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Aggregates in the Temporary Query Language TQuel 
Richard T. Snodgrass, Santiago Gomez, and L. Edwin McKenzie, Jr. 

Abstract- This paper defines new constructs to support ag- 
gregation in the temporal query language TQuel and presents 
their formal semantics in the tuple relational calculus. A formal 
semantics for Que1 aggregates is defined in the process. Multiple 
aggregates; aggregates appearing in the where, when, and valid 
clauses; nested aggregation; and instantaneous, cumulative, mov- 
ing window, and unique variants are supported. These aggregates 
provide a rich set of statistical functions that range over time, 
while requiring minimal additions to TQuel and its semantics. We 
show how the aggregates may be supported in an historical alge- 
bra, both in a batch and in an incremental fashion, demonstrating 
that implementation is straightforward and efficient. 

Index Terms- Aggregate, correlation query, moving window 
aggregate, Quel, query language, temporal database, temporal 
partitioning, TQuel, tuple calculus, valid time. 

I. INTRODUCTION 

GGREGATE operators in relational database query lan- A guage compute a scalar froma collection of tuples. Most 
commercially available relational database management sys- 
tems (DBMS’s) provide several aggregate operations [lo], 
[13], [24], [38], [54]. Recently attention has been focussed 
on temporal databases (TDB’s) that represent the progression 
of states of an enterprise over time. We have developed a 
new language, TQuel (Temporal QUEry Language), to query 
a TDB [47]. TQuel is a derivative of Quel [21], query language 
for the Ingres DBMS [50]. TQuel was designed to be a 
minimal extension, both syntactically and semantically, for 
that language. Since Quel is fairly comprehensive in its support 
of aggregates, a goal in the TQuel design was to extend those 
aggregates to operate over temporal relations. 

This paper defines and formalizes aggregaes in TQuel. We 
begin in Section I1 by describing the Quel aggregates. A n  intu- 
itive introduction to the TQuel aggreggates is given in Section 
111. The resulting language subsumes all aspects of aggregates 
appearing in other proposals. Section IV is devoted to a formal 
semantics of Quel aggregates. As the core of the retrieve 
statement and the modification statements were previously 
formalized in [54] and [47], respectively, this completes the 
formal definition of Quel. Section V extends these semantics 
to TQuel. The result is a complete formal semantics for TQuel 
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TABLE I 

Name (Rank lsulary 
Jane I Full I44000 
Merrie I Associate I40000 

and its snapshot subset Quel. A complete formal semantics for 
no other relational query language, conventional or temporal, 
has been defined. We then examine how aggregates may be 
supported in an historical algebra, demonstrating that tech- 
niques for processing convention1 aggregates may be extended 
in a straightforward manner to process temporal aggregates, 
and that incremental evaluation of temporal aggregates is 
available for improved efficiency. The final section compares 
TQuel aggregates with those of several other query languages 
supporting time. 

11. AGGREGATES IN QUEL 

In this section we present an informal specification for 
the Quel aggregates. The Quel operations for aggregation 
are c o u n t ,  any, sum, avg, min, and max. Thsese 
operators can be used in two types of aggregation. 

1) Scalar aggregates, yielding a single value as the result. 
2 )  Aggregate functions, producing several values deter- 

mined by calculating the aggregate over a subset of the 
relation. Each subset consists of the tuples such that the 
contents of one or more attributes grouped in a by-list 
are the same. Hence the result of an aggregate function is 
a relation whose number of tuples equals the number of 
different values in the by-list. (Since a scalar aggregate 
is in fact a function, this terminology is confusing: we 
adhere to it only because it has become established [9]). 

While scalar aggregates are independent of the query in 
which they are nested, aggregate functions are not. Since each 
value computed by such a function carries information on part 
of a relation, tuple variables in the by-list must be linked to the 
corresponding tuple variables, if any, in the outer query-that 
is, they should refer to the same part of the relation. (The inner 
query, as opposed to the outer query, is the one consisting of 
the attribute to be aggregated, the by-list, and the inner where 
clause.) 

Aggregation performed over the set of strictly different 
values in an attribute is called unique aggregation. Quel 
supports three unique aggregates: countU, sumu, and avgu. 
Unique versions of any, max and min are not necessary. 

As an example, suppose the relation Faculty holds relevant 
data, say name, rank and salary, about the professors in a 
university department (see Table I). 
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Rank I NumFaculty I NumRanks I NumInRank 
Full 12 12 I1  
Associate 12 12 11 

Fig. 1. Result of a query containing aggregates. 

The following query computes the number of faculty mem- 
bers, the total numbers of ranks, and the number of faculty 
members at each rank.' 
range of f is Faculty 
retrieve (f.Rank, 

NumFaculty=count(f.name), 
NumRanks=countU(f.Rank), 
NumInRank=count 

(f.Name by f.Rank)) 
The range statement declares a typle variable f that will 

be associated with the Faculty relation. The retrieve statement 
contains the target list of attributes to be derived for the output 
relation (attributes are denoted by a tuple variable followed by 
a period followed by the attribute name). The output relation 
(Fig. 1) contains as many tuples as actual values exist in the 
by-list. If there had been no by-list, NumInRank would be 
2 in all the derived tuples. Also note that the NumFaculty 
and NumRanks values are independent of the Rank, since a 
by-clause was not used in their definition. 

By their very nature, both scalar aggregates and aggregate 
functions operate on the entire relation. However, they can 
be locally restricted via a where clause to operate only on 
certain tuples of the relation. The local or inner where clause 
is processed separately from the outer one of the query. 

111. TEMPORAL AGGREGATES IN TQUEL 

In the previous section we have seen the various Quel 
aggregates. We now introduce TQuel aggregates in an intuitive 
way through examples. We first give an overview of the TQuel 
language and then turn to aggregages. 

TQuel is an extension of Quel, augmented to handle the 
time dimension [47]. TQuel supports valid, transaction, and 
user-defined time, and thus supports temporal queries [46]. 
Of the three, valid time, modeling the real world occurrence 
of an event, is by far the hardest to support in aggregates. 
Transaction time, modeling the storage of information in a 
database, may be supported through one additional term in 
the tuple calculus semantics. User-defined time, an encoding 
whose semantics is maintained by application programs, is 
handled in an identical manner to more conventional data types 
such as integers and character strings; all that is necessary 
are input, output, and comparison functions. To simplify the 
exposition, we will not use transaction or user-defined time 
in the example queries or in their formal semantics. In the 
general formal semantics, we will include transaction time, to 
illustrate how easy it is to support. 

Temporal relations are four dimensional. Multiple tuples 
containing multiple attribute values contribute two dimensions; 

'Thoughout the paper, a fixed-width font is used for operators in the query 
language (e.g., count); a bold, fixed-width font is used for keywords (e.g. 
year); and italics is used for functions in the formal semantics (e.g., count). ' 
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valid and transaction time contribute the other two dimen- 
sions. For both the examples and the semantics, we embed 
these four-dimensional structures into two dimensional tables, 
appending additional, implicit time attributes (generally two 
valid attributes, from and to) that are not directly accessible 
to the user. Other embedding are possible (five are given in 
[47]), but will not be used here. The degree (deg) of a temporal 
relation is the number of explicit attributes. 

The TQuel retrieve statement augments the standard Quel 
retrieve statement by including 

a when clause, paralleling the already existing where 
clause, to select tuples whose temporal attributes satisfy 
desired temporal constraints; 
a valid-at clause that permits the assignment of a non- 
default and possibly computed value to the valid-time 
attribute of a target event relation; 
valid-from and valid-to clauses that permit the same kind 
of assignment to the valid-time attributes of a target 
interval relation; and 
an as-of clause to specify rollback to a previous transac- 
tion or series of transactions. 

A. Adding Aggregates to TQuel 

In defining aggregates in TQuel, we kept several goals in 
mind. First, TQuel aggregates should include all of Quel's 
aggregates, so that TQuel remains a strict superset of Quel. 
Second, the snapshot reducibility of TQuel to Quel (proven 
elsewhere [47]) should be maintained, so that the TQuel 
version of a Quel aggregate will perform the same fundamental 
operation. This will ensure that the intuitive semantics of 
Quel applies to TQuel. This goal impacts the design of both 
the syntax and the semantics of the new constructs. Third, 
the most needed strictly temporal aggregates, including those 
that evaluate to scalar values and those that evaluate to time- 
stamps, should be provided. Fourth, the semantics should be 
independent of the time-stamp granularity. Finally, features 
introduced in other temporal query languages should also 
be available in TQuel, and be accommodated in its formal 
semantics. 

There are some differences between Quel and TQuel aggre- 
gates. Historical and temporal databases are characterized by 
the changing condition of their relations: at time tl a relation 
contains a set of tuples, and at time t 2  the same relation 
may contain a different set. Since aggregates are computed 
from the entire relation, this in turn causes the value of an 
aggregate to change from, say, v1 to v2. Hence, while in 
Quel an aggregate with no by-list (scalar aggregate) returns 
a single value, in TQuel the same aggregate returns, generally 
speaking, a sequence of values, each associated with its valid 
time. For an aggregate with a by-list, a sequence of values for 
each value in the by-list is generated. 

Let us apply the example query on the historical relation 
in Table I1 (since TQuel is a superset of Quel, that query is 
a valid TQuel query). 

With the default when clause (when f overlap now 
and valid clause (valid from begin of f to end of 
f), the example query 
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Assistant 1 1 1 
range of f is Faculty Assistant 2 1 2 

Assistant 2 2 1 retrieve (f.Rank, 
Associate 2 2 1 

NumRanks=countU(f.Rank), Assistant 3 2 2 
Associate 3 2 1 NumFaculty=count(f.Name), 

NumInRank=count Full 3 2 1 

(f.Name by f.Rank)) Full 2 2 1 

2 1 
2 1 would result in the relation in Table 111, which is identical to 

~ ~ ~ ~ ~ ~ a ~ e  

TABLE I1 TABLE I11 

9-71 9-75 
9-75 12-76 
12-76 9-77 
12-76 9-77 

9-77 12-80 
9-77 11-80 

11-80 12-80 
12-80 03 

12-80 12-82 
12-82 03 

Name Rank Salary 
Jane Assistant 25000 
Jane Associate 33000 
Jane Full 34000 
Jane Full 44000 
Merrie Assistant 25000 
Merrie Associate 40000 
Tom Assistant 23000 

om to Rank NumFaculty NumRanks NumlnRank from to 
9-71 12-76 
12-76 11-80 Full 2 2 1 12-83 03 

11-80 12-83 Associate 2 2 1 12-82 03 

12-83 30 

9-77 12-82 

~ 

Defaults are discuss in detail elsewhere [48]; these defaults 
must be defined carefully to ensure snapshot reducibility. To 
extract the history of the requested count, simply use an 
explicit when clause: when true. The altered query yields 
the tuples in Table IV. 

The count may change only when a Faculty tuple is 
created, or becomes invalid. As can be seen, for each rank 
there can be more than one related count over time. 

Quel allows an inner where clause to preselect tuples for the 
computation of the aggregate; otherwise, aggregates always 
operate on the entire relation. Similarly, in TQuel the inner 
where, when, and as-of clauses serve the same purpose. An 
inner valid clause is not allowed, because the interval of 
validity for the value calculated by the aggregate is indirectly 
specified using the for clause, to be discussed shortly. 

The above example illustrates our approach to computing 
TQuel aggregates. To aid in understanding temporal aggre- 
gation, we now present one possible way to compute an 
aggregate over a given attribute of relation R. Note that this 
description is at a logical level; the implementation is free to 
perform aggregation in any manner that is consistent with the 
semantics to be presented later. 

Determine the periods of time during which R remained 
“constant” that is, no new tuples entered the relation 
(and, if R is an interval relation, no tuples became 
invalid). 
For each constant set of tuples in R, select the tuples that 
satisfy all the qualifications required by the inner where, 
when, and as-of clauses, if any. Defaults are used if 
those clauses are not present. 
If there is a by-list with this aggregate, partition each 
constant set of tuples into subsets, each subset corre- 
sponding to one value of the by-list attributes. Each 
group of selected tuples is called an aggregation set. 
Compute the aggregate for each aggregation set, pro- 
ducing a single value. 
Associate the result with each combination of tuples par- 
ticipating in the original query, with the aggregation set 

selected a) using the values indicated in the by-clause, 
b) using the valid time of the underlying aggregation 
set, and c) using the interval or event specified in the 
valid clause. 

The basic strategy consists of reducing a TQuel aggregate 
to a series of Quel-style aggregates, each applied on a period 
of time when the relation does not change its contents. Each 
value of the aggregate is associated with an assignment of 
values to the by-list attributes, and is attached to the particular 
period of time it was valid. At each point in time, there is 
exactly one value of the aggregate for each combination of 
values of the by-list attributes. 

This approach is necessarily more complex than that for 
Quel aggregates. In TQuel, for each interval during which 
all base relations participating in the aggregate(s) remain 
“fixed,” an aggregate tuple is computed for each aggregation 
set. In Quel, all base relations are already fixed, since the 
relations do not vary over time. This aggregate tuple, along 
with tuples from the base relations that are valid over the 
interval, determine the output tuples for the interval. Whereas 
Quel uses only the explicit attribute values via the by-clause to 
connect the aggregate tuple with the participating tuples in the 
retrieve statement, TQuel also uses the implicit time values. 
Any combination of aggregate and base-relation tuples that 
satisfy all qualifications required by the outer where and when 
clauses, and also overlap, produce an output tuple. In addition, 
the valid time of each output tuple is required to be the overlap 
of the interval or event specified by the valid clause with the 
overlap of the aggregate tuple and base-relation tuples named 
in the aggregate. 

The restriction that the valid time of the output tuple be 
the intersection of the valid times of some of the participating 
tuples and the aggregate tuple as well as the time specified 
by the valid clause does not limit the range of queries that 
TQuel can support. To support queries whose output is derived 
from aggregate and base-relation tuples valid over different 
intervals, we can simply pre-compute the aggregates and treat 
them as ordinary historical relations in the main TQuel query. 
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B. Cumulative versus Instantaneous Aggregates value at 6-81 associated with for each instant  counts 

A n  aggregate may or may not take into account tuples that 
are no longer valid. The following definitions are useful [27]. 

Cumulative Aggregate: an aggregate whose value for each 
point t i n  time is computed from all tuples that have been valid 
in the past, as well as those valid at r. 

Instantaneous Aggregate: an aggregate whose value for each 
point t in time is computed only from the tuples valid at time t. 

These aggregates act differently when applied to an event 
or an interval relation. For an event relation, as the length 
of the time unit (the time-stamp granularity) is reduced, the 
probability of finding any valid tuples decreases. Aggregates 
such as count, applied at a given instant, would thus return 
different results depending upon the granularity of valid time. 
On the other hand, it is always possible to count the events 
that have occurred in the past, or in a given period of time, 
in a cumulative fashion. For an interval relation, tuples are 
valid over an interval of time which is at least as long as 
the time-stamp granularity, and therefore the above problem 
does not exist. We therefore restrict aggregate operators over 
event relations to be cumulative, while aggregate operators 
over interval relations can have both an instantaneous and a 
cumulative version. However, each value of an aggregate, be 
it instantaneous or cumulative, is valid during a period of time. 

For cumulative aggregates, the user must specify how far in 
the past to include tuples used to compute a value at time t .  The 
for clause is used for this purpose. Instantaneous aggregates 
(the default) are specified using for each instant .  If 
all previous tuples are to participate, f o r  ever is used. 
Intermediate cases, such as using only those tuples valid at 
some point in the previous year, are specified using for each 
< span >, e.g., for each year for each day. If, say, 
count (for each year) is used, then the aggregate, 
when computing a value valid at a particular month m, will 
operate over all tuples that were valid sometime during the 
year up to and including the month m. The value at 3-76 will 
include all tuples valid sometime during 4-75 through 3-76; 
the value at 4-76 will include the (potentially different) tuples 
valid sometime during 5-75 through 4-76. The interval used 
(in this case, year) is termed the window, and such aggregates 
are termed moving-window aggregates. Such aggregates were 
first proposed in TSQL [36]. 

Fig. 2, which shows the results of the following query, illus- 
trates the difference between the various kinds of aggregates 
on an interval relation. We have specified when true to obtain 
the entire history of the counts. 
r e t r i e v e  

(Cl=count(f.Rank for each i n s t a n t ) ,  
C2=count(f.Rank for each y e a r ) ,  
C3=count(f.Rank for e v e r ) ,  
CQ=countU(f.Rank for each i n s t a n t ) ,  
CS=countU(f.Rank for each y e a r ) ,  
C6=countU(f.Rank for e v e r ) )  

when true 
Note that the values associated with for each year (e.g., 

C2) are in a sense between the values associated with for 
each instant  (e.g., Cl)  and for ever (e.g., C3). The 

an Assistant Professor (Merrie) and a Full Professor (Jane), for 
a total of 2; for each year counts 2 Assistants (Merrie 
and Tom), one Associate (Jane), and one Full (also Jane, since 
her promotion occurred within the year before 6-81), for a 
total of 4; and for ever counts 3 Assistants (Jane, Tom, 
and Merrie), one Associate (Jane), and one Full (Jane), for a 
total of 5. The unique aggregate for each year (C5) 
counts one Assistant (Tom or Merrie), one Associate (Jane), 
and one Full (also Jane), for a total of 3, since all three ranks 
were represented over the previous year. The values associated 
with for ever are monotonically increasing. 

C. New Aggregates 

All Que1 aggregates have a TQuel counterpart. There are 
also some aggregates unique to TQuel. The first, stdev, 
which computes the standard deviation, is quite similar to avg, 
applying both to snapshot relations and temporal relations. The 
remaining new aggregates are strictly temporal. 

Quel’s aggregates may be classified as a) select a particular 
value from the underlying relation (e.g., min and max); b) 
compute a new value of the domain of the attribute from 
the values in the underlying relation (e.g., avg and sum); 
and c) compute a non-dimensional quantity (e.g., count and 
any). For temporal aggregates, these three generalize directly 
into five categories; TQuel aggregates exist in each. In the 
first category, aggregates select a value from the underlying 
relation based on time. 
first This aggregate returns, at each point in time, the oldest 

value of the given attribute, that is, the one associated 
with the first valid tuple. If two tuples have the same 
from value, one is arbitrarily selected. 

last This aggregate is analogous to first. 
One could also envision an aggregate to select the ith occurring 
interval, for a given i such an aggregate was proposed in 
HQuel [17]. 

Aggregates in the second category compute a new value of 
the domain of the attribute from the values of the underlying 
relation, based on time. 
rate This aggregate computes the average growth or decrease 

experienced by values of an attribute over time. This 
aggregate is only applicable to numeric attributes in 
event relations. It returns a value indicating growth per 
time unit, e.g., feet/hour, or dollars/month. The time 
unit can be optionally specified by the user by means 
of the per clause (see the syntax in the appendix): 
per hour, per month, per 3 months. 
This aggregate compares the attribute value of each 
tuple with the attribute value of its chronologically 
previous tuple, relative to the time elapsed, and smooths 
the comparisons by taking their arithmetic mean. This 
aggregate was first proposed by Tansel and Arkun for 
HQuel [51]. This aggregate is useful in statistical time 
series analysis. 

Aggregates in the third category compute a nondimensional 
quantity, based on time. 
var VARiability of time spacing: the degree of inequality of 
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fig. 2 Comparison of six aggregate variants. 

TABLE V 

TABLE VI 

9:15 

NRC 0.33 0.20 9:05 9:30 
NRC 0.35 0.13 9:05 9:35 
NRC 39 0.57 0.00 10:05 10:15 

9:05 
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the time spacing within a given set of events (the argu- 
ment to this aggregate is an event expression evaluating 
to an event). This aggregate returns a nondimensional 
quantity which has the same value for each attribute. 
A value of 0 indicates the tuples are perfectly spaced. 
This aggregate also considers the tuples in chronological 
order. It finds the ratio of the standard deviation of the 
time lengths from one tuple to the next, to the average 
of those time lengths. A ratio is used to ensure that the 
measure is independent of time-stamp granularity. This 
aggregate is useful in statistical time series analysis. 

The last two categories consist of aggregates that evaluate to 
valid time. Aggregates in the fourth category select events or 
intervals from the events or intervals in the underlying relation. 
earliest The oldest time period of an interval relation, 

that is, the first from-to interval, or the oldest 
event, that is, the first ut event. If two tuples of 
an interval relation have the same from value, the 
one with the earlier to time is considered to be 
older. 

latest This aggregate is analogous to earliest. 
An aggregate in the fifth category computes a new time 

from events in the underlying relation. 
rising The maximal interval culminating in the final event 

of the underlying relation in which values of all 
events occurring at a particular time are greater 
than or equal to values of all events occurring 
immediately previously. If it is applied to an interval 
relation, it uses only the starting times. 

The requirement that all events be rising may seem overly 
restrictive. However, by combining the operator with other 
constructs, the restrictions may be effectively relaxed. First, 
if a by clause on a key is used, then there will be only one 
value valid at any time. Applying the aggregate to the value 
of min or max, as in rising (max(A.price)), also 
ensures only one value valid at a time. Finally, determining the 
interval when the value is falling is easily done by applying 
the aggregate to the inverse, as in 

range of s is stocks 
retrieve ( 

Stock = s.stock, Price = s.Price, 
VarSpacing = var 

GrowthRate = rate 
(x for ever by s.Stock), 

(s.Price per minute 
for each 15 minutes by s. 
Stock) ) 

valid from begin of rising (s. Price by s. 
Stock) to s when true 

Since we want the history, we override the default when 
clause. The result is the relation in Table VI. 

The interval indicates how long the stock had been rising. 
The Price and the VurSpucing apply to the terminating event. 
Note that all of the aggregates are computed on a per-stock 
basis. The DCE stock does not appear because its price never 
rises. 

Computation of the variability of time spacing, for any 
attribute, consists of a) sorting the relevant tuples by their 
ut attribute and b) considering every pair of chronologically 
consecutive tuples, Si and finding the coefficient of 
variation of the length of time from event Si to event &+I, 
that is, 

The values of VurSpucing in the first four tuples is fairly 
small because the intervening interval for the NRC stock 
oscillates between 5 and 10 minutes. For the last tuple, the 
VurSpucing almost doubles, due to the anomalous 20 minute 
interval ending at 1O:OO. Incidentally, the VurSpacing for the 
DCE stocks are all 0, because the records are precisely spaced 
at 15-min intervals. 

To compute the rate, we a) again sort the tuples by their ut 
attribute, and b) for each pair of chronologically consecutive 
tuples Si and Si+l, compute the increment of the value 
Si+l[Yield] - Si[YieZd], averaged over previous pairs (for 
each 15 minutes), and then normalize over a minute (per 

rising(min(-A. price)). minute). The GrowthRate at 9: 15 is negative even thought 

These last three aggregates are called the stock’s price is rising then because the net effect over the 
previous was a drop in price (from 40 to 37). The 
GrowthRate at 10:15 is 0 because the price at the end of the 

interval; nevertheless, at 10:15 the stock’s price was rising. 
The rate is greatest at 9:203 when the stock experienced an 
increase of 4 points over the previous 15 minutes. 

constructors because they return a time interval as their result. 
They can be employed by the to specify conditions in the 

clause). TO adhere to the syntax of temporal expressions and 
predicates, these aggregates take an interval expression, rather 
than a scalar valued expression, as an argument. 

temporal qualification (when clause) or the valid time (valid (39) is to the price at the beginning Of the 

We give one example here that uses the var, rate, 
and rising aggregates. Examples that employ the other 
new aggregates, and that demonstrate nested aggregation, 
aggregates appearing outside the target list, and a when clause 
within an aggregate, are given elsewhere [48]. 

This example references the event historical relation 
stocks, (Stock, Price): 

containing the tuples in Table V. 
The following query determines, for those stocks that have 

been rising in price, how equally spaced the quotations are in 
time, and how fast the price grew over the previous fifteen 
minute interval. 

D. Defaults 

Defaults must be chosen carefully to maintain the snapshot 
reducibility to Quel, thereby allowing TQuel aggregates to be 
used in exactly the same way as Quel aggregates. Each default 
may be overridden with the explicit use of the clause. There are 
two places where default clauses may apply: the outer retrieve 
statement and within the aggregate. The default clauses in the 
outer retrieve statement without aggregates was given in [47]. 

valid from begin of 
( t k  overlap . . .  overlap t k )  

to end of ( t l  overlap . . .  overlap t k )  
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where true 
when tl overlap . . .  overlap tk 
as of now 

where tl, . . . . tk are the tuple variable appearing in the query. 
When aggregates are included in the query, we must distin- 

guish between the tuple variables appearing inside and outside 
the aggregate. Tuple variables are included in the default when 
and valid clauses only if they appear outside an aggregate. If 
no tuple variable appears outside an aggregate, the default 
clauses are as follows. 

valid from 
valid from beginning to forever 
where true 
when true 
as of now 
The following defaults are assumed within each non- 

temporal aggregate, and are quite similar to the defaults used 
in the outer query. 

for each 
for each instant 
where true 
when tl overlap . . .  overlap tk 

as of Q through ,I3 
where t l ,  . . .  ,tk are the tuple variables appearing in the 
aggregate, and Q and p are the expressions (or their defaults) 
appearing in the retrieval statement itself. The temporal ag- 
gregates differ in that their default for clause is for ever. 
The default per clause is the span specified in the for clause. 
If the for clause is not specified, or is for ever, then the 
rate aggregate must have an explicit per clause. 

Iv. TUPLE CALCULUS SEMANTICS OF QUEL AGGREGATES 

Our approach to the semantics is based on Klug’s method, 
which was used in a separate, more formal tuple relational 
calculus [30]. In this approach, each aggregate is associated 
with a function. This function is applied to a set of r- 
tuples, resulting in a single tuple containing r attribute values, 
with each attribute value equivalent to applying the aggregate 
over that attribute. By applying the function to the set of 
complete tuples, the distinction between unique and non- 
unique aggregation can be preserved. 

Let R be a relation of degree r containing n and n 2 0. 
let t be a tuple variable associated with R. For example, 
associated with the count aggregate is the function count( R )  A 
( 7 1 . .  . . , n) ,  which yields a tuple whose r components equal n. 
The functions for the remaining Quel aggregates have similar 
definitions, and are given elsewhere, as are restrictions on the 
domains required by the aggregates [48]. 

These functions are used in the tuple calculus semantics. 
Let F be any of the aggregates defined in Section I1 and III- 
A. Quel queries with one aggregate function in the target list 
are of the form 
range of tl is R1 

1 

in which 

where Attr ( d i )  is the set of attributes associated with the 
relation associated with the tuple variable di Although values 
in a target list can be expressions, rather than simply attributes, 
we ignore that detail here for simplicity of notation. There is 
also the restriction that the tuple variable(s) mentioned in $1 

must be either el or one of the tuple variables appearing in 
the by-clause: e2, . . . , el. Otherwise, there may be many more 
tuples participating in the aggregate, i.e., those from additional 
tuple variables, thereby generating unexpected results from 
the aggregate. The attributes outside the aggregate, a l ,  . . . , aj, 
and the attributes used within the aggregate, b2, . . . , bl usually 
overlap, but need not. 

Informally, this aggregate 
1) gathers all combinations of tuples from the relations 

associated with the tuple variables appearing in the 
aggregate, 

2) removes all resulting tuples that do not satisfy the 
condition in the where clause of the aggregate, 

3) partitions the resulting tuples by the values of the 
attributes listed in the by-clause, 

4) applies the aggregate to each partition, 
5 )  and finally associates the result with each combination 

of tuples participating in the original query that satisfy 
the outer where clause, with the partition selected using 
the values indicated in the by-clause. 

We specify the partition of the relations associated with the 
tuple variables appearing in the aggregate. Initially assume 
that the tuple variables e l , .  . . , el are all distinct. Let us first 
consider the case where no by-clause is present. The aggregate 
is applied to the following set. 

where Re,  is the relation associated with tuple variable el 
and p A deg(R,,) is the degree of Re, ,  that is, the number 
of attributes in each tuple of R e , .  In the tuple calculus, R(e) 
states that e is a tuple in R. We use $; instead of $1 to indicate 
modifications for attribute names and Quel syntax conventions. 
For the first aggregate in the example, count( f.Name), 
there is no where clause (the default is where true). 

= {(Jane, Full, 40000), (Merrie, Associate, 40000)) 

range of tk is R k  

retrieve (dl.al,. . . ,dj.aj, 
y = F(e1 .bl by e2.b2, . . . , el.bl where $1 ) ) 

Let F be the aggregate operator defined above correspond- 
ing to the Quel aggregate F (e.g., if F is count, F is count). 
A term of the form F ( R )  will denote the tuple obtained from where II, 
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the application of aggregate operator F to relation R. The 
operator F applies the same aggregate to every attribute in R. 
Let F ( P ) [ m ]  denote the m-th attribute of the tuple evaluated 
by F ( P ) .  For the example query, count(P')  = { ( 2 , 2 , 2 ) }  
and count(P')[Name] = 2. 

The aggregates as defined cannot do unique aggregation 
directly, because they operate on relations, not on attributes. It 
turns out, however, that a slight change of the partition solves 
the problem. Let the modified partition be defined in terms 
of P as 

with bl being the attribute over which the aggregate is per- 
formed. Attribute values that are components of tuples may 
be selected in two ways in the tuple calculus: with brackets 
enclosing the index of the attribute, e.g., 411, or with brackets 
enclosing the name of the attribute, e.g., w[bl] ,   rank]. The 
net effect of this is the elimination of all duplicate values 
from the attribute upon which aggregation will be performed. 
The tuple calculus semantics of unique aggregates is simply 
obtained by substituting U for P in the main formula of the 
previous section, and using the previously defined operators 

aggregate has to be applied. The tuple calculus statement will 
supply each combination of values existing in the attributes 
specified by the by-clause, as will be seen shortly. One can 
verify from the definition that every tuple in the cross product 
of the underlying relations is in one set of the partition, that 
there are no extraneous tuples present, and that the sets do 
not overlap, making P a true partition. For a query involving 
several aggregates, a separate partition is defined for each 
aggregate. 

The partition for the third aggregate in the example is 
particularly simple. 

f(3) I Faculty (f) A f [Rank] = x2 

For this particular Faculty relation, there are two pos- 
sible values for the Rank attribute: Associate and Full. 
P3(Associate)= { (Merrie, Associate, 40000)) and P3(Full) 
= {(Jane, Full, 44000)). All other subsets yield empty sets, 
e.g., P3(Assistant)=0. 

The general Quel query with one aggregate has the follow- 
ing tuple calculus statement. 

1 &+I) I (3ti) . . . (gtrc)(Ri(ti) A . . . A &(tlc) 

A w[1] = dl  [all A . . . A w[j] = d, [a,] A u i [ j  + I] count, sum, and avg. For the countU aggregate of the 
example, 

I \ = F(P(e2[b21,. . . , el[bll))[bll 

u( l )  1 ( 3 w ) ( w  E P2 A u[l] = w[Rank]) 

= {(Associate), (Full)} 

When count is applied to this set, the result is 2. 
When a by-clause is present, as in the third aggregate in the 

example, count ( f . N a m e  by f .Rank ) , we must partition 
the set and apply the aggregate to each partition. To ensure 
that the correct partition is used in the primary tuple calculus 
expression, we label each of the partitions with the attribute 
values used to define it. Define a partition P on the underlying 
relations named by the aggregate in the query as a collection 
of sets of tuples, with each set identified by n, - 1 values 
a2,. . ' ,01.  

u ( p )  I (3e1 ) . . . (3e l ) (Re , ( e1 )  

A . . . A Re, (el)  
A U e l  1 1  . . .  1 1  el 
A e2[b2] = x2 A . . . A el[bl] = zl 

where 1 1  denotes concatenation and p xz1 deg(Rlz). If 
there is no by-clause, then P is a set of p-tuples over which 

This is a simple extension of the Quel semantics without 
aggregates defined by Ullman [54]. This statement specifies 
that the result tuple U J  is composed of j + 1 attributes (line 
one), that the tuple t ,  is in the relation Rt (also line one), that 
the ith attribute of iii is copied from the n,th attribute of the 
tuple variable b, (line two), and that the participating tuples 
are determined by the restriction $' (line three). 

Line two also computes the aggregate. The appropriate 
partition is selected by the indicated attribute values found in 
the underlying relations (i.e., the values e2[b2], . . . , ~ [ b l ] ) .  If 
the tuple variables appearing in the aggregate are not distinct, 
then the first two lines in the definition of P should be altered 
to eliminate duplicate tuple variables. Also, if tuple variable el 
does not appear outside of the aggregate or in the by-clause, 
then that tuple variable should be removed from the first two 
lines of the statement just given. 

The tuple calculus statement for the example is 

the aggregate is to be applied, as discussed above. Otherwise, 
each of the combinations of values x2, . . * ,xl of attributes 
appearing in the by-clause produces one partition on which the 

In using tuple calculus to formalize Quel (and shortly, TQuel), 
we assume duplicate elimination in the resulting relation, since 
relations are formalized as sets. ' 
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There are six fundamental operators that perform aggre- 
gation in Quel. The grouping and selection of tuples to be 
aggregated is done by the partition, which also determines 
whether the standard or the unique version is being used. 
The semantics for aggregates in the outer where clause, for 
arbitrarily nested aggregation, and for expressions in aggre- 
gates is given elsewhere [48]. While only the semantics for 
the retrieve statement has been given, it is easy to extend 
it to specify aggregates in the Quel modification statements 
(append, delete, and replace) [47]. 

v. TUPLE CALCULUS SEMANTICS OF TQUEL AGGREGATES 

It is convenient to base the semantics of TQuel on the 
conventional (snapshot) relational database model, especially 
because of the available mathematical foundation supporting 
the latter [8]. Thus the semantics of the augmented operations 
are expressed using traditional tuple calculus notation. 

We first review the transformation of the time-specific 
constructs of TQuel into the tuple calculus, and briefly give the 
semantics of the TQuel retrieve statement, which is needed in 
order to introduce the semantics of temporal aggregates. This 
review is a condensation of [47]. The semantics of the TQuel 
aggregates is then developed, for the Quel analogues followed 
by the new TQuel aggregates. 

A. Review of TQuel Semantics 

As stated in the overview of TQuel in Section 11, TQuel 
augments Quel by adding a valid clause to specify the validity 
time(s) of tuples, a when clause to specify the relative time 
ordering of the participating tuples, and an as-of clause to 
specify rollback in time. 

The semantics makes use of several auxiliary functions: 
temporal constructor functions that take one or two intervals 
and compute an interval, and temporal predicate functions 
(including overlap) that take two intervals and compute a 
boolean value. All of them are ultimately defined in terms 
of the predicates Before and Equal and two functions first and 
last. 

The temporal predicate 7 in the when clause, containing the 
precede, overlap, and, or, and not operations, 
is transformed into a standard tuple calculus predicate rT 
containing only the Before, Equal A,  V, and 1 operations. 
The valid clause is transformed into the functions av and 
ax each evaluating to an event, and containing the functions 
first and last. The as-of clause is in fact a special when clause 
stating that the transaction times of the underlying tuples must 
overlap the (constant) interval specified in the as-of clause. The 
constants @e and represent the endpoints of this interval 
from the expressions a and p. As a consequence, the query 
range of t l  is RI 

range of t k  is Rk 
retrieve (dl.al,...,d,.aj) 

valid from U to x 
where II, 
when T 
as of Q through P 

is translated into the tuple calculus statement 

The superscript indicates that the tuple w has j explicit 
attributes and 4 implicit attributes, indicating an interval 
relation. The semantics for an event relation is similar, but 
with only 3 implicit attributes, since the to time is not present. 

B. The Constant Interval Set 

As we have seen, aggregates change their values over time. 
This will be reflected as different values of an aggregate being 
associated with different valid times, even in queries that look 
similar to Quel queries with scalar aggregates, in which no 
inner when or as-of clauses exist. In TQuel, the role of the 
external or outer where, when and as of clauses will be similar 
to that of the outer where in Quel: they determine which tuples 
from the underlying relations participate in the remainder of 
the query. These selected tuples are combined with the tuples 
computed from the aggregation sets to obtain the final output 
relation. 

Aggregates always generate temporary interval relations, 
even though an aggregated attribute can appear in an event 
relation. This temporary relation has exactly one value at any 
point in time (for an aggregate function, the interval relation 
has at most one value at any point in time for each value of 
attributes in the by list). It is convenient to determine the points 
at which the value changes. Let us first define the transition 
event set of a set of relations, R1,  ' . . , R k ,  relative to a given 
window function, w to be defined shortly, as 

The transition event set brings together all the times when 
the aggregate's value could change. These times include the 
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beginning time of each tuple, the time following the ending 
time of each tuple, and the time when a tuple no longer falls 
into an aggregation window. 

The window function w is specified in the for clause. maps 
each time into its aggregation window size. f o r  each in-  
s t a n t  implies V t ,  w ( t )  = 0; for ever implies V t ,  w ( t )  = 
00; and f o r  each < spanr implies a window size dependent 
on the time-stamp granularity. In the examples, an underlying 
granularity of month has been used. Hence, for each 
month is equivalent to f o r  each instant  (Vt.  w(t)  = 1- 
1 = 0); f o r  each quarter implies (Vt.  w ( t )  = 3-1 = 2); 
and for each decade implies (Vt,  w(t) = 120- 1 = 119) 
subtracted because the window is inclusive. In all of these 
cases, the window function yields the same value for any 
input. If, however, a granularity of day is used, for each 
month, for each quarter, and f o r  each decade 
would require non-constant window functions. For example, 
f o r  each month would require w(January 31, 1980) = 
31 - 1 = 30, ~(February 28, 1980) = 28 - 1 = 27, and w 
(March 20, 1980) = 28 - 1 = 27 (since February 21, 1980, 
the first day in the aggregate window, was 27 days before 
March 20). The last line of the definition of T is somewhat 
complex because the aggregation window must be defined in 
terms oft, not in terms of  to]. If r[to] was February 21, 1980, 
then T would contain March 20, 1980 if for each month 
were specified. However, if  t to] was February 28, 1980, then 
T would only contain March 31, 1980, even though March 
28-30 all satisfy t - w ( t )  = r[to] .  

If two times y and z are neighbors (i.e., y and z are in 
T(R1..  . . . Rk, m), and no intervening time is in T ) ,  then the 
time interval from y to z did not witness any change in the 
set of relations, or in other words, all the relations remained 
“constant.” Define then the Constant interval set as 

Con,stant(R1,.  . . , Rk, 711) 

y 

+ 

# z A Before (y. z )  A (Ve)(T(Rl. .  . . . Rk, w ) ( e )  

Before(e. y )VEqual (e .  y ) vBe fore ( z .  e)VEqual(z.  e ) )  

The last two lines state that there is no event in the time 
between y and t. The constant interval set allows us to treat 
each constant time interval (y,  z )  separately, thus reducing 
the inner query to a number of queries, each dealing with a 
constant time interval. Hence, we will be able to follow the 
same steps as in the snapshot Quel case. For each time interval 
[y; 2 )  in the constant interval set a value of the aggregate, valid 
from y to z ,  will be computed and will potentially go into the 
result. This value is guaranteed to be unique and unchanging 
by the definition of Constant. 

C. Aggregates in the Target List 

For a multirelational query with one aggregate in the target 
list, we will take the approach used in the Quel semantics: 
tuples from the aggregate operation will be computed first via 

a partition. Initially, let F be any of the aggregate operators also 
defined in Quel. Consider the TQuel query with one aggregate 
function in the target list, 

range of t l  i s  R I  

range of tk i s  Rk 
r e t r i e v e  ( d l . a l , .  . . , dj.aj, 

y = F(el.bl by e2.b2,. . . ,el.bl 
for w 
where Q’1 

when r1 

a s  of cy1 through P I )  ) 
v a l i d  f r o m  U to x 
where Q’ 
when r 
a s  of (Y through ,b’ 

As with Quel, the where predicate should refer only to the tuple 
variable el or the tuple variables appearing in the by clause. 
The same restriction holds for the when clause appearing in the 
aggregate: no tuple variables are permitted in the as-of clause. 

Here, the partition will be based upon the four clauses that 
modify the aggregate (the by, where, when, and as-of clauses). 
Using the same notation employed in the TQuel semantics, we 
may define the partition as shown at the bottom of the next 
page, where y and z are valid times, with Before(y, z )  and 
p = (E:=, deg(R,,)) + 4 ( p  includes the implicit attributes 
of el  only). This definition assumes that the tuple variables 
e l , .  . . , el are distinct. If they are not, then the duplicate tuple 
variables should be removed. In comparing this with the Quel 
partition, notice first that this partition is indexed both by the 
by-clause attribute values and by a time interval [y. z ) .  Also 
note that three additional lines appear here. Line 6 translates 
the when clause, similarly to the where clause line in the 
semantics of the Quel retrieve statement. Line 7 translates 
the as-of clause, specifying that the transaction times of all 
tuples of the inner query, including those in the inner where 
and when clauses, must overlap the rollback time specified in 
the as-of clause. This is similar to the as-of line in the outer 
query in TQuel, which will be shown shortly. The window 
function w’ corresponds to the keyword found in the retrieve 
statement. Line 8 indicates that all tuples participating in the 
aggregate must overlap the interval [y, 2). From the definition 
of the Constant interval set, which supplies the intervals [y, z ) ,  
it is not difficult to see that the overlapping is total. This 
way, aggregates will always be computed from the tuples that 
were valid during that interval. In determining the overlap, 
the window function w‘ is used in a similar fashion to the 
definition of the transition event set. In particular, if f o r  
ever is specified, then w’ is the constant function returning 00 

if, and every appropriate tuple valid before time z will appear 
in P, yielding a cumulative aggregate. If Re, in line 8 is an 
event relation, the predicate should be 
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The output relation from a query with a single aggregate in 
the target list is 

3 
4 
5 
6 

7 
8 
9 
10 

11 

. . .  . ,  
[y, z )  E Constant ( R e , ,  . . . , Re,  U') 
A(Vi)(l 5 i 5 j ) (  overlap ([y,z). [e ipom] .e i [ to ] ) ) )  

~ . r u [ j  + 11 = F(P(e2[b2],  . . . .el[b~].y.  z ) ) [ b l ]  
Aw[j + 21 = last (y ,  @,,)A 
w = first ( 2 ,  a.,) A Before (w[ j  + 21. w [ j  + 31) 
A w [ j  + 41 = current transaction time A w [ j  + 51 = 00 

A *' 
ArT 
A(vi)(l 5 Z 5 k) 

(overlap([QO. @J) .  [ t z [  start]. t i [  s t o p ] ) ) )  

A w [ ~ ]  = d l [a l ]  A . . . A ~ [ j ]  = d,[aj] 

A comparison with the tuple calculus expression for the 
TQuel retrieve statement given earlier reveals that lines three 
and five are new and lines one, two and six are altered. In 
line 2 ,  the Constant interval set provides the interval [y,z) 
during which the tuples are constant. It involves the relations 
appearing in the aggregate; the relation whose attribute is being 
aggregated plus all the different relations in the by-list; other 
relations cannot affect the aggregate. Again, these relations are 
assumed to be distinct for notational convenience. The window 
function w' appears explicitly as an argument to the Constant 
interval set and implicitly in P.  Line three ensures that the 
tuple variables aggregated over and those specified in the by- 
clause overlap with the interval during which the aggregate is 
constant. Line five computes the aggregate. Note that the same 
aggregate operator F as in the Quel semantics is used; what 
is different are the two additional parameters to P ,y ,  and z ,  
which restrict the tuples in that partition. Line six ensures that 
the valid time of the result relation is the intersection with the 
specified valid time and the interval [y, z ) .  

Two slight modifications as required for special cases. If the 
valid at v variant is used, line 6 should be replaced with 

Secondly, as with the Quel semantics, if eldoes not appear 
outside of the aggregate or in the by-clause, it should also not 

appear in lines 1 and 2 (it will appear in the definition of the 
Constant interval set). Also, tuple variables mentioned in the 
aggregate that do not appear outside the aggregate should not 
appear in line 3. Unique aggregation is handled in a manner 
analogous to Quel's semantics. 

Let us translate the original example into the tuple calculus. 

range of f is Faculty 
retrieve(f.Rank, NumFaculty=count(f.Name), 

NumRanks=countU(f.Rank), 
NumInRank=count(f.Name by f.Rank)) 

We first define a partition for each aggregate. 

A window size of 0 is used because the default is for each 
instant. Some instances of the values of the third partition 
are 

P3(Assistant, 9 - 71,9 - 75) 

P3(Assistant, 9 - 75,12 - 76) 
= {( Jane, Assistant, 25000, 9 - 71,12 - 76)) 

= {(Jane, Assistant, 25000, 9 - 71,12 - 76), 
(Tom, Assistant, 23000, 9 - 75,12 - 80)). 

The output relation is 

{ ~(~+~)l(lf>(3y)(3z)( Faculty ( f )  A [y, 2) E constant 

( Faculty 10) A overlap([y, z ) ,  [f[f7-04, fb.1)) 

A w[2] = count ( ~ l ( y , z ) ) [ ~ a m e ]  
A ~ [ l ]  = f[Rank] 

A w[3] = count (u2(y, z))[l] 
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A w[4] = count ( P 3 ( f [ R a n k ] ,  y, z ) ) [ N a m e ]  
A w[5] = last (y, f [ f r o m ] )  
A w[6] = f i r s t  ( z ,  f [ t o ] )  A Before  ( w [ 5 ] ,  w[6] )  

A overlap ( [ f [ f r o m ] ,  f [ t o ] ) ,  [now, now + 1)) 

The last two lines correspond to the default valid and when 
clauses. Since the underlying relations are historical, the lines 
involving transaction time are not necessary. 

The semantics of unique aggregation, of multiple aggre- 
gation, of aggregates in the outer where, when, and valid 
clauses, of aggregates with no by-clause, and of arbitrarily 
nested aggregation in TQuel is given elsewhere [48]. 

D. Operators for the New TQuel Aggregates 

Let us specify the semantics of the new aggregates intro- 
duced in Section 11-C by specifying their aggregate operators. 
As discussed above, the aggregate operators, e.g., count, for 
the Quel aggregates, e.g., count, which are also permitted in 
TQuel, are identical to their Quel counterparts. 

Let R be an event relation of degree j (the degree only 
concerns the explicit attributes) with n tuples, n > 2, and let 
t be a tuple variable associated with R. Since R is an event 
relation, it contains an implicit valid-at time-stamp attribute, 
denoted at.  All except risingi compute a single snapshot tuple 
of degree j .  We first define a function that induces a total 
ordering on the tuples in a relation. 

S chronorder ( R )  
Definition: 

e ( V i ) ( l  5 i 5 IS1)((3t)(R(t) A t = S i ) )  
A Before  (si - 1 [at] , si [a t ] )  

where IS1 is the length of the sequence S ,  and Si is the i th 
element of S.  Each element of S is a full tuple from R, and 
the elements of S are ordered by the at times of R. If several 
tuples in R show identical ut times, only one of them is taken 
into S.  Hence, the length of S is less than or equal to n. We 
use the Before predicate rather than ‘Y” to later accommodate 
indeterminacy. 

Definition: 

A S i - l [ 4  # Sz[atl) 

where S = chronorder ( R )  and IS( > 1. Each attribute of the 
result tuple equals the average increment (positive or negative) 
in the values of the corresponding attribute in R, per unit 
of time (the default is the time-stamp granularity, defined in 
Section 11). An optional per clause can be used to specify 
the span desired; this causes multiplication of the result by a 
fixed conversion factor. For example, if time-stamp granularity 
was a millisecond and the user specified “per month” then 
the computed result is multiplied by the conversion factor of 
milliseconds to months (2.592 x 10’) before being output. 
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Definition: 

war ( R )  sd ( G ( R ) ) / m e a n  ( G ( R ) )  

where G ( R )  &< gl,...,gIsI-l > (i.e., the ordered se- 
quence of durations of the tuples in R), such that S = 
chronorder (R ) ,  (SI > 1, implies that (3 i ) ( l  5 i 5 (SI - 
1 A gi = Si+l[at] - &[at ] ) ,  and m e a n ( X )  and s d ( X )  
respectively denote the arithmetic mean and the arithmetic 
standard deviation of the real numbers in the set X .  Each 
attribute of the result tuple equals the variability of the spacing 
between the ut times among the tuples in R. This is in fact the 
coefficient of variation of the set G ( R ) .  Note that var returns 
a single value, rather than a tuple. 

Observe that mean ( D ( R ) )  is never zero since Si[ut] and 
Si+l[at] are distinct. Not necessarily all tuples from R will 
make their way into S ;  S was so defined in order to ensure 
that rate or var will not attempt a division by zero. Should 
the user need to specify which of the tuples from T has to be 
chosen for the chronological order, one of the other aggregates 
can be used to create a temporary relation R that contains the 
relevant tuples, and then rate or var may be applied to T .  

Definition: f irstagg (R )  A t f i r s t ,  where tfirstsatisfies the 
predicate 

R(tfirst)  A (vt)(R(t) A t # t f i r s t  * Before (t f irst[at],  t [ a t ] )  
vEqual(tfirst[at1, t[atI)) .  

The resulting tuple is the tuple whose valid times contain the 
earliest time of a tuple in R, more specifically, no other tuple in 
R began before t f i r s t .  If R is empty, t f i r s t  = (0, . . . , 0, 0, m). 
The firstagg function supports the first aggregate. 

Definition: earliest ( R )  e tfirst[at],where t f i r s t  satisfies 
the predicate given above. The result is the event represented 
by the earliest tuple in the relation. lastagg and latest, and 
earliest over intervals, have analogous definitions [48]. 

The last function supports the rising aggregate over the 
attribute with the index i .  

Definition: rising; ( R )  [earliest (maximal i  ( R ) ) ,  
latest (R ) ) ,  where maximal; ( R )  satisfies the predicate 
latest (R)  E maximal; (R)  
Avt l , t2  E maximal(R)(Before(tl,t~) + tl[Z] 5 tz[Z]) 
A3tl E maximal;(R)3t2 E R 
13t3 E R ( B e f o r e t z [ a t ] ,  t s [a t ] )  A Before( t3 ,  t l )  
A i  Equal ( t z [ a t ] , t 3 [ ~ t ] )  A 7 Equal ( t 3 ,  t i )  A t2[i] > t i [ i ] ) )  

The first predicate states that the interval terminates at 
the last event. The second predicate states that the value is 
indeed rising, and the third predicate states that the interval is 
maximal, that is, that in an immediately preceding event the 
attribute fell. 

In summary, aggregate operators exist for all TQuel aggre- 
gates. The semantics of aggregates appearing in all possible 
positions within the retrieve statement has been specified. 
This semantics is easily extendible to the append, delete, and 
replace statements in TQuel. 

VI.. IMPLEMENTATION ASPECTS 

TQuel and its semantics are declarative in nature. In order to 
implement the language, a more operational form is required. 
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We have defined an algebra for historical relations [34]. 
In this section, we discuss how aggregates are supported 
in this algebra and show how TQuel statements containing 
aggregates may be translated into the historical algebra. We 
also examine how the aggregate operators in the algebra may 
be implemented, focusing on incremental materialization. 

A.  Aggregates in the Historical Algebra 

The historical relational algebra, an extension of the 
conventional relational algebra, supports valid time. Unlike 
TQuel’s data model, historical relations manipulated by this 
algebra are attribute-value time-stamped, though it is a simple 
matter to convert between that representation and tuple time- 
stamping. The historical relational algebra contains historical 
versions of the projection, selection, union, difference and 
Cartesian product operators: e. &,6, and 2. A new operator, 
historical derivation (j), that performs a combination of 
historical selection and projection, is also available. 

We also defined two new operators, A and AU, that 
perform aggregation over historical operators. The aggregate 
operator is denoted by Af, W .  N ,  X ,  N !  (Q, R);  its unique variant 
is A^Uf, J-, S ,  .y,(Q. R) .  R and Q are historical relations. 
N is the attribute (in R’s schema) on which the aggregate 
is applied. Q supplies the values that partition R and X 
denotes the attributes on which the partitioning is applied, with 
the restrictions that Attr  (Q) C Attr ( R )  and { N }  U X C 
Attr  (Q). f is the name of the aggregate operator, e.g., count 
for the count aggregate. 

If X is empty, the historical aggregate operators simply 
calculate a single distribution of scalar values over time for an 
arbitrary aggregate applied to attribute N of relation R. The 
computed value is appended to each tuple of R, and is given 
the name N’ .  The interval(s) of validity of the aggregate is 
recorded in that attribute’s time-stamp. When X is empty, the 
tuples in Q are ignored. 

If X is not empty, the operators calculate, for each subtuple 
in Q formed from the attributes X ,  a distribution of scalar 
values over time for an aggregate applied to attribute N of 
the subset of tuples in R whose values for attributes X match 
the values for the same attributes of the tuple in Q. Hence, 
X corresponds to the by-list. Generally X = Attr (Q) and 
Q = n-y(R), but these constraints are not dictated by the 
formal definition of A. 

Let us translate the original example into the algebra. 
I range of f is faculty 

retrieve (f.Rank, 
NumFaculty = count (f.Name), 
Numranks = countU(f.Rank), 
NumInRank = count(f.name by f.Rank)) 

+Rank, NumFaculty, NumRanks, NumInRank( 

srNamenNumFacultynNumRanksnNumInRank( 
ORank = Agg.Rank( 

F aCu1 t y 

Acount, 0, Name, 0, NumFaculty(Faculty, 0, ’ Aucount. 0, Rank, I, NumRanks(Facdty, @), 
Acount, 0, Name, {Rank), NumInRank( 

Faculty, ?Rank(FaCdty))))) 

where I’ is aJempora1 predicate equivalent to the default when 
clause, and 6 performs temporal selection and projection, and 
ensures that each resulting tuple has identical time-stamps for 
all attributes (allowing conversion back into a tuple time- 
stamped representation). For all three aggregates we used a 
constant window function of 0, corresponding to for each 
instant (the default). For the first two aggregates, which 
contain no by clause, the fourth subscript to the aggregate 
operator is an empty set, as is the second parameter. The 
third aggregate does have a by clause, so we project out 
those attributes from the Faculty relation to provide the second 
parameter to the aggregate operator, and also link the body of 
the retrieve statement with this aggregate through the selection 
predicate. 

Elsewhere we give the tuple calculus semantics of the A 
and AU operators, as well as the algebraic equivalents of the 
TQuel retrieve statement with aggregates in its target list, in 
its where, when, and valid clauses, and in the where and when 
clauses within another aggregate, and argue that this method of 
converting TQuel aggregates to their algebraic equivalents can 
also handle an arbitrary level of nesting of aggregates [48]. We 
also prove that the tuple calculus semantics of the algebraic 
translation of a TQuel retrieve statement is equivalent to the 
tuple calculus semantics of the original statement, and argue 
that the same holds for TQuel retrieve statements containing 
an arbitrary number of aggregates. This proved the theorem 
that the language formed by embedding the historical algebra 
(which only supports valid time) in the commands used 
to support transaction time (given elsewhere [33]) has the 
expressive power of TQuel. 

B. Implementing the A and AUOperators 

Epstein has developed an aggregate processing strategy for 
Que1 aggregates [ 151. Briefly, the strategy for each aggregate 
proceeds as follows. 

1. 

2. 

3. 

4. 

5. 

6. 

If it is an aggregate function (i.e., has a by-list), then 
create a temporary to hold the results. 
If the aggregate function has a qualification, project the 
by-list into templ, with the result attribute initialized 
appropriately, e.g., to 0 for count. 
If the aggregate is multivariable or unique project the 
qualifying tuples into tempz. 
If the aggregate is unique, remove duplicates from 
temp2. 
Compute the aggregate by scanning temp;!, looking up 
the tuple in temp1 with the same by-list values and 
updating the aggregate value in templ. If the aggregate 
is a scalar aggregate, then simply update its value as 
temp2 is scanned. 
If it is an aggregate function, link temp1 into the outer 
query by equating the by-list attributes. 

In the tuple calculus semantics presented in Sections IV and 
V, the partition P(z;!, . . . , ~ l )  parti9oned the temp2 relation. 
In the algebraic operators A and AU, the first parameter R is 
temp;! and the second parameter Q is templ. For multiple 
and nested aggregation, Epstein advocates using multiple 
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temporary relations. The approach discussed here to support in 
the tuple calculus semantics aggregates in various locations in 
the retrieve statement, and nested aggregation, is an application 
of that general idea. 

To extend this strategy to accommodate time-varying re- 
lations, conceptually we need a version of temp1 for every 
time interval in which R remained constant. In fact, the 
tuple calculus semantics effectively does this by making the 
end points of the constant interval [y, z )  arguments to the 
partitioning function. The algebraic operator may do this 
more effectively by recording multiple intervals, with each 
interval associated with a single aggregate value (for aggregate 
functions, each combination of by-list values in the temp1 
relation would be associated with multiple intervals). As each 
tuple in temp2 processed, the interval-value pairs would be 
updated. As an example, let’s simulate the processing of the 
first few tuples in the Faculty relation for the instantaneous 
aggregate c o u n t  ( f .Rank for each i n s t a n t ) .  This is 
a scalar aggregate, so there is only one collection of intervals, 
initialized to the single interval [-CO, CO), with a value of 0. 
When the first tuple, (Jane, Assistant, 25000, 9-71, 12-76), is 
processed, we divide the single interval into three: ([-m, 9 - 
71). 0).  ([9 - 71. 12 - 76), l), ([12 - 76, CO), 0). The second 
tuple, (Tom, Assistant, 23000, 9-75, 12-80), overlaps two of 
these intervals, and thus results in one additional interval. 

([-X. 9 - 71). 0). ([9 - 71, 9 - 75), I), 
([9 - 75. 12 - 76), 2), ([12 - 76,12 - 80), l), 

([12 - 80. x). 0) 

This process continues for each tuple of temp2. For the 
cumulative aggregates, the effect of each tuple extends into 
the future. For count(f.Rank for each year) ,  the first 
tuple divides the initial interval into the three intervals. 

( [ - ~ . 9  - 71).0).([9 - 77. 12 - 77), l), ( [ la  - 77, CO),  0) 

Note that the second interval ends at 12-77, rather than 
12-76 for the instantaneous version. Unlike conventional 
aggregates, the space requirements of temp1 are not fixed 
after step 2, above. However, the effects of this expansion 
can be ameliorated somewhat by pre-allocating storage, and 
by exploiting any temporal ordering or locality contraints in 
the underlying relations [26]. 

C.  An Incremental Aggregate Operator 

A promising approach to achieve greater efficiency in 
temporal DBMS’s is that of incremental view materialization 
[6], [19], [20], [40]. This process brings the view up-to-date 
following the update of one of its underlying relations by 
identifying the tuples that must be inserted into, and the tuples 
that must be deleted from, the view’s old state for the view’s 
new state to be consistent with the new states of its underlying 
relations, without having to recompute the view itself. The net 
changes that an update operation makes to a stored relation, 
either a base relation or a materialized view, is termed the 
relation’s differential. 

multaneously: 1) the number of queries against a view is 
sufficiently higher than the number of updates to its underlying 
relations, 2) the sizes of the underlying relations are suffi- 
ciently large, 3 )  the selectivity factor of the view predicate is 
sufficiently low, and 4) the percentage of the view retrieved by 
queries is sufficiently high. Since these conditions are rather 
restrictive in practice, commercial DBMS’s do not support 
incremental view materialization. 

One reaches a different conclusion when considering histor- 
ical relations. The storage structure may be organized in such a 
way that updates are more costly than those to a conventional 
relation by perhaps only a constant factor. However, retrievals 
are more costly by a factor that is roughly sublinear to 
linear in the size of the relation [2], [3]. While update cost 
remains fairly constant, retrieval costs increases monotonically 
over time. At some point, probably quite soon, incremental 
view materialization becomes beneficial for most temporal 
views. An added benefit of incremental view materialization 
is a greatly reduced response time, which is critical in some 
applications, such as process control and the stock market. For 
example, if the query of the stocks relation given previously 
was implemented incrementally, tuples such as those shown 
in Table VI1 could be displayed as soon as the underlying data 
was received, in this case perhaps a few seconds after 9:20. 

Hence, it is desirable that the historical algebra be able to 
support incremental view materialization. We have defined an 
alternate, incrementa! semantics for the historical operators, 
including A and AU, In this semantics, each operator is 
defined as a mapping from one (or two) relation states and 
its (their) differential onto a resulting relation state and its 
corresponding differential [32]. 

The output differential for this operator depends on an input 
relation’s state just before an update as well as the input 
relation’s differential for the update. Hence, both relation states 
and differentials are required as inputs to the incremental 
operators. Furthermore, because the output of one operator 
must acceptable as input to another operator, the output must 
include, for definitional purposes, its output relation’s state just 
before an update, as well as its output relation’s differential 
for the update. Note, however, that this requirement need 
not be extended to an implementation of the algebra. If an 
implementation were to cache, either virtually or physically, 
the input relations to each operator, only differentials would 
need to be computed and passed among operators. 

Some aggregates, such as sum and coun t ,  need not cache 
the input relation at all; others, such as avg, need only 
cache summary information needed to compute the aggregate. 
Aggregates such as min and ear l ies t  may require the 
entire input relation to be cached. If the tuple containing 
the value of the min aggregate is deleted, then the original 
relation would need to be consulted to compute the new 
minimum. To improve the efficiency of maintaining aggregates 

TABLE VI1 

Incremental view materialization is more efficient than Stock Price VarSpacing GrowthRatel from to 
processing without views if four conditions are satisfied si- NRC 39 0.35 0.27 I9:05 9:20 
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of this latter type, Hanson suggest that a queue of possibly 
duplicate candidate aggregate values, rather than a single 
value, be maintained [19]. Then, if a change to an aggregate’s 
underlying relation changes or deletes a tuple containing the 
aggregate’s value, the aggregate’s new value could be assumed 
to be the next element in the queue. Only if the queue were 
empty would the aggregate have to be recomputed. This 
technique can be extended to apply to historical aggregates 
by maintaining queues for each constant interval. Appropriate 
data structures for maintaining such queues have yet to be 
studied. 

Another optimization is to merge the processing of the 
aggregate operator and the (incremental) projection operator 
present in the second argument of the aggregate operator when 
a by-list is specified, e.g., computing the NumInRank attribute 
in the example presented earlier. The projection operator is 
not required to cache the entire input relation; instead it need 
retain only the number of input tuples contributing to each 
output tuple. Differentials containing added tuples increase 
this number; deleted tuples reduce this number. The number 
can be stored as another attribute of templ .  In fact, for the 
instantaneous count aggregate, this number is identical to the 
value of the aggregate. 

The historical algebra can thus support aggregates in both 
unmaterialized views (via query modification [49]) and materi- 
alized views, and can support various view maintenance strate- 
gies, such as in-line view evaluation, immediate-recomputed 
materialization, and immediate-incrementa1 materialization in 
computing aggregates. In concert with techniques developed 
for rollback relations [25] ,  it can also support these mainte- 
nance strategies for views defined on temporal relations that 
incorporate both valid and transaction time. 

VII. RELATED WORK 

As was mentioned in the introduction, most conventional 
query languages include support for aggregates. There has 
also been some formal work on aggregates. Klug introduced 
an approach to handle aggregates within the formalism of 
both relational algebra and tuple relational calculus [30]. His 
method makes it possible to define both standard and unique 
aggregates in a rigorous way. Ceri and Gottlob present a 
translation from a subset of SQL that includes aggregates 
into the relational algebra, thereby defining an operational 
semantics for SQL aggregates 171. Nakano’s translation of 
SQL into the relational algebra is more comprehensive, as it in- 
cludes optimization and accommodates null values [35]. Also, 
significant progress has been made in the area of statistical 
databases [57], [60], [61]. Such databases, used primarily for 
summary statistics gathering and statistical analysis, contain 
set-valued attributes. Klug’s relational algebra and calculus 
have been extended to manipulate set-valued attributes and to 
utilize aggregate functions [56], [58], [59], thereby forming a 
theoretical framework for statistical database query languages. 

Aggregates may also be found in several of the dozen query 
languages supporting time that have appeared over the last 
decade. In some of these languages, aggregates play only 
a small role. Ben-Zvi included several aggregate operators 

and functions in his TRM language, although not in a com- 
prehensive manner [5]; Ariav also mentioned aggregates in 
the context of his TOSQL language [4]. Although Gadia’s 
HTQuel language (an extension of Quel) does not explicitly 
include aggregates (there is no way to perform an aggregate 
such as count over an explicit attribute in HTQuel), his 
“temporal navigation” operators (e.g., First) can be simulated 
using aggregated temporal constructors in TQuel, since they 
effectively extract an interval from a collection of intervals 
[17]. The Lambda query language, another extension of SQL, 
also includes aggregates [ 11. Instantaneous aggregates are 
made available in the Time Relational Algebra by permitting 
SQL queries, which can incorporate aggregates, to be used as 
arguments to algebraic operators [31]. 

Finally, five other languages supporting time include a 
comprehensive set of aggregates and associated constructs. 
Legol 2.0 was one of the first time-oriented query languages 
to appear [27]. This language is based on the relational 
algebra. HQuel, an extension of Quel, is based on a model 
incorporating set-valued, time-stamped attributes [51]. It is 
supported by an algebra that includes an enumeration operator 
useful for aggregation [52], [53). TSQL [36] and HSQL 
[43] are extensions of SQL [24] incorporating valid time. 
The operations over the time sequence collections of the 
temporal data model (TDM), presented in an SQL-like syntax, 
include AGGREGATE and ACCUMULATE statements [45]. 
The Temporal Extended Entity Relationship (TEER) model 
and associated query language was subsequently proposed 

A detailed evaluation of aggregates in Quel, TQuel, Legol, 
HQuel, TSQL and TDM against a set of nineteen criteria is 
presented elsewhere [48]. TQuel satisfies all but one criterion: 
an implementation does not yet exist for TQuel aggregates. 
An early version of Legol has been implemented, but it is not 
stated whether aggregates were implemented in this prototype; 
Quel aggregates have been implemented; no other proposal 
that supports time has been implemented. None of the other 
languages have a formal semantics. Without such a formal 
definition, the meaning of each construct, and the interaction 
between constructs, is unclear. Instantaneous aggregates were 
introduced by Jones; only Legol, TEER and TQuel support 
such aggregates. Moving window aggregates and temporal 
partitioning were introduced by Navathe and Ahmed in TSQL; 
only TQuel and TEER, and perhaps TDM and HSQL, also 
support these aspects. Tansel introduced the concept of an 
average weighted by the duration of the values [51]; TQuel’s 
rate aggregate serves a similar purpose. Tansel also introduced 
the concept of a proportional sum adjusted by the duration 
of validity of the value; this adjustment can be performed 
in TQuel by using a (non-aggregated) duration function. The 
other languages do not provide such aggregates. 

~ 4 1 .  

VIII. SUMMARY 

This paper makes four contributions. First, a formal seman- 
tics for the conventional query language Quel was presented. 
The simple case of aggregates in the target list was considered 
in detail; the remaining cases of aggregates in the outer 
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where clause, arbitrarily nested aggregation, and expressions 
in aggregates are given elsewhere [48]. This completes the 
formal definition of Quel (the core of the retrieve statement 
and the modification statements were previously formalized in 
[54] and [47], respectively). 

Secondly, the aggregates in Quel have been extended in a 
minimal fashion for inclusion in TQuel. All Quel aggregates 
are permitted in TQuel. TQuel added the when and as- 
of clauses, which are the temporal analogues for valid and 
transaction time, respectively, to the where clause. These 
clauses are permitted within the aggregate. The for clause 
was added to distinguish between instantaneous, cumulative, 
and moving window aggregates. Several additional tempo- 
ral aggregate operators were also introduced. The resulting 
language subsumes all aspects of aggregates appearing in 
other proposals, including temporal partitioning and an average 
weighted by duration. 

Third, the Quel tuple calculus semantics was extended to 
accommodate time-varying relations. Our approach used the 
Constant interval set and a transition event set to determine 
those intervals over which a relation remains static, enabling 
a time-varying aggregate value to be computed. Again, only 
the simple case of aggregates in the target list was considered, 
though we did accommodate by, for, where, when, and as 
of clauses within the aggregate. The semantics of unique 
aggregation, of multiple aggregation, of aggregates in the outer 
where, when, and valid clauses, of aggregates with no by- 
clause, and of arbitrarily nested aggregation in TQuel is given 
elsewhere [48]. This semantics preserves snapshot reducibility, 
making a Quel aggregate behave identically whether evaluated 
on a snaphot or a temporal database. The semantics also is 
independent of the time-stamp granularity. The result is a 
complete formal semantics for TQuel and its snapshot subset 
Quel. A complete formal semantics for no other relational 
query language, conventional or temporal, has been defined. 

Finally, a temporal relational algebra has also been defined 
that fully supports TQuel and its aggregates [32], [33], [34], 
thus providing an consistent operational semantics for the lan- 
guage. We examined how the batch and incremental aggregate 
operators in the algebra could be implemented. 

More work is required in developing efficient implemen- 
tations. In particular, data structures to store the constant 
intervals, and to store the queues required for some incremental 
processing techniques, need to be developed. Extensions to 
existing query optimization strategies to handle aggregates 
need to be investigated; proposals for optimization of con- 
ventional aggregates [ll], [16], [23], [28], [29], [39] provide 
a good place to start. Similarly, previous work on processing 
aggregates with hard time constraints [22] should be applied 
both to the batch and to the incremental evaluators described 
above. 

Because the semantics is expressed in terms of the constant 
interval set, this semantics can be easily extended to handle 
aggregates on possibilistic data (c.f., [41], [42]). The semantics 
could also be extended to handle SQL-type null values by 
adapting Nakano’s rule-based translation method [35] or the 
Extended Three Valued Predicate Calculus [37]. Accommodat- 
ing historical indeterminacy, where the exact time that an even 
occurred is not known [12], appears to be more challenging. 

84 1 

Finally, aggregates over transaction time (c.f., [44]) and 
user-defined temporal aggregates (c.f., [ 181, [55]) should also 
be investigated. 
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