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Abstract—A wide range of database applications manage time-varying information. Existing database technology currently provides
little support for managing such data. The research area of temporal databases has made important contributions in characterizing
the semantics of such information and in providing expressive and efficient means to model, store, and query temporal data. This
paper introduces the reader to temporal data management, surveys state-of-the-art solutions to challenging aspects of temporal
data management, and points to research directions.

Index Terms—Query language, SQL, temporal database, temporal data model, time-constrained database, transaction time,
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1 INTRODUCTION

TEMPORAL DATABASE records time-varying information.
Most database applications are temporal in nature,

e.g., financial applications such as portfolio management,
accounting, and banking, record-keeping applications such
as personnel, medical-record, and inventory management,
scheduling applications such as airline, train, and hotel res-
ervations and project management, and scientific applica-
tions such as weather monitoring.

The study of temporal databases is a vibrant research
topic, with an active community of several hundred research-
ers who have produced some 2,000 papers over the last two
decades. These papers are listed in a series of seven cumu-
lative bibliographies (the last [23] provides pointers to the
previous ones). The field has produced a comprehensive
glossary of terminology [8], a book-length survey providing
a snapshot circa 1993 [19], and three workshop proceedings
[2], [3], [15]. The nascent SQL3 draft standard now includes
Part 7, SQL/Temporal [11]. The topic of temporal databases
is now included in textbooks and an encyclopedia [20].

The present paper examines a variety of central areas of
temporal database research. Each area is first motivated,
and then sample contributions are surveyed, to give the
reader a feel for the type of challenges and issues that are
faced in each particular area. None of the existing surveys
provides a short entree into the field as presented by this
paper. The paper concludes with the authors’ outlook into
the possible future of temporal database research.

Given the space limitation, we cannot survey all areas,
let alone all contributions, and the presentation must
be brief. Thus, we have omitted a wide range of contribu-
tions that we consider important. A recent survey [12] and
the slightly older book on temporal databases [19] go into
more depth. We have also found it useful to focus on

relational databases. The relational model is well-known,
and its simplicity is conducive to maintaining an emphasis
on the temporal essence of past research.

2 ONTOLOGICAL FOUNDATIONS

Before we proceed to consider temporal data models and
query languages, we examine in data model-independent
terms the association of times and facts, which is at the core
of temporal data management.

Initially, a brief description of terminology is in order. A
database models and records information about a part of
reality, termed the miniworld. Aspects of the miniworld are
represented in the database by a variety of structures that
we will simply term database entities. We will employ the
term “fact” for any statement that can meaningfully be as-
signed a truth value, i.e., that is either true or false. In gen-
eral, times are associated with database entities.

Our focus will be on the facts that databases record. Sev-
eral different temporal aspects have been associated with
these. Most importantly, the valid time of a fact is the col-
lected times—possibly spanning the past, present, and fu-
ture—when the fact is true in the miniworld [8]. Valid time
thus captures the time-varying states of the miniworld. By
definition, all facts have a valid time. However, the valid
time may not necessarily be recorded in the database, for
any of a number of reasons. For example, the valid time
may not be known, or recording it may not be relevant for
the applications supported by the database. If a database
models different possible worlds, the database facts may
have several valid times, one for each such world.

Next, the transaction time of a database fact is the time
when the fact is current in the database. Unlike valid time,
transaction time may be associated with any database en-
tity, not only with facts. For example, transaction may be
associated with objects and values that are not facts because
they cannot be true or false in isolation. Thus, all database
entities have a transaction-time aspect. This aspect may or
may not, at the database designer’s discretion, be captured
in the database. The transaction-time aspect of a database
entity has a duration: from insertion to (logical) deletion.
Transaction time captures the time-varying states of the
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database, and applications that demand accountability or
traceability rely on databases that record transaction time.

Observe that the transaction time of a database fact,
say “F,” is the valid time of the related fact, “F is current
in the database.” This would indicate that supporting trans-
action time as a separate aspect is redundant. However,
both valid and transaction time are aspects of the contents
of all databases, and recording both of these is essential in a
wide range of applications. In addition, transaction time,
due to its special semantics, is particularly well-behaved
and may be supplied automatically by the DBMS. Specifi-
cally, the transaction time of facts stored in the database
marches monotonically forward, and is bounded by the
time the database was created at one end and by the current
time at the other end. This provides the rationale for the
focus of most temporal database research on providing im-
proved support for valid time and transaction time as sepa-
rate aspects.

In addition, some other times have been considered, e.g.,
decision time. But the desirability of building decision time
support into temporal database technologies is unclear,
because the number and meaning of “the decision times” of
a fact varies from application to application and because
decision times, unlike transaction time, generally do not
exhibit specialized properties.

Much research has been conducted on the semantics and
representation of time, from quite theoretical topics such as
temporal logic and infinite periodic time sequences to
rather applied questions such as how to represent time val-
ues in minimal space and how to utilize calendars. Also,
there is a large body of research on time data types, e.g.,
time points, time intervals (or “periods”), and temporal
elements (sets of intervals).

3 TEMPORAL DATA MODELS

Temporal data management can be very difficult using
conventional (nontemporal) data models and query lan-
guages. Accommodating the time-varying nature of the
enterprise is largely left to the developers of database

applications, leading to ineffective and inefficient ad hoc
solutions that must be reinvented each time a new applica-
tion is developed. The result is that data management is
currently an excessively involved and error-prone activity.

The first step providing support for temporal data
management is to extend the database structures of the
data model supported by the DBMS. More specifically,
means must be given for capturing the valid and transac-
tion times of the facts recorded by the relations, leading to
temporal relations.

Subsequent steps are to provide support for temporal
data modeling and database design, and to design temporal
query languages that operate on the databases of the tem-
poral data models. These topics are covered in Sections 4
and 5, respectively.

Adding time to the relational model, then, has been a
daunting task, and more than two dozen extended rela-
tional data models have been proposed [9]. Most of these
models support valid time only; some also support trans-
action time. We will consider three of these latter models
and related design issues.

As a simple example, consider a video store where cus-
tomers, identified by the CustomerID attribute, rent video
tapes, identified by the TapeNum attribute. We consider a
few rentals during May 1997. On the Second of May, cus-
tomer C101 rents tape T1234 for three days. The tape is sub-
sequently returned on the Fifth. Also on the Fifth, customer
C102 rents tape T1245 with an open-ended return date. The
tape is eventually returned on the Eighth. On the Ninth,
customer C102 rents tape T1234 to be returned on the 12th.
On the 10th, the rental period is extended to include the
13th, but this tape is not returned until the 16th. The video
store keeps a record of these rentals in a relation termed
CheckedOut.

Fig. 1 illustrates a relation instance in the Bitemporal Con-
ceptual Data Model (BCDM) [9] that describes the sample
rental scenario. This data model timestamps tuples, corre-
sponding to facts, with values that are sets of (transaction
time, valid time)-pairs, captured using attribute T in the fig-
ure. Fig. 2 provides a graphical illustration of the three

Fig. 1. Bitemporal conceptual CheckedOut instance.
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timestamp values, which are termed bitemporal elements.
In the general case of infinite and continuous time domains,
these are finite unions of rectangles in the two-dimensional
space spanned by valid and transaction time.

The presence of a pair (tt, vt) in a timestamp of a tuple
means that the current state of the database at time tt rec-
ords that the fact represented by the tuple is valid at time
vt. The special value UC (“until changed”) serves as a
marker indicating that its associated facts remain part of the
current database state, and the presence of this value results
in new time pairs being included into the sets of pairs at
each clock tick.

The timestamp of the second tuple is explained as fol-
lows. On the Fifth, it is believed that customer C102 has
checked out tape T1245 on the Fifth. Then, on the Sixth, the
rental period is believed to include the Fifth and the Sixth.
On the Seventh, the rental period extends to also include
the Seventh. From then on, the rental period remains fixed.
The current time is the 17th, and as time passes, the region
grows to the right; the arrows indicate this and correspond
to the UC values in the textual representation.

The idea behind the BCDM is to retain the simplicity of
the relational model while also capturing the temporal as-
pects of the facts stored in a database. Because no two tu-
ples with mutually identical explicit attribute values
(termed value-equivalent) are allowed in a BCDM relation
instance, the full history of a fact is contained in exactly one
tuple. In addition, BCDM relation instances that are syntac-
tically different have different information content, and vice
versa. This conceptual cleanliness is generally not obtained
by other bitemporal models where syntactically different
instances may record the same information.

However, when it comes to the internal representation
and the display to users of temporal information, the BCDM
falls short. Although it is arguably a first-normal-form rela-
tion, the varying length and voluminous timestamps of

tuples are impractical to manage directly, and the time-
stamp values are also hard to comprehend in the BCDM
format. Better suited representations of temporal informa-
tion exist for these purposes.

Fig. 3 illustrates the same temporal information as in
Fig. 1, in two different data models. The model exemplified
at the top uses a practical and popular (particularly when
implementation is considered) fixed-length format for tu-
ples. Attributes Ts and Te record starting and ending trans-
action times, and Vs and Ve record starting and ending valid
times. In this format, each tuple’s timestamp then encodes a
rectangular or stair-shaped bitemporal region, and it may
take several such tuples to represent a single fact.

The relation format at the bottom in Fig. 3 is a typical
non-first-normal-form representation. In this format, a re-
lation is thought of as recording information about some
type of objects. The present relation records information
about customers and thus holds one tuple for each cus-
tomer in the example, with a tuple containing all informa-
tion about a customer. In this way, a single tuple records
multiple facts. For example, the second tuple records two
facts: rental information for customer C102 for the two
tapes T1245 and T1234.

Unlike in the BCDM where relations must be updated at
every clock tick, relations in the two other formats stay up-
to-date; this is achieved by introducing variables (e.g., now)
as database values that assume the (changing) current time
value. It should be noted that all of the three types of bi-
temporal relations are equally expressive in that they may
record the same facts. Put more formally (and briefly), the
relation instances that these models may record are snap-
shot equivalent.

Fig. 2. Bitemporal diagram of the CheckedOut instance.

Fig. 3. Alternative representations of the CheckedOut instance.
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Finally, it should be noted that the sample relations il-
lustrate the two predominant choices for where to enter
time values into relations, namely at the level of tuples (tu-
ple timestamping) and at the level of attribute values (“at-
tribute” timestamping).

4 DESIGNING TEMPORAL DATABASES

Database design is typically considered in two contexts. In
conceptual design, a database is modeled using a high-level
design model that is independent of the particular (imple-
mentation) data model of the DBMS that is eventually to be
used for managing the database. The second context of da-
tabase design is the implementation data model, which is
assumed to conform to the ANSI/X3/SPARC three-level
architecture. In this context, database design must thus be
considered at the view, logical, and physical (or, “internal”)
levels. We proceed to consider conceptual and logical de-
sign of temporal databases.

4.1 Conceptual Design
By far, most research on conceptual design of temporal da-
tabases has been in the context of the Entity-Relationship
(ER) model. This model, in its varying forms, is enjoying a
remarkable, and increasing, popularity in industry. Build-
ing on the example introduced in Section 3, Fig. 4 illustrates
a conventional ER diagram for video rentals.

The research on temporal ER modeling is well moti-
vated. It is widely known that the temporal aspects of the
miniworld are very important in a broad range of applica-
tions, but are also difficult to capture using the ER model.
Put simply, when attempting to capture the temporal as-
pects, these tend to obscure and clutter otherwise intuitive
and easy-to-comprehend diagrams.

The diagram in the figure is nontemporal, capturing the
miniworld at a single point in time. Attempting to capture
the temporal aspects that are essential for this application
clutters up the simple diagram. For example, since the same
customer may check out the same tape at different times,
the CustomerID and TapeNum attributes do not identify a
single instance of CheckedOut. Instead, it is necessary to
make CheckedOut a ternary relationship type, with the
third entity type capturing start dates of rentals. There is
also the issue of where to place the end-time attribute of
rentals. Next, rental prices may vary over time, e.g., due to

promotions and films getting old. Finally, including trans-
action time further complicates matters.

The research community’s response has been to de-
velop temporally enhanced ER models. Indeed, about a
dozen such models have been reported in the research
literature [5]. These models represent attempts at modeling
the temporal aspects of information more naturally and
elegantly. The proposed extensions are based on quite
different approaches. One approach is to devise new nota-
tional shorthands that replace some of the patterns that
occur frequently in ER diagrams when temporal aspects
are being modeled. One example is the pattern that oc-
curs when modeling a time-varying attribute in the ER
model. Another approach is to change the semantics of the
existing ER model constructs, making them temporal. In its
extreme form, this approach does not result in any new
syntactical constructs—all the original constructs have sim-
ply become temporal. With this approach, it is also possible
to add new constructs.

The ideal temporal ER model is easy to understand in
terms of the ER model; does not invalidate legacy diagrams
and database applications; and does not restrict the data-
base to be temporal, but rather permits the designer to mix
temporal and nontemporal aspects.

The existing models typically assume that their schemas
are mapped to schemas in the relational model that serves
as the implementation data model. The mapping algo-
rithms are constructed to add appropriate time-valued
attributes to the relation schemas. None of the models have
one of the many time-extended relational models pro-
posed [12] as their implementation model. These models
have data-definition and query-language capabilities that
better support the management of temporal data and
would thus constitute natural candidate implementation
platforms. Also, mappings to emerging models (e.g., SQL3)
are missing. It is a challenge to design mappings that
maximally exploit these and other candidate implementa-
tion platforms.

4.2 Logical Design
A central goal of conventional relational database de-
sign is to produce a database schema, consisting of a set of
relation schemas. Normal forms constitute an attempt at
characterizing “good” relation schemas. A wide variety of

Fig. 4. Nontemporal conventional ER diagram for video rentals.
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normal forms has been proposed, the most prominent being
third normal form and Boyce-Codd normal form. An exten-
sive theory has been developed to provide a solid for-
mal footing.

The existing normalization concepts are not applicable to
temporal relational data models because these models em-
ploy relational structures that are different from conven-
tional relations. There is thus a need for new temporal
normal forms and underlying concepts that may serve as
important guidelines during temporal database design.

In response to this need, an array of temporal normali-
zation concepts have been proposed [9], including temporal
dependencies, keys, and normal forms. Consider the
CheckedOut relation schema from Section 3, as exempli-
fied in Figs. 1 and 3. Does CustomerID (temporally) de-
termine TapeNum or vice versa? Looking at the first repre-
sentation in Fig. 3 and applying conventional dependencies
directly, the answer to both questions is no. (Note that the
possible answers are ‘no’ and ‘perhaps.’) The second repre-
sentation is so different from a regular relation that it makes
little sense to directly apply conventional dependencies.
The relation in Fig. 1 also rules out any of the dependencies
when we apply regular dependencies directly.

Stepping back, it should be that the same dependen-
cies hold for the CheckedOut relation independently of
how it is represented. At any point in time, a customer may
have checked out several tapes. In contrast, a tape can only
be checked out by a single customer at a single point in
time. With this view, TapeNum temporally determines Cus-
tomerID, but the reverse does not hold. This notion of de-
pendency naturally generalizes conventional dependencies
and may be applied to other dependencies than functional.
With this notion of dependency, a temporal normalization
theory may be built that parallels conventional normaliza-
tion theory and that is independent of any particular repre-
sentation of a temporal relation.

Dependencies and their associated normal forms can
also be defined between time points, and taking into account
temporal granularity [21], [22].

5 ADDING TIME TO QUERY LANGUAGES

Given the prevalence of applications that currently manage
time-varying data, one might ask why a temporal query
language is even needed. Is the existence of all this SQL
code not proof that SQL is sufficient for writing such appli-
cations? The reality is that in conventional query languages
like SQL, temporal queries can be expressed, but with great
difficulty.

In addition to the CheckedOut relation from Section 3,
we assume in this section a VideoTape relation with at-
tributes TapeNum, Title, and RentalPrice. Consider
first this database with only current information. To deter-
mine who has checked out which titles, SQL provides a
natural solution:

SELECT CustomerID, Title
FROM CheckedOut, VideoTape
WHERE CheckedOut.TapeNum =

VideoTape.TapeNum

We then extend the VideoTape and CheckedOut re-
lations to record also past and future states by adding to
each relation two additional attributes, StartDate and
EndDate, specifying the interval of validity of the tuples.
To request the history of who checked out which titles re-
quires 25(!) lines of SQL: four SELECT statements, UNIONed
together, performing a case analysis of how the interval of
validity of CheckedOut overlaps the interval of validity of
VideoTape (see pp. 106–107 of [18]).

As another example, specifying referential integrity on
the nontemporal relations is trivial in SQL: “CONSTRAINT
TapeNum REFERENCES VideoTape.” When the two re-
lations are time-varying, referential integrity requires
a 28-line SQL assertion, with triply nested EXISTS/NOT
EXISTS subqueries. (Readers are encouraged to try their
hand at these two examples.) Ordinary queries on the
nontemporal relations become extremely challenging
when timestamp attributes are added. Even SQL experts
would be hard pressed to express the following in SQL:
What is the history of the average rental price for checked
out video tapes?

Some 40 temporal query languages have been defined
[18], most with their own data model. One of the most re-
cent is TSQL2 [16], developed as a second-generation lan-
guage by many of the designers of first-generation tempo-
ral query languages. The goal of TSQL2 was to consolidate
approaches to temporal calculus-based query languages, to
achieve a consensus extension to SQL-92 [10] upon which
future research could be based.

With a temporal query language, simple queries should
remain simple when time is added. The temporal join can
be expressed in the variant of TSQL2 being proposed for
inclusion into SQL3 [17] as follows:

VALIDTIME SELECT CustomerID, Title
FROM CheckedOut, VideoTape
WHERE CheckedOut.TapeNum =

VideoTape.TapeNum

Similarly, referential integrity can be expressed as
“CONSTRAINT TapeNum VALIDTIME REFERENCES
VideoTape.” Even with this minimal explanation, the
reader should have no difficulty in expressing the average
rental price query in this extension to SQL.

Early query languages were based on the relational alge-
bra. Calculus-based, datalog-based, and object-oriented
temporal query languages appeared later. Much of the re-
cent work involves extensions to SQL.

As query languages are strongly influenced by the un-
derlying data model, many of the issues raised in Section 3
have analogues in temporal query languages. As one ex-
ample, whether the data model timestamps tuples or at-
tribute values influences the language. The history of who
checked out which titles can be expressed in the TempSQL
[4] query language, which utilizes attribute-value time-
stamps, as shown in Fig. 3.

SELECT CustomerID, Title
WHILE [[CheckedOut.TapeNum =

VideoTape.TapeNum]] > [Now, Now] × [0, ∞]
FROM CheckedOut, VideoTape
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Here, the WHILE construct restricts the time domain of the
resulting attributes to those times when the equality was
satisfied. The intersection ensures we only examine the data
that is current in the database, that is, data with a transac-
tion time of now.

Language design must consider the impact of the time-
varying nature of data on all aspects of the language,
including predicates on temporal values, temporal con-
structors, supporting states or events (or both) in the lan-
guage, supporting multiple calendars, modification of tem-
poral relations, cursors, views, integrity constraints, tempo-
ral indeterminacy, handling now, aggregates, schema ver-
sioning, vacuuming, and periodic data. Most of these
topics have been the sole focus of one (or several) papers.
However, these aspects interact in subtle ways, requiring
consideration of all (or a substantial subset) to ensure that
the design makes sense. Adequately documenting the de-
sign, rationale, and semantics of a comprehensive attack on
the problem is daunting: the description of TSQL2 required
some 700 pages [16].

Recently a set of criteria for temporal query languages
has emerged. These include temporal upward compatibility
(that is, conventional queries and modifications on tempo-
ral relations should act on the current state); support for
sequenced queries (that request the history of something,
such as the temporal join above); support for point-based
and interval-based semantics; adequate expressive power;
and the ability to be efficiently implemented.

6 TEMPORAL DBMS IMPLEMENTATION

There has been a vast amount of work in storage structures
and access methods for temporal data, as well as a dozen-
odd temporal DBMS prototypes [1]. There have been two
basic approaches. Most authors assume an integrated ap-
proach, in which the internal modules of a DBMS are modi-
fied or extended to support time-varying data. More re-
cently, there has been work using a stratum approach, in
which a layer converts temporal query language statements
into conventional statements executed by an underlying
DBMS, which is itself not altered. While the former ap-
proach ensures maximum efficiency, the latter approach is
more realistic in the medium term. In the following we will,
consistent with the vast majority of papers on temporal
DBMS implementation, assume an integrated approach,
utilizing timestamping of tuples with time intervals.

6.1 Query Processing
Optimization of temporal queries is more involved than
that of conventional queries, for several reasons. First,
the relations that temporal queries are defined over are
often larger; this justifies trying harder to optimize the
queries, and spending more execution time to perform the
optimization. Second, the predicates used in temporal
queries are harder to optimize. In traditional database ap-
plications, predicates are usually equality predicates (hence
the prevalence of equijoins and natural joins). In temporal
queries, conjunctions of inequality predicates appear more
frequently. As an example, the TSQL2 temporal join query
given in Section 5 determines the overlap between validity

intervals from the CheckedOut relation and the VideoTape
relation. This overlap is translated into two “≤” predicates
on the underlying timestamps, as follows:

BEGIN(CheckedOut) <= END(VideoTape) AND
BEGIN(VideoTape) <= END(CheckedOut)

Conventional DBMSs focus on equality predicates and of-
ten implement inequality joins as Cartesian products, with
their concomitant inefficiency.

There are new and unexploited opportunities for query
optimization when time is present. The current time ad-
vances continuously and, for transaction time, the time
value used most recently in updates is the largest value
used so far. This implies that a natural clustering or sort
order will manifest itself, which can be exploited during
query optimization and evaluation. The integrity con-
straint BEGIN(i) <= END(i) holds for every interval i.
Also, for many relations, the intervals associated with a
key are contiguous in time, with one interval starting ex-
actly when the previous interval ended (an example is
the VideoTape relation). Semantic query optimization can
exploit these integrity constraints, as well as additional
ones that can be inferred.

6.2 Implementing Algebraic Operators
Attention has been directed at the common (and often ex-
pensive) temporal algebraic operators: selection, joins, ag-
gregates, and duplicate elimination. We examine selection
in the next section, on temporal indexes.

A wide variety of binary joins have been considered, in-
cluding time-join and time-equijoin (TE-join), event-join, and
TE-outerjoin, contain-join, contain-semijoin and intersect-join,
and temporal natural join (e.g., [6]). The various algorithms
proposed for these joins have generally been extensions to
nested loop or merge joins that exploit sort orders or local
workspace, as well as hash joins. Next, time-varying aggre-
gates are especially challenging. While there has been much
work on the topic in the data warehousing context, only a
few papers have considered the more general problem. Fi-
nally, coalescing is an important operation in temporal data-
bases. Coalescing merges value-equivalent tuples with in-
tervals that overlap or meet. This operation may be imple-
mented by first sorting the argument relation on the explicit
attribute values as well as the valid time. In a subsequent
scan, the merging is then accomplished.

6.3 Indexing Temporal Data
Conventional indexes have long been used to reduce the
need to scan an entire relation to access a subset of its
tuples, to support the selection algebraic operator and
temporal joins. Indexes are even more important in tempo-
ral relations due to their size. Many temporal indexing
strategies are available [14]. Many of the indexes are based
on B+-trees, which index on values of a single key; most of
the remainder are based on R-trees, which index on ranges
(intervals) of multiple keys. The worst-case performance for
most proposals has been evaluated in terms of total space
required, update per change, and several important queries.
Most of this work is in the context of the selection operator.
As also mentioned, indexes may be used to efficiently
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implement temporal joins, coalescing, and aggregates—this
is an area of active investigation.

7 SUMMARY

This paper has briefly introduced the reader to temporal
data management, emphasizing what we believe are im-
portant concepts and surveying important results produced
by the research community. In what remains, we first sum-
marize the current state-of-the-art, then point to issues that
remain challenges and which require further attention.

A great amount of research has been expended on tem-
poral data models and query languages, which has shown
itself as an extraordinarily complex challenge with subtle
issues. We feel that the semantics of standard temporal re-
lational schemas and their logical design are well under-
stood, and the Bitemporal Conceptual Data Model is gain-
ing acceptance as the appropriate model in which to con-
sider data semantics.

Many languages have been proposed for querying tem-
poral databases, half of which have a formal basis. The nu-
merous types of temporal queries are fairly well under-
stood. The TSQL2 query language has consolidated many
years of research results into a single, comprehensive lan-
guage. Constructs from that language are being incorpo-
rated into a new part of SQL3, called SQL/Temporal [11].

The semantics of the time domain, including its struc-
ture, dimensionality, and indeterminacy, is quite well un-
derstood, and representational issues of timestamps have
recently been resolved. Operations on timestamps are now
well understood, and efficient implementations exist.

Temporal joins, aggregates, and coalescing are well un-
derstood, and efficient implementations exist. More than
a dozen temporal index structures have been proposed,
supporting valid time, transaction time, or both. A handful
of prototype temporal DBMS implementations have been
developed [1].

8 OUTLOOK

While numerous important insights and results have been
reported, there are still many research challenges, some of
which we now consider. Quite frankly, insufficient attention
is being paid, in our opinion, to many of these pressing
problems, reducing the potential impact of earlier results. In
many cases the core concepts are now available, but have
yet to be applied, or shown how they can be applied, to
simplify and automate the data management activities of
those in the trenches.

We feel that there is a need for increased legacy-awareness
in a number of areas within temporal databases. Research is
needed that takes into account the reality that most data-
bases are in fact legacy temporal databases and that the
applications running on them are in fact legacy temporal
database applications. In contrast, most research so far has
assumed that applications will be designed using a new
temporal data model, implemented using novel temporal
query languages, and run on as yet nonexistent temporal
DBMSs. In the short to medium term, this is an unrealistic
assumption. Indeed, in part because of this and despite the

obvious need in the marketplace, no prominent commercial
temporal relational DBMS exists.

The recent growth in database architectures, including
the various types of middleware, prompts a need for in-
creased architecture-awareness. Studies are needed to provide
the concepts and approaches for third-party developers to
efficiently and effectively implement temporal database
technology while maximally exploiting available architec-
tural infrastructure and the functionality already offered by
existing DBMSs. The resulting temporal DBMS architec-
tures will provide a highly relevant alternative to the stan-
dard integrated architecture that is generally assumed. As a
next step, research is needed to exploit existing and novel
performance-improving advances, such as temporal alge-
braic operator implementations and indexes, in these ar-
chitectures. Finally, approaches for transitioning legacy ap-
plications will become increasingly sought after as temporal
technology moves from research to practice.

Also, there has been little work on adding time to so-
called fourth-generation languages that are revolution-
izing user interfaces for commercially available DBMSs.
Figs. 1 and 3 further emphasize the need for ways to
visualize temporal data. Scrolling down a table with addi-
tional timestamp attributes is not likely to be effective.

We feel that results on the conceptual design of temporal
databases have potential for finding application in practice,
but additional research is needed. When database designers
actually understand temporal database concepts, they are
able to design better databases using existing models and
tools. A central challenge is to provide complete conceptual
models, with associated design tools, that cover all aspects
of designing a temporal database; empirical evaluation of
these by real users is needed to provide essential insights.

Concerning performance, more empirical studies are
needed to compare temporal algebraic operator imple-
mentations, and to possibly suggest even more efficient
implementations. While preliminary performance studies
have been carried out for each of the proposed temporal
indexes in isolation, there has been little effort to empiri-
cally compare them. More work is also needed on exploit-
ing temporal indexes in algebraic operations other than
selection. Finally, there has been little work in refining and
validating cost models of temporal operators, or of devel-
oping and maintaining database statistics. For example, the
cardinality (number of specific values) of an attribute is less
useful than the average cardinality at a point in time. An-
other useful statistic is the number of long-lived tuples, the
presence of which is the bane of some index structures and
temporal algebraic operators.

Active databases, which include rules for responding to
changes to the database and to external events, are being
extended to take into account prior history (e.g., a tem-
perature reading in a nuclear power plant may be accept-
able if it is decreasing; that same temperature reading may
signal a problem if it is increasing). As yet there has been
little integration of rule constructs and temporal constructs.

We expect the area of spatiotemporal databases to become
increasingly important. Providing built-in support for both
space and time makes it convenient to manage objects with
extents in physical space and time, opening up for new
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database applications. For example, many “moving objects”
such as rental cars will be equipped with GPS devices, and
their trajectories will be stored in databases. The integration
of temporal databases with spatial databases offers new
challenges. As a single example, no really good index seems
to exist for the trajectories of moving objects.

Temporal data mining is a largely unexplored area. While
extracting static associations from a mass of data is an im-
portant goal, more effort needs to be focused on associa-
tions that capture time-varying behavior, such as “When
stock A goes up, stock B goes up within two weeks.”

The fairly recent focus among vendors, users, and re-
searchers alike on data warehousing has brought new promi-
nence to temporal databases. Inmon, known as the founder
of data warehousing, cites time variance as one of four sali-
ent characteristics of a data warehouse [7], and there is gen-
eral consensus that a data warehouse is likely to contain
several years of time-referenced data. Being temporal, data
warehouses are thus prime candidates to benefit from the
advances in temporal databases. But there appears to be a
lack of integration. In fact, some of the original impetus for
a separate data model and query language for data ware-
houses arose from a perceived lack of temporal support in
the relational model and SQL. We feel that increased sup-
port for time-varying data in SQL will enable greater use of
relational databases directly in data warehousing applica-
tions. If the differentiation between relational and star
schemas could be reduced, users and developers could ex-
ploit an overarching data model for the enterprise. Con-
versely, the special architecture of a data warehouse and the
emphasis on supporting advanced query functionality, e.g.,
application-specific time-series analysis, bring novel chal-
lenges to temporal database researchers.

Another active area of commercial products is that of
time-series abstract data types (i.e., Informix’s datablades,
Oracle’s cartridges). These extensions are highly useful for
specialized applications, particularly in the financial sphere,
but do not address the general problem of easy expression
of temporal constraints, queries, and modifications dis-
cussed in Section 5. Rather, a more comprehensive ap-
proach along the lines of the extensions being considered
for SQL/Temporal appears to be more appropriate. Inter-
estingly, the object-oriented features of SQL3 are largely
orthogonal to and unaffected by these temporal extensions.

Adopting a longer term perspective, we find it likely that
new database management technologies and application
areas will continue to emerge that provide ‘temporal’ chal-
lenges. Due to the ubiquity of time and its importance to
most database management applications, and because
built-in temporal support generally offers many benefits
and is challenging to provide, we expect research in tempo-
ral aspects of new database management technologies for
existing and new application areas to continue to flourish.
For example, in the relatively new area of web and data-
bases, we expect research on temporal aspects to emerge. In
fact, this universal concern for the specific needs of time-
varying data could eventually mean that ‘temporal data-
bases’ will cease to be considered a separate subdiscipline
of database research: Ultimately, all aspects of data man-
agement will naturally accommodate the inherently tempo-
ral nature of data.
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