
Efficiently Supporting
Temporal Granularities

Curtis E. Dyreson, William S. Evans, Member, IEEE, Hong Lin, and

Richard T. Snodgrass, Senior Member, IEEE

AbstractÐGranularity is an integral feature of temporal data. For instance, a person's age is commonly given to the granularity of

years and the time of their next airline flight to the granularity of minutes. A granularity creates a discrete image, in terms of granules, of

a (possibly continuous) time-line. We present a formal model for granularity in temporal operations that is integrated with temporal

indeterminacy, or ªdon't know whenº information. We also minimally extend the syntax and semantics of SQL-92 to support mixed

granularities. This support rests on two operations, scale and cast, that move times between granularities, e.g., from days to months.

We demonstrate that our solution is practical by showing how granularities can be specified in a modular fashion, and by outlining a

time- and space-efficient implementation. The implementation uses several optimization strategies to mitigate the expense of

accommodating multiple granularities.

Index TermsÐCalendar, granularity, indeterminacy, SQL-92, temporal database, TSQL2.

æ

1 INTRODUCTION

THERE is one feature common to all temporal data:
temporal granularity. Temporal granularity is the unit

of measure for a temporal datum.1 For instance, birth dates
are typically measured in or known to the granularity of
days and train schedules to that of minutes.

Granularities incorporate the cultural, legal, and even
business orientation of the user to define the time values
that are of interest. Many different granularities exist and
no granularity is inherently ªbetterº than another; the value
of a particular granularity is wholly determined by the
population that uses it. For example, an employee time card
can be regarded as a granularity which measures time in
eight hour increments and is only defined for five days of
each week. It is essential that users be able to define their
own granularities; any fixed system of granularities, such as
those supported by SQL from the Gregorian calendar, will
not meet the needs of all users.

The mixing of temporal data at different, user-defined
granularities in a single database will become common
when databases can fully support this mixing. This paper
offers a practical design for that support. We see the
following as the seven main contributions of this paper.

First, various semantics have been proposed for tempor-
al operations that have operands at different granularities
[1], [7], [20], [22], [23], [25], [31], [33]. For instance, in a
comparison operation between a time known to the
granularity of days and one known to the granularity of
hours, the comparison could be performed at days, or it
could be done at hours, or an error could be reported. In
this paper, we propose two simple operations that can be
utilized to support all of the previous semantics for
temporal operations.

Second, we describe an architecture that permits the
rapid development and integration of granularities. In our
approach, a user specifies a granularity declaratively, as a
mapping from another granularity. One benefit of this
approach is that it supports the modular definition of
collections of related granularities, which we call calendars.
Only one granularity in each calendar must be related
directly to either a granularity in some other calendar or to
the underlying time-line. So, calendars can be developed
largely in isolation, yet can be rapidly integrated in a
multicalendar database management system (DBMS).

Third, to convert an instant in one granularity to a
different granularity, the DBMS must be able to construct a
function from one to the other. For example, to convert a
time known to the granularity of Gregorian days to the
same time expressed in the granularity of Chinese lunar
months, the DBMS must be able to convert days to lunar
months. It is unlikely that a user will provide a function that
converts directly between days and lunar months; instead
the function must be dynamically constructed from other
user-supplied functions. In this paper, we describe in detail
how user-supplied functions provided via calendars are
used during query processing to perform a desired
conversion.

Fourth, we suggest that an important implementation
concept is the identification of ªregularº conversions. For
example, in the Gregorian calendar, the granularity of

568 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

. C.E. Dyreson is visiting the Department of Mathematics and Computer
Science, Aalborg University, Fr. Bajers Vej 7E, Dk-9220 Aalborg ést,
Denmark. E-mail: curtis@cs.auc.dk.

. W. Evans and R.T. Snodgrass are with the Department of Computer
Science, University of Arizona, Tucson, AZ 85721.
E-mail: {will, rts}@cs.arizona.edu.

. H. Lin is with IBM Global Services, Dept. FA2A, 9000 S. Rita Rd., 031-1/
Rm. 517, Tucson, AZ 85744. E-mail: honglin@us.ibm.com.

Manuscript received 30 June 1998; revised 12 July 1999; accepted 22 Sept.
1999.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 107020.

1. In this paper, the term ªgranularityº will be used in place of the longer
phrase ªtemporal granularity.º Our focus is on time and granularity in
other domains such as space will not be directly addressed.

1041-4347/00/$10.00 ß 2000 IEEE

weeks is regular with respect to days in the sense that each
week is composed of seven consecutive days. In contrast,
months is ªirregularº with respect to days since each month
in a year has a different number of days and February
sometimes includes an additional leap day (February 29). In
general, regular conversions are more efficient that irregular
ones. We present a query evaluation strategy that is
sensitive to the different conversion costs.

Fifth, we recognize that indeterminacy, or ªdon't know
whenº information is a companion to granularity. Temporal
granularity and indeterminacy are two sides of the same
coin, in that a (determinate) time at a given granularity is
indeterminate at all finer granularities. For example, a birth
date of July 1, 1998 indicates that the person was born
sometime during the indicated day, but the precise minute is
unknown. Indeterminacy also arises naturally in many
conversions, e.g., when converting a birthday, given to the
granularity of days, to the granularity of minutes.

Sixth, to further underscore the practical focus of this
paper, we extend the syntax and semantics of SQL-92 with
support for mixed granularities. The bulk of this proposal
has been adopted into TSQL2, a temporal extension of
SQL-92 [26], constructs from which are now being
considered for inclusion into the SQL3 standard [27].

Finally, while support for mixed granularities is a highly
desirable database feature, previous research has focused
on theoretical concerns and has largely ignored perfor-
mance. In this paper, we quantify the cost of storing and
querying data at different granularities. We show that times
at differing granularities can be stored efficiently and that
optimization strategies can be used to mitigate the expense
of temporal operations at mixed granularities.

In summary, our approach is based on a realistic
model of time, is fully integrated with SQL-92 syntax,
supports several semantics for temporal operations on
operands at differing granularities, and admits an
efficient implementation.

We have implemented this approach in C and C++,
including support for indeterminacy, granularity conver-
sions, calendar-specification, and multiple conversion se-
mantics [17]. This package could be incorporated into a
DBMS to provide a comprehensive solution for efficiently
supporting temporal granularities.

The paper is organized as follows: We first give an
example that illustrates mixed granularities. We then
introduce our model of time. A granularity in this model
is a segmentation of the time-line. Next, we present a theory
for the semantics of temporal operations on operands at
different granularities. We show how to model a wide
variety of semantics. We then extend the syntax and

semantics of SQL-92 to permit the definition of temporal
values at various granularities. We also extend the
semantics of temporal operations to handle operands at
differing granularities. This query language support rests
on two operations that convert temporal values from one
granularity to another. Next, we describe the implementa-
tion, in particular, how to determine the mapping between
granularities, and how to efficiently apply this mapping.
Finally, we summarize related work and our work.
Throughout the paper, we use examples that involve valid
or user-defined time, but the research we present is
applicable to any kind of time where granularity is an issue.

2 MOTIVATION

Consider the airline flight database depicted in Fig. 1. The
database consists of two relations: Flight_Departures and
Vacations. The Flights_Departures relation stores information
about airplane flight departures. The flight departure time
is recorded in the granularity of minutes.2 The Vacations
relation stores information about vacations, specifically, the
days that make up a vacation. The temporal information in
Vacations is ostensibly stored to the granularity of days,
with each tuple recording a ªperiodº of days rather than
just a single day. The vacations listed in Vacations include
traditional American holidays such as Labor Day, Christ-
mas, and Thanksgiving. The Thanksgiving vacation is a
four-day weekend beginning on the fourth Thursday in
November.

A user, interested in flying home for Thanksgiving,
queries this database to determine which flights leave
during the Thanksgiving vacation. In SQL-92 [22], this
query might be formulated as follows.

SELECT *
FROM Vacations, Flight_Departures

WHERE Vacation = 'Thanksgiving' AND

Flight_Departures.At_Time OVERLAPS

(Vacations.From_Time,

Vacations.To_Time);

In this query, the user utilizes the temporal intersection
operator, OVERLAPS, to determine which flights leave
during the Thanksgiving vacation. The times participating
in the OVERLAPS are at different granularities; flight times
are in the granularity of minutes whereas vacation times are
in the granularity of days. The SQL-92 query processor is
unable to handle the mixed granularitiesÐit would return a

DYRESON ET AL.: EFFICIENTLY SUPPORTING TEMPORAL GRANULARITIES 569

2. In this paper, we do not consider periodic time, such as a flight
departing at the same time each day [24], [30]. Our approach could be
extended to encompass such situations.

Fig. 1. A flight database.

syntax error stating that the two arguments to OVERLAPS

are of incomparable types. (Vacations.From_Time and
Vacations.To_Time are of t he DATE type ;
Flight_Departures.At_Time is of the TIMESTAMP

type.)
The intent of the query is to select those flights that

depart during the Thanksgiving vacation. To make progress
in answering the query, the query processor needs
information about the relationship between minutes and
days. For example, it might know that each minute is
contained in some day. With this extra information, the
query processor can ªscaleº or convert the granularity of
flight departure times from minutes to days, allowing the
OVERLAPS to determine which flights leave during the
Thanksgiving vacation.

The missing part of the puzzle is not that minutes can be
related to days, rather, what is missing is the design of the
mechanism that relates times in these two different granula-
rities. Currently, users must manually provide this mechan-
ism. For example, the user could create a conversion table
[16] to map minutes to days, a fragment of which is shown
in Fig. 2, and rewrite the query to utilize the table as
follows. (Alternatively, the conversion could be effected by
a user-supplied function, minutes_in_days().)

SELECT *

FROM Vacations, Flight_Departures,

minutes_in_days AS C

WHERE Vacation = 'Thanksgiving' AND

C.Day OVERLAPS (Vacations.From_Time,

Vacations.To_Time) AND

Flight_Departures.At_Time = C. Minute;

For temporal granularities, the ªuser does it allº solution
has several disadvantages. First, queries that make explicit
use of conversion tables are more difficult for users to
formulate, and consequently, increase the likelihood of an
incorrect query (e.g., suppose the user forgets the final
conjunct; the query would be run to completion, but
produce an incorrect result). Second, there is little the
query optimizer can do to optimize the granularity
conversions since it is unaware that those conversions are
occurring; we discuss relevant optimizations in Section 8.6.
(Note that these two drawbacks also apply to user-supplied
conversion functions such as minutes_in_days().)
Third, some of the conversion tables will be quite large.

For example, a table to convert seconds to days over the
range 1970 to 2000 A.D. would contain over a billion tuples.
It would be better if most conversions were implemented by
a (short) program fragment rather than a table. Finally, the
user must predefine every possible conversion either as a
table or a view. So for N granularities, N2 ÿN tables must
be predefined, and when the user desires a new granularity,
the user must create 2 �N new conversions. In this paper,
we present a strategy whereby a minimal set of conversions
is specified, with the rest automatically constructed as
needed during query evaluation. This strategy supports the
addition of a new granularity via the specification of a
conversion from some existing granularity.

For these reasons, we believe a better design is to build
support for temporal granularity directly into a DBMS. In
the rest of this paper, we describe how a DBMS can be
engineered to automatically and efficiently construct
relationships between granularities, such as days and
minutes. We also explain how to get the query evaluator
to perform the OVERLAPS in the granularity of days or in
minutes. Finally, we quantify the cost of storing times in
different granularities and the additional overhead on
querying such times.

3 MODEL OF TIME

This section presents the model of time used in this paper,
which expert readers will find to be mostly review material.
SQL-92 terminology [21] is used for basic temporal
concepts, consistent with the terminology proposed by the
temporal database community [15]. We also utilize the
terminology proposed for granularities [5], as well as the
general model of time described there.

3.1 The Time Domain

The time domain is the set of time points used to define and
interpret time-related concepts. Formally, a time domain is a
totally ordered set T of time points with the ordering
relation `� '. In our model, time can be either continuous,
dense, or discrete. However, we adopt a discrete ªviewº of
time, which we describe below.

3.2 A Discrete Image of Time

In this section, we summarize the relevant terminology and
general framework for granularity presented elsewhere [5].

Portions of the time domain are ªgroupedº into aggrega-
tions called granules [33]. Specifically, a granule is a (not
necessarily contiguous) subset of the time domain. A
granularity is a mapping G from the integers to granules
such that

1. if i < j and G�i� and G�j� are nonempty, then each
element of G�i� is less than every element of G�j�,

2. if i < k < j and G�i� and G�j� are nonempty, then
G�k� is nonempty, and

3. G�0�, the origin of G, is nonempty.

The first requirement implies that granules within a
granularity are nonoverlapping and totally ordered, with
the ordering inherited from the integers. The second
ensures that the set of integers mapping to nonempty

570 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

Fig. 2. A coversion table between minutes and days.

granules is contiguous. The third is mainly for convenience
(see Section 8.2).

A granularity may cover only a subset of the time
domain. There may be times that are less than those in any
granule, or that are greater than those of any granule. The
extent of a granularity is the set of time points from the
earliest to the latest time points in any granule of that
granularity. Within the extent of a granularity, there may be
holes, time points that are not in the granularity. The image

of a granularity is the union of the granules of the
granularity. The image can be contiguous, or might have
holes. If the image of a granularity is contiguous, it is equal
to that granularity's extent. Finally, for each granule, G�i�, i
is known as the index of the granule.

For example, the granularity of Gregorian days creates a
discrete image of days. Fig. 3 shows a portion of the time-
line grouped into granules belonging to the granularity of
days. The figure depicts a continuous time domain
partitioned into day granules. Each granule is a segment
of the time-line. The granule's index is shown above each
segment.

Granularities are related in the sense that the granules in
one granularity may be further aggregated to form larger
granules belonging to a coarser granularity. For example, as
every Gregorian year is an aggregation of 365 or 366
Gregorian days, it follows that years is a coarser granularity
than days. Similarly, Gregorian days may be considered to
be a finer granularity than Gregorian years.

Let G and H designate two granularities. H is said to be
coarser than G (H ÿ. G) and G is said to be finer than H

(G ÿ/ H) if for each granule h 2 H, there exists a set of
granules S � G such that h � S

g2S g. If G is finer or
coarser than H, then the two granularities are said to be
comparable.3 (The finer-than relation employed here is also
called the groups-into relation [5].)

For example, in the Gregorian calendar, years is a coarser
granularity than months since every year is composed of a
sequence of months. Conversely, days is a finer granularity
than months since every month is composed of a sequence
of days. But months are neither finer nor coarser than weeks
since some months are not exactly composed of a sequence
of weeks.

3.3 Textual Representation

In addition to the (integer) index, each granule is associated
with a textual representation, a string, used for input and
output, which is called the label. The label can be mapped to
the index for input, and the index can later be mapped to
this label for output. This mapping can be quite compli-
cated, involving different languages and character sets [29].

For expository purposes, in this paper, we will use the
textual representations of the SQL-92 language to denote
granules often subscripted by the name of the granularity.
For SQL DATEs, at a granularity of days, the label consists of
a four-digit year, followed by a two-digit month, followed
by a two-digit day, separated with single hyphens. For
example, the set of days in the Gregorian year 1997 A.D. is
1997-01-01days; 1997-01-02days; . . . ; 1997-12-31days.

3.4 Instants

An event occurs at a particular time point in T [15]. In
general, the database cannot know this precise time, both
because the measurement of the time is imprecise at the
resolution of the time domain [7], and because the database
cannot always accurately represent an arbitrary element of
the time domain (e.g., when T is continuous).

For example, assume that a wristwatch reports that the
current time is 3:45:23 P.M. This means that it is (was)
sometime during that second, but it is unknown exactly when.
The wristwatch can only measure to the accuracy of the
granularity of seconds. In this sense, our model of time is
faithful to many ªreal-worldº temporal measurements.

We choose to model the time point at which an event
occurs by an instant timestamp or just instant. An instant is a
sequence of granules, called the support, together with an
optional probability distribution on the support. The
support indicates the possible granules during which the
event occurs while the distribution records the probability
that the event occurs during a particular granule. The
support extends from a lower support granule, l, to an upper
support granule, u, in a granularity, G, and is designated
using the following notation:

l � u � fg 2 G j l � g � ug:
It is possible that the lower and upper supports are the

same, indicating that the event occurs during a single
granule. In this case, the instant is called a determinate
instant. Otherwise, it is called an indeterminate instant.

Granularity and indeterminacy are two sides of the same
coin. A general maxim is that a determinate instant is
indeterminate with respect to all strictly finer granularities.
In other words, for any determinate instant, g 2 G, and any
finer granularity H, there exists an indeterminate instant
lH � uH such that g � lH � uH . For instance, suppose we
record that a plane took off on 1997-06-12days. This is a
determinate instant at the granularity of days; we know the
exact day that the plane departed. At the granularity of
minutes, the departure time is indeterminate, since we did
not record the exact minute that the plane departed. We
o n l y k n o w t h a t i t l e f t s o m e t i m e d u r i n g
1997-06-12 : 00 : 00minutes � 1997-06-12 : 23 : 59minutes.

Conversely, an indeterminate instant is determinate with
respect to some coarser granularity. In other words, for any
indeterminate instant l � u, there exists a determinate
instant h in some coarser granularity H, such that
l � u � h. For example, suppose we record, at the granu-
larity of hours, that a flight departs sometime between
2 P.M. and 4 P.M. on 1997-06-12. At the granularity of days,
months, and years, the flight departs wholly within a single

DYRESON ET AL.: EFFICIENTLY SUPPORTING TEMPORAL GRANULARITIES 571

3. This notion is more general than that found in the SQL-92 standard
which effectively states that two values are mutually comparable only if
they are of the same granularity [21, p. 24]. We examine how values of
different granularities can participate in SQL operations in Section 4.

Fig. 3. The time-line at a granularity of days.

granule: 1997-06-12days, 1997-06months, and 1997years, respec-

tively.
While it is important to recognize that instants are

specified only to the precision of a particular granularity, it

is equally important to choose the correct granularity.

Sometimes, for reasons of linguistic convenience, humans

under-specify a time, that is, they specify a time in a very

coarse granularity when the time that it signifies is actually

known or intended to be at a very fine granularity. For

example, a ship schedule states that a ship departs at 3 P.M.

The time of the ship departure is given in the granularity of

hours, but ª3 P.M.º is (probably) accurate to a much finer

granularity, specifically to the granularity of minutes.

3.5 Periods and Intervals

A period is a contiguous subset of the time domain. A period

of granularity G, encoded with the indexes of a pair of

granules g1 and g2, is the set of granules in G between g1

and g2, under the constraint that g1 � g2. We assume that

both the starting and terminating granules are in the same

granularity.
An interval is a signed integral number of granules in

some granularity, that is, an amount of time with known

length but no specific starting or ending instants. For

example, the interval 6days is known to have a duration of

six days, but can refer to any block of six consecutive days.

An interval can be either positive, denoting forward motion

in time, or negative, denoting backwards motion in time.
Periods and intervals can also be indeterminate. An

indeterminate period is a period that has indeterminate

bounding instants. An indeterminate interval is an interval

with a partially-known duration; however, we know that

the interval is at least as long as the lower support and no

longer than the upper support.

3.6 Summary of the Data Model

The theme for our model of time is that users manipulate a

discrete image of a time-line that is itself possibly

continuous, dense, or discrete. The discrete image is a by-

product of modeling temporal information at a given

granularity. A granularity is a grouping of the time domain;

each group is called a granule. Granules model durationless

temporal values, that is, time points, that are located

sometime during that particular granule. Periods model

temporal values with duration that span a range of the time

domain. Intervals model unanchored durations of the time

domain. Indeterminate instants, periods, and intervals

model partially-known temporal information. Granularity

and indeterminacy are related issues. All instants (periods,

intervals) are indeterminate at finer granularities and

determinate at some coarser granularities.

4 GRANULARITY IN OPERATIONS

The granularity of time values impacts the semantics of

expressions involving those values. For instance, what

happens when we compare a granule at the granularity of

a day to one at the granularity of a minute? In this section,

we discuss support for granularity in temporal operations.

4.1 Conversions

We propose two operations to convert time values between
granularities: scale and cast. We focus on instants in this
discussion, but these functions can easily be extended to
periods and intervals. The conversion function scale�g; H�
takes a (possibly indeterminate) instant g � lG � uG in
granularity G and a granularity H and returns the smallest
(possibly indeterminate) instant h � lH � uH such that
lG � uG � lH � uH , and returns invalid if no such instant
exists. (Here, we specify the conversion functions in terms
of the granules themselves, rather than their indexes.) If
H ÿ/ G or G ÿ/ H, then the `� ' will in fact be an equality.

A scale operation that converts an instant from a coarser
to a finer granularity usually produces an indeterminate
instant, even when applied to a determinate instant (where
lG � uG). For various reasons, a user may not want an
indeterminate result. Instead, a user might desire a result
that is determinate when applied to a determinate value,
even though that result might not be strictly consistent with
the input value. To meet these user needs, we propose a
new operation, called cast, that allows one to ªcreateº
information.

The cast operation is similar to scale but produces a
determinate instant when applied to a determinate instant.
The cast of a determinate instant is the lower support of the
scale of the instant. For example, to cast a determinate
instant from a coarser to a finer granularity, cast first scales
the instant, resulting in an indeterminate instant. From that
indeterminate instant, it returns the first granule, a
determinate instant, as the result. In effect, for any
determinate instant, cast assumes that the modeled time
point is contained in the first granule at all finer granula-
rities. When cast is applied to an indeterminate instant it
separately casts both the upper and lower supports, as
though they were determinate instants.

The conversion function cast�g; H� returns the instant
h � lH � uH in H such that lh 2 min�scale�lG; H�� and
uH 2 min�scale�uG; H��. Note that if lG � uG then lH � uH ,
ensuring that a cast of a determinate instant always
produces a determinate instant.

The mapping functions can be combined as shown in the
following examples.

scale�1997years; days�
� 1997-01-01days � 1997-12-31days

scale�scale�1997years; days�; months�
� 1997-01months � 1997-12months

cast�1997years; days�
� 1997ÿ 01ÿ 01days

cast�cast�1997years; days�; years�
� 1997years

scale�cast�1997years; days�; months�
� 1997-01months

Observe that some combinations of mappings result in the
identity function on subsets of the time domain. That is, the
support of the input instant equals the support of the
output instant. These sequences of mappings are called

572 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

ªinformation-preservingº sequences, in the sense that they
lose none of the original instant's precision.

We are now in a position to specify the various proposed
semantics for binary instant operations over different
granularities. Let g 2 G and h 2 H be (determinate or
indeterminate) instants at the indicated granularities, � be
a binary instant operation or predicate, F be a granularity
that is finer than both G and H, and C be a granularity that
is minimally coarser than both G and H. We express the
semantics in terms of operators over single granularities.

Mismatch. Give a mismatched granularity error [1].

Left-operand semantics. Perform the operation at the
granularity of the first operand. This is reminiscent of
the assignment operator in many strongly typed lan-
guages, which casts the value of the right-hand side to
the type of the left-hand side.

g � h � g � scale�h; G�:

Right-operand semantics. Perform the operation at the
granularity of the second operand. This is reminiscent of
some expressions in C++, e.g., 7/2.0, which converts
the value of the left-hand side of the division operator to
the floating point type, because the right-hand side is a
floating point number.

g � h � scale�g; H� � h:

Finer semantics. Perform the operation to the finer
granularity [7], [25], [33]. If the two granularities are
incomparable (neither is finer than the other), then
perform the operation to a granularity finer than both
arguments.

g � h �
g � scale�h; G� if G is finer than H

scale�g; H� � h if G is coarser than H

scale�g; C� � scale�h; C� otherwise:

8><>:
Coarser semantics. Perform the operation to the coarser

granularity [4], [23]. For incomparable granularities,
perform the operation to a granularity that is minimally
coarser. This approach avoids adding indeterminacy not
already present, but is, in some sense, the most
conservative possibility, as information at the finer
granularity is discarded.

g � h �
scale�g; H� � h if G is finer than H

g � scale�h; G� if G is coarser than H

scale�g; C� � scale�h; C� otherwise:

8><>:
It turns out that SQL-92 adopts each of these in particular

contexts, as discussed further in Section 6.3.
Except for generating a mismatch error, the operands are

first converted to the same granularity and then the
operation is carried out, usually on the indexes of the
granules which are integers. By converting both operands to
a common granularity, the complete set of temporal

operations currently available in a query language (c.f. the
instant, period, and interval operations in TSQL2 [26]) can
be utilized unchanged.

In any of the above semantics, cast may be used in place
of scale. The drawback of using cast is that the finer
conversion function discards some temporal information.
The binary operator may then return a perhaps unexpected
result (though one consistent with the semantics). For
example, 1997-01months < 1997-01-15days translates to three
possible comparisons under the various semantics; one of
which evaluates to true.

. 1997-01-01days < 1997-01-15days � true
(cast using Right-operand or Finer semantics.)

. 1997-01months < 1997-01months � false
(cast or scale using Left-operand or Coarser
semantics.)

. 1997-01-01days � 1997-01-30days
< 1997-01-15days � maybe4

(scale using Right-operand or Finer semantics.)

4.2 Scaling Mass Functions

The probability mass function gives the probability that the
instant is located within a given granule. Since a scale
operation (whether regular or not) modifies the size and
number of granules in the support of the distribution, the
scale also changes the mass function. Each mass function is
described, in the implementation, as a function on a domain
�0; 1�. In scaling from a finer to a coarser granularity, the
mass of each fine granule is effectively added to the mass of
all the other fine granules that belong to a given coarse
granule. For example, suppose an indeterminate instant
with a seven day support (from Sunday through Saturday)
and a uniform mass function is scaled to the granularity of
weeks. In the resulting instant, the probability that the
instant is located during each day, a probability of 1

7 , is
accumulated to give the probability that the instant is
located during the given week, a probability of 1. In scaling
from a coarser to a finer granularity, the mass of each coarse
granule is dispersed. (We show elsewhere that it is in
practice more efficient to shrink or stretch the mass during
the comparison operation, rather than during the scale
operation [11].)

4.3 Scaling Intervals

To scale a period, the instants that start and end the period
are scaled separately. Scaling intervals, however, is slightly
more complicated.

An interval is an unanchored duration. In our model of
time, it is encoded as a count of granules in some
granularity. The interpretation of an interval is that it is a
duration that necessarily displaces any instant by the
represented number of granules. For example, an interval
of 1days represents a duration that when added to an instant
at the granularity of days, will displace that instant by one
day, e.g, 1997-12-30days � 1days � 1997-12-31days.

We observe that an interval of 1days also represents a
duration that when added to an instant at the granularity of
months, could displace that instant by 0 or 1 months. In the

DYRESON ET AL.: EFFICIENTLY SUPPORTING TEMPORAL GRANULARITIES 573

4. Maybe is neither true nor false. The semantics of `<' on indeterminate
operands is described elsewhere [11].

above example, the instant could be moved from the month
of December to the month of January. Note that the interval
of 1days could also displace an instant into the next year.
Imagine taking an interval and placing it anywhere along a
time-line that is partitioned into granules. Depending upon
where we place the interval, it will cross more or fewer
granules as shown in Fig. 4. Even the smallest interval can
cross at least one granule boundary.

A second observation is that some intervals span
different numbers of finer granules. For example, 1months
may represent anywhere from 28 to 31 days. Twenty-eight
days will displace any instant in February into the next
month, but 31 days are sometimes needed to displace an
instant in August into the next month.

For both of these reasons, scaling an interval may result
in an indeterminate interval. An indeterminate interval
a � b in granularity G implies that the length of the
interval is a number between a and b of granules in G. An
indeterminate interval may result when scaling from
coarser to finer or from finer to coarser. Below, we give
some examples to illustrate scaling an interval.

scale�1days; years� � 0years � 1years

scale�1days;months� � 0months � 1months

scale�1days; days� � 1days

scale�1days; hours� � 24hours

scale�1days;minutes� � 1440minutes

scale�1months; days� � 28days � 31days:

The actual mechanics of scaling an interval is a variation of
that for scaling an instant.

5 PIECEMEAL SPECIFICATION OF GRANULARITIES

Each granularity, G, can always be specified by giving the
function G�� that maps indexes to granules in G, that is, to
subsets of the time domain. For many granularities,
however, it would be helpful if granularities could be
specified with respect to other granularities rather than to
the underlying time domain. For example, suppose the time
domain is UTC seconds. Gregorian days, weeks, months,
and years could be specified in this time domain, but each
specification would have to take into account complicated
leap seconds adjustments. An alternative, modular ap-
proach would be to specify days in terms of seconds, weeks,
and months in terms of days, and years in terms of months.
Since the purpose of the granularity specifications is to
support conversions between granularities, for many con-
versions knowing the granularity to the precision of the
underlying time domain is unnecessary.

In this section, we advocate specifying granularities via
mappings between pairs of granularities, rather than
specifying granularities directly via their index functions.

From a sufficiently complete set of these mappings, the
system can deduce any required granularity information.

Elaborating on our approach, the user (or database
administrator) specifies granularities by providing the
conversion functions (scale and cast) between some pairs
of granularities. This set of conversion functions describes a
directed graph called the granularity graph. Each node in the
graph represents a granularity. An edge from G to H
indicates that the user has supplied a function to convert
from G to H. A granularity graph for the granularities in the
Gregorian calendar is shown in Fig. 5. In the figure, all
mappings have been supplied in both directions between
the indicated pairs of granularities.

To allow scales and casts between arbitrary granularities,
we must place some restrictions on the granularity graph.
First, the graph must contain a finest or bottom granularity,
denoted ?. The granules in ? are called chronons [15].
Second, for every granularity G in G, there must exist a path
�G � G0; G1; . . . ; Gk � ?� from G to ? such that Gi ÿ. Gi�1

for all 0 � i < k. Finally, for every granularity G in G, there
must exist a path �? � G0; G1; . . . ; Gk � G� from ? to G
such that Gi ÿ/ Gi�1 for all 0 � i < k.

We do not require the set of granularities in the graph to
form a lattice with respect to the finer-than relation. This
typical assumption [31] is violated if two granularities in the
calendar have different extents and, thus, no unique least
upper bound (LUB). In rarer cases, two granularities may
not have a unique greatest lower bound (GLB). For
example, the following combination of granularities does
not have a unique GLB: solar days (the day starting at
midnight), civil days (the day starting at noon), hours, and
Chinese calendar k'o (roughly ninety minute divisions of a
day). Hours are finer than civil and solar days, as are k'o,
but hours and k'o are unrelated. In either case, an
ªartificialº GLB or LUB could be constructed and inserted
into the graph to create a lattice. In our approach, we simply

574 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

Fig. 4. Interval A can be placed within a single granule or spanning two

granules.

Fig. 5. A Gregorian calendar granularity graph.

do not require real-world granularities to fit neatly into a
lattice. We do, however, assume the existence of a bottom
within a single granularity graph (? is finer than every
granularity), for reasons discussed in Section 5.2.

Granularities in a granularity graph form a calendar [29].
A calendar is a software package that has two primary
purposes. First, it inputs and outputs temporal values as
character strings, that is, the labels of the values by
translating those labels to and from granularity indexes.
We discuss this mapping in Section 7. Second, a calendar
provides all the functionality necessary to support granula-
rities. In this section, we describe the necessary function-
ality in detail. We envision that some calendars would be
provided by the DBMS vendor (an example being the
calendar supporting the legacy SQL-92 granularities such as
DAY), others might be provided by the database users (i.e.,
the database administrator's (DBA's) staff, an example
being a calendar tied to the company's fiscal year vagaries),
and still others might be supplied by third-party vendors
(an example being an Astronomy calendar).

In this paper, we will use three calendars: the Gregorian
calendar, a Business calendar, and an Astronomy calendar.
We assume that the reader is already familiar with the
Gregorian calendar (a variant of which is included in
SQL-92 [21]). The Business calendar is a prototypical
calendar for tax or payroll applications. In the Business
calendar, days are the same as in the Gregorian calendar,
but the Business calendar has a five day (work) week. The
Business calendar year is divided into four quarters, Fall
(starting on the Gregorian date October 1), Winter (starting
January 1), Spring (starting April 1), and Summer (starting
June 1). For tax purposes, the Business calendar year starts
with the Fall quarter. The origin of the Business calendar is
Fall, 1990 (the founding of the corporation supplying the
calendar). The Astronomy calendar is very different from
the Business calendar. Those readers familiar with Julian5

or modified Julian dates will recognize the Astronomy
calendar. The Astronomy calendar year has 365.25 days.
The origin of the Astronomy calendar is noon on January 1,
4713 B.C., which is a synchronization point for various long-
term celestial cycles. The Gregorian calendar date June 24,
1994 is 2449349astronomy days. The Astronomy calendar also
has centuries, which are precisely 36525 days long.

5.1 Building the Granularity Graph

There are many methods that could be used to build the
granularity graph. Perhaps the easiest is to assume that the
graph is predefined; this is the approach adopted by the
SQL-92 standard [22]. We feel that such an assumption is
unrealistic. Instead, we outline a method for building the
graph using a specification provided by the DBA. We note
in passing that the MULTICAL system [29] is a concrete
realization of this approach to supporting multiple calen-
dars in a conventional DBMS.

Each calendar has a specification file which is parsed when
the DBMS is configured by the DBA. Granularity descrip-
tions are included in the specification file. A granularity is

described as a further grouping of some other granularity
using either a regular mapping, that is, each granule in the
coarser granularity is composed of a fixed number of
granules at the finer granularity (cf. Section 8.1), or as an
irregular mapping, which is necessarily more complicated.
The specification file also declares the origin and extent of
each granularity.

The Gregorian calendar specification file describes the
granularity of hours as a regular grouping of minutes by
asserting that there are exactly sixty minutes in every
hour. In the decorated granularity graph (Fig. 6), this
information is represented by two edges: one from
minutes to hours labeled `t div 60' and another from
hours to minutes labeled `t � 60'. The edge label `t div 60'
represents a function that converts minutes to hours. To
convert minutes to hours, the time, t, is divided (integer
division) by 60. What may be surprising to some readers
is that a minute in the Gregorian calendar is not always
60 seconds. Due to leap second adjustments, it may be 59
or 61 seconds. Thus, the specification file states that an
irregular mapping exists between minutes and seconds.
The calendar provides functions for all irregular map-
pings. Although the seconds_to_minutes(t) function is
simple (we describe elsewhere how to process Gregorian
calendar dates with leap seconds [10]), some irregular
mappings may be quite complex. The days_to_months(t)
mapping must accommodate months that have different
numbers of days, as well as leap years. Finally, for
irregular mappings, the calendar also provides functions
to convert intervals, e.g., interval_minutes_to_seconds(i).
Hence, a calendar is a specification file that enumerates
the names of the granularities and describes the map-
pings between them, and a collection of mapping
functions, to be linked with the DBMS.

5.2 Combining Calendars

If a user wishes to compare instants in granularities that are
not within the same calendar, then a larger granularity
graph containing the granularities from multiple calendars
must be constructed. This is done by adding mappings
between granularities in the different calendars. Often, the
bottom granularity in one of the calendars is finer than the
bottom granularities in the other calendars. If this is the
case, it is only necessary to provide enough mappings to
create a path from this finest bottom to and from each of the
other bottoms. This finest bottom then becomes the bottom
of the large calendar. If such a granularity does not exist,
then a new granularity, finer than all existing bottom
granularities, must be constructed along with mappings
between it and the existing bottom granularities.

For example, it is easy to combine the Astronomy,
Gregorian, and Business calendars. The bottom granularity,
?, of the Gregorian calendar is finer than the bottoms of the
Astronomy and Business calendars. Thus, we need only
provide mappings to create paths between ? and
astronomy_day_hundredths and between ? and business_-
days. The former is accomplished by a simple regular
mapping between seconds and astronomy_day_hun-
dredths; the latter, by a trivial mapping between days and
business_days. Additional mappings may be specified to
increase performance.

DYRESON ET AL.: EFFICIENTLY SUPPORTING TEMPORAL GRANULARITIES 575

5. The Julian calendar we refer to here was developed in the sixteenth
century by the French literary scholar Joseph Justus Scaliger, and is distinct
from the Julian calendar established by Julius Caesar in 45 B.C.E. [8].

The granularity graph shown in Fig. 7 was constructed by
combining the Astronomy, Gregorian, and Business calen-
dars. Several additional mappings, e.g., astronomy_days to
hours, have also been defined. Presumably, these provide
improved performance for common conversions.

5.3 Casts and Scales Via the Granularity Graph

The user may want to convert from one granularity to
another even when there is no direct mapping to perform
the particular conversion. In this case, we use the provided
mappings between granularities to implement the desired
mapping. The DBMS finds a path in the granularity graph
between the granularities and performs the sequence of
mappings along this path. The problem is that some
compositions of mappings may not result in a correct
conversion.

For example, to convert astronomy_days to months, we
may follow the path (astronomy_days, hours, days,
months), or (astronomy_days, astronomy_years, years,
months), or (astronomy_days, astronomy_day_tenths,
astronomy_day_hundredths, seconds, minutes, hours,
days, months), etc. But scaling along the second path will
always result in an indeterminate instant (with a support of
at least 12 months) even if the astronomy_day being scaled
is determinate. This is incorrect since a determinate
astronomy_day should scale to a determinate month. In
scaling from astronomy_days to astronomy_years, we lose
information about the original instant, resulting in a
possibly incorrect final mapping. We need a method of
identifying those paths that always result in correct
mappings: the correct paths (generally there are several).

A correct conversion path is a path �G � G0; G1; . . . ; Gk �
H� in the granularity graph G such that for all instants l0 � u0

in G0, lk � uk � scale�l0 � u0; Gk�, where lk � uk is defined
inductively by

li�1 � ui�1 � scale�li � ui;Gi�1�
for all i 2 f0 . . . kÿ 1g.

We wish to identify those paths from G to H that are

correct conversion paths. A V-path is a path �G0; G1; . . . ; Gk�
in the granularity graph G such that G0 ÿ. G1 ÿ. � � � ÿ. Gp ÿ/
Gp�1 ÿ/ � � � ÿ/ Gk for some p 2 f0 . . . kg. Intuitively, a V-path

goes from a granularity G0 to a finer granularity Gp, then up

to a coarser granularity Gk. It is called a V-path since it

appears in the shape of a V in a drawing of the granularity

graph where finer granularities are below coarser ones.

Note, however, that ªstraight-lineº paths are also V-paths,

with Gp � G0 or Gp � Gk.
Since there is a path in the granularity graph from the

finest granularity ? to every other granularity G through

successively coarser granularities and a path from G to ?
through successively finer granularities, there is at least one

V-path between every pair of granularities (the one with

Gp � ?). There are often several V-paths between two

granularities. It turns out that all V-paths between G and H

are correct conversion paths.

Lemma 5.1. Any V-path is a correct conversion path.

Proof. Let �G0; G1; . . . ; Gk� be a V-path and Gp be the finest

granularity in the path. Let l0 � u0 be an instant in

granularity G0.
Let lj � uj be the instant in Gj which is the result of

the composition of mappings along the path �G0; . . . ; Gj�
applied to l0 � u0. We want to show that lk � uk is the
smallest instant in granularity Gk that contains the
instant l0 � u0. In particular, we want to show that lk
contains min l0 (the smallest time point in l0) and uk
contains max u0. We prove the above statement for the
lower support l0. A similar argument establishes the
result for the upper support u0.

576 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

Fig. 6. A partial view of the decorated granularity graph in the Gregorian calendar.

Each of the individual mappings is assumed to be
correct. Thus, since Gj�1 is finer than Gj for j < p,
lj�1 � lj and, in fact, min lj�1 � min lj. By induction,
min lp � min l0.

Note that the support of the instant in G0 equals a
union of granules in the finer Gp. However, in scaling
from Gj to Gj�1 for p � j < k, from finer to coarser, we
may find that some support granules in Gj are not
contained in any granule in Gj�1. This means that some
subset of l0 � u0 is not in the image of the granularity
Gj�1. If this is the case, the mapping from Gj to Gj�1

returns invalid and the composition as a whole also
returns invalid for this path. This is correct. Since Gj�1 is
finer than Gk, the same subset of l0 � u0 that is not in the
image of Gj�1 is not in the image of Gk. Thus, the scale of
l0 � u0 to Gk is indeed invalid.

If all support granules in Gj are in the image of Gj�1

for all p � j < k, then, in particular, lj � lj�1. By induc-
tion, lp � lk, and min l0 � min lp 2 lk, which shows that
the lower support is correct. tu

It is possible that paths other than V-paths are correct.

For instance, the user may specify a function that converts

directly from granularity G to granularity H even though G

and H are not comparable. This simple case of a single-edge

path is easy to detect and, by assumption, is correct. We

consider these paths when calculating correct conversion

paths between granularities. We do not consider other

paths from G to H (W-paths, etc.) because these paths are

generally incorrect even though they may provide correct

conversions in special cases.

6 ACCOMMODATING MIXED GRANULARITIES

IN SQL

To this point, we have focused on the formal underpinnings

of granularities and on how to effectively specify a

collection of granularities. In this section, we propose a

concrete query language syntax and semantics to support

mixed granularities. Implementation is discussed in the

next section. The proposed support for mixed granularities

is based on the SQL-92 language standard [21], [22].

6.1 Column Definitions

In SQL-92, the CREATE TABLE statement defines relation

schemas. Columns (attributes) of determinate instants

(DATE, TIME, and TIMESTAMP) or interval values (INTER-

VAL) can can be defined, but lacking from these column

definitions is a general way to specify the granularity in the

presence of user-defined granularities (SQL-92 provides

only a fixed set of granularities: year, month, day, hour,

minute, second, and fractions of a second). We propose to

allow the user to specify an extent and granularity in a

column definition. Like SQL-92, we assume that a column

definition establishes a data-type that is the same for every

value in that column, so all values in a column are stored to

the same granularity. In our example database, all flight

times are stored to the granularity of a minute rather than

some being stored to finer granularities, such as a second or

millisecond. Individual times known to coarser granula-

rities (e.g., a day) can be stored by making the indetermi-

nacy explicit (e.g., the flight leaves between the first and last

minutes during that day).

DYRESON ET AL.: EFFICIENTLY SUPPORTING TEMPORAL GRANULARITIES 577

Fig. 7. A multicalendar granularity graph.

6.2 Temporal Literals

Instant, period, and interval literals are syntactically
delimited by single quotation marks, `� � � '. A calendar
(either the default Gregorian calendar or one provided by
the user) translates whatever comes between the delimiters
into an instant, period, or interval value [29]. We assume
that the calendar also decides the granularity of that value
unless the granularity is explicitly specified with the literal.

6.3 Granularity in Operations

As discussed in Section 4, support for mixed granularity
operations rests on the ability to translate instants between
granularities.

SQL-92 adopts the following semantics in each indicated
context.

Mismatch. Give a mismatched granularity error. In SQL-92,
this semantics is employed by all variants of comparison
between temporal values (e.g., =, <) [21, Subclause 8.2,
Syntax Rule 2, p. 169], BETWEEN [21, SC 8.3, SR 3, p. 172],
IN [21, SC 8.4, SR 4, p. 173], ANY, ALL, and SOME [21 SC
8.7, SR 2, p. 180], and OVERLAPS [21, SC 8.11, SR 2,
p. 186].

Left-operand semantics. Perform the operation at the
granularity of the first operand. In SQL-92, this semantics
is employed by hdatetimei � hintervali and hdatetimei ÿ
hintervali [21, SC 6.14, SR 3, p. 132].

Right-operand semantics. Perform the operation at the
granularity of the second operand. In SQL-92, this
semantics is employed by hintervali � hdatetimei [21,
SC 6.14, SR 3, p. 132], retaining the symmetry of `+' in the
presence of multiple granularities, since hdatetimei �
hintervali has an identical semantics as hintervali �
hdatetimei : the operation is performed to and the result
is given in the granularity of hdatetimei.

Finer semantics. Perform the operation to the finer
granularity. In SQL-92, this semantics is employed by
hintervali � hintervali and hintervali ÿ hintervali [21, SC
6.15, SR 3c, p. 135]. This approach retains the symmetry
of `+' on intervals. SQL-92 does not support indetermi-
nacy; it (somewhat arbitrarily) uses the first granule in
the support.
To support these semantics, we add two operations,

paralleling scale and cast that convert temporal values. The
syntax of these new operations is as follows. (We note in
passing that SQL-92 already includes a CAST operation; our
proposal is a slight extension of this existing construct.)

SCALE�hoperandi AS hgranularityi�
CAST�hoperandi AS hgranularityi�

The first argument to each is an operand. A temporal
operand can either be a literal, a column variable, or an
expression. If the operand is a literal, the granularity of that
literal is given by the calendar that parses the literal. If the
operand is a column variable, the granularity of that
variable is given by the column definition (specified in the
schema). Finally, if the operand is an expression, the
granularity of the operand is the granularity of the result
of that expression determined during semantic analysis.
The second argument is the target granularity. For example,

SCALE(Flight_Departures.At_Time AS DAY)

scales the instants in the At_Time column of the
Flight_Departures table from minutes to days.

As discussed in Section 4, SQL-92 does not permit
comparison operators to be applied to values of different
granularities. For other operations, SQL-92 uses, inconsis-
tently, left operand semantics, right operand semantics, and
finer semantics. However, a user who desires a different
temporal semantics can explicitly insert scale or cast
operations. User-specified granularity conversions super-
sede the implicit conversion operations indicated by the
SQL-92 semantics.

When SQL-92 needs to implicitly convert to a different
granularity (e.g., for hdatetimei � hintervali, which uses left
operand semantics), the default is to use CAST. The default
translation operations may be globally overridden by a SET
statement. To change the default operation from cast to
scale, one would use the following.

SET SCALE AS DEFAULT;

6.4 Processing the Example Query

We use the SQL constructs proposed here to process the
example query given in Section 2. First, the query is
rewritten to the following query, which effects the coarser
operand semantics (as mentioned above, SQL returns an
error for the original query).

SELECT *

FROM Vacations, Flight_Departures

WHERE Vacation = 'Thanksgiving' AND

SCALE(Flight_Departures.At_Time AS DAY)

OVERLAPS

(Vacations.From_Time,

Vacations.To_Time);

The scaled dates of flight # 200 and of flight # 653 overlap
the period of November 24 through November 28, so only
these two tuples appear in the answer.

In summary, with these extensions the original SQL-92
semantics is retained, both for the predefined SQL-92
granularities and for user-defined granularities, while
allowing the user to define a specific semantics for an
expression via appropriately placed CAST and SCALE

operations, and extending the semantics to support tempor-
al indeterminacy.

7 TIMESTAMP ENCODING

We now describe representations for each of the three basic
modeling entities: instants, periods, and intervals. We focus
on the determinate formats in this paper; the indeterminate
representations are presented elsewhere [11]. These inde-
terminate representations are more complex, as they in
some cases avoid storing both indexes.

An instant timestamp specifies a granule containing the
time of an occurrence. The SQL-92 instant timestamp,
specifically, the TIMESTAMP format, is a record that has
separate fields for the year, month, day, hour, minute,
second, and ªfractional secondsº of an instant [21]. The
format can store an instant known to these granularities

578 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

only; it cannot store an instant known to the granularity of,
say, weeks, or to a non-Gregorian granularity such as
astronomy_day_tenths. Furthermore, common operations
on such a representation are inefficient [9]. To add an
interval to an instant, each field must be added separately
with carries performed between the fields.

We propose replacing the DATE, TIME, and TIMESTAMP

formats with a simpler format. The format has two fields: a
flags field and an index field. The flags field is three bits in
size, and is used to differentiate determinate instants from
indeterminate instants and special values such as beginning
and forever [26]. The index field stores the granule index, a
signed integer value, which is a count, in granules, of the
distance from the granularity origin to the instant. Since all
values in a column have the same granularity (as specified
in the SQL semantics), the granularity is stored with the
schema rather than stored with the value, thus eliminating
the need for a field to store the name of the granularity.

It is possible for the granules (as subsets of the time
domain) in two granularities to be identical, but to be
associated with different indexes in the two granularities, if
granularities are allowed to have different origins.
23business days might not be the same granule as 23days;
instead it might be 728316days (assuming that the Gregorian
day origin is January 1, 1 C.E. and the Business day origin is
January 1, 1994 C.E.).

Such congruent granularities can be used to limit the size
of timestamps. A user who wants to store times in the
current decade to the granularity of a second can use a one
word format by using a granularity, congruent with
seconds, but with an origin at the current decade boundary.
The extent is then only ten years, which can be stored in a
one-word timestamp. By relocating the origin via congruent
granularities, the user can employ one-word timestamps for
most applications.

A period may be encoded by its delimiting timestamps,
and an interval may be encoded as simply a count (positive
or negative) of granules. This approach finesses an
awkward distinction in SQL-92 between year-month inter-
vals and day-time intervals [22]. This distinction arose
because SQL-92 intervals contain a range of fields (e.g.,
year, month, day). So, year-month intervals can contain
only a year value, only a month value, or both, and a day-
time interval can contain only day, hour, minute, and
second values. Because we don't know how many days
there are in a month, an interval of ª3 years, 4 months, and
5 daysº is ill-defined, and is thus disallowed in SQL-97.
Month and day fields cannot be coresident in an SQL-92
interval.

In our approach, an interval is always an integral
number of granules in a specified granularity. Because the
nonregularity of days in month is dealt with in the
conversions (see Section 6.3), rather than in the values,
there is no longer any need to make this distinction between
two classes of intervals.

8 EVALUATING CAST AND SCALE

There are two problems that arise in performing a cast or
scale operation: determining a correct and efficient conver-
sion path in the granularity graph between the source and
the destination granularity (generally done during semantic
analysis of the query), and performing the cast or scale on a
particular instant. We first identify a class of efficient
mappings. We then discuss algorithms that find the
cheapest correct path and, finally, present how to use these
paths effectively.

8.1 Regular Mappings

In some cases, the conversion between granularities G and
H (G ÿ/ H) is particularly simple. Suppose each granule in
H contains the same number of granules of G. For example,
every week contains seven days, or every business week
contains five days. Furthermore, suppose this uniformity is
periodic. If day a starts a new (business) week then every
seventh day after day a also starts a new (business) week.
This relation between granularities permits a simple
conversion between G and H that we call a regular mapping.
(If there is a regular mapping from G to H, with G ÿ/ H,
then G groups periodically into H [5].)

Before describing the conditions for the existence of a
regular mapping in detail, it may help to consider Fig. 8.
This figure shows a portion of three granularities: D (days),
W (weeks), and B (business weeks). The granule D�i� (the
ith granule in D) is contained in the granule W�biÿ22

7 c�. In
the granularity B, D�i� is contained in B�biÿ30

7 c� if
�iÿ 30� mod 7 < 5, otherwise it is invalid. In both cases,
the conversion is accomplished by a subtraction and an
integer division that rounds down.

In converting from coarser to finer, W�i� equals the
instant

D�7i� 22� � D�7i� 28�;
while B�i� equals D�7i� 30� � D�7i� 34�. Again, these are
simple functions involving a single addition and multi-
plication.

The key to these conversions is knowing the period size of
H in G (seven for weeks in days and business weeks in
days), the group size of H in G (seven for weeks in days and

DYRESON ET AL.: EFFICIENTLY SUPPORTING TEMPORAL GRANULARITIES 579

Fig. 8. Regular mapping between granularities.

five for business weeks in days), and the anchor of H in G
(the index of the granule in G containing the first instant of
the origin in H, 22 for weeks in days and 30 for business
weeks in days).

For granularities G and H, if there exist integers p
(period size of H in G), s (group size of H in G), and a
(anchor of H in G) such that for all i 2 domain�H�,

H�i� �
[p�i�a�sÿ1

j�p�i�a
G�j�;

then there exists a regular mapping between G and H. Note
that the definition implies G ÿ/ H. The actual mappings
between G and H are then:

scale�iG;H� � cast�iG;H�

� biÿap c : if �iÿ a�mod p < s

invalid : otherwise;

�

cast�lG � uG;H� � cast�lG;H� � cast�uG;H�
scale�lG � uG;H� � scale�lG;H� � scale�uG;H�

cast�iH;G� � p � i� a
scale�iH;G� � p � i� a � p � i� a� sÿ 1

� cast�iH;G� � cast�iH;G� � sÿ 1

cast�lH � uH;G� � cast�lH;G� � cast�uH;G�
scale�lH � uH;G� � cast�lH;G� � cast�uH;G� � sÿ 1:

As described, regular mappings require G and H to
share the same extent. A slight generalization of these
definitions to account for granularities with different
extents is possible. Essentially, invalid must be returned if
the input granule is not in extent�G� \ extent�H�.
8.2 Computing the Anchor

A regular mapping between G and H (G ÿ/ H) requires the
three parameters p, s, and a. These parameters are specific
to the pair fG;Hg. Hence, the calendar specification
includes the p, s, and a parameters for all pairs of
granularities connected by a regular mapping. However,
it turns out that it is possible to derive the a parameter (the
anchor of G in H) from the origin of each granularity. This
origin is specified by providing the index of a granule in
another granularity that starts at the same time as the
origin. Allowing granularities to have individual origins, as
opposed to requiring all granularities to share the same
origin, also permits a smaller encoding, as was discussed in
Section 7. Typically, the origin of the bottom granularity in a
calendar is implicit. For example, the user may specify the
origin of the week's granularity in terms of hours. To
convert between days and weeks requires the anchor of
weeks in days. So, the origin of weeks (an index in the
granularity of hours) must be converted to days, and so on.
This computation of the anchor for each pair of granula-
rities is not guaranteed to terminate, even for simple
granularity graphs. Consider the graph in Fig. 9. We wish
to cast an instant in hours to the granularity of minutes. For
this, a regular mapping, we need the anchor of hours in
minutes. To compute that, we need the anchor of days in

minutes. For that, we need the anchor of days in hours, and
the anchor of hours in minutes, which is what we started
attempting to determine.

The question then is: What constraint(s) must be placed
on the origin specification to ensure that the anchor can be
computed for every regular mapping? It turns out that
specifying the origin in any strictly finer granularity is
sufficient.

Theorem 8.1. If each origin of a granularity H is specified in a
strictly finer granularity F (F / H), then the calculation of the
anchor for any pair of granularities will terminate.

Proof. To convert between G and H (G ÿ/ H) requires the
anchor of H in G. If, instead, the user supplied the
anchor of H in F , then the supplied anchor (in
granularity F) must be converted to G. This new
conversion involves a pair of granularities fF;Gg whose
ªcoarsenessº is less than the coarseness of the original
pair fG;Hg (since F / H and G ÿ/ H). Thus, the number
of conversions involved in obtaining the anchor of H in
G is finite. tu

The conversions that are performed to calculate the
anchor of H in G are simple cast operations. Note that each
conversion involves a mapping along the finer-than path
from H through G to chronons. While the anchor of G in H
is relevant only for regular mappings, it is still possible for
the computation of that parameter to utilize irregular
mappings.

8.3 Adding Mapping Costs to the Granularity Graph

There are usually many correct conversion paths in the
granularity graph between any pair of granularities. To help
determine the most efficient correct path, each edge in the
granularity graph is annotated with the cost of the mapping.
An initial approach, which requires no effort on the part of
the specifier, is to associate a weight of one to regular
mappings and a large weight to irregular mappings since
applying an irregular mapping requires at least an
expensive function call and return. A more refined
weighting scheme might use timings from sample runs of
the functions to determine their relative execution time.

8.4 Determining an Efficient Path

We present two algorithms for determining efficient
V-paths. The first algorithm takes as input the finer-than
relation ÿ/ , the weighted granularity graph G, and two
granularities G and H. It outputs a shortest V-path from G

580 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

Fig. 9. A problematic granularity graph.

to H. The second algorithm takes as input the finer-than
relation ÿ/ and the weighted granularity graph G. It outputs
shortest V-paths in G for all pairs of granularities. As we
will see, the all-paths algorithm is significantly slower than
the single-path algorithm which must nonetheless be called
repeatedly if mappings between many pairs of granularities
are desired.

These algorithms return only V-paths. An independent
procedure checks for a direct mapping from G to H in the
cases when G and H are incomparable.

8.4.1 Single-Pair Shortest V-Path

The single-pair shortest V-path algorithm performs two
single-source shortest path computations, one from G in the
graph Gÿ. and one from H in the graph GRÿ/ . The graphs, Gÿ.
and GRÿ/ , have the same vertex set as G, but the edges of Gÿ.
are f�X;Y � j �X;Y � 2 G and X ÿ. Y g, while the edges of GRÿ/
are f�Y ;X� j �X;Y � 2 G and X ÿ/ Y g (here, `R' denotes
ªreversedº).

A shortest V-path from G to H is the concatenation of a
shortest path from G to X in Gÿ. with the reversal of a
shortest path from H to X in GRÿ/ . The definitions of Gÿ. and
GRÿ/ make any such concatenation a V-path in G. Choosing
the X that minimizes the length of this concatenated path
gives the shortest V-path from G to H.

The running time of this algorithm is twice that of the
single-source shortest path algorithm plus O�V � to mini-
mize over X where V is the number of vertices in G. We
may assume that Gÿ. and GRÿ/ are acyclic; the only cycles in
these graphs involve granularities that are congruent and
may be treated as a single granularity for the purposes of
these shortest path calculations. Note that G may have
cycles of nonisomorphic granularities, but Gÿ. and GRÿ/ do
not. A single-source shortest path computation in a directed
acyclic graph can be done in time O�V �E� where E is the
number of edges in G. Thus, the total running time of the
single-pair shortest V-path algorithm is O�V � E�.
8.4.2 All-Pairs Shortest V-Path

The all-pairs shortest V-path calculation uses a dynamic
programming approach. Distinctly number the granulari-
ties from 1 to V where V is the total number of granularities
in G. The numbering should have the property that, if
granularity number a is strictly finer than granularity

number b, then a < b. We will refer to granularities by
number for the remainder of this section.

Let F �a� � fx j �a; x� 2 G and x � ag be the set of gran-
ularities adjacent from a and finer than a. Let w�a; b� be the
cost of the edge from a to b in G, that is, the relative time to
convert a granule in a to a granule in b (or vice versa).
Define the cost of a direct path from a to b as

Icost�a; b� � 1 if a < b

minx2F �a� w�a; x� � Icost�x; b� otherwise;

(
and the cost of a V-path from a to b as

V cost�a; b� �

min Icost�a; b�; Icost�b; a�; min
x2F �a�

w�a; x� � V cost�x; b�
� �

:

The algorithm to calculate the two tables Icost and V cost is
shown in Fig. 10.

Notice, in the case of the Icost table, we start with
Icost�a; a� � 0 on the main diagonal, then fill in Icost�a; b�
where aÿ b � 1, then fill in Icost�a; b� where aÿ b � 2, etc.
To calculate Icost�a; b�, where aÿ b � d, we only need
Icost�x; b� for x < a. Since x < a, xÿ b < d and, because of
the order in which we fill the table, Icost�x; b� has already
been calculated (if xÿ b is negative, then Icost�x; b� � 1).
This implies that Icost�a; b� is well-defined.

In the case of the V cost table, we cannot follow the same
order. Rather, we fill in the V cost table in the order of the
increasing sum of a and b. We know V cost�1; 1� � 0. To
calculate V cost�a; b� where a� b � s, we only need
V cost�x; b� where x� b < s which has already been calcu-
lated. This implies that V cost�a; b� is well-defined.

The cost to fill in the tables is O�V 2� plus the time to do
the two minimizations. Each edge �a; x� appears at most V
times in each minimization since a particular granularity a
appears at most V times within each loop. Thus, the
running time is O�V 2 � V E� � O�VE� where E is the
number of edges in G and is at least V ÿ 1.

8.4.3 Choosing the Method

To compare these algorithms, we implemented both, as well
as some variants, and used the ATOM tool [28] to measure
the number of processor cycles spent in computing an

DYRESON ET AL.: EFFICIENTLY SUPPORTING TEMPORAL GRANULARITIES 581

Fig. 10. Algorithm to calculate Icost and V cost.

optimal path [19]. We ran a series of tests on a multi-

calendar granularity graph similar to that shown in Fig. 7,

with 18 granularities and 20 edges, over randomly selected

pairs of granularities. Each test was repeated 50 times.
As might be expected, the single-pair shortest V-path

algorithm, at 16,684 cycles, was faster by almost a factor of

ten, than the all-pairs dynamic programming approach, at

156,555 cycles. However, at current processor speeds, even

the slower algorithm is quite practical: On a DEC 2000/233

workstation (with an Alpha 21064 processor), the slower

algorithm, on this graph, takes less than a millisecond to

compute all paths.
The algorithm was shown above to be quadratic in the

number of granularities. In a database setting, this is not an

issue even if the granularities number in the hundreds. Path

selection is done during query analysis, not query evaluation.

And, the all-pairs algorithm can be run when the database

is configured by the DBA or each time a user (or DBA)

defines a new granularity. A second or two to compute all

paths will not be noticeable.
Where the path computation time may make a difference

is when multiple granularities are used in an application.

Adding this computation to each invocation of the applica-

tion is less desirable. In that situation, the dynamic

programming approach can be modified to do just enough

searching to find the best path between two specified

granularities with future requests using the intermediate

paths computed as a side-effect [19]. The first call requires

about a third of the time of the all-pairs computation with

subsequent calls taking even less. If only a few granularities

are used by the program, this approach is best; if many

granularities are used, there is little difference.

8.5 Evaluating the Path

After the most efficient conversion path has been deter-

mined, it must be evaluated. To evaluate a cast, the V-path

is traversed, applying each mapping in turn. Regular

mappings utilize the p, s and a parameters as discussed in

Section 8.1; irregular mappings invoke user-supplied

functions. Integers (granule indexes) are passed to and

returned by these functions. The conversion completes

when invalid is returned by a mapping, or when the final

mapping returns a result.
To evaluate a cast on an indeterminate value, the cast is

applied to both supports. If the lower and upper supports

of the result are identical, then the result is determinate.
Section 8.1 also showed how to evaluate a scale over a

regular mapping in terms of the p, s and a parameters; this

turns out to require one or more casts and some arithmetic.

In the general case, a scale over an irregular mapping on an

indeterminate value can be implemented with two scales on

determinate values:

scale�l � u;G� � ll � uu;
where ll � lu � scale�l; G� and ul � uu � scale�u;G�. It may

be preferable, in terms of efficiency, to supply two scale

functions for each irregular mapping, one taking a

determinate value and the other, an indeterminate value.

8.6 Query Optimization

The impact of granularity on the optimization phase of an
SQL compiler can be observed in the running example
query. In that query, the WHERE clause has an overlap
between a flight departure instant, given in minutes, and a
vacation period, given in days. In Section 6.4, it was shown
that to perform the overlap using coarser operand seman-
tics the flight departure time is first scaled from minutes to
days and, only then, compared with the vacation time. But
this is not the only way to effect coarser operand semantics.
An alternative, semantically-equivalent query is given
below.

SELECT *

FROM Vacations, Flight_Departures

WHERE Vacation = `Thanksgiving' AND

Flight_Departures.At_Time OVERLAPS

(CAST(Vacations.From_Time

AS MINUTE),
CAST((Vacations.To_Time + INTERVAL

`1' DAY) AS MINUTE) - INTERVAL

`1' MINUTE);

This alternative might be preferred if an index existed for
the flight departure times but not for the vacation times.
Other semantically-equivalent alternatives exist, such as
converting both operands to a granularity that does not
appear at all in the original query, as illustrated below.

SELECT *

FROM Vacations, Flight_Departures

WHERE Vacation = `Thanksgiving' AND

CAST(Flight_Departures.At_Time

AS SECOND) OVERLAPS

(CAST(Vacations.From_Time

AS SECOND),
CAST((Vacations.To_Time + INTERVAL

`1' DAY) AS SECOND) - INTERVAL

`1' SECOND);

This alternative might be preferred if the query were nested
inside a larger SELECT and, further, extensive comparisons
were to be made of both times at the granularity of seconds.

8.7 Global Optimizations

The goal of global query optimization is to determine which
semantically-equivalent, alternative, query execution plan
is the cheapest to evaluate. In general, there are a large
number of such alternatives. For instance, a query involving
n OVERLAP operations in a system that supports m
granularities has O�mn� alternatives. However, some simple
heuristics can substantially reduce the size of the search
space.

First, times that are indexed, hashed, or clustered should
not be converted. A query should take advantage of these
performance-enhancing data structures. If such times were
converted, it may well be the case that the data structure
becomes less effective. Second, only alternatives that
involve conversions to granularities actually present in the
original query should be explored. So, for instance,
converting flight departure and vacation times to Chinese
lunar months would be unlikely to lead to an optimized

582 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

query. Finally, all else being equal, a scale or cast from a
coarser to a finer granularity is preferred over the opposite
conversion. This ªlocalº optimization technique is pre-
sented in detail below.

8.8 Local Optimizations

Local optimizations can be applied to improve the speed of
a single conversion between a pair of granularities.

The conversion operations are performed in the ªinner-
loopº of query processing, potentially done many times
during a query. Each regular mapping costs (possibly) one
addition and one ªexpensiveº suboperation. The expensive
suboperation is a division for a regular mapping from a
finer to a coarser granularity. On some machines (e.g.,
Sun-4s) division is microcoded as repeated subtraction,
typically costing much more than addition or multiplica-
tion. For a regular mapping from a coarser to a finer
granularity, the expensive suboperation is a multiplication.
For an irregular mapping, it is a C function invocation,
which probably uses (at least) a division or a multiplication.
In this section, we present four optimization strategies that
are designed to minimize the cost of the ªexpensive
suboperation.º The important point here is that, by
incorporating the operations in the DBMS, it can make
these optimizations. In the previous approach, such
optimizations are not possible because they are in applica-
tion code.

The first optimization is an algebraic simplification of
composed casts. For certain compositions (e.g., of regular
mappings with equivalent origins, such as scaling from
minutes to days), an expensive suboperation (a division
or multiplication) can be eliminated. For example, to
cast from minutes to days, we can algebraically simplify
�t div 60� div 24 to t div 1440.

The second optimization exploits the fact that on many
machines multiplication is much cheaper than division.
This optimization applies only to temporal comparisons,
but we anticipate that comparisons will be the most
common kind of temporal operation. All comparisons,
including OVERLAPS, are expressed as formulas involving
the Before relation (the < relation on integers) and logical
connectives [2]. Consider evaluating g Before h where g 2 G
and h 2 H are determinate instants. If G ÿ/ H, then g Before h
is equivalent to scale�g;H� Before h and is also equivalent to
g Before scale�h;G�. So, a temporal comparison with a scale
on one operand can be transformed into a comparison with
a scale on the other operand. This program transformation
trades a scale from a finer to a coarser granularity (a
division) for a scale from a coarser to a finer granularity (a
multiplication). The query processor can choose the cheaper
operation (in this case, the coarser to finer operation), but
must factor into the decision how many times the operation
is executed. If g and h are column variables and there are far
fewer distinct values in g's column, then the transformation
will not improve performance since many more scales of h
will be performed than scales of g.

A third optimization is to introduce a direct link into the
granularity graph for a highly optimized mapping function.
For example, if the database implementor knows that
casting years to seconds will be a common operation, a
direct link with the name of the optimized mapping

function can be inserting into the granularity graph during
its construction. In casting years to seconds, the run-time
engine can use this direct link rather than the composition
of years to months, months to days, days to hours, hours to
minutes, and minutes to seconds which costs three regular
and two irregular mappings in total. Elsewhere, we show
that casting years to seconds, even in the presence of leap
days, requires only eight microseconds on a Sun-4 IPC [9].

The final optimization is to use a lazy caching strategy to
avoid recomputing previously cast times. The caching
strategy is based on the observation that times in a column
are often clustered rather than distributed uniformly over
the entire time-line (random sampling could be used to
detect the clustering). Consequently, there are probably
many cases where several instants at the finer granularity
cast to the same instant at the coarser granularity. For
example, instants in a column of employee birth dates will
be clustered between 1938 and 1978 (most employees are
between twenty and sixty years old). Consider a query in
which these birth dates, stored to the granularity of days,
are compared to a column at the granularity of years (e.g.,
in computing a bar graph of employee ages). In a large
corporation, it is probably the case that several employees
were born in the same year. To avoid recomputing the cast
of years to days (introduced by a previously discussed
optimization), we can cache previously computed casts
using a small array. As another example, we saw in the
previous section that scaling indeterminate values can be
expressed as a pair of scales on determinate values,
potentially increasing the cache hit probability. The viability
of the caching strategy is a trade-off between the cost of
building and maintaining the cache and the cost of cache
misses.

To quantify the actual cost of supporting queries on mixed
granularities, we programmed the example query, under a
variety of optimization strategies, as a series of calls in the
MULTICAL system [29]. The call sequences are shown in
Fig. 11. The variables f, v.from, and v.to are the column
variables for the Flight_Departures.At_Time,
Vacations.From_Time, and Vacations.To_Time, re-
spectively. Theunpack operations parse the timestamp flags
to distinguish determinate from indeterminate and special
instants. We ignored the ªThanksgivingº selection and coded
the OVERLAPS as a conjunction of Before operations with no
short circuit evaluation. The first sequence (from left to right)
is an overlap with no support for mixed granularities. Testing
this sequence will give us a base cost against which we can
compare the cost of modeling and using information at mixed
granularities. The second sequence scales minutes to days,
using the algebraic optimization. We also tested the un-
optimized sequence; that code is not shown. The third
sequence combines the algebraic simplification with the
program transformation that trades a scale down to minutes
for a cast up to days. Here, the overlap is manipulated into
Before on the lower support of scale�v:from;minutes� and on
the upper support of scale�v:to;minutes�.

We compiled all four tests using the GNU C compiler,
version 2.4.5, with compiler optimizations fully enabled. We
then ran the tests several million times on a dedicated Sun-4
IPC (a twelve ªmipsº machine). The results we obtained are

DYRESON ET AL.: EFFICIENTLY SUPPORTING TEMPORAL GRANULARITIES 583

as follows: Each predicate evaluation took approximately
10 microseconds with no granularity conversion, 48 micro-
seconds with one unoptimized scale, 27 microseconds with
algebraic optimization, and 14 microseconds with algebraic
optimization and program transformation. While these
differences may not seem important, the microseconds
quickly add up. If we assume that the Vacations and
Flight_Departures relations have a modest number of tuples,
50 and 5,000, respectively, then the total cost of the
OVERLAPS would be 2.5 seconds with no granularity
conversion, 12 seconds with one unoptimized scale,
7 seconds with algebraic optimization, and only 3 seconds
with algebraic optimization and program transformation.

These results show that modeling times at different
granularities does carry a cost; for the example query it
adds an overhead of between 40 percent and 380 percent.
The results also show that the optimizations significantly
improve performance. Note, however, that there are many
other components to query evaluation, such as disk reads
and writes; the additional cost of granularity conversions
over the entire query execution will be relatively slight.
Also, note that a user who does not want the extra modeling
capability of mixed granularities can simply specify that all
columns have an identical granularity, thereby incurring no
added cost.

9 RELATED WORK

Our work can be viewed as an extension of Anderson's
pioneering research on a model of time [3]. Anderson
pointed out the need to model times at multiple granula-
rities. Clifford and Rao further developed Anderson's
framework by adding a ªgranularity chainº (a complete
ordering of granularities) and ªfinerº granularity conver-
sions between times [7]. Wiederhold, Jajodia, and Litwin
made Clifford and Rao's theoretical work more concrete by
proposing a specific semantics for temporal comparisons at
mixed granularities [33]. Their proposed semantics is
similar to the finer granularity semantics mentioned in this
paper. Recently, Wang, Jajodia, and Subrahmanian general-
ized the ªgranularity chainº to a lattice and proposed
semantics for moving times ªupº and ªdownº the lattice
[32]. The specific requirements given here for granularities
(total ordering of granules, ordering of granules consistent
with ordering of their indexes, contiguity of granule index
in a granularity, existence of an origin for each granularity,
and existence of a bottom granularity) are similar to those
specified for time units. Unlike time units though, our

approach permits noncontiguous granules and negative
granule indexes. Also, our granularities are not required to
form a lattice under the finer-than relation or to share a
common origin, thus permitting a more space efficient
representation.

Wang et al. also proposed temporal modules and extended

temporal modules that provide access to temporal relations
via windowing functions, each in terms of a different time
unit [31], [32]. As such, they consider how to map data
defined over one granularity (e.g., annual salary) into data
over another granularity (e.g., monthly salary). The present
paper does not address data conversion, though our
approach might well apply to granularity mappings
performed during data conversion. Finally, their calculus-
based federated query language allows comparisons be-
tween instants of different time units. However, only finer
granularity semantics, at the granularity ?, is employed,
with explicit cast or scale operations not permitted.

The present paper elaborates on the theoretical frame-
work of [5] by showing how values in particular time units
(i.e., granularities) can be converted to other time units
semiautomatically via user-provided conversion functions.

Barbic and Pernici discuss relative, absolute, periodic,
and imprecise times at different Gregorian granularities for
office information systems in the context of constraint
triggers [4]. They recommend converting operands to the
coarsest granularity during a temporal (comparison) opera-
tion to avoid creating information. Barbic and Pernici also
advocate a ªsigned integerº timestamp format which is the
gist of our format. Montanari et. al. investigated a slightly
different problem, that of extending the granularity chain to
cover macroevents, i.e., events with duration [23]. We only
consider instantaneous events (instants) in this paper. They
also propose finer and coarser granularity conversions
(effectively a scale via a regular mapping only); the issue of
indeterminacy in finer conversions is not explicitly ad-
dressed.

Terenziani's temporal formalism [30] is an adaptation of
that proposed earlier [18] in which a granularity is defined
as a set of intervals over the (discrete) set of Reference Time
points (e.g., days). Leban et al., Terenziani, and [6] all
include notations for deriving new granularities (sometimes
confusingly called calendars) from other granularities (e.g.,
first Mondays in April). One could envision an extension to
our approach whereby regular mappings could be specified
in such terms, elaborating on the more restrictive sense
adopted in the present paper.

584 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

Fig. 11. MULTICAL calls for example queries.

None of the above papers address the integration of
granularities from multiple calendars into SQL; they also
lack indeterminacy, and impose a single semantics for
comparison operations, typically finer granularity seman-
tics. (To be fair, these papers weren't attempting to solve
these particular problems; their foci were on other aspects
of granularity.) In contrast, we treat all instants as
indeterminate. When two instants located in the same hour
are scaled to a finer granularity, two similar indeterminate
instants result. But, each indeterminate instant retains the
semantics of the original instant in that it records that the
instant is located sometime during the hour (with the upper
and lower supports expressed in the finer granularity). We
also support several different semantics for every kind of
temporal operation (not just comparison operations). It is
our position that indeterminacy is necessary to support
finer granularity conversions and to correctly model
instants. Further, an important difference between our
work and all of the above presentations is that we focus
also on practical issues. We are interested in engineering a
database to support mixed granularities and so we
designed mechanisms to effect this support, attempting to
simplify as much as possible the task of the calendar
specifiers.

The practical focus of this paper on implementation is
shared by Lorentzos who advocated a scheme for storing
and querying nonmetric data types [20]. The SQL-92
timestamp format is one example of a nonmetric data type;
it has separate fields for years, months, days, hours,
minutes, and seconds. Lorentzos allows only coarser
conversions in a granularity ªchain.º These conversions
consist of removing various fields, e.g., scaling from months
to years removes the months field. Although the granularity
conversion operation (between fields that are in the
nonmetric data type) is fast, we previously empirically
determined that the execution cost of other more common
temporal operations severely increases, as does the space
cost [10]. Hence, we advocate that timestamp formats have
as few separate internal fields as possible.

Goralwalla et al. also used a tuple of integers to denote
an instant [13], [14]. This provides an increase in expressive
power for intervals (for example, ªone month and five
daysº must be mapped to a number of days (from 33 to 36)
or an indeterminate interval 33 � 36 in our model), but not
for instants or periods. They also support calendars, in a
similar way as defined here, but restrict calendars to contain
granularities for which a total order is defined. They
support regular mappings and obtain some of the general-
ity of irregular mappings through a variety of calendric
functions. These are especially effective for converting
intervals to different granularities though at an increase in
complexity for the calendar specifier. And, as with the other
approaches, conversion of instants are effected by convert-
ing to the finest granularity which they term ªglobal real
time,º which is a dense model represented with floating
point numbers. In contrast, in our model, we go only as far
down the hierarchy as is needed and always deal with
integers. Finally, these papers also support temporal
indeterminacy, but via a set of times rather than a lower
and an upper support; they do not support an associated

probability function. We argue that indeterminacy and
granularity are intimately related, serving as different
perspectives of a single phenomenon.

Finally, Gauthier has advice on how to implement
calendars in Ada, taking into account important details
such as very precise compile-time type checking [12].

10 SUMMARY

This paper demonstrates that granularity and indetermi-
nacy are related features of temporal data. Granularity is
the unit of measure for a temporal datum while indetermi-
nacy represents partial information about finer units of
measure. For example, an instant known to the granularity
of an hour has an hour-long support. For this instant, we
only know the hour during which it is located, we cannot
ascertain with certainty the minute during which it is
located. Such is the nature of ªreal-worldº temporal data.

In this paper, we use a common model of a granularity as
a segmentation of the time-line. Granularities are related in
that some granularities are finer or coarser with respect to
others. The conversion functions, scale and cast, move times
between granularities. The scale operation does not create
information; rather it exploits the relationship between
granularity and indeterminacy to refine the information
content of a temporal value. A determinate instant stored at
a particular granularity becomes indeterminate when scaled
to a finer granularity. Support for indeterminacy permits
conversions between granularities which some have con-
sidered incomparable, such as weeks and months. Judicious
use of scale and cast can implement a variety of semantics
for temporal operations. We examine various semantics and
show that they can be effected by inserting cast or scale
operations.

The conventional way to specify a granularity is to
provide an invertible function that maps an index to a
granule, which is a subset of the time domain. We propose
that granularities instead be specified via regular or
irregular mappings between granularities. Regular map-
pings are specified with three parameters; irregular map-
pings are associated with arbitrary functions which may be
invoked by the DBMS. This specification is easier to define
than the original approach: most of our mappings are
regular, whereas most index-to-granule functions are
complex. Efficiency is also gained in that a conversion from
one granularity to another need only go through a common,
finer granularity rather than all the way down to the time
domain and back up. Our approach also supports modular
specification of granularities, via calendars which collect
together a set of granularities and their associated map-
pings.

Finally, we explore the cost of our framework. We
present four optimizations that can be easily applied during
semantic analysis and show that for the example query,
these optimizations reduce the predicate evaluation over-
head to a reasonable level.

Our conclusion is that full database support for temporal
granularities is not only a desirable goal, but, by using a
realistic design that addresses theoretical concerns, lan-
guage extensions, and implementation details, is an attain-
able one.

DYRESON ET AL.: EFFICIENTLY SUPPORTING TEMPORAL GRANULARITIES 585

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National
Science Foundation grants ISI-9302244, IRI-9632569, and IIS-
9817798, by IBM contract 1124, and by a grant from the
AT&T Foundation. The authors would like to thank John
Hartman and Udi Manber for their comments and Marshall
Freiman for initial development of the granularity
conversion code.

REFERENCES

[1] M. Adiba, N. Bui Quang, and J. Palazzo de Oliveira, ªTime
Concept in Generalized Data Bases,º Proc. ACM Ann. Conf.,
pp. 214±223, Oct. 1985.

[2] J.F. Allen, ªMaintaining Knowledge about Temporal Intervals,º
Comm. ACM, vol. 26, no. 11, pp. 832±843, Nov. 1983.

[3] T.L. Anderson, ªModeling Time at the Conceptual Level,º Proc.
Int'l Conf. Databases: Improving Usability and Responsiveness, P.
Scheuermann, ed., Jerusalem, Israel: Academic Press pp. 273±297,
June 1982.

[4] F. Barbic and B. Pernici, ªTime Modeling in Office Information
Systems,º Proc. ACM SIGMOD Int'l Conf. Management of Data, S.
Navathe, ed., pp. 51±62, May 1995.

[5] C. Bettini, C.E. Dyreson, W.S. Evans, R.T. Snodgrass, and X.S.
Wang, ªA Glossary of Time Granularity Concepts,º Temporal
Databases: Research and Practice, O. Etzion, S. Jajodia and S. Sripada,
eds., Springer-Verlag, 1998.

[6] R. Chandra, A. Segev, and M. Stonebraker, ªImplementing
Calendars and Temporal Rules in Next Generation Databases,º
Proc. IEEE Int'l Conf. Data Eng., pp. 264±273, 1994.

[7] J. Clifford and A. Rao, ªA Simple, General Structure for Temporal
Domains,º Proc. Conf. Temporal Aspects in Information Systems
(AFCET), pp. 23±30, May 1987.

[8] N. Dershowitz and E.M. Reingold, Calendrical Calculations. Cam-
bridge Univ. Press, 1997.

[9] C.E. Dyreson and R.T. Snodgrass, ªTimestamp Semantics and
Representation,º Information Systems, vol. 18, no. 3, pp. 143±166,
1993.

[10] C.E. Dyreson and R.T. Snodgrass, ªEfficient Timestamp Input/
Output,º Software±Practice and Experience, vol. 24, no. 1, pp. 80±109,
1994.

[11] C.E. Dyreson and R.T. Snodgrass, ªSupporting Valid-time
Indeterminacy,º ACM Trans. Database Systems, vol. 23, no. 1,
Mar. 1998.

[12] M. Gauthier, ªThe Avatars of a Package for Calendars in Ada,º
Software±Practice and Experience, vol. 25, no. 4, pp. 403±427, Apr.
1995.

[13] I.A. Goralwalla, Y. Leontiev, M.T. OÈ zsu, and D. Szafron, Modeling
Time: Back to Basics, Technical Report TR 96-03, Dept. Computer
Science, Univ. of Alberta, Feb. 1996.

[14] I.A. Goralwalla, Y. Leontiev, M.T. OÈ zsu, and D. Szafron,
ªModeling Temporal Primitives: Back to Basics,º Proc. Int'l Conf.
Information and Knowledge Management (CIKM), pp. 24±31, 1997.

[15] C.S. Jensen, C.E. Dyreson, M. BoÈhlen, J. Clifford, R. Elmasri, S.K.
Gadia, F. Grandi, P. Hayes, S. Jajodia, W. KaÈfer, N. Kline, N.
Lorentzos, Y. Mitsopoulos, A. Montanari, D. Nonen, E. Peressi, B.
Pernici, J.F. Roddick, N.L. Sarda, M.R. Scalas, A. Segev, R.T.
Snodgrass, M.D. Soo, A. Tansel, R. Tiberio, and G. Wiederhold, ªA
Consensus Glossary of Temporal Database Concepts,º Temporal
Databases: Research and Practice, O. Etzion, S. Jajodia, and S.
Sripada, eds.,Springer-Verlag, pp. 39, 1998.

[16] W.H. Inmon, Building the Data Warehouse, second ed., John Wiley,
1996.

[17] N. Kline, J. Li, and R.T. Snodgrass, ªSpecifying Multiple
Calendars, Calendric System, and Field Tables and Functions in
TimeADT,º TIMECENTER Technical Report 41, May 1999.

[18] B. Leban, D.D. McDonald, and D.R. Forster, ªA Representation for
Collections of Temporal Intervals,º Proc. Nat'l Conf. Artificial
Intelligence, pp. 360-366, Aug. 1986.

[19] H. Lin, ªEfficient Conversion Between Temporal Granularities,º
Master's thesis, Dept. Computer Science, Univ. of Arizona,
TIMECENTER Technical Report TR-19, June 1997.

[20] N. Lorentzos, ªDBMS Support for Nonmetric Measuring Sys-
tems,º IEEE Trans. Knowledge and Data Eng., 1992.

[21] J. Melton, ed. Database LanguageÐSQL, ANSI X3.135, 1992.

[22] J. Melton and A.R. Simon, Understanding the New SQL: A Complete
Guide. San Mateo, Ca.: Morgan Kaufmann, 1993.

[23] A. Montanari, E. Maim, E. Ciapessoni, and E. Ratto, ªDealing with
Time Granularity in the Event Calculus,º Proc. Int'l Conf. Fifth
Generation Computer Systems (ICOT), pp. 702±712, June 1992.

[24] M. Niezette and J. Stevenne, ªAn Efficient Symbolic Representa-
tion of Periodic Time,º Proc. First Int'l Conf. Information and
Knowledge Management (CIKM), Nov. 1992.

[25] N. Sarda, ªHSQL: A Historical Query Language,º Temporal
Databases: Theory, Design, and Implementation. Chap. 5, Benjamin/
Cummings, pp. 110±140, 1993.

[26] R.T. Snodgrass, I. Ahn, G. Ariav, D.S. Batory, J. Clifford, C.E.
Dyreson, R. Elmasri, F. Grandi, C.S. Jensen, W. Kafer, N. Kline, K.
Kulkanri, T.Y.C. Leung, N. Lorentzos, J.F. Roddick, A. Segev, M.D.
Soo, and S.M. Sripada, The TSQL2 Temporal Query Language.
Kluwer Academic, 1995.

[27] R.T. Snodgrass, M.H. BoÈhlen, C.S. Jensen, and A. Steiner, ªAdding
Valid Time to SQL/Temporal,º Change proposal, ANSI X3H2-96-
501r2, ISO/IEC JTC1/SC21/ WG3 DBL MAD-146r2, Nov. 1996.

[28] A. Srivastava and A. Eustace, ªATOM: A System for Building
Customized Program Analysis Tools,º Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, pp. 196±205,
June 1994.

[29] M.D. Soo, R.T. Snodgrass, C.E. Dyreson, C.S. Jensen, and N. Kline,
ªArchitectural Extensions to Support Multiple Calendars,º
TempIS Technical Report 32, Computer Science Dept., Univ. of
Arizona, revised May 1992.

[30] P. Terenziani, ªIntegrating Calendar Dates and Qualitative
Temporal Constraints in the Treatment of Periodic Events.º IEEE
Trans. Knowledge and Data Eng., vol. 9, no. 5, pp. 763±783, Sept./
Oct. 1997.

[31] X. Wang, ªAlgebraic Query Languages on Temporal Databases
with Multiple Time Granularities,º Proc. Int'l Conf. Information and
Knowledge Management (CIKM), 1995.

[32] X. Wang, S. Jajodia, and V. Subrahmanian, ªTemporal Modules:
An Approach Toward Temporal Databases,º Information Sciences,
vol. 82, no. 1/2, pp. 103±128, Jan. 1995.

[33] G. Wiederhold, S. Jajodia, and W. Litwin, ªDealing with
Granularity of Time in Temporal Databases,º Proc. Third Nordic
Conf. Advanced Information Systems Eng., May 1991.

Curtis E. Dyreson received the PhD degree
from the University of Arizona, in 1994. He has
been working in the field of temporal databases.
After several years of toiling at James Cook
University in tropical Queensland, he traveled to
Aalborg University in northern Denmark to
continue researching temporal databases.

William S. Evans received the BSc degree in
computer science from Yale University in 1987
and the PhD degree in computer science from
the University of California at Berkley in 1994.
He then spent two years as a NSERC Canada
International Postdoctoral Fellow at the Univer-
sity of British Columbia. He is now on the faculty
at the University of Arizona. He is a member of
the IEEE.

586 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

Hong Lin received the MS degree in physics
from Northwestern University in 1993, and the
MS degree in computer science from the
University of Arizona in 1995. She is a software
engineer at IBM Global Services.

Richard T. Snodgrass received his PhD
degree from Carnegie Mellon University in
1982 and joined the University of Arizona in
1989, where he is a professor of computer
science.

He is chair of ACM SIGMOD. He is a fellow
of the ACM and a senior member of the IEEE.
He is an associate editor of the ACM Transac-
tions on Database Systems and is on the
editorial board of the International Journal of

Very Large Databases. He chaired the program committees for the 1994
ACM SIGMOD Conference and the 1993 International Workshop on an
Infrastructure for Temporal Databases. He also was a vice-chair of the
program committees for the 1993 and 1994 International Conferences
on Data Engineering and will chair the American program committee for
the 2001 International Conference on Very Large Databases.

He chaired the TSQL2 Language Design Committee, edited the
book, The TSQL2 Temporal Query Langauage, published by Kluwer
Academic Press, and is now working closely with the ISO SQL3
Committee to add temporal support to that language. He initiated the
SQL/Temporal part of the SQL3 draft standard. He is a coauthor of
Advanced Database Systems, published by Morgan Kaufmann, a
coeditor of Temporal Databases: Theory, Design, and Implementation
published by Benjamin/Cummings and author of Developing Time-
Oriented Database Applications in SQL, published by Morgan Kauf-
mann. He codirects TIMECENTER, an international center for the support
of temporal database applications on traditional and emerging DBMS
technologies.

His research interests include temporal databases, query language
design, query optimization and evaluation, storage structures, database
design, and software development databases.

DYRESON ET AL.: EFFICIENTLY SUPPORTING TEMPORAL GRANULARITIES 587

