aggregate, this number is identical to the
value of the aggregate.

The historical algebra can thus support aggregates in both
unmaterialized views (via query modification [49]) and materi-
alized views, and can support various view maintenance strate-
gies, such as in-line view evaluation, immediate-recomputed
materialization, and immediate-incrementa1 materialization in
computing aggregates. In concert with techniques developed
for rollback relations [25] , it can also support these mainte-
nance strategies for views defined on temporal relations that
incorporate both valid and transaction time.

VII. RELATED WORK

As was mentioned in the introduction, most conventional
query languages include support for aggregates. There has
also been some formal work on aggregates. Klug introduced
an approach to handle aggregates within the formalism of
both relational algebra and tuple relational calculus [30]. His
method makes it possible to define both standard and unique
aggregates in a rigorous way. Ceri and Gottlob present a
translation from a subset of SQL that includes aggregates
into the relational algebra, thereby defining an operational
semantics for SQL aggregates 171. Nakano’s translation of
SQL into the relational algebra is more comprehensive, as it in-
cludes optimization and accommodates null values [35]. Also,
significant progress has been made in the area of statistical
databases [57], [60], [61]. Such databases, used primarily for
summary statistics gathering and statistical analysis, contain
set-valued attributes. Klug’s relational algebra and calculus
have been extended to manipulate set-valued attributes and to
utilize aggregate functions [56], [58], [59], thereby forming a
theoretical framework for statistical database query languages.

Aggregates may also be found in several of the dozen query
languages supporting time that have appeared over the last
decade. In some of these languages, aggregates play only
a small role. Ben-Zvi included several aggregate operators

and functions in his TRM language, although not in a com-
prehensive manner [5]; Ariav also mentioned aggregates in
the context of his TOSQL language [4]. Although Gadia’s
HTQuel language (an extension of Quel) does not explicitly
include aggregates (there is no way to perform an aggregate
such as count over an explicit attribute in HTQuel), his
“temporal navigation” operators (e.g., First) can be simulated
using aggregated temporal constructors in TQuel, since they
effectively extract an interval from a collection of intervals
[17]. The Lambda query language, another extension of SQL,
also includes aggregates [11. Instantaneous aggregates are
made available in the Time Relational Algebra by permitting
SQL queries, which can incorporate aggregates, to be used as
arguments to algebraic operators [31].

Finally, five other languages supporting time include a
comprehensive set of aggregates and associated constructs.
Legol 2.0 was one of the first time-oriented query languages
to appear [27]. This language is based on the relational
algebra. HQuel, an extension of Quel, is based on a model
incorporating set-valued, time-stamped attributes [51]. It is
supported by an algebra that includes an enumeration operator
useful for aggregation [52], [53). TSQL [36] and HSQL
[43] are extensions of SQL [24] incorporating valid time.
The operations over the time sequence collections of the
temporal data model (TDM), presented in an SQL-like syntax,
include AGGREGATE and ACCUMULATE statements [45].
The Temporal Extended Entity Relationship (TEER) model
and associated query language was subsequently proposed

A detailed evaluation of aggregates in Quel, TQuel, Legol,
HQuel, TSQL and TDM against a set of nineteen criteria is
presented elsewhere [48]. TQuel satisfies all but one criterion:
an implementation does not yet exist for TQuel aggregates.
An early version of Legol has been implemented, but it is not
stated whether aggregates were implemented in this prototype;
Quel aggregates have been implemented; no other proposal
that supports time has been implemented. None of the other
languages have a formal semantics. Without such a formal
definition, the meaning of each construct, and the interaction
between constructs, is unclear. Instantaneous aggregates were
introduced by Jones; only Legol, TEER and TQuel support
such aggregates. Moving window aggregates and temporal
partitioning were introduced by Navathe and Ahmed in TSQL;
only TQuel and TEER, and perhaps TDM and HSQL, also
support these aspects. Tansel introduced the concept of an
average weighted by the duration of the values [51]; TQuel’s
rate aggregate serves a similar purpose. Tansel also introduced
the concept of a proportional sum adjusted by the duration
of validity of the value; this adjustment can be performed
in TQuel by using a (non-aggregated) duration function. The
other languages do not provide such aggregates.

~ 4 1 .

VIII. SUMMARY

This paper makes four contributions. First, a formal seman-
tics for the conventional query language Quel was presented.
The simple case of aggregates in the target list was considered
in detail; the remaining cases of aggregates in the outer

I

SNODGRASS er al.: AGGREGATES IN THE TEMPORARY QUERY LANGUAGE

where clause, arbitrarily nested aggregation, and expressions
in aggregates are given elsewhere [48]. This completes the
formal definition of Quel (the core of the retrieve statement
and the modification statements were previously formalized in
[54] and [47], respectively).

Secondly, the aggregates in Quel have been extended in a
minimal fashion for inclusion in TQuel. All Quel aggregates
are permitted in TQuel. TQuel added the when and as-
of clauses, which are the temporal analogues for valid and
transaction time, respectively, to the where clause. These
clauses are permitted within the aggregate. The for clause
was added to distinguish between instantaneous, cumulative,
and moving window aggregates. Several additional tempo-
ral aggregate operators were also introduced. The resulting
language subsumes all aspects of aggregates appearing in
other proposals, including temporal partitioning and an average
weighted by duration.

Third, the Quel tuple calculus semantics was extended to
accommodate time-varying relations. Our approach used the
Constant interval set and a transition event set to determine
those intervals over which a relation remains static, enabling
a time-varying aggregate value to be computed. Again, only
the simple case of aggregates in the target list was considered,
though we did accommodate by, for, where, when, and as
of clauses within the aggregate. The semantics of unique
aggregation, of multiple aggregation, of aggregates in the outer
where, when, and valid clauses, of aggregates with no by-
clause, and of arbitrarily nested aggregation in TQuel is given
elsewhere [48]. This semantics preserves snapshot reducibility,
making a Quel aggregate behave identically whether evaluated
on a snaphot or a temporal database. The semantics also is
independent of the time-stamp granularity. The result is a
complete formal semantics for TQuel and its snapshot subset
Quel. A complete formal semantics for no other relational
query language, conventional or temporal, has been defined.

Finally, a temporal relational algebra has also been defined
that fully supports TQuel and its aggregates [32], [33], [34],
thus providing an consistent operational semantics for the lan-
guage. We examined how the batch and incremental aggregate
operators in the algebra could be implemented.

More work is required in developing efficient implemen-
tations. In particular, data structures to store the constant
intervals, and to store the queues required for some incremental
processing techniques, need to be developed. Extensions to
existing query optimization strategies to handle aggregates
need to be investigated; proposals for optimization of con-
ventional aggregates [ll], [16], [23], [28], [29], [39] provide
a good place to start. Similarly, previous work on processing
aggregates with hard time constraints [22] should be applied
both to the batch and to the incremental evaluators described
above.

Because the semantics is expressed in terms of the constant
interval set, this semantics can be easily extended to handle
aggregates on possibilistic data (c.f., [41], [42]). The semantics
could also be extended to handle SQL-type null values by
adapting Nakano’s rule-based translation method [35] or the
Extended Three Valued Predicate Calculus [37]. Accommodat-
ing historical indeterminacy, where the exact time that an even
occurred is not known [12], appears to be more challenging.

84 1

Finally, aggregates over transaction time (c.f., [44]) and
user-defined temporal aggregates (c.f., [181, [55]) should also
be investigated.

ACKNOWLEDGMENT

We are grateful to Peter Bloomfield for his remarks on
the requirements of experimental data in statistical time series
that lead to the creation of the var operator, to Ravi Krish-
namurthy for identifying the need for aggregates that follow
rising and falling stock market prices, and to Ilsoo Ahn, David
Beard, Juan Valiente and the reviewers for helpful comments
on this paper.

REFERENCES

[l] M. E. Adiba and N. Bui Quang, “Historical multi-media databases,” in
Proc. Conj Very Large Databases, Y. Kambayashi, Ed., Aug. 1986, pp.
63-70.

[2] I . Ahn and R. Snodgrass, “Performance evaluation of a temporal
database management system,” in Proc. ACM SIGMOD Int. Conf on
Management of Data, C. Zaniolo, Ed., Association for Computing
Machinery, May 1986, pp. 9 6 1 0 7 .

[3] -, “ Performance analysis of temporal queries,’’ Information Sci-
ences, vol. 49, pp. 103-146, 1989.

[4] G. Ariav, “A temporally oriented data model,” ACM Trans. Database
Syst., vol. 11, pp. 499-527, Dec. 1986.

[5] J . Ben-Zvi, “The time relational model,” PhD. dissertation, Computer
Science Department, UCLA, 1982.

[6] J . A. Blakeley, P.-A. Larson, and F. W. Tompa, “Efficiently updating
materialized views,” in Proc. ACM SIGMOD Int. Conf Management
of Data, C. Zaniolo, Ed., Association for Computing Machinery, pp.
61-71, May 1986.

[7] S . Ceri and G. Gottlob, “Translating SOL into relational algebra:
Optimization, semantics, and equivalence of SQL queries,” IEEE Trans.
Sofiware Eng., vol. SE-11, pp. 324-345, Apr. 1985.

[8] E. F. Codd, “Relational completeness of data base sublanguages,” in
Data Base Systems, vol. 6 of Courant Computer Symposia Series.
Englewood Cliffs, N. J.: Prentice Hall, 1972, pp. 65-98.

191 C. J . Date, A Guide to INGRES. Reading, MA: Addison-Wesley, 1987.
101 C. J. Date, An Introduction to Database Systems, vol. 1, Fifth Edition

of Systems Programming Series. Reading, MA: Addison-Wesley, 1990.
1 I] U. Dayal, “Of nests and trees: A unified approach to processing queries

that contain nested subqueries, aggregates, and quantifiers,” in Proc.
Conf Very Large Databases, P. Hammersky, Ed., Sept. 1987, pp.
197-208.

121 C. E. Dyreson and R. T. Snodgrass, “Valid-Time indeterminacy,” in
Proc. 9th Int. Con$ Data Engineering, pp. 335-343, Apr. 1993.

[13] R. Elmasri and S . B. Navathe, Fundamentals of Database Systems.
BenjaminKummings, 1989.

[14] R. Elmasri and G. Wuu, “A temporal model and query language for ER
databases,” in Proc. 6th Int. Conf Data Engineering, pp. 7 6 8 3 , Feb.
1990.

(151 R. Epstein, “Techniques for processing of aggregates in relational
database systems,” UCBiERL M7918, Computer Science Department,
University of California, Berkeley, Feb. 1979.

(161 J. C. Freytag and N. Goodman, “Translating aggregate queries into iter-
ative programs,” in Proc. Conf Very Large Databases, Y. Kambayaski,
Ed., Aug. 1986, pp. 138-146.

(171 S. K. Gadia and J. H. Vaishnav, “A query language for a homoge-
neous temporal database,” in Proc. ACM Symp. Principles of Database
Systems, Mar. 1985, pp. 51-56.

[18] E. N. Hanson, “User-defined aggregates in the relational database system
INGRES,” Master’s thesis, Computer Science Department, University
of California, Berkeley, Dec. 1984.

[19] -, “Efficient support for rules and derived objects in relational
database systems,” PhD. dissertation, Computer Science Department,
University of California, Berkeley, Aug. 1987.

I201 __ , “A performance analysis of view materialization strategies,”
in Proc. ACM SIGMOD Annual Conf, U. Dayal and I . Traiger, Eds.,
Association for Computing Machinery, ACM Press, May 1987, pp.
440-453.

[21] G. D. Held, M. Stonebraker and E. Wong, “INGRES-A relational data
base management system,” in Proc. AFIPS National Computer Conf ,
May 1975, pp. 40-16.

[22] W.-C. Hou and G. Ozsoyoglu, and B. K. Taneja, “Processing aggregate
relational queries with hard time constraints,” in Proc. ACM SIGMOD
Int. Conf Management of Data, May 1989, pp. 68-77.

.. .. .

842 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 5, OCTOBER 1993

[23] -, “Statistical estimators for aggregate relation algebra queries,”
ACM Trans. Database Syst., vol. 16, pp. 600454, Dec. 1991.

[24] IBM, “SQLData-system, concepts and facilities,” Rep. GH24-5013-0,
Jan. 1981.

[25] C. S. Jensen, L. Mark, and N. Roussopoulos, “Incremental implementa-
tion model for relational databases with transaction time,” IEEE Trans.
Knowledge Data Eng., vol. 3, pp. 461473, Dec. 1991.

[26] C. S. Jensen and R. Snodgrass, “Temporal specialization and general-
ization,” IEEE Trans. Knowledge Data Eng., to be published.

[27] S. Jones, P. Mason, and R. Stamper, “LEGOL 2.0: A relational spec-
ification language for complex rules,” Information Systems, vol. 4, pp.
293-305, Nov. 1979.

[28] W. Kiessling, “SQL-like and Quel-like correlation queries with aggre-
gates revisited,” Tech. Rep. UCBIERL Memo 84/75, Electronics Research
Laboratory. Sept. 1984.

[29] -, “On semantic reefs and efficient processing of correlation queries
with aggregates,” in Proc. Conf Very Large Databases, A. Pirotte and
Y. Vassiliou, Eds. Stockholm, Sweden: Aug. 1985, pp. 241-250.

[30] A. Hug, “Equivalence of relational algebra and relational calculus
query languages having aggregate functions,” J . of the Association of
Computing Machinery, vol. 29, pp. 699-717, July 1982.

I311 N. A. Lorentzos and R. G. Johnson, “An extension of the relational
model to support generic intervals,” in Extending Data Base Technology
88. Venice, Italy: Mar. 1988.

[32] E. McKenzie, “An algebraic language for query and update of temporal
databases,” PhD. dissertation, Computer Science Department, University
of North Carolina at Chapel Hill, Sept. 1988.

1331 E. McKenzie and R. Snodgrass, “Schema evolution and the relational
algebra,” Information Systems, vol. 15, pp. 207-232, June 1990.

(341 - , “Supporting valid time in an historical relational algebra: Proofs
and extensions, Tech. Rep. TR 91-15, Department of Computer Science,
University of Arizona, Aug. 1991.

[35] R. Nakano, “Translation with optimization from relational calculus to
relational algebra having aggregate functions,” ACM Trans. Database
Sysr.. vol. 15. pp. 518-557, Dec. 1990.

1361 S. B. Navathe and R. Ahmed, “A temporal relational model and a query
language,” Information Sciences, vol. 49, pp. 147-175, 1989.

I371 M. Negri, S. Pelagatti, and L. Sbattella, “Formal semantics of SQL
queries,” ACM Trans. Database Syst., vol. 16, pp. 513-534, Sept. 1991.

(381 P.E. O’Neil. “Revisiting DBMS benchmarks,” Datamation, vol. 35, pp.
47-54, Sept. 1989.

[39] A. Rosenthal and D. Reiner, “Extending the algebraic framework of
query processing to handle outerjoins,” in Proc. Tenth Int. Conf on Very
Large Data Bases, Aug. 1984.

[lo] N. Roussopoulos, “An incremental access method for Viewcache:
Concept, algorithms, and cost analysis,” ACM Trans. Database Syst.,
vol. 16, pp. 535-563, Sept. 1991.

i’l] E. A. Rundensteiner and L. Bic, “Aggregates in possibilistic databases,”
in Proc. Conf Very Large Databases, 1989.

(421 -. “Evaluating aggregates in possibilistic relational databases,”
Dura and Knowledge Engineering, vol. 7, pp. 239-267, 1992.

[:.?I S . Sarda. “Extensions to SQL for historical databases,” IEEE Trans.
Knowledge Data Eng., vol. 2, pp. 22C230, June 1990.

[U] E. Sciore, “Using annotations to support multiple kinds of versioning in
an ohject-oriented database system,” ACM Trans. Database Syst., vol.
16. pp. 417-438, Sept. 1991.

[45] A. Segev and A. Shoshani, “Logical modeling of temporal data,” in
Proc. ACM SIGMOD Annual Con$ Management of Data, U. Dayal and
1. Traiger, Eds., Association for- Computing Machinery, ACM Press,
May 1987, pp. 454-466.
R. Snodgrass and I. Ahn, “Temporal databases,” IEEE Computer, vol.
19. pp. 3 5 4 2 , Sept. 1986.
R. Snodgrass, “The temporal query language TQuel,” ACM Trans.
Database Syst., vol. 12, pp. 247-298, June 1987.
R. Snodgrass, S. Gomez, and E. McKenzie, “Aggregates in the temporal
query language TQuel,” Tech. Rep. TR-89-26, Department of Computer
Science, University of Arizona, Nov. 1989.
M. Stonebraker, “Implementation of integrity constraints and views by
query modification,” in Proc. ACM SIGMOD Int. Con$ Management of
Data, Association for Computing Machinery, June 1975.

[50] M. Stonebraker, E. Wong, P. Kreps, and G. Held, “The design and
implementation of INGRES,” ACM Trans. Database Syst., vol. 1, pp.
189-222, Sept. 1976.

[51] A. U. Tansel and M. E. Arkun, “HQuel, A query language for historical
relational databases,” in Proc. Third Int. Workshop on Statistical and
Scientific Databases, July 1986.

[52] A. U. Tansel and M. E. Arkun, “Aggregation operations in historical
relational databases,” in Proc. Third Int. Workshop on Statistical and
Scientific Databases, July 1986.

[53] A. U. Tansel, “A statistical interface for historical relational databases,”
in Proc. Int. ConfData Engineering, IEEE Computer Society Press, Feb.
1987, pp. 538-546.

[54] J. D. Ullman, Principles of Database and Knowledge-Base Systems.
Potomac, MD: Computer Science Press, 1988, vol. 1.

[55] S. Wensel, “The POSTGRES reference manual,” Tech. Rep. UCBIERL
M88/20, University of California, Mar. 1988.

[56] G. Ozsoyoglu and Z. M. Ozsoyoglu, “Statistical database query lan-
guages,” IEEE Trans. Software Eng., 1990.

[57] G. Ozsoyoglu, Z. M. Ozsoyoglu, and V. Matus, “Extending relational
algebra and relational calculus with set-valved attributes and aggregate
functions,”ACM Trans. Database Syst., vol. 12, pp. 566-592, Dec. 1987.

[58] -, “An extension of relational algebra for summary tables,” in Proc.
Second Int. Workshop on SDB Management, Sept. 1983, pp. 202-212.

[59] -, “Summary-Table-By-Example: A database query language for
manipulating summary data,” in Proc. COMPDEC Conf, Nov. 1984.

[60] Proc. First Int. Workshop on Statistical Database Management, H. K.
Wong, Ed., 1981.

[61] Proc. Second Int. Workshop on Statistical Database Management, J.
McCarthy, Ed., 1983.

Richard Snodgrass received the B.A. degree in
physics from Carleton College in 1977 and the Ph.D.
degree in computer science from Carnegie Mellon
University in 1982.

Until 1989 he was on the faculty at the Uni-
versity of North Carolina. He is now an Associate
Professor in the Department of Computer Science
at the University of Arizona. His research interests
include temporal databases, programming environ-
ments, and persistent object stores. He directed the
design and implementation of the Scorpion meta-

environment. He is the authorbf the book The Interface Definition Language.’
Definition and Use (Computer Science Press). He is an Associate Editor of
ACM TODS and will chair the program committee for SIGMOD ’94.

Santiago L. Gomez received the M.S. degree in
computer science from the University of North
Carolina in 1988.

He is now at the Centro Nacional de Computa-
cion, Asuncion, Paraguay.

L. Edwin McKenzie received the B.S. in mathe-
matics from Clemson University in 1971, the M.S.
degree in systems engineering from the Air Force
Institute of Technology, Dayton, OH in 1976, and
the Ph.D. degree in computer science from the
University of North Carolina in 1988.

He is currently the Director of Systems Tech-
nology, Air Force Computer Acquisitions Center,
Air Force Communications Command, Hanscom
AFB, MA. His research interests are in computer
performance evaluation and temporal databases.

