IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 1,

JANUARY/FEBRUARY 2001

A Foundation for Conventional
and Temporal Query Optimization
Addressing Duplicates and Ordering

Giedrius Slivinskas, Christian S. Jensen, Senior Member, IEEE, and
Richard T. Snodgrass, Senior Member, IEEE

Abstract—Most real-world databases contain substantial amounts of time-referenced, or temporal, data. Recent advances in temporal
query languages show that such database applications may benefit substantially from built-in temporal support in the DBMS. To
achieve this, temporal query representation, optimization, and processing mechanisms must be provided. This paper presents a
foundation for query optimization that integrates conventional and temporal query optimization and is suitable for both conventional
DBMS architectures and ones where the temporal support is obtained via a layer on top of a conventional DBMS. This foundation
captures duplicates and ordering for all queries, as well as coalescing for temporal queries, thus generalizing all existing approaches
known to the authors. It includes a temporally extended relational algebra to which SQL and temporal SQL queries may be mapped, six
types of algebraic equivalences, concrete query transformation rules that obey different equivalences, a procedure for determining
which types of transformation rules are applicable for optimizing a query, and a query plan enumeration algorithm. The presented
approach partitions the work required by the database implementor to develop a provably correct query optimizer into four stages: The
database implementor has to 1) specify operations formally, 2) design and prove correct appropriate transformation rules that satisfy
any of the six equivalence types, 3) augment the mechanism that determines when the different types of rules are applicable to ensure
that the enumeration algorithm applies the rules correctly, and 4) ensure that the mapping generates a correct initial query plan.

Index Terms—Temporal databases, query optimization, transformation rules, temporal algebra, duplicate elimination, coalescing.

<4

INTRODUCTION

21

MOST real-world database applications rely on time-
referenced data. For example, this applies to financial,
medical, and travel applications; and, being time-variant is
one of Inmon’s defining properties of a data warehouse
[17]. Recent advances in temporal query languages [11], [19]
show that such applications may benefit substantially from
running on a DBMS with built-in temporal support. The
potential benefits are several: application code is simplified
and more easily maintainable, thereby increasing program-
mer productivity [35], and more data processing can be left
to the DBMS, potentially leading to better performance.

In contrast, the built-in temporal support offered by
current database products is limited to predefined time-
related data types, e.g., the Informix TimeSeries DataBlade
and the Oracle8 TimeSeries cartridge, and extensibility
facilities that enable the user to define new, e.g., temporal,
data types [37]. However, temporal support is needed that
goes beyond data types and extends the query language
itself.

Developing a DBMS with built-in temporal support from
scratch is a daunting task that may only be feasible by

e G. Slivinskas and C.S. Jensen are with the Department of Computer
Science, Aalborg University, Fredrik Bajers Vej 7E, DK-9220 Aalborg @Dst,
Denmark. E-mail: {giedrius, csj)@cs.auc.dk.

o R.T. Snodgrass is with the Department of Computer Science, University of
Arizona, 711 Gould Simpson, P.O. Box 210077, Tucson, AZ 85721-0077.
E-mail: rts@cs.arizona.edu.

Manuscript received 28 Feb. 2000; revised 6 July 2000; accepted 6 July 2000.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 112776.

DBMS vendors that already have a code base to modify and
have large resources available. This has led to the
consideration of a layered or stratum approach, where a
layer that implements temporal support is interposed
between the user applications and a conventional DBMS
[3], [36]. The layer maps temporal SQL statements to regular
SQL statements and passes them to the DBMS, which
remains unaltered.

This paper offers a foundation for conventional and
temporal query optimization that is applicable to both the
integrated and the layered architecture, making it relevant
for DBMS vendors planning to incorporate temporal
features into their products, as well as to third-party
developers that want to implement temporal support. The
foundation offers comprehensive, precise, and integrated
coverage of duplicates and ordering for all queries, as well
as of coalescing for temporal queries. (In coalescing, tuples
with adjacent time periods and otherwise identical attribute
values are consolidated.)

The foundation is enabled by a temporally extended
algebra that enhances existing relational algebras based on
sets or multisets by integrating the handling of order; the
algebra also adds temporal support. In addition to conven-
tional relations, the algebra employs temporal relations
timestamped with time periods, which are the most useful
for implementation because of their granularity indepen-
dence and fixed-size format. Previously proposed user-level
temporal relations may be mapped to this format [20]. More
generally, the algebra is independent of the specific user-
level temporal relational query language and data model

1041-4347/01/$10.00 © 2001 IEEE

22 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 1,

employed, and it provides support for the two main classes
of temporal statements found in the literature: 1) statements
that use built-in temporal semantics and are evaluated
conceptually at each point of time and 2) statements that
explicitly manipulate values of (new) temporal abstract data
types with convenient operations and predicates defined on
them. The temporal aspect considered is valid time [18],
which captures when data was, is, or will be true in the
modeled reality; the approach can be extended to also
handle transaction time alone, as well as in combination
with valid time.

In the algebra, relations are defined as lists, and six kinds
of equivalences are defined on them. Specifically, two
relations can be equivalent as lists, multisets, and sets, and
they can be snapshot-equivalent as lists, multisets, and sets.
For example, the last type of equivalence occurs when all
corresponding pairs of snapshot relations that may be
derived from a pair of temporal relations are the same when
considered as sets. (The snapshot of a temporal relation at
time ¢ contains those tuples (without the time periods) from
the temporal relation that have time periods containing ¢.)

These types of equivalences come into play because
queries specify different types of results. For example, an
SQL query not including ORDER BY and DISTINCT at the
outermost level specifies a result of type multiset, thus
opening the possibility of applying transformations that do
not preserve list equivalence. The paper provides a set of
transformation rules that satisfy different equivalences. This
set goes beyond all existing sets of rules known to the
authors. In addition, a practical procedure is offered for
determining when a type of transformation rule is applic-
able to a query. Finally, an algorithm is provided that
generates equivalent query evaluation plans.

Some work has been reported on nontemporal relational
algebras for multisets [1], [10], [12], with the most recent of
these, by Garcia-Molina et al., being also the most extensive.
This book offers comprehensive coverage of query trans-
formations that preserve set as well as multiset equiva-
lences. When formalizing relations as multisets, sorting is
permitted only at the outermost level. However, pushing
down sorting in a query plan can improve performance.
Moreover, in some cases, the sorting must be performed
early in the query evaluation. For example, DBMSs such as
Microsoft Access allow the ORDER BY clause in combination
with the TOP predicate in subqueries, thus requiring
intermediate results to be sorted.

Because relations are formalized as lists, comprehensive
support for sorting is achieved. In addition, a mechanism is
offered that determines when list, multiset, and set-based
equivalences, including their temporal counterparts, are
applicable during query optimization. Recent work by
Leung et al. [26] emphasizes the importance of considering
duplicates in DB2’s query rewrite rules. However, dupli-
cates are addressed as special cases when defining rewrite
rules, and no formal foundation for reasoning about these is
offered.

JANUARY/FEBRUARY 2001

More than a dozen temporal relational algebras have
been proposed [28], [31], but all the algebras known to the
authors are set-based and, hence, do not adequately address
issues related to duplicates, order, and coalescing. Existing
work on temporal query optimization [16], [27] primarily
considers the processing of joins and semijoins in isolation,
does not delve into general query optimization, and does
not address duplicates, order, and coalescing.

The paper is structured as follows: Section 2 describes
the layered architecture. Section 3 defines the underlying
database structures and presents the extended relational
algebra operations. The different types of algebraic equiv-
alences are described in Section 4, and the concrete
transformation rules that preserve the different equivalence
types are provided in Section 5. Sections 6 and 7 give a
procedure for determining when transformation rules
preserving the different types of equivalence are applicable
and provide a query plan enumeration algorithm. The
extensibility of the framework is briefly discussed in
Section 8. Section 9 surveys related work, and Section 10
concludes and offers research directions.

2 ARCHITECTURE

In this section, we discuss the layered or stratum archi-
tecture. We describe the functionality of the query
optimizer and the overall structure of the stratum.

Several papers discussing stratum architectures for a
temporal DBMS have been published, e.g., [36], and several
prototype temporal DBMSs have been implemented, e.g.,
[3], [7]. Most of the proposed temporal strata translate
temporal query language statements to SQL and perform no
systematic optimization or processing. However, dividing
processing between the stratum and the underlying DBMS
may improve query performance, since complex temporal
operations such as temporal aggregation, temporal dupli-
cate elimination, and coalescing are often not processed
efficiently in conventional DBMSs, but might be supported
by the stratum. We will use the term “stratum” to mean an
augmented stratum that, in addition to the mapping, per-
forms some of the query optimization and processing.

Fig. 1 shows the processes involved in optimizing and
evaluating a query. The stratum receives a temporal query
language statement as input. First, the query statement is
mapped to an initial plan, which is expressed in a
temporally extended algebra. The stratum’s query optimi-
zer generates a number of possible query evaluation plans.
The plans are costed, and one is selected for processing. The
fourth step is the only step that is specific to the stratum
architecture; here, the fragments of the plan to be performed
by the DBMS are translated into SQL. Finally, the resulting
SQL and stratum expressions are evaluated to obtain the
result. Since query processing may be distributed between
two systems, the query optimization in the second and third
steps becomes more challenging. This paper provides a

SLIVINSKAS ET AL.: A FOUNDATION FOR CONVENTIONAL AND TEMPORAL QUERY OPTIMIZATION ADDRESSING DUPLICATES AND... 23

Mapping Plan Costing Translation Evaluation
Query Initial Enumeration | poggible Final Plan SQL Code + Result
Plan Plans Stratum
Expressions
Fig. 1. Query optimization and evaluation in a temporal stratum.

TS T ST T TS ST T ST T e T E e I
I
: I Translator to Algebra

Temporal duery

language st:atement Initial plan

Application

Temporal query
optimizer

Cost estimator

I Query processing controller |

Result

SQL queries Results

Stratum expressions

Internal query
evaluator

Results

SQL queries Results

Final plan |

Non-Temporal DBMS

Fig. 2. Architecture of a temporal stratum.

foundation for such optimization. Focus is on the second
step: We develop a temporally extended algebra, transfor-
mation rules, and a query plan enumeration algorithm. The
third step is left for future work.

Fig. 2 depicts an example stratum architecture. The
components here perform the tasks described in Fig. 1. The
query processing controller passes relevant query frag-
ments to the underlying DBMS and to the internal query
evaluator, collects the results, and outputs the result
relation. Statistics, such as the running time and character-
istics of result relations, may be used by the cost estimator
to update its cost models for the DBMS.

3 AN EXTENDED ALGEBRA

In this section, we present our extended algebra. First, we
discuss requirements for the algebra and define its relation
structures. Then, we describe and define fundamental
algebra operations. Finally, we briefly consider the map-
ping from queries to the algebra and give an example
query.

3.1

It is a fundamental requirement that the algebra be formally
defined. Equally fundamental, the algebra must be suitable
for implementation, which has several implications that will
be clear as we get into the details. Next, the algebra must
incorporate duplicates, ordering, and coalescing. This
implies that the relations must be lists. In addition, it is
attractive to use conventional fixed-size tuples, which

Requirements

implies the use of time periods (as opposed to temporal
elements, which are finite unions of time periods). To be
independent of the granularity of time, the operations
should be defined using the start and end times of the
argument tuples’ time periods only.

The algebra must extend the conventional relational
algebra and must accommodate both classes of temporal
statements mentioned in the introduction, namely state-
ments with built-in temporal semantics and statements that
explicitly manipulate values of time data types. To con-
veniently accommodate the former class, we introduce
temporal operations that are counterparts of existing
relational algebra operations in the sense that they are
snapshot-reducible to these. A temporal operation op; is
snapshot-reducible to operation op, if, for any point in time,
and, for any temporal relation r, the snapshot at time ¢ of
the result of applying op; to r is equal to the result of op,
applied to the snapshot of r at time ¢ [33]. For example,
temporal duplicate elimination is snapshot reducible to
duplicate elimination.

It is also desirable that the operations be minimal and
orthogonal. Each operation should perform one single
function and should minimally affect its argument(s) in
doing so. This way, replication of functionality is avoided,
and it is easier to combine operations in queries. For
example, coalescing should not affect duplicates; a separate
duplicate elimination operation should be available. As

24 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 1,

EMPLOYEE

EmpName | Dept T1 | T2
John Sales 1 8
John Advertising | 6 11
Anna Sales 2 6
Anna Advertising | 2 6
Anna Sales 6 12

Fig. 3. Relation EMPLOYEE.

another implication, the operations should retain as much
as possible the time periods and the order of the tuples in
the argument relation(s). For example, coalescing should
retain the ordering of its argument. Combinations of
operations, termed idioms, may be included for efficiency,

but should be identified as idioms.

3.2 Database Structures
We define relation schemas, tuples, and relation schema

instances in turn. The definitions are the standard ones, but

adapted to address duplicates and order.

Definition 3.1. A relation schema is a three-tuple
S = (Q,A,dom), where) is a finite set of attributes, A is a
finite set of domains, and dom : Q@ — A is a function that
associates a domain with each attribute.

Consider temporal relation EMPLOYEE in Fig. 3. We
assume a closed-open representation for time periods and
let the time values denote months during some year. For
example, John is in Sales from January through July and in
Advertising from June through October. Relation schema
EMPLOYEE consists of the attributes EmpName, Dept, T1, and
T2 and is formally a three-tuple (2, A, dom), where

) = {EmpName, Dept, T1, T2}, A = {string, T}
and
dom = {(EmpName, string), (Dept, string), (T1,T), (T2,T)}.

We denote the time domain by T and use the definition of

this domain proposed by Bettini et al. [5].

Definition 3.2. A tuple over schema S= (Q,A,dom) is a
function t : Q — Usead, such that, for every attribute A of Q,
t(A) € dom(A). A relation schema instance over S is a

finite sequence of tuples over S.

Note that the definition of a relation schema instance
(relation, for short) corresponds to the definition of a list. A
relation can thus contain duplicate tuples and the ordering
of the tuples is significant. The EMPLOYEE relation from
Fig. 3 contains tuples

JANUARY/FEBRUARY 2001

t1 = {(EmpName, John), (Dept, Sales), (T1,1),(T2,8)},

to = {(EmpName, John), (Dept, Advertising), (T1,6),
(12,11},

t; = {(EmpName, Anna), (Dept, Sales), (T1,2),(T2,6)},

t, = {(EmpName, Anna), (Dept, Advertising), (T1,2), (T2,6)},

and

t5 = {(EmpName, Anna), (Dept, Sales), (T1,6), (T2,12)}.

The list (t1, to, t3, 4, t5) then is the EMPLOYEE relation in our
example.

We distinguish between snapshot (also termed conven-
tional) and temporal relations. We reserve two specific
attribute names, T1 and T2, for denoting the time period
start and end, respectively, of the period of validity for
each tuple in a temporal relation. The schema of a
snapshot relation does not contain these two attributes;
the schema of a temporal relation does contain them.
Alternatively, we could have chosen to have a single type
of relation, but then each temporal operation would have
to take the names of the temporal attributes as extra
arguments. Using our approach, the operations implicitly
know the time attributes.

3.3 Algebra Operations

We first describe briefly all the fundamental algebra opera-
tions, discussing how they preserve order, duplicates, and
coalescing. We define all operations in Sections 3.3.2-3.3.16.

3.3.1 Overview of Operations
Table 1 lists all operations. Selection (o), projection (),
union ALL (U), Cartesian product (x), difference (\),
duplicate elimination (rdup), and aggregation (§) derive
from the conventional relational algebra. For the latter
four operations, we add temporal counterparts denoted
by superscript 7. The temporal operations conceptually
evaluate the result at each point of time (exemplified by
the difference between regular duplicate elimination and
temporal duplicate elimination, to be discussed in
Sections 3.3.9 and 3.3.10, respectively). We also add
sorting and coalescing; the latter merges value-equivalent
tuples with adjacent time periods. Our definition of
coalescing is different from that given by Bohlen et al.
[8], due to the requirement of minimality (see Section 3.1)
and our relations being defined as lists. The coalescing of
Bohlen et al. merges value-equivalent tuples with adjacent
or overlapping time periods; in our algebra, this result is
achieved by combining temporal duplicate elimination
and coalescing. Union (U) originates from the union
operation for multisets given in [1]. This operation
includes a tuple in the result as many times as the tuple
occurs in the argument relation that has the most
occurrences of that tuple. Its temporal counterpart is
denoted by UT.

Table 1 includes fundamental operations, as well as the
temporal operations needed to conveniently accommodate
query statements with built-in temporal semantics [6], [11].

SLIVINSKAS ET AL.: A FOUNDATION FOR CONVENTIONAL AND TEMPORAL QUERY OPTIMIZATION ADDRESSING DUPLICATES AND...

25

TABLE 1
Overview of Operations
Operation Sorting Cardinality Duplicates | Coalescing
Order(result) n(result)
op(r) Order(r) < n(r) Retains Retains
Ty fn (T) Prefixz(Order(r), ProjPairs) = n(r) Generates Destroys
ry Ury unordered =n(ry) + n(rs) Generates Destroys
r1 X To Order(ry) =n(r1) -n(ra) Retains n.a.
r1\ 72 Order(ry) > (n(r1) —n(ry)) and Retains n.a.
< n(ry)

rdup(r) Order(r) < n(r) Eliminates n.a.
€6, . GuiFy o B (1) | Prefix(Order(r), GroupPairs) < nfr) Eliminates n.a.
e xTry Prefiz(Order(ry), < nfry)-n(r) Retains Destroys

Order(ry) \ TimePairs)
i\ 7 7o Prefiz(Order(ry), < 2-n(r) Retains Destroys

Order(ry) \ TimePairs)
rdup” (1) Prefix(Order(r), <2-n(r)—1 Eliminates | Destroys

Order(r) \ TimePairs)
¢ anpp, (1) | Prefiz(Order(r), GroupPairs) <2-n(r)—-1 Eliminates | Destroys
sortA(r) A =n(r) Retains Retains
coal™ (r) Prefiz(Order(r), < n(r) Retains Enforces

Order(r) \ TimePairs)
r Urs unordered > n(ry) and Retains n.a

< (n(r1) +n(r2))
r UT unordered > n(ry) and Retains Destroys
< (n(r1) +2-n(r2))

We omit derived operations (idioms), except regular and
temporal unions, which can be expressed via union ALL
and regular (temporal) difference. We include the latter two
idioms to illustrate how we can deal with the union
operation provided in [1]. The addition of other idioms, e.g.,
join (Cartesian product followed by selection and projec-
tion) and regular SQL union (union ALL followed by
duplicate elimination), would not introduce any new issues
in the framework. However, idioms should be included in
an implementation of the algebra.

The algebra differs fundamentally from the algebra
presented in [12], in that this latter algebra works on
multisets, not lists. However, some of our operations,
specifically selection, projection, Cartesian product, differ-
ence, union ALL, duplicate elimination, and aggregation
operations, are not list-sensitive, i.e., if their argument
relations are identical as multisets (but different as lists),
their result relations are also identical as multisets. When
we treat relations as multisets, our algebra is at least as
expressive as the algebra presented in [12] because each
operation of the latter may be expressed by one of the seven

operations just listed.
Table 1 also shows, for each operation, the order and
cardinality of the result relation and how the operation

handles regular duplicates and coalescing. This table
makes use of several auxiliary functions. Function
Order(r) returns a list of attributes paired with a sorting
type (ascending or descending) for a relation r, for
example, Order(r) = ((A, ASC), (B,DESC)). For an unordered
relation, the function returns an empty list. Note that in
the special case when the sorting list A is a prefix of
Order(r), the order of sorts(r) is Order(r). The lists
ProjPairs, TimePairs, and GroupPairs include, respectively,
the projection attributes, the temporal attributes, and the
grouping attributes paired with ASC or DESC. The TimePairs
list is equal to

((T1,ASC), (T1,DESC), (T2, ASC), (T2, DESC)).

Function Prefix returns the largest prefix of its first
argument such that the prefix would contain only elements
included in the second argument. For example, if relation r
is sorted on Order(r) = ((A, ASC), (B, ASC), (C,DESC)), and we
project it on A and C, the ProjPairs list would be
((A, ASC), (A, DESC), (C, ASC), (C, DESC)).
on the two lists would return ((A,ASC)), i.e., the result of

The Prefix function

the projection would be sorted on A.
We denote the cardinality of relation r by n(r). The lower

bound is 0 in all cases not specified in the table.

26 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 1,

The last two columns reflect the behavior of the
operation with respect to duplicates and coalescing. An
operation may

1. eliminate regular duplicates so that the result
relation would only have distinct tuples,

2. retain regular duplicates, i.e., the result relation
would have distinct tuples only if the argument
relation(s) contains only distinct tuples, or

3. generate regular duplicates even if duplicates do not
exist in the argument relation(s).

In a similar manner, an operation may

1. enforce coalescing so that its result relation is

coalesced,

2. retain coalescing, i.e., its result relation is coalesced

only if its argument relation is coalesced, or

3. destroy coalescing.

Note that coalescing is undefined for snapshot relations
(which are returned by nontemporal operations that have
temporal counterparts).

The next sections define the algebra operations listed
in Table 1. We exemplify the more complex temporal
operations, such as temporal difference and temporal
aggregation; operations deriving from the conventional
relational algebra are not exemplified. Overall, an attempt
has been made to define operations conducive to efficient
implementation. For example, union ALL simply con-
catenates its arguments. In these definitions, we use 7 to
be the set of all tuples of any schema and R to be the set
of all relations, and let r € R,r = (t1,t2,...
we let 77 be the set of all tuples with temporal support,
and let R” be the set of all relations with such tuples.
Also, we let R™ be a set of all relations with tuples not
having any temporal support.

We use M-calculus for the definitions [14]. The definitions
do not imply actual implementation algorithms, but do
constrain the implementation algorithms to produce the
same results, taking order and duplicates into account.

,ty). Similarly,

3.3.2 Selection

Selection operation o :[R x P] — R corresponds to the
well-known selection operation in the relational algebra
[12]. The set of all possible selection predicates is denoted
by P. The argument predicate is expressed as a subscript,
e.g., op(r). The schema of the result relation is the same as
schema of the argument relation.

= Ar,P.(r=1)—r,
(tail(r) =L1) — (P(head(r)) — head(r), L),
(P(head(r)) — head(r), L) @Q op(tail(r)).

The arguments of an operation are given before the dot, and
the definition is given after the dot. In this definition, the
first line says that if the argument relation r is empty (we
denote an empty relation by L), the operation returns it.
Otherwise, the second line is processed, which says that if
the relation contains only one tuple (the remaining part of

JANUARY/FEBRUARY 2001

the relation, tail(r), is empty), we test the predicate P on the
first tuple (head(r)). If the predicate holds, the operation
returns the tuple; otherwise, it returns an empty relation. If
the second-line condition does not hold, the operation
returns the first tuple or an empty relation (depending on
the predicate) appended (@) to the result of the operation
applied to the remaining part of the relation.

The auxiliary functions head, tail, and @ are defined in the
associated technical report [32].

3.3.3 Projection

Projection operation 7 : [R x F x ... x F] — R corresponds
to its relational counterpart. F is a set of arithmetic
expressions f;: 7 — 7, which can include any possible
attribute names and which return single-attribute tuples.
After f; is applied, the resulting schema contains one
attribute name, one type, and one mapping from the
attribute name to the type. Functions fi,...,f, are

For example, with the schema
S =(Q,A,dom),A,B €, (A,int), (B,int) € dom,

one possible function f; is A+2-B ASC.

re APy fiy ooy fo(r=1) —
filhead(Ly))o...o f,(head(Ly)) Qmy, s (tail(r)).

The schema of the result relation follows from the definition
of tuple concatenation (o) [32].

The projection operation can be used to add new
attributes to the schema. If a new nontemporal attribute is
added, its value is set to NULL for each tuple of the argument
relation. If a new temporal attribute is added, its value for
each tuple of the argument relation is set to the current time
(if the attribute is T1) or the maximum timestamp value (if
the attribute is T2).

3.3.4 Union ALL

Operation LI : [R x R] — R returns the union of two argu-
ment relations, retaining duplicates. The operation appends
the second relation to the first relation. The schemas of both
argument relations and the result relation are the same.

u s Ary,7o.(rp =1) — 1o,
head(r1) @ (tail(ry) Urg).

3.3.5 Cartesian Product

Operation x : [R x R] — R*" computes the Cartesian pro-
duct of two argument relations. The definition uses the
auxiliary function OneLoop : [T x R] — R*". The resulting
schemas of x and OneLoop follow from the definition of
tuple concatenation. The only exception is that if the
attribute domain of the resulting schema contains any of
the two special temporal attributes, those attributes are
prefixed by “1,” because the result of this operation is to be
a snapshot relation, which cannot include attributes named
T1 or T2.

SLIVINSKAS ET AL.: A FOUNDATION FOR CONVENTIONAL AND TEMPORAL QUERY OPTIMIZATION ADDRESSING DUPLICATES AND... 27

A4

X Ar,ro.((r =L) V (re =1)) — 1,

OneLoop(head(ry),r9) U (tail(ry) x ra)

OneLoop = A, r.(r=1) —1,
(t o head(r)) @ OneLoop(t, tail(r)).

The definition essentially performs a nested-loop Carte-
sian product. Different kinds of Cartesian products that
produce tuples in different orders may be defined as
additional operations.

3.3.6 Temporal Cartesian Product
Operation x7 : [RT x R'] — R” returns the temporal Car-
tesian product of two argument temporal relations. The
definition uses auxiliary the function

OneLoop” : [T" x RT] — RT.

The resulting schemas of x” and OneLoop’ follow from

the definition of tuple concatenation. The attribute
domain of the resulting schema retains the original
timestamps of both argument relations and, in addition,
has two new timestamps.

xT 2 Nry,ro.((r =L) V (ry =1)) — L,
OneLoop” (head(r1),2) U (tail(ry) x ry)

OneLoop” =

At,r.(r=1) =1,
DoesOverlap” (t, head(r))
— (t o head(r)
o GetIntersectingTuple” (t, head(r)))
@ OneLoop? (t, tail(r)),
OneLoop” (t, tail(r)).

Function DoesOverlap” checks if the time periods of two
argument tuples overlap. Function GetIntersectingTuple”
intersects the time periods of two argument tuples and, if
they overlap, forms a new tuple containing the intersection
time period; otherwise, it returns NULL. Both functions are
defined in [32].

The temporal Cartesian product retains the original
timestamps of both its arguments, prefixed by “1” and
“2.” This makes it possible to accommodate selection
predicates involving time attributes from more than two
relations [6]. The prefixed timestamps can be removed by a
subsequent projection if they are not needed.

With the chosen definition, the temporal Cartesian product
is not snapshot reducible to the regular Cartesian product.
However, temporal Cartesian product followed by projection
thatremoves the prefixed timestamps is snapshot reducible to
the regular Cartesian product.

3.3.7 Difference

Operation \ : [R x R] — R*" returns all tuples of the first
argument relation that are not in the second argument
relation. The schemas of both argument relations and the
result relation are the same, with the exception that we
prefix all temporal attributes, if any, by “1” in the result
schema.

\ E o ((ry =L) V (rp =1)) — 71,
isIn(head(ry),r2) — (tail(ry)
\ remove(head(r1),r2)),
head(ry) @ (tail(ry) \ ro).
Function isIn returns True if the argument tuple exists in the
argument relation. Function remove removes the first
occurrence of the argument tuple from the argument

relation. Both functions are defined in [32].

3.3.8 Temporal Difference

Operation \” : [R” x R"] — R performs temporal differ-
ence. Both argument relations and the output relation have
the same schema, where nontemporal attribute values are

denoted as ay,...,a,.

\T =
Ary,ra.((r =L1) V (re =1)) — 71,
(OverTpl" (head(r), r9) = undef)
— head(ry) Q (tail(r) \" r7),
(51 Utail(r)) \" (s2
U remove(OQuerTpl” (head(r1),),

72)),

where s; and sy are defined below.
For each tuple from the first argument relation, we look

for tuples in the second argument relation that overlap with
it. If we find an overlapping tuple, we remove the
overlapping temporal part from both tuples and perform
the difference again on the remaining parts of the relations,
the contents of which depend on the type of the overlap.
Allen [2] identified thirteen relationships between intervals,
and Fig. 4 shows the nine different cases of overlapping (the
other four, nonoverlapping predicates are before, before™,
meets, and meets™!). We use the additional relations s; and
sy—which contain from zero to two tuples—for adjusting
the relations; s; provides the remainder of A, and s

provides the remainder of B.

51 =
(nontemporal o OverTpl” (head(ry),r2).T2 o head(r1).T2))
if Case 1, 7
il if Case 2, 3, 8, 9
(nontemporal o head(ry).Tlo
OverTpl” (head(ry),r2).T1)) U
(nontemporal o OverTpl® (head(ry), r2).T2 o head(r).T2))
if Case 4
(nontemporal o head(r1).T1 o OverTpl" (head(ry),r2).T1))
if Case 5, 6

28 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 1,

—
—

A
B ——

Case 1: A starts ' B Case 2: A equal B

e B
.

Case 6: A overlaps B Case 7: A overlaps ' B

Fig. 4. Nine cases of overlapping.

Sy =
L if Case 1, 2, 4, 5
(nontemporal o head(r1).T2 o OverTpl” (head(ry),r2).T2))
if Case 3, 6
{(nontemporal o OverTpl? (head(r1),72).T1 o head(r;).T1))
if Case 7, 8

(nontemporal o OverTpl” (head(ry),r2).T1

o head(r1).T1)) U

(nontemporal o head(r1).T2 o OverTpl™ (head(ry),r2).T2))
if Case 9

nontemporal = head(ry).ay o ... o head(r1).ay.

The lower bound for the cardinality of the result relation is 0
because tuples with huge time periods in the second
argument relation may eliminate all tuples with short time
periods from the first argument relation. The upper bound
is twice as big as the number of tuples in the first argument
relation because for each tuple of the first argument
relation, we may get two new tuples in the result (cf.
Case 4 in Fig. 4).

Consider the temporal difference among relations
EMPLOYEE (Fig. 3) and PROJECT (Fig. 5)) projected on
EmpName, T1, and T2, i.e.,

TEmpName,T1,T2 (EMPLOYEE) \T TEmpName,T1,T2 (PRO JECT) .

The result is given to the right in Fig. 5. Temporal difference
is sensitive to duplicates. For example, the second tuple for
Anna with times 2 and 6 in EMPLOYEE is directly transfered
to the result because all value-equivalent (tuples with the
same nontemporal attribute values) overlapping tuples
from the PROJECT relation were eliminated by the first
tuple for Anna. Specifically, for a given timepoint and
employee, the number of tuples in the result is the
difference between the number of departments that the
employee worked for at that time and the number of
projects the employee was assigned to at that time. For
example, two tuples for Anna involve time 2 when she
worked for two departments, but she was not assigned to
any project. If one wants to ignore duplicates, temporal

Case 3: A starts B

JANUARY/FEBRUARY 2001

—
o

Case 4: A during™! B Case 5: A finishes! B

1

—

Case 8: A finishes B

Case 9: A during B

duplicate elimination should be performed on the left
argument of temporal difference.

3.3.9 Duplicate Elimination

Operation rdup : R — R*" removes regular duplicates from
the argument relation. This operation retains the first
occurrence of each tuple and removes all subsequent
occurrences, if any. The schemas of the argument and
result relations are the same, with the exception that the
temporal attributes in the resulting schema, if any, are
prefixed by “1.”

rdup £
Ar(r=1)—r,
isIn(head(r), tail(r))
— rdup(head(r) Q remove(head(r), tail(r))),
head(r) Q rdup(tail(r)).

If the first tuple of the argument relation can be found in the
remaining part of the relation, the operation removes that
found tuple. Otherwise, the operation returns the first tuple
concatenated with the result of the operation applied to the
remaining part of the relation.

PROJECT Result
EmpName | Prj [T1 [T2 | | EmpName | T1 | T2 |
John Pl 2 3 John 1 2
John P2 5 6 John 3 5
John Pl 7 8 John 6 7
John P3 9 10 John 6 9
Anna P2 3 4 John 10 | 11
Anna P2 5 6 Anna 2 3
Anna P3 7 8 Anna 4 5
Anna P3 9 10 Anna 2 6
Anna 6 7
Anna 8 9
Anna 10 | 12

Fig. 5. Relation PROJECT and the result relation.

SLIVINSKAS ET AL.: A FOUNDATION FOR CONVENTIONAL AND TEMPORAL QUERY OPTIMIZATION ADDRESSING DUPLICATES AND... 29

R1 = 7, (EMPLOYEE)

R2 = rdup(R1)

R3 = rdup’ (R1)

Fig. 6. Results of regular and temporal duplicate elimination.

3.3.10 Temporal Duplicate Elimination

Operation rdup’ : R" — R” removes duplicates from all
snapshots of the argument temporal relation. The argument
and result relations have the same schema. Note that this
operation also removes regular duplicates.

Fig. 6 shows the EMPLOYEE relation projected on L =
{EmpName, T1,T2} and the results of regular and temporal
duplicate elimination applied to this relation. Relation R2
does not contain regular duplicates (there is only one tuple
for Anna with times 2 and 6), and relation R3 does not
contain duplicates in snapshots (note the timestamps of the
second tuple). Temporal duplicate elimination preserves
the order of the argument relation and is defined next.

rdup’ =
Ar(r =LV tail(r) =L1) —r,
(OverTpl” (head(r), tail(r)) = undef)
— head(r) Q rdup’ (tail(r)),
rdup’ (head(r) @
ChangeTuple(OverTpl” (head(r), tail(r)),
tail(r), rnew))
where 7,0, = (OverTpl! (head(r), tail(r))) \" (head(r)).

Function OverTpl”, defined in [32], scans the argument
relation and finds the first tuple whose time period overlaps
with the argument tuple and is value-equivalent with it
(e.g., the first two tuples of R1 overlap and are value-
equivalent). If there is no such tuple, we retain the first
tuple. Otherwise, the period of validity of the overlapping
tuple is changed to the result of subtracting the first tuple of
the relation from the overlapping tuple.

The result can contain zero, one, or two tuples,
depending on how the time periods of the tuples are
related. Function ChangeTuple” : [TT x RT x RT] — RY
finds the argument tuple in the first argument relation,
then replaces the tuple with the second argument relation
(since the temporal difference may return two tuples, we
use “relation” as the result type). For example, the time
period of the second tuple of R3 is obtained by subtracting
the time period of the first tuple of R1 from that of the
second tuple of R1.

EmpName | T1 | T2 | | EmpName | 1.T1 | 1.T2 | | EmpName | T1 ‘ T2 |
John 1 8 John 1 8 John 1 8
John 6 11 John 6 11 John 8 11
Anna 2 6 Anna 2 6 Anna 2 6
Anna 2 6 Anna 6 12 Anna 6 12
Anna 6 12

ChangeT uple £
M7y P (1 =1) — 1,
(t = head(r)) — Tpew U tail(r),
head(r) @ ChangeTuple(t, tail(r), rnew)-

The operation may return at most 2 - n(r) — 1 tuples. If we
have x value-equivalent tuples in the argument relation, we
cannot have more than 2 -z different time values in those
tuples, which means that the maximum number of valid
time periods involving those time values is 2 -z — 1. In
addition, = can at most be n(r) and, if x < n(r), then the
maximum cardinality is smaller.

3.3.11 Aggregation

Operation {:[RxQx...QxTF x...xF]—R™ per-
forms aggregation according to given grouping attributes
and aggregation functions. The set of attributes in the
schema of the argument relations is denoted by 2, and the
set of all aggregation functions is denoted by IF; aggregate
function F;:R — 7 takes a relation as argument and
returns a single-attribute tuple containing the aggregate
value. After Fj is applied, the schema of the result tuple
contains one attribute, one type, and one mapping from the
attribute name to the type. An example of aggregate
function is AVG(C) AS D.

The operation returns one tuple for each unique sequence
of grouping attributes. The schema of the result relation
follows from the definition of concatenation. The only
exception is that, in the resulting schema, temporal attributes,
if any, are prefixed by “1.” Our definition corresponds to that
provided by Klug [22] and Garcia-Molina et al. [12].

& = Ar Gy, G By Fp(r=1) —
(head(r).Gy o ... o head(r).Gy
..... o
o F,(GetGroupg, ... q,(r, head(r))))

Q &6y, G (T
\ GetGroupg, .., (r; head(r))).

The definition uses auxiliary function
GetGroup : [RxT xQx...x Q] =R,

which returns all tuples from the argument relation that
have grouping-attribute values equal to those of the
argument tuple.

30 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 1,

JANUARY/FEBRUARY 2001

€ g1 COUNT (Enghiame) (PROJECT) R4 = coal” (R1) Result
Prj | COUNT(EmpName) | T1 [T2 | | EmpName [T1 | T2 | | EmpName | T1 | T2 |
PL |1 2 |3 John 1|8 Anna 2 |3
PL |1 7 8 John 6 |11 Anna 4 5
P2 |1 3 14 Anna 2 12 Anna 6 7
P2 |2 5 6 Anna 2 6 Anna 8 9
P3 |1 7 |8 Anna 10 [12
P3 |2 9 [10 John 1]2
John 3 5
John 6 7
John 8 9
John 10 | 11

(a)

(b) (©

Fig. 7. (a) Results of temporal aggregation, (b) coalescing, and (c) example query.

GetGroup 2 Ar t, G,y ..., Gy (r =1) — undef,
(t.G1 = head(r).Gh A ... ANt.G,, = head(r).G,,)
— (head(r)QGetGroupg, .., (tail(r),t)),

If there are no grouping attributes, the function returns a list
with all tuples of the relation.

3.3.12 Temporal Aggregation

Operation &7 : [RT x Q" x ... Q" x FF x ... x IF] — R per-
forms temporal aggregation according to given grouping
attributes and pairs of aggregation functions with aggrega-
tion attributes. Set Q™ includes all nontemporal attributes of
the schema of the argument relation—temporal attributes

cannot be grouping or aggregation attributes.

The operation returns one tuple for each unique
sequence of grouping attributes and for each “minimal”
common time period of tuples that have equal values for
the grouping attributes. The tuples of each group are sorted
on the time attributes in ascending order. The schema of the
result relation follows from the definition of concatenation.
Our definition corresponds to the definition given in [24].

Let us consider an example query that counts the
number of employees working on each project (see relation
PROJECT in Fig. 5). The query is expressed as

T
§Prj ,COUNT(EmpName) (PRO JE‘CT))

and the result is shown in Fig. 7a.
Temporal aggregation is defined next.

EENMNGy,... Gy Py, Fp(r=1) —r,
OnEGTOUPLOOPEI 44444 G Fy oo Fy
(GetGroupg, ..., (r, head(r)),
minVal(GetGroupg, ... a, (r, head(r))),
mazVal(GetGroupeg, ., (r, head(r))))
U &6y....Go By F (T

,,,,,

Function OneGroupLoop” : [RT x T xT x Q™ x ... x Q" x
IF x...x F] — R” returns aggregate tuples for the argu-
ment relation and the argument time period, which is
composed by the minimum and maximum time values
found among the tuples in the group (as found by
functions minVal and maxVal, defined in [32]). All tuples
of the argument relation have the same grouping-attribute
values. The function finds all “minimal” common time
periods and outputs one tuple with aggregate values for
each period.

OneGroupLoop” = Ar,cr,e0,Gr, ..., Gy, F, ..
(MinTime" (r,c1, o) = undef) — L,
(head(r).Gy o ... o head(r).Gp
o Fi(GetOverlapping” (r,c1, MinTime® (r,c1, ¢2)))

7FTT7,'

o ...0 F,(GetOverlapping® (r,ci,
MinTime" (r,c1,¢3))))

Q OneGroupLoopg1 GoFro F (r,

MinTime (r,c1,), ca).

Auxiliary function MinTime” : [RT x T xT] — T, defined
in [32], scans the argument relation and returns the
minimum timestamp value, which is bigger than the first
argument timestamp value, but smaller than or equal to the
second argument timestamp value.

Auxiliary function

GetOverlapping” : [RT xTxT] — R

returns all tuples from the argument relation that overlap
with the period defined by the two argument timestamp
values.

GetOverlapping” £ Arycr,co.(r=1) —1,
(head(r).T1 < co A head(r).T2 > ¢1)
— head(r) @ GetOverlapping” (tail(r), c1, c2),
GetOverlapping® (tail(r), c1, cz).

Temporal aggregation may return at most 2-n(r) —1
tuples, where n(r) is the cardinality of the argument

SLIVINSKAS ET AL.: A FOUNDATION FOR CONVENTIONAL AND TEMPORAL QUERY OPTIMIZATION ADDRESSING DUPLICATES AND... 31

relation. The reasoning is similar to the one given for
temporal duplicate elimination.

3.3.13 Sorting
Function sort : [R x Og] — R sorts the argument relation.
We denote the set of all possible orders for attributes from 2
by Oq. The list ((A,ASC),(B,DESC)) is an example of an
order.

First, we define auxiliary function

InsertTuple : [T x R x Og] — R,

which inserts a tuple into a sorted argument relation,
maintaining its order. We denote the argument order by a.

InsertTuple 2 At rya.(r=1) — (t),
Must Precede(t, head(t),a) — t Q r,
head(r) Q InsertTuple(t,tail(t),a).

Function MustPrecede : [T x T x Oq] — Boolean returns
True if the first argument tuple must precede the second
argument tuple according to the argument order.

Function sort invokes InsertTuple for each of its tuples.

sort £ Ar,a.(r=1) =1,
InsertTuple(head(r), sort(tail(r)), a).

3.3.14 Coalescing

Operation coal” : RT — R” coalesces value-equivalent tu-
ples of the argument relation, but retains duplicates in
snapshots. To effect this, all that is necessary is to coalesce
those value-equivalent tuples that meet, i.e., if the time-
period end of one tuple is equal to the time-period start of
the other tuple. The argument and result relations have the
same schema, where the nontemporal attribute values are

denoted as aq,...,a,.
coal” =
Ar(r=L)—r,

(MeetTpl” (head(r), tail(r)) = undef)
— head(r) Q coal” (tail(r)),
coal” ((head(r).a; o ... o head(r).a,
o min(head(r).T1,
MeetTpl" (head(r), tail(r)).T1)
o max(head(r).T2,
MeetTpl" (head(r), tail(r)).T2))
@ remove(MeetTpl" (head(r), tail(r)),
tail(r))).
If a value-equivalent tuple that meets the first tuple exists,
the operation combines into one the first tuple and the tuple
that meets with it. Function MeetTpl”, defined in [32], finds
the first tuple in the argument relation that meets and is
value-equivalent with the argument tuple. Auxiliary func-
tions max and min take single-attribute tuples as arguments,

compare the values of those tuples, and return a new single-
attribute tuple.

To perform coalescing with duplicate elimination, one
has to perform temporal duplication elimination first and
then coalesce as defined above. Alternatively, a combined
operation may be defined.

Fig. 7b shows relation R1 (from Fig. 6) coalesced. The
third and fifth tuples of R1 were merged into the third tuple
of the result relation. The fourth tuple remains the same in
the argument and result relations.

3.3.15 Union

Operation U:[R x R] — R*" returns the union of two
argument relations while restricting the number of dupli-
cates for each tuple to the maximum number of duplicates
of that tuple in an argument relation. This operation is an
extension of the union operation for multisets described in
[1]. The schemas of both argument relations and the result
relation are the same, but, as in the Cartesian product, all
temporal attributes, if any, in the result are prefixed by “1.”
Union is defined via union ALL and difference.

U2 Ary,ro.ry U (g \ 71).

3.3.16 Temporal Union

Operation UT : [R” x RT] — R returns the temporal coun-
terpart of the above-described operation, U. The upper
bound for the cardinality of the result derives from the
cardinalities of union ALL and temporal difference.

UT é)\7’1,7’2.7‘1 (] (7‘2 \T 7“1).

3.4 Mapping to the Algebra

The mapping of a user-level query to an algebra expression
depends on the specific user-level language adopted, but
our operations are sufficient for SQL and a wide range of
temporal query languages [6], [11], [34]. Temporal duplicate
elimination, temporal difference, temporal aggregation, and
temporal Cartesian product (followed by an appropriate
projection; recall Section 3.3.6) are snapshot-reducible to
their regular counterparts, simplifying the mapping from
languages that have built-in temporal semantics. Selection,
projection, union ALL, and sorting do not have temporal
counterparts, as they are snapshot-reducible to themselves
when their parameters do not involve the time attributes.

3.5 Example Query

Having defined all operations, we exemplify their use in
query plans for the stratum architecture, as well as indicate
what kinds of transformations may be applied during
optimization.

Consider temporal relations EMPLOYEE and PROJECT
from Figs. 3 and 5 and the query “What employees worked
in a department, but not on any project, and when?” In
particular, the user requires the result relation to be sorted,
coalesced, and without duplicates in its snapshots.

The desired result of the query is given in Fig. 7c. Anna
worked in Sales from February through May, but she was
on project P2 during March and May and, so, the result
includes just two months during this time, February and
April. Anna also worked in Advertising during this period,
but the user requested that duplicates in the snapshots be

32 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 1,

Order needs not be preserved Duplicates are not relevant

T s
|

sortEmpName ASC

rdup”

4

n EmpName , T1, T2

s EmpName, T1, T2

N

PROJECT

| EMPLOYEE :

,,,,,,,

JANUARY/FEBRUARY 2001

i n EmpName, T1, T2
s o
T o PROJECT
SOYt EmpName ASC

T EmpName, T1, T2

EMPLOYEE

(b)

Fig. 8. Algebraic expressions for the query: “Which employees worked in a department, but not on any project, and when?”

eliminated. Finally, notice that no value-equivalent tuples
have adjacent time periods, and that the result is sorted on
EmpName.

To compute this result, the stratum initially uses a
straightforward mapping of the user-level query to an
initial algebra expression, as shown in Fig. 8a. The last
operation applied, 7°, transfers its argument from the
DBMS to the stratum,; it is initially assumed that the query is
entirely computed in the DBMS. Allowing also a reverse
transfer operation, 77, permits query plans to flexibly
partition computation between the stratum and the DBMS.
It may be difficult to intelligently partition the computation.
However, it is important that the framework allows this
because even simple heuristics, e.g., that always assign
certain temporal operations to be performed in the stratum,
may result in substantial performance gains.

The next operations, sorting (sort), coalescing (coal’), and
temporal duplicate elimination (rdup’), are performed to
obtain the user-required format. The last operation ensures
that no snapshots have duplicates, and the first operation
ensures that value-equivalent tuples with adjacent time
periods are merged.

The temporal difference (\”) returns the employees in
EMPLOYEE, but not in PROJECT, along with the time
periods when this occurred. To obtain the correct result, the
left argument is not allowed to contain duplicates in its
snapshots; this is ensured by the rdup’ operation. Duplicate
elimination is necessary because temporal difference is
sensitive to duplicates. For example, Anna worked in two
departments, but on only one project in March; thus,
temporal difference would include one tuple for Anna for
March in the result. However, this would be wrong because
the query requires only those times when employees
worked in some department, but did not work on any
project. (Difference and temporal difference are analogous
to SQL’s EXCEPT ALL in their handling of duplicates; the

stated query is more similar to SQL’s EXCEPT, which
requires the left-hand rdup’ to yield the correct result.)

Transformation rules that preserve different types of
equivalences are applicable to different parts of a query.
This is illustrated by the regions in Fig. 8a. First,
transformations below the sort need not preserve order;
this is indicated by the lighter shading. The operations
below sort are not sensitive to order, and the sort ensures
that whatever result is produced by the operations below,
this is correctly ordered at the end.

Second, temporal difference is sensitive to duplicates in
its left argument, so the lower left rdup” may affect the
result of the difference. However, the presence or absence of
duplicates is not relevant for the operations below this
rdup’, as well as for the operations that are on the right
branch of the temporal difference; this is indicated by the
darker shading. Also, it does not matter if the relation
produced by the temporal difference contains duplicates or
not, due to the subsequent rdup” operation. As a result,
transformation rules applied to the darkly shaded region
need not preserve duplicates.

Third, transformations applied below the coalescing
operation need not preserve the periods (indicated by the
dashed line); coalescing returns a unique relation for all
snapshot-equivalent argument relations whose snapshots
do not contain duplicates. The top rdup” ensures that the
argument to the coalescing operation does not contain
duplicates in snapshots. Sections 6 and 7 formalize these
concepts and give a procedure for determining these
regions in a query.

By systematically exploiting transformation rules pre-
serving different types of equivalences, we are able to
achieve an “optimized” query tree, such as the one
shown in Fig. 8b. In this tree, the transfer operation has
been moved below the temporal difference operation,
indicating that the stratum performs temporal duplicate

SLIVINSKAS ET AL.: A FOUNDATION FOR CONVENTIONAL AND TEMPORAL QUERY OPTIMIZATION ADDRESSING DUPLICATES AND... 33

elimination, coalescing, and temporal difference. The sort
operation was pushed down because the DBMS sorts
faster than the stratum. The parts of a query relegated to
the DBMS (here, those below T° operations) are not
optimized by the stratum; instead these are expressed in
the language supported by the DBMS, e.g., SQL, and are
then passed to the DBMS, which will perform its own
optimization. In the stratum, coalescing is performed
before difference because the left argument to the
temporal difference is expected to be smaller than the
result of the temporal difference, due to the splitting of
timestamp periods, as observed in Fig. 7c.
We use this example throughout the paper.

4 RELATION EQUIVALENCES

The query optimizer does not always need to consider
relations as lists. For example, if ORDER BY is not specified
in a query, it is enough to consider relations as multisets. To
enable this type of treatment of relations, six types of
equivalences between relations are introduced: list equiva-
lence (=), multiset equivalence (=)), set equivalence
(=5), snapshot list equivalence (=7), snapshot multiset
equivalence (={,), and snapshot set equivalence (=%).

Two relations are list equivalent if they are identical;
multiset equivalent, if they are identical as multisets, taking
into account duplicates, but not order; and, set equivalent, if
they are identical as sets, ignoring duplicates and order.
Snapshot list equivalence holds between two temporal
relations when snapshots of those relations at each point of
time are equivalent as lists. Similar conditions imply
snapshot multiset equivalence (at each point in time, the
relations should be equivalent as multisets) and snapshot
set equivalence (at each point in time, the relations should
be equivalent as sets). All equivalences are defined formally
elsewhere [32].

We can exemplify the different types of equivalences
using different variations of the EMPLOYEE relation (Fig. 3)
projected on EmpName and the temporal attributes. Fig. 6
gives three different instances of this schema (relation R1:
without duplicate elimination, relation R2: with duplicate
elimination, and relation R3: with temporal duplicate
elimination, respectively). Fig. 7b gives the coalesced
version (relation R4) of the projected relation. Fig. 9 gives
the result of the projection, followed by sorting (relation S1;
A = ((EmpName, ASC), (T1, ASC), (T2,ASC))) and sorting and
coalescing (relation S2).

Relation S1 is multiset and set equivalent to relation R1
because both contain the same tuples, which occur the same
number of times. Their snapshots at any point in time are
also equivalent as multisets and sets. Neither the relations
nor their snapshots are equivalent as lists because the
orderings of the tuples are different.

Relations S1 and R2 are not equivalent as lists or as
multisets: The orderings of the tuples are different, and the
tuple for Anna with times 2 and 6 occurs twice in S1, but
once in R2. However, the =5 equivalence holds because the
two relations contain the same tuples. Snapshot equiva-
lences between S1 and R2 are undefined because relation R2
is nontemporal.

S2 = coal® (1)

S1 = sortA(R1)

EmpName | T1 | T2 | | EmpName | T1 | T2 |
Anna 2 6 Anna 2 12
Anna 2 6 Anna 2 6
Anna 6 12 John 1 8
John 1 8 John 6 11
John 6 11

Fig. 9. Variations of relation EMPLOYEE projected on EmpName and the
temporal attributes.

Relations S1 and R3 have different tuples, e.g., the tuple
for John with times 6 and 11 is present in S1, but not in R3;
thus, they are not equivalent as lists, multisets, or sets. Their
snapshots are also not equivalent as lists because of
different orderings, and they are not equivalent as multisets
because the snapshot of S1 at times between 2 and 6
contains two tuples for Anna, while snapshots of relation R3
never contain more than one tuple for Anna. Only
equivalence =2 holds between relations 1 and R3, mean-
ing that their snapshots are equivalent as sets. For example,
S1 and R3 both have the snapshot (as a set) {(Anna), (John)}
at time 3.

Relations S1 and S2 also contain different tuples and are
not equivalent as lists, multisets, or sets. However, at each
point in time, their snapshots are equivalent as lists,
multisets, and sets. Since relation R4, which contains the
same tuples as S2, is not sorted the same way as S1 and S2,
only equivalences =7, and =9 hold between S1 and R4.

The examples illustrate that we have an ordering
between the types of equivalences. For example, two
temporal relations being equivalent as multisets implies
that they are also equivalent as sets and that their snapshots
are equivalent as multisets and sets. We list all implications
in the following theorem:

Theorem 4.1. Let ry and ry be relations. Then, the following
implications hold. (Implications pointing downward apply
only to temporal relations.)

TISLTe = TI=EMT: = =57
23 U U
MmEiry = ri =3 = =9
Proof. See [32]. a

The different types of equivalences can be exploited in
heuristics-based query optimization. Transformation rules
(to be discussed in detail shortly) can be divided into six
categories, one for each type of equivalence. For example,
we may have a rule expr; —, exprs, which says that after
the replacement of expression expr; in the original query
plan by expression exprs, the result relation produced by
the new plan will be list equivalent to the result relation
produced by the original plan when evaluated on the same
argument relation(s). That said, the result relations will also
be multiset and set equivalent, as well as equivalent
according to all three types of snapshot equivalences.

34 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 1,

Another rule expr; —a exprs says that if we replace
expry by exprs, the new plan will yield a result relation that
may only be multiset equivalent to the result relation
produced by the original plan because the application of
this rule does not preserve the order. This may be
acceptable though, if the result needs to be a multiset. (It
is also acceptable if the result needs to be snapshot multiset
equivalent to the result relation produced by the original
plan.) For example, query m(EMPLOYEE) (resulting in
relation R1) can return tuples in any order. In general, the
type of the result specified by a query determines which
transformation rules can be exploited. Section 5 lists all
transformation rules and Sections 6 and 7 describe a
mechanism for determining when a transformation rule is

applicable.

5 TRANSFORMATION RULES

In this section, we provide a set of transformation rules for
the algebra, which goes beyond all existing rule sets known
to the authors. First, we describe transformation rules that
derive from the conventional relational algebra. We
consider when the existing rules for sets and multisets
apply for lists, and we add rules for temporal operations.
Then, we discuss duplicate elimination, coalescing, sorting,
and transfer rules. (The latter type is specific to the stratum
architecture.)

The transformation rules are given as equivalences that
express that two algebraic expressions are equivalent
according to one of the six equivalence types from
Section 4; we always give the strongest equivalence type
that holds. An algebraic equivalence represents both a left-
to-right and a right-to-left transformation rule. If necessary,
we mark preconditions that apply only for the left-to-right
transformation by [1r] and preconditions that apply only
for the right-to-left transformation by [rl]. Preconditions
with no such marks apply to both directions. All transfor-
mation rules can be verified formally, as the operations and
equivalence types have formal definitions. Unlike rules
expressed informally, which sometimes later have been
found to be in error, as pointed out by Kiessling [21], our
rules are theorems amenable to formal proof. Slivinskas et al.
[32] provide an example proof of one transformation rule.
While we believe the other transformations are correct, we
have not written out all 90-odd proofs. An automatic
theorem prover would be useful in constructing these
proofs, which can be quite repetitive.

In transformation rules, » can be a base relation or an
operation tree. We denote the attribute domain of the
schema of relation r by §,. Function attr returns the set of
attributes present in a selection predicate, projection
functions, or a sorting list.

5.1 Conventional Transformation Rules

The conventional transformation rules derive from the rules
for multisets given by [12]. Fig. 10 shows the conventional
transformation rules that do not involve temporal opera-
tions. The rules are ordered based on the operation they
concern, e.g.,, rules G1-G5 concern selection. We can
distinguish between rules depending on what kind of
equivalence they support. First, most rules are valid for

JANUARY/FEBRUARY 2001

lists, e.g., pushing selection down before a Cartesian
product or a difference (rules G10, G15) guarantees the list
equivalence between the result relations.

Commutativity rules, e.g., for Cartesian product and
union ALL, satisfy only the =), equivalence because the
result relations produced by the left- and right-side
expressions have differently ordered tuples (see rules G9
and G17). Note that unlike in the set- or multiset-based
algebras, the order of the arguments to these operations
cannot be changed freely because this affects the ordering of
the result.

A few rules involving union ALL and regular and
temporal union (e.g., rule G2), have equivalence types
weaker than =j; . Rule G2 only satisfies =g equivalence
because if both predicates P, and P, are satisfied for a
tuple of r, the right-hand side of the transformation
would return two instances of the same tuple. If we use
the union operation, the =), equivalence type can be
achieved (rule G3).

All of these transformations apply equally to nontem-
poral and temporal relations; and those transformations
defined over more than one argument relation also
combinations of nontemporal and temporal relations.
Rule G5 is an exception and holds only for nontemporal
relations. The reason is that regular difference prefixes
temporal attributes and, so, we need a slightly modified
rule for such relations.

Fig. 11 shows conventional transformation rules that
involve temporal operations. Most rules are counterparts of
the rules given in Fig. 10; in some cases, preconditions
involving the temporal attributes apply (e.g., in rule G27).
Rule G25 corresponds to rule G5, but has the condition that
r should be temporal and involves a projection introducing
temporal attributes in the result of regular difference. Since
the temporal Cartesian product retains the original tempor-
al attributes, they have to be removed from the result of the
two subsequent products (rule G30).

5.2 Duplicate Elimination Transformation Rules
Duplicate elimination rules are given in Fig. 12. Rules D1-
D4 indicate when duplicate elimination is not necessary.
Note that if we perform a temporal duplicate elimination on
a temporal relation, the result relation is only =¢ equivalent
to the argument relation (recall relations R1 and R3 from
Fig. 6).

Contrary to the commonly considered union ALL and
the regular SQL union (which removes duplicates from the
result relation of union ALL), our regular and temporal
union operations do not generate new duplicates if their
argument relations do not contain any duplicates, which
means that we can push duplicate elimination below
regular or temporal union (rules D12 and D13).

Rules D14 and D15 follow because aggregations invol-
ving only functions MIN and MAX are insensitive to
duplicates.

Duplicate elimination cannot be pushed before union
ALL because this operation may generate duplicates even if
its argument relations do not contain any. Also, duplicate
elimination cannot be pushed down before regular (tem-
poral) difference because both difference operations are

SLIVINSKAS ET AL.: A FOUNDATION FOR CONVENTIONAL AND TEMPORAL QUERY OPTIMIZATION ADDRESSING DUPLICATES AND...

35

(G1) opap(r) =L op (op(r))
(G2) opvp, (T) =s0p (T) Uop, (T)
(G3) opvp, (T) =M JPl() Uop, (T)
(G4) op (Jp2 (T)) =L 0P, (JP1())
(G5) o.p(r)=,r\op(r) [Ir] T1 ¢ Q, A T2 ¢ Q,
(G6) 7y, fu (Trhl,...,hm (1) =0 Tt peenrfn (r) [1r] attr(fi,..., fn) € Q0
[r1] attr(hi,..., hym) C Q
©T) (o0 (1) =1 0p(mps, g (1) 1] atr () € tr(f..... £
©8) 7y (00 (1) =0 Ty (02 (T (1)), [r1] attr(P) C
where h; = {a|i € {1,....,m} A (h; € {f1,..., fa} VR € attr(P))}
(G9) ™M XTo=puT2 X7
(G10) op(r1 X r9) =L op(ry) X r2 [1r] attr(P) C Q,
(G11) op(r1 X re) =L 11 X op(re) [1r] atir(P) C Q,,
(G12) 7y, 1, (r1 X ro) =1 w4, (11) X Ta,(r2), where 1r] Vi € {1,...,n} attr(f;) C Q,,
Ay ={filie{l,....n} Aattr(f;) C Q. }, V attr(f;) CQ
Ay ={filie{1,...,n} Nattr(f;) CQp,} [r1] attr(Aq) N attr(A2) =0
(G13) Tf1 s fn (Tl X TQ) =L T e fn (77141 (Tl) X TAy (TQ))’ [rl] attr(fh e 7fn) C Dy xery
where Ay ={a|a € Qp, Na € atlr(fi,..., fn)},
Ay={a|a €, Na € attr(fi,..., fn)}
(G14) (7”1 X ’)"2) Xry3=p;ry X (’I“Q X 7‘3)
(G15) op(ri\re) =L op(r1) \ o
(G16) Up(’l“l \ 7‘2) =7 Up(’f'l) \ Up(’l“g)
(G17) rUry =y roUr
(G18) op(riUry) =, 0p(r1) Uop(ra)
(G19) gy, pu(riUre) S mpy g (r1) Ump, g, (T2)
(G20) MMUro=yroUr
(G21) op(riUre) =, op(r1) Uop(rs)
(G22) 7y, fu(riUre) =smp, g (r1) Uny 1. (r2)
(G23) 0P (81, G rFi s Fin (T)) =1 &G sG s Py Fi (0P (7)) attr(P) C{G1,...,Gn}
(G24) &Gy, GoFry Fo () =2.8G0 o G Py Fo (T (1)) attr(G1,...,Gp, Fi,...,Fy) CL
Fig. 10. Conventional transformation rules.
sensitive to the number of duplicates in both arguments. If rdup(rdup(r)) = rdup(r)
tuple ¢ occurs z times in the first argument relation and rdup’ (rdup” (r)) =y rdup(r)
y times in the second argument relation (y < z), it occurs rdup(rdup” (r)) =p, rdup(r)
2 —y times in the result of regular difference. However, if rdup(éc,...c, k.5, (1) =L &6....0, B8, (T)

we were to remove duplicates first, tuple ¢t would occur
only once in each argument to the regular difference, and it
would be absent from the result.

If duplication elimination is applied after an operation
that does not manufacture duplicates, we can remove the
duplicate elimination using rules D1 and D2. Regular
duplicate elimination can be removed if it is performed
on top of regular (or temporal) duplicate elimination or
regular (or temporal) aggregation. Temporal duplicate
elimination can be removed, if it is performed on top of
temporal duplicate elimination or temporal aggregation.
Hence, rules D1 and D2 imply the following rules:

5.3 Coalescing Transformation Rules

Rules C1 and C2 in Fig. 13 show when we can eliminate
coalescing; rule C1 can be used to derive other transforma-
tion rules that eliminate superfluous coalescing. Rule C3
says that coalescing and selection commute only if the
selection predicate does not involve the temporal attributes.
If we project a coalesced relation on nontemporal attributes,
coalescing is not necessary if we consider the relations as
sets (rule C4). For a number of operations, coalescing their

36 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO.1, JANUARY/FEBRUARY 2001
(G25) o-p(r) =L mo,\{11,12},1.T1 as 11,212 a5 T2(7" \ 0P (7)) [1r]T1 € Q, A T2 € Q,
(G26) 11 xT ry =y o xT'ry
(G27) op(ry xT ry) =, op(ry) xT re [1r] attr(P) C Q,, A T1 & attr(P)
ANT2 ¢ atir(P)
[r1] T1 ¢ attr(P) A T2 ¢ attr(P)
(G28) op(ry xTry) =, r1 xT op(ry) [1r] atir(P) C Q., A T1 ¢ atlr(P)
AT2 ¢ attr(P)
[r1] T1 ¢ attr(P) A T2 ¢ atir(P)
(G29) 7y, pu(re X r2) =gy g (ma (1) X7 may (), [x1] attr(fi,. ., fa) © Qpr,
where A1 = {fZ | 1€ {1, ce ,n} A attr(fi) - er} U {TLTQ},
Ay = {fz ’ S {17 ce 7”} A attr(fi) - QT2} U {T15T2}
(G30) 7TA1((7"1 XT ’I“Q) XT 7“3) =L A, (7‘1 XT (7‘2 XT 7‘3)), where
Ay = Q 7yy)yxry \ OrigTimestamps,
A = Q. 7y xTry) \ OrigTimestamps,
OrigTimestamps = {z1. ... 2, T |31 € {1,2} A... Az, € {1,2} AT € {T1,T2} An € N}
(G31) op(ri\T'ro) =, op(r) \T ro T1 ¢ attr(P) A T2 ¢ attr(P)
(G32) op(ri\'' ra) = op(r1) \T op(rs) T1 ¢ attr(P) A T2 ¢ altr(P)
(G33) r Ul ry =5, ra Ul 1y
(G34) op(ry Ul ry) =, op(r) UT op(ra) T1 ¢ attr(P) A T2 ¢ attr(P)
(G35) . pomtra(ri Ul mo) =5 mp pomime(r) UT mpy g 1a,12(r2)
(G36) 0P(E6,...Cn 1 (T) Z 8L G .o (OP(T) attr(P) € {G1,...,Gn}
(G37) fgl,...,Gn,Fl,...,Fm (T) =L ggl,...,Gn,Fl,...,Fm (WL7T17T2(T)) attT(le s Gy B 7Fm) cL

Fig. 11. Conventional transformation rules involving temporal operations.

arguments and results is equivalent to coalescing their
results only (rules C5-C8).

Our list of coalescing transformations extends those
provided by Bohlen et al. [8]. Due to the differences in
coalescing definitions (see Section 3.3) and because [8]
allows duplicates in snapshots of temporal relations, but not
regular duplicates, the following three transformation rules
(given in [8]) have only type =3, and are derivable from
rule C2.

coal” (ma(ry xT ry)) =5 wa(coal” (r1) xT coal” (1)),
where A = Q, «r,, \ {1.T1,1.T2,2.T1,2.T2}

coal” (1 \T r9) =3, coal” (r1) \ coal” (r3)

_S

coal” (y,.... . m12(coal” (r))) =5 coal” (ny, . s m112(r)).

The transformation rules have =3, type because Cartesian
product, temporal difference, and projection destroy coales-
cing. The projection in the first rule is necessary because the
temporal Cartesian product retains the timestamps of its
arguments. The first transformation can be modified to
have type =;, if we require that the arguments do not have
duplicates in snapshots (rule C9). Adding the same
requirement, the second rule can be modified to have type
=y (rule C10). Equivalence type =; cannot be achieved
because temporal difference is sensitive to the distribution
of value-equivalent tuples in the left argument, and this
distribution may be different for r; and coal(r;). Note that,

since periods need not be preserved in the right argument
to temporal difference, the second coalescing on the right-
hand side of the rule is not necessary. However, in cases
when coalescing significantly reduces the cardinality of its
argument, it might be useful to retain it. For the third rule,
we not only have to add the same requirement as for rules
C9 and C10 but also to eliminate duplicates before the top
coalescing—otherwise, projection would have potentially
introduced duplicates in snapshots, leading to different
tuples in the result.

5.4 Sorting Transformation Rules

Sorting can be eliminated if performed on a relation that
already satisfies the sorting if we can treat the relation as
multiset, or if there is a subsequent sorting operation.
Predicate IsPrefixOf takes two lists as argument and returns

True is the first is a prefix of the second.
Rule S3 requires B to be a prefix of A. If A is a prefix of B,

we can eliminate sort, from the left-hand side of rule S3

using rule S1.
If we wish to sort the result of some operation, the

sorting can be performed on the argument relation(s) for
that operation if the operation preserves the ordering. All
operations, except U, U, and U’, fully or partially preserve
the ordering of their first argument.

SLIVINSKAS ET AL.: A FOUNDATION FOR CONVENTIONAL AND TEMPORAL QUERY OPTIMIZATION ADDRESSING DUPLICATES AND... 37

D1y rdup(r)=,7r r does not have duplicates
D2) rdup’(r)=,r r does not have duplicates in snapshots
(D3) rdup(r)=sr
(D4) rdup™(r)=Sr
(D5) rdup(op(r)) = op(rdup(r))
D6) rdupT (op(r)) =, op(rdup’ (1)) T1 ¢ attr(P) A T2 ¢ attr(P)
) rdup(rp,,.. g, (rdup(r)) =, rdup(x,...p, (1))
(D8) TdUPT(Wfl,...,fn,T1,T2(TdUPT(7“))) =L TdUPT(Wfl,...,fn,M,TQ(7’))
(DY) rdup(ry X ro) =, rdup(ri) X rdup(rs)
D10) rdup(ry xT o) =1 rdup(ry) xT rdup(rs)
D11) rdup (m4(ry xT r2)) = wa(rdup™ (r1) xT rdup™ (r3)),
where A = Q. 7, \ {1.T1,1.T2,2.T1,2.T2}
(D12) rdup(ri Ure) =, rdup(r1) U rdup(r2)
(D13) rdup” (ry UT 1) =, rdup™ (r1) UT rdup™ (r2)
D14) £ay. GuFry o (1dup(1)) =1 € G e Fn (T) AggrFunctions(Fy, ..., F,) C {MIN,MAX}
(D15) 521,...,Gn,F1,...,Fm (rdup™ (1)) =,, 551,...,Gn,F1,...,Fm (r) AggrFunctions(F, ..., Fy) C {MIN, MAX}

Fig. 12. Duplicate elimination transformation rules.

(C10) coal™ (ry \T ro) =4 coal™ (r1) \T coal™ (1)

€1y coal™(r) =,

(C2) coal”(r)=5 7

(C3) coalT(p(r)) =, op(coal™ (1))

(C4) wfn (coal™ (r)) =5 Tfy e fn ()

(C3) coalT(coalT(rl) U coal™ (r9)) =1 coal™ (11 Ury)

(€6) coal™ (coal™ (r1) UT coalT(rg)) =, coal” (r; UT ry)

(€7) coalT(th oG e ,Fm(coal (r) =u CO@ZT(fGl,...,Gn,Fl,...Fm(T))
(©8) el (€, (g saleond” () =1 conl” €5,
(C9) coal” (ma(r x 7"2)) =, Ta(coal” (r1) x coalT(rg)),

where A = Q,. 7., \ {1.T1,1.T2,2.T1,2.T2}

(C11) coal” (rdup™ (7p, g, 11,72(coal™ (r)))) =y coal” (rdup™ (my,, __ 5, 71,12(r)))

ris coalesced

T1 ¢ attr(P) A T2 ¢ attr(P)

T1 & attr(fi,...,fn) N T2 ¢ atir(fi,..., fn)

G Pty Fo (T s fs7112(7)))
r1 and ro do not have duplicates in snapshots

71 does not have duplicates in snapshots

r does not have duplicates in snapshots

Fig. 13. Coalescing transformation rules.

5.5 Transfer Transformation Rules

The transfer transformation rules are essential in the
stratum architecture. If we have an implementation of the
same operation in both the stratum and the DBMS, we have
a choice of where to execute the operation. We can transfer
a relation from the DBMS to the stratum using operation 7,
and the other way using operation T (these operations
were not listed in Table 1 because they are specific to the
stratum architecture).

Transfer operations can be applied only to relations that
are in the appropriate location, e.g., T can only be applied
to a relation in the DBMS. This implies that any path from a
leaf to the root of a valid expression must encounter a
nonempty alternation of 7° and T?, starting and ending
with T (since the data starts in the database and end up in
the stratum, to be subsequently sent to the application).

Fig. 15 gives general transformation rules on generic
operations denoted by op. A rule transferring operation op

to the stratum can be applied only if this operation has an
implementation in the stratum, and a rule transferring
operation op to the DBMS can be applied only if op can be
translated into SQL. For example, one instance of transfor-
mation rule T1 is

fg]GFlF (r) =um TD(fcl (T ()))-

Several rules, e.g., T5 and T6, are of equivalence type
=14 ,where A is the order list specified by the sort operation.
Tworelations are =1 4 equivalent if they are =, equivalent
and their projections on A are =; equivalent. The = 4
equivalence is a slightly less restrictive equivalence than =; ;
the =; equivalence implies =; 4 equivalence.

If a rule transfers an operation from the stratum to the
DBMS, or vice versa, the relations produced by the left-
hand and right-hand sides of the rule are only =y
equivalent because we cannot be sure how the DBMS
implementation of the operation will sort its result,

LG

38 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 1,

JANUARY/FEBRUARY 2001

(S1) sorta(r)=,r

(82) sorta(r)=ur

(S3) sorta(sortp(r)) =, sorta(r)

(S4) sorta(op(r)) =L op(sort 4(r))

(85) sorta(my,, .1, (1) =0 7p, 1, (sS0TEA(T))
(S6) sorta(ry x re) =1 sorta(r1) X ro

(S7) sorta(ry xT) =5 sort 4(ry) xT ry

(S8) sorta(ry \ re2) =L sorta(ry) \ o

(89) sort a(ri \T ro) =1 sort a(r1) \T 12

(S10) sorta(&q G G P (1)) =2 fGl, NN .
(S11) sort4(€L oG (T)) =L fGl, G 1.
(S12) sortA(c [(r)) =, coal” (sort 4(r))

(S13) sort A(rdu ()) = rdup(sort 4(r))

(S14) sort 4 (rdup™ (r)) =5, rdup” (sort 4(r))

IsPrefizOf (A, Order(r))
IsPrefizOf (B, A)

attr(A
attr(A
attr(A
attr(A

Q,

attr (fla---afn)

- /\ T1 ¢ attr(A)
AT2 ¢ atir(A)
T1 ¢ attr(A) A T2 ¢ attr(A)

) €
) €
) CQ
) CQ

T1 ¢ attr(A) AT2 ¢ atir(A

)

F, (sort4(1)) attr(A) C {G1,...,Gn}
7Fm(sort,4(r)) attr(A) C{Gy,...,Gp}
T1 ¢ attr(A) AT2 ¢ attr(A)

T1 ¢ attr(A) AT2 ¢ atir(A)

Fig. 14. Sorting transformation rules.

operation sort being the only exception. For this reason, the
=; transformation rules given in Sections 5.1-5.4 are only
applicable in the stratum and they have corresponding =y,
transformation rules for the DBMS. For brevity, the latter
rules are omitted from Figs. 10, 11, 12, 13, and 14.

6 APPLICABILITY OF TRANSFORMATION RULES

Queries expressed in some user-level query language are
mapped to an initial algebraic expression to which the
optimizer then applies transformation rules according to
some given strategy. The resulting, new algebraic expres-
sions must, when evaluated, return a relation that is
equivalent to the relation returned by the original expres-
sion, which we assume correctly computes the user’s query.
The type of equivalence required between result relations
depends on the query language used and on the actual
query statement.

Having a query plan, we name the required equiva-
lence between results the top equivalence and assign it to
the root of the query tree. We then propagate the
required equivalences to the operations below in the
query tree. Due to the different characteristics of opera-
tions, an operation somewhere in the query tree may
require an equivalence that is not the same as the top
equivalence. For example, if operation rdup is placed at
the root and the top equivalence is =;;, an operation
below rdup requires only =g equivalence because arbi-
trarily introducing or removing duplicates does not affect
the top equivalence.

The required equivalences constrain the types of
transformation rules that can be applied during query plan
enumeration. There are no restrictions on when rules with
equivalence type =; can be applied—these can always be
applied safely because a transformed expression evaluates
to a result identical as a list to that obtained from evaluating

the original expression. Although this does not hold for any
of the other five types of rules, such rules may still be
applicable. In the example above, an =g rule may be
applied to the query part below rdup.

Using some temporal variants of SQL, e.g., [6], as the
user-level language, the top equivalence is =y, or =14,
depending on whether the query given includes ORDER BY
A. The presence of ORDER BY specifies a result relation that
is a list, but if ORDER BY does not occur, the query specifies
a multiset, and the order of the result tuples is immaterial.
Intuitively, we can apply transformation rules to a query
evaluation plan if the result relations produced by the new
plan and the original plan are equivalent as multisets or
lists, depending on whether or not ORDER BY was specified
in the user-level query. The top equivalence cannot be one
of the snapshot-equivalence types for queries that must
faithfully preserve the time periods from the base relations
cannot arbitrarily return any of the snapshot-equivalent
result relations. However, snapshot-equivalence type rules
can be applied when they satisfy the equivalence type

(T1) op(r) =y TP (op (T°(r))

(T2) 1y opry =y TP(T°(r1) op T*(r2))

(T3) op (r) =y T (op (TP (r))

(T4) riopry = TS(TD(m) op TP (ry))

(TS) sorts(r) =, TP (sort A(T5(r))

(T6) sortA r) =14 T (sort A(TP (1))

(T7) (TD(r) M

(T8) TP(T°(r)) =ur

(T9) (TD(sortA())) =14 sorta(r)

(T10) TP(T5(s0rt o(r))) =14 s0TLA(T)
Fig. 15. Transfer transformation rules.

SLIVINSKAS ET AL.: A FOUNDATION FOR CONVENTIONAL AND TEMPORAL QUERY OPTIMIZATION ADDRESSING DUPLICATES AND... 39

TABLE 2
Properties of an Operation in an Operation Tree
| Property Name | Description
OrderRequired True if the result of the operation must preserve some ordering

DuplicatesRelevant | True if the operation cannot arbitrarily add or remove regular duplicates

PeriodPreserving

True if the operation cannot replace its result with a snapshot-equivalent one

TABLE 3
Combinations of Property Values and Corresponding Equivalence Types

| OrderRequired (op) | DuplicatesRelevant(op) | PeriodPreserving(op) | Equivalence type

True True True =14
True True False =74
True False True =
True False False =7,
False True True =u
False True False =2
False False True =g
False False False =3

between the results of the original plan and the new plan;
we describe those cases below. Other temporal variants of
SQL [11] may have statements that call for only snapshot-
list or snapshot-multiset equivalence. The mapping from
the user-level language to the algebra should indicate the
top equivalence required, as required by that language’s
semantics.

First, we consider an operation tree for an example query
and describe which types of transformation rules can be
applied to which locations. To enable the formal procedure
of determining when a transformation rule is applicable to a
query plan, we then introduce properties for the operations
in an operation tree. Section 6.2 defines the properties, and
Section 6.3 describes how to update them during query
optimization. Finally, Section 7 describes how to use those
properties to determine the applicability of transformation
rules.

6.1 Example

Again, consider the operation tree given in Fig. 8a. The
result of evaluating the tree is a list. The shaded regions
determine which types of transformation rules are
applicable.

In the area where order needs not to be preserved (the
lighter shaded region), we can apply =); transformation
rules. Specifically, in the subtree below the sort operation,
relations may be treated as multisets because the sort
operation ensures that the result is ordered appropriately.

Rules of type =5 can be applied to those query
fragments where duplicates are not relevant, which are
indicated by the darker shaded region. In this example,
these fragments are the subtree below the top temporal
duplicate elimination operation, except the bottom tempor-
al duplicate elimination operation, which ensures that the
left argument of the temporal difference does not contain
duplicates in snapshots (see Section 3.5). (This illustrates

that fragments need not always be whole subtrees; in fact,
there exist operation trees for which a particular shading is
absent for an entire subtree.)

Rules of the snapshot-equivalence types can be applied
to those query fragments that need not preserve time
periods, indicated by the dashed region. This is true for all
operations below coalescing because coalescing returns the
same result relation for all snapshot equivalent argument
relations if they do not contain duplicates in snapshots
(which, in this case, is ensured by temporal duplicate
elimination below coalescing). Consequently, below the
coalescing operation, =7, rules can be applied; =% rules
can be applied where duplicates are not relevant.

The next section describes how the shaded regions are
determined.

6.2 Definitions of Properties

Table 2 introduces three Boolean properties of operations,
which correspond to the shaded regions in Fig. 8. Each
operation in a tree has values for these properties. For each
combination of the property values, Table 3 gives an
equivalence type that should hold for results of that
operation. Two relations are =7 , equivalent if they are
=7, equivalent and their projections on A and the time
attributes are =7 equivalent. The time attributes are needed
for the latter equivalence to be defined.

The three properties can be used to determine whether a
type of transformation rule is applicable. A type of
transformation rule can be applied if the result produced
by the right-hand side is equivalent to the result produced
by the left-hand side according to the required equivalence
type, as specified by the properties for the top operation.

The three properties are propagated from the root and
down the tree (in the terminology of attributed syntax trees,
these are inherited attributes [23]). For the root, the properties
are set in accordance with the specific user-level query

40 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO.1, JANUARY/FEBRUARY 2001
TABLE 4
The MayHaveDups Property Values of an Operation According to Its Child(ren)
‘ op ‘ MayHaveDups(op)

§GrasGn P oy s Tdup, | False

551,...,(;” FiyFin? Td“PT

u True

Thyrsfn False if keyattr(result(childlop)) € attr(fi,..., fn)

True otherwise
op, sorta, coal” \,\T | MayHaveDups(child1,,)
x, x T, u, Ut MayHaveDups(childl,,) V MayHaveDups(child2,yp)

True

MayHaveDupsInSn(child1,y,)

The MayHaveDupsInSn Property VaIL-Jr:;B(I)_}‘Eaﬁ Operation According to Its Child(ren)
‘ op ‘ MayHaveDupsInSn(op)
§GryoasGn Fi oo oy » Tdup, | False
fgh...,Gn,Fl,...,Fm’ rdup”,
x, U, \
(True
Tf1osfn False if (T1,T2) ¢ attr(f1,..., fn)

else, if keyattr(result(childl,y))
€ attr(f1,..., fn)

otherwise

op, sort 4, coal”, \T

MayHaveDupsInSn(child1,y)

><T, ul

MayHaveDupsInSn(childl,,) V MayHaveDupsInSn(child2,,)

language and query statement. For example, some variant
of SQL may require that

1. the result be sorted if the ORDER BY clause is
specified at the outer-most level,

2. the result always either contains duplicates (DIS-
TINCT is not specified) or not (DISTINCT is
specified), and

3. the result always contains the same time periods
independently of which query plan is chosen.

Consequently, for the root, the OrderRequired property is
set to True only if the ORDER BY clause is specified at
the outer-most level, and the DuplicatesRelevant and
PeriodPreserving properties are always set to True.

The definitions of the three properties use two auxiliary
Boolean properties MayHaveDups and MayHaveDupsInSn,
which are propagated from the leaf operations to the root
(and, thus, are termed derived or synthesized attributes [23]).
These properties indicate whether a relation may contain
duplicates and duplicates in snapshots, respectively. More-
over, the DuplicatesRelevant property is used in the definition
of the PeriodPreserving property, and the latter property is
used in the definition of the OrderRequired property.

During query optimization, the properties are first set
for the initial query evaluation plan that is passed to the
query optimizer. First, properties MayHaveDups and
MayHaveDupInSn are propagated bottom-up. Then,
properties DuplicatesRelevant, PeriodPreserving and Order-
Required are propagated top-down in the given sequence.

We define all properties in turn. Table 4 defines the
MayHaveDups property for a nonleaf operation op according
to the property values of its argument(s). The property
holds for op if the result relation may contain duplicates.
Argument operations are indicated as childl,, and, in case
op is a binary operation, child2,,. This property can be
propagated from the bottom of the tree to the root according
to how operations preserve duplicates (recall Table 1); the
property is always True for leaf operations which corre-
spond to base relations.

Operations ¢, ¢7, rdup, and rdup’ remove duplicates,
while operations 7 and U may manufacture duplicates.
Projection 7 does not introduce duplicates if the key of its
argument (which exists if the argument may not have
duplicates) is included in the projection list. For other
operations, the property is set according to the property of
their arguments.

Table 5 defines the MayHaveDupsinSn property, which
holds for a nonleaf operation in a query plan if snapshots of
the result relation may contain duplicates. The property is
always True for leaf operations if they correspond to
temporal relations.

The operations that have temporal counterparts, i.e., U,
%, \, & and rdup, produce nontemporal relations and cannot
have duplicates in snapshots. The same applies to projec-
tions that remove temporal attributes. The other cases are
similar to those of the MayHaveDups property definition.

Table 6 defines the DuplicatesRelevant property values for
a nonroot operation op. This property depends almost
entirely on the parent of the operation, denoted op,. In

SLIVINSKAS ET AL.: A FOUNDATION FOR CONVENTIONAL AND TEMPORAL QUERY OPTIMIZATION ADDRESSING DUPLICATES AND... 41

TABLE 6
The DuplicatesRelevant Property Values of an Operation According to lts Parent

‘ opp ‘ DuplicatesRelevant (op)

OP, Tfy,....fns SOTE A, X (left and right), | DuplicatesRelevant(opy)

xT (left and right), U (left and right),

U (left and right)

€Gr G P e Fis ggl,...,Gn,Fh...,Fm False if AggrFunctions(Fy,..., Fy) C {MIN,MAX}
True otherwise

rdup, rdup”, coal False

\ (eft), \T (left), UT (right) True

\ (right) True if MayHaveDups(opies)
False otherwise

\T (right) True if MayHaveDupsInSn(opjey;)
False otherwise

U (left) True if MayHaveDupsInSn(opright)
False otherwise

particular, the property is independent of the specific op.
The parent of the operation is listed in the first column of
the table. For binary operations, keywords left and right
denote the location of op relative to its parent. If this
property holds at the parent, it also holds at a child, except:

1. when the parent operation is regular (temporal)
duplicate elimination because then the child opera-
tion may deal with duplicates in any way since they
will later be removed,

2. when the parent operation is regular (temporal)
difference, the operation in question is located at the
right child, and the relation produced by the left
child does not contain regular duplicates (duplicates
in snapshots), and

3. when the parent operation is regular (temporal)
aggregation and the duplicate-sensitive aggregation
functions AVG, SUM, or COUNT are not used.

For example, function COUNT is duplicate-sensitive because
the result of an aggregation operation that counts the
number of tuples in a relation would be affected by the
presence of duplicates.

The next case to consider is when the property does not

hold at the parent. Then, the property holds at a child when
the parent operation is regular (or temporal) aggregation
and the aggregation functions used are AVG, SUM, or COUNT.
In addition, the property holds at a child when the parent
operation is regular (or temporal) difference, the operation
in question is located at the left child, or it is located at the
right child, and the relation produced at the left child does
not contain regular duplicates (duplicates in snapshots).
Similar conditions apply to regular (temporal) union. The
property always holds if the parent operation is coalescing
because different numbers of duplicates in the argument
might lead to result relations that are not even equivalent as
sets.

Table 7 defines the PeriodPreserving property. If this
property holds at a parent node, it also holds at a child,
except in the following cases:

1. when the parent operation is a projection not
involving the time attributes and whose Duplicates-
Relevant property does not hold,

2. when the parent operation is regular aggregation,

where the time attributes are not among the group-

ing attributes and the aggregation functions used are
not among AVG, SUM, or COUNT,

when the parent operation is temporal aggregation,

4. when the parent operation is coalescing and the
argument does not have duplicates in snapshots,
and

5. when the parent operation is temporal difference
and the right argument is the child in question.

hed

If the property does not hold at the parent operation, the
property also does not hold at a child, except in eight cases,
namely, for the following parent operations:

1. selection with a predicate involving a temporal
attribute,

2. projection, if it involves one time attribute or if its
DuplicatesRelevant property holds,

3. regular aggregation, where the time attributes are
among the grouping attributes or the aggregation
functions are among AVG, SUM, or COUNT,

4. regular duplicate elimination,

5. regular Cartesian product,

6. temporal Cartesian product if it is not followed by a
projection removing the original time attributes,

7. regular difference, and

8. regular union.

Table 8 defines the OrderRequired property. This property
also depends almost entirely on the parent of the operation,
listed in the first column of the table and is independent of
the specific op. Most often, the OrderRequired property holds
for an operation at a child node when it holds for the

42 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO.1, JANUARY/FEBRUARY 2001
TABLE 7
The PeriodPreserving Property Values of an Operation According to Its Parent
0pp ‘ PeriodPreserving(op)
op PeriodPreserving(opy) if T1 and T2 ¢ attr(P)
True otherwise
Tf1 e fn PeriodPreserving(op,) if T1 and T2 € attr(fi,..., fn)
True else, if DuplicatesRelevant(op,)
V T1 xor T2 € attr(fi,..., fn)
False otherwise
€ G F o o False if AggrFunctions(Fy,...,F,) C {MIN,MAX}
AT, T2 ¢ attr(Gy,...,Gn)
True otherwise
€1 oGu P\ (right) | Palse
rdup, x (left and right), True

\ (left and right),
U (left and right)

rdup’, sort 4, \T(left),

U (left and right),
UT' (left and right)

PeriodPreserving (opp)

coal” False if ~MayHaveDupsInSn(op)
PeriodPreserving(op,) otherwise

xT (left and right) PeriodPreserving(op,) if followed by m removing original timestamps
True otherwise

TABLE 8
The OrderRequired Property Values of an Operation According to lts Parent
opp | OrderRequired (op)
TPy Tfy o frs TAUD OrderRequired (op,)
£G1,. .G 1o Fins
ggl,...,Gn,Fl,...,Fm’
x (left), xT (left),
\ (left)
rdup™, coal™, True if MayHaveDupsInSn(op) A PeriodPreserving(opp)
\T (left) OrderRequired (op,) otherwise
sort 4 False
x (right), xT (right), | True if SequenceRequired(op)
\ (right), \" (right), | False otherwise
U (left and right)
U (left and right)
U (left)
u”, right True if (MayHaveDupsInSn(op) A PeriodPreserving(opy))
V SequenceRequired (op))
False otherwise

operation at the parent node and the parent node operation
preserves the order of its argument. For example, if order is
required for a select operation (o), then order will be
required of the immediate child of that operation. However,
if the parent operation is sort, the property does not hold for

its immediate child because the order of the argument is

immaterial.
For the OrderRequired property to hold at an immediate

child of rdup?, either that property must hold for rdup?, or
the child can produce duplicates in its snapshots and the

SLIVINSKAS ET AL.: A FOUNDATION FOR CONVENTIONAL AND TEMPORAL QUERY OPTIMIZATION ADDRESSING DUPLICATES AND... 43

TABLE 9
The SequenceRequired Property Values of an Operation According to Its Child(ren)

‘ opp ‘ SequenceRequired (op) ‘
coal”, rdup” True if MayHaveDupsInSn(op) A PeriodPreserving(op,)
\T (left), SequenceRequired(op,) otherwise
u” (right)

\T (right) True if MayHaveDupsInSn(leftsibling)
A PeriodPreserving(opp)
SequenceRequired(op,) otherwise
uT (left) True if MayHaveDupsInSn(rightsibling)
APeriodPreserving (opy)
SequenceRequired (op,) otherwise
sort 4 False if A includes all attributes of the argument
SequenceRequired(op,) otherwise
other operations | SequenceRequired(op,)

rdup” is required to preserve the periods of its argument.
This entry shows how a requirement being computed top-
down relies on properties that are propagated bottom-up.

The operations rdup’, coal’, \T, and UT are sequence
sensitive when their arguments have duplicates in snap-
shots (the left argument for \” and the right argument for
UT count), i.e., if they take arguments that are equivalent as
multisets, their results may not be equivalent as multisets
(however, their snapshots will be equivalent as multisets).
Therefore, when one of these four operations occurs in the
parent node, it requires that the sequence of tuples in its
argument(s) is not changed when periods have to be
preserved by the operation and the argument may have
duplicates in snapshots.

Note that this is a stronger requirement than that for the
OrderRequired property: We cannot change the sequence of
tuples even if the change would still preserve some order
on the result. This requirement is captured by the auxiliary
property SequenceRequired, which is True for operation op if
we cannot change the sequence of tuples in the result of that
operation. Table 9 defines the SequenceRequired property
(the property is always False for the root).

The SequenceRequired property needs to be checked when
setting the OrderRequired property for a number of opera-
tions. For example, if the SequenceRequired property is True
for a Cartesian product, the orders of both arguments of the
product matter (the OrderRequired property has to be set to
True for both arguments). However, if the OrderRequired
holds and the SequenceRequired property does not hold, the
OrderRequired property has to be set to True only for the left
argument because the right argument cannot contribute to
any sensible sorting of the result.

With the property propagation as outlined, it might be
that the required equivalence type for a leaf-level relation in
the query tree is =; 4. This may happen if coalescing,
temporal duplicate elimination, temporal difference, or
temporal union are used and their arguments may have
duplicates in their snapshots (as above, the left argument of
\’ and the right argument of U” count). In the stratum
architecture, this equivalence cannot be satisfied if the
underlying relations come from the DBMS in unknown

order. Such is the case if the underlying DBMS supports
SQL, and the expression below the T operation does not
include a sort operation, sorting on all attributes. Then, the
results of the mentioned operations present in the stratum
would possibly contain different tuples (even though their
snapshots at each point of time would contain the same
tuples). For example, the query coal” (T°(r)), if run several
times, may return results that are only snapshot-multiset
equivalent because relation r is retrieved from a conven-
tional DBMS. Such queries can be answered only if the top
equivalence is =y, or =7 ,. The mapping stage should
determine if the required top equivalence can be satisfied
for the given query and, if not, it should reject the query. An
alternative for the stratum implementor would be to modify
the mapping stage so that it introduces a sort operation
(sorting on all attributes) before the sequence-sensitive
operation used in the query, ensuring that the initial query
plan satisfies the required equivalence.

Coalescing combined with temporal duplicate elimina-
tion, and temporal difference combined with temporal
duplicate elimination (if the result is later coalesced) are
insensitive to the order of their arguments, and such queries
would always return =), or = 4 equivalent results in the
stratum architecture. The query used in Section 3.5 is one
such example.

6.3 Adjustment of Properties

When a transformation rule is applied during query
optimization, the properties must be adjusted. Since
transformation rules may be applied frequently, it is
preferable to avoid scanning the whole operation tree both
bottom-up and top-down each time a rule is applied, but
rather to do incremental, local adjustments. The tables and
definitions of the previous section indicate how to
accomplish this, by expressing property values in terms of
the property values immediately above (or below) them in
the operation tree. For example, to adjust the values of the
DuplicatesRelevant property for some operation after a
transformation, it is enough to know the property value
for the operation immediately above the resulting query
part.

44 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 1,

JANUARY/FEBRUARY 2001

TABLE 10
Triggered Property Adjustments

‘ Adjustment ‘ Triggered top-down adjustment from the top-most adjusted node
MayHaveDupInSn | OrderRequired in all subtrees below the first-met coalescing.
DuplicatesRelevant in all subtrees below the first-met temporal difference or
temporal union.
PeriodPreserving for the first coalescing and below.

MayHaveDupln DuplicatesRelevant in all subtrees below the first-met regular difference.
PeriodPreserving OrderRequired in all subtrees below the first-met temporal duplicate elimina-
tion, coalescing, temporal difference, or temporal union.

DuplicatesRelevant | PeriodPreserving in all subtrees below the first-met projection.
SequenceRequired OrderRequired in all subtrees below.

If a property’s value depends on the values in the tree
above it (such as DuplicatesRelevant), we determine if the
application of a transformation rule changes the property
values at the bottom node(s). If so, adjustments in the
subtree(s) below are necessary.

Similarly, if the value of a property depends on the
values below it in the tree, we must determine if the
application of a transformation rule changes the property
value of the top operation. If it does, we must reconsider the
properties of the operations in the part of the tree above the
resulting query part.

The adjustment of one property may trigger the adjust-
ment of other properties. For example, the adjustment of the
MayHaveDupInSn property triggers the adjustment of the
PeriodPreserving property because the value of the latter for
coalescing depends on the MayHaveDupInSn property
value. Table 10 summarizes the triggered adjustments.

In general, nonlocal property adjustments will be rare
because applications of most of the transformation rules
will not lead to the change of the properties of the top

(bottom) operation(s). Table 11 describes the adjustments
for all transformation rules that require nonlocal adjust-
ments (excluding triggered adjustments). All these rules
either introduce or remove an operation. (Each equivalence

in the table represents two transformation rules.)
The use of the properties in an operation tree enables us

to formalize when a transformation rule is applicable to a
query plan. The next section shows how the properties are
used during query plan enumeration.

7 QUERY PLAN ENUMERATION

We give a straightforward enumeration algorithm that
correctly applies the different types of transformation rules;
we do not consider the subsequent heuristic or cost-based
selection of a final query plan. We also do not consider the
performance of the enumeration algorithm, except to note
that incremental maintenance of property values improves
over full recomputation.

TABLE 11
Adjustment of the Properties

‘ Equivalence ‘ Adjustment actions (according to the transformed expression)

G3,G24,D14 Adjust the PeriodPreserving property in all subtrees below.

G5, G25,C1, C4 | Adjust the OrderRequired, DuplicatesRelevant, and PeriodPreserving proper-
ties in all subtrees below.

D2 Adjust the DuplicatesRelevant property in all subtrees below.

D3, D4 Adjust the MayHave Dups and MayHave DupsInSn properties above, up to the root.
Adjust the OrderRequired property in all subtrees below the top-most temporal
duplicate elimination, coalescing, temporal difference, or temporal union.

Adjust the DuplicatesRelevant property in all subtrees below the top-most regular
difference, temporal difference, or temporal union.

Adjust the PeriodPreserving property in all subtrees below the top-most coalesc-
ing.

C2,C8, C11, D1 | Adjust the DuplicatesRelevant and PeriodPreserving properties in all subtrees
below.

S1 Adjust the SequenceRequired and OrderRequired properties in all subtrees below.

SLIVINSKAS ET AL.: A FOUNDATION FOR CONVENTIONAL AND TEMPORAL QUERY OPTIMIZATION ADDRESSING DUPLICATES AND... 45

for each plan P € P do
for each T € TR do

if local conditions are satisfied and
((T isa =, rule)

V(Tisa =g
V(Tisa =}
V(Tisa =3,
V(Tisa =3

then apply 7T to [yielding P';
adjust properties of P’;
add P'to P
return P

for each location [within P that matches the left side of 7" do

V (T'isa =, rule A opyop € I (~OrderRequired(op)))
rule A opiop € I (mDuplicatesRelevant(op)
rule A opyop € | (—PeriodPreserving(op)))
rule A opyop € 1 (- OrderRequired(op) A
rule A opiep € I (mDuplicatesRelevant(op) A
A = PeriodPreserving(op)))

A = OrderRequired (op)))

= PeriodPreserving(op)))
- OrderRequired (op)

Fig. 16. Query plan enumeration algorithm.

The arguments to the query plan enumeration algorithm
are a set of plans P (initially, P contains only one plan) and
a set of transformation rules 7R. The output is all query
evaluation plans that are possible to obtain using the given
set of transformation rules. The algorithm is given in Fig. 16.

For the algorithm to terminate, the set of transformation
rules cannot include all rules given in Section 5. The rules
that introduce additional operations, such as r —g rdup(r),
would be applicable an infinite number of times. Hence,
heuristics must exist that restrict or eliminate the use of
such rules.

The algorithm provides an operational means of deter-
mining when a transformation rule is applicable. It has a
syntactic component (the left-side expression must match in
some location) and a semantic component (the precondi-
tions must hold and the properties must have appropriate
settings). In the algorithm, when testing the applicability of
a transformation rule at some location, the properties of the
operation at the top of that location is employed. For
example, when testing the applicability of transformation
rule coal” (11 \T r3) —r coal® (r1) \T coal® (ry), the properties
of the coal” operation are used.

The algorithm is deterministic, i.e., it generates the same
set of query plans independently of the order of transfor-
mation rules and locations. This can be seen easily by noting
that the algorithm applies all the transformations to each
candidate plan at each possible location in all orders. In
many cases, the plan P’ generated by applying a transfor-
mation will already be present in P.

The presence of the stratum imposes additional correct-
ness requirements, specifically that

1. portions evaluated by the underlying DBMS utilize
only operations provided by that DBMS,

2. the required equivalence of the T operation is
satisfied by the DBMS, and

3. portions evaluated by the stratum utilize only
operations provided by the stratum.

All three requirements must be ensured by the mapping to
the initial algebraic expression, which needs to be cognizant
of the capabilities of the DBMS and the stratum. Require-
ments 1 and 2 are ensured in the initial query plan by the
presence or absence of transformations that move the
transfer operations across operations (see Section 5.5);
requirement 2 is satisfied via the appropriate use of
properties.

Theorem 7.1. The algorithm given in Fig. 16 generates correct
query plans.

Proof. To prove the theorem, we need to prove that the
algorithm applies a transformation rule of some type
only when the result produced by the new query plan is
equivalent to the result produced by the original plan
according to the top equivalence, which depends on the
query language and the actual query statement. The
proof is divided into six parts, one for each type of
transformation rule. Reference [32] provides a proof that
=y type rules are applied correctly if the top equiva-
lence is =, 4 or =y, . O

While the algorithm generates correct plans, it does not
generate all possible plans—although we exploit transfor-
mation rules of “weak” equivalence types, e.g.,, =5, not
all cases where transformation rules of “weak” types can
be applied without invalidating the query result are
determined.

To illustrate how the enumeration algorithm works, we
use the example query from Section 3. The initial query plan
is given in Fig. 8a. Since the result of the temporal difference
does not contain duplicates in snapshots (because its left
argument does not contain duplicates in snapshots), we
apply rule D2 and remove the top temporal duplicate
elimination. Also, we push the transfer operation down by
using transfer rules T1, T2, T5, and T8; the rules of type =/
can be applied below the sort operation.

Then, we push the coalescing below the temporal
difference by using rule C10 (we can apply this rule
because OrderRequired does not hold for the coalescing). The

46 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 1,

SOFt EmpName ASC [TTT|

N T
coal” | coal® I---
_______________________________ T
rdup'1-T-] TS [---

T EmpName, T1, T2

N

PROJECT
o-=

JANUARY/FEBRUARY 2001

\ ITTT|
/c?gil TS5 [---1
/rdﬁ-T_] § \TCEmpName,Tl,CE%_]
T2 IT-- PROJECT

/

SOFt BrpName 2sc | s

/ [T--]

T EmpName, T1, T2 [---]

| EMPLOYEE [---]

Fig. 17. Operation trees with properties and transformation-rule applicability regions.

resulting plan is shown in Fig. 17a. For each operation, we
list its properties in square brackets in the order OrderRe-
quired, DuplicatesRelevant, and PeriodPreserving.

Next, we remove the unnecessary coalescing appearing
in the second argument to the temporal difference using
rule C2; order and time periods need not be preserved in
the right branch of a temporal difference. Finally, we push
the sort operation down by using rules 59, 512, and S14;
and, we change the location of the sort operation from the
stratum to the DBMS by using rules T6 and T8. Fig. 17b
shows the final plan.

8 EXTENSIBILITY OF THE FRAMEWORK

The optimizer implementor can extend the foundation
presented here by tailoring it to a specific query language or
by adding a new operation.

The former requires the implementor to define the
mapping from the query language to the algebra and to
determine how the top equivalences should be set for the
initial query plans.

When adding a new operation, it must be defined in
A-calculus, related transformation rules must be introduced,
and property values for the operation must be determined.
In addition, the implementor should consider if the new
transformation rules may require nonlocal property adjust-
ments and should ensure that queries involving the new
operation are processed only if they can satisfy the top
equivalence when applied repeatedly. The proof of correct-
ness of the enumeration algorithm must be extended to
accommodate the new operation. For the stratum architec-
ture, a translation of the new operation to SQL should be
developed.

9 RELATED RESEARCH

In this section, we survey how the previous work on
relational and temporal algebras addressed duplicates and
order. Past work in conventional and temporal query
optimization, as well as in temporal layers, is also covered.

Dayal et al. [10] extend the relational model to include
multiset (also called bag) relations. They define selection,
join, projection, duplicate elimination, union, intersection,
and difference operations for multisets, and provide several
algebraic equivalences. In a similar manner, Albert [1]
extends union, intersection, difference, and Boolean selec-
tion to multisets, giving them semantics that agree with the
usual set-theoretic semantics when the arguments are sets.
For example, the union defined in [1], unlike concatenation,
corresponds to disjunction for Boolean selection. In our
algebra, we have both union and concatenation; their
difference in relation to disjunction for Boolean selection
is exemplified by transformation rules G2 and G3. The
recent book by Garcia-Molina et al. [12] offers comprehen-
sive coverage of query transformations that preserve set as
well as multiset equivalences. Formalizing relations as
multisets, sorting is permitted only at the outermost level.
We define relations as lists, and our set of transformation
rules extends their rules to lists, precisely specifying the
equivalence type that holds for each rule, and also adds
rules for temporal operations.

Leung et al. [26] present query rewrite rules for
decorrelating complex queries, as implemented in IBM’s
DB2. Queries are represented in a query graph model,
which is a graph of nodes, each representing a table
operation whose inputs and outputs are tables. Duplicates
are addressed in a query graph model and in query rewrite
rules; in this graph model, each operation can eliminate,
preserve, or permit duplicates. Duplicates should be
preserved when, for example, the DISTINCT clause is not
specified, and duplicates are permitted when the operation
produces an argument for a universal quantifier, e.g., ALL.
Consequently, duplicates are addressed as special cases in
query rewrite rules. Our algebra and transformation rules
incorporate the handling of duplicates and order. We
consider operations that eliminate or preserve duplicates.
The =g equivalence type corresponds to “permitting”
duplicates, e.g., it allows replacing a query expression with
a set-equivalent one.

Mumick et al. [29], [30] study the extension of the Magic-
Sets technique for programs containing multisets and

SLIVINSKAS ET AL.: A FOUNDATION FOR CONVENTIONAL AND TEMPORAL QUERY OPTIMIZATION ADDRESSING DUPLICATES AND... 47

aggregates. They note that the implementation of multisets
is efficient since duplicate checks are not needed. They
provide a formal basis for reasoning about optimization
techniques when multisets are generated as intermediate
relations, independently of whether the user desires multi-
set semantics. Our framework integrates the treatment of
relations as lists, multisets, and sets.

Grumbach and Milo [15] study the expressive power of
algebras for manipulating bags. In particular, they study
how bag nesting affects expressive power. Libkin and
Wong [25] provide new techniques for studying the
expressive powers of set languages and bag languages that
have aggregate functions. We do not focus on studying the
expressive power of our proposed algebra other than
showing that it extends the conventional relational algebra.

More than a dozen temporal relational algebras have
been proposed over the last two decades [28], [31], but all
the algebras known to the authors are set-based and, hence,
do not adequately address issues related to duplicates,
order, and coalescing.

Existing work on temporal query optimization [16], [27]
primarily considers the processing of joins and semijoins.
For example, Gunadhi and Segev [16] define several
temporal joins and discuss their optimization, focusing on
temporal selectivity estimation and strategies for optimiz-
ing temporal equijoins. That work does not delve into
general query optimization and does not address dupli-
cates, order, and coalescing.

Bohlen et al. [8] define coalescing and argue that this
operation is not implemented efficiently in conventional
DBMSs. The paper uses set-based semantics, and coalescing
is defined as merging of value-equivalent tuples.

The recent work of Gadia and Nair [13] considers query
optimization for a parametric model for temporal data-
bases, presents algebraic identities, and gives a heuristic
optimization algorithm. They define a relation as a set of
tuples, but they also consider weakly equivalent relations,
i.e., relations that have the same snapshots. We refine this
equivalence into our snapshot-based set equivalences.

Several papers discussing stratum architectures for a
temporal DBMS have appeared, e.g., [36], and several
prototype temporal DBMSs have been implemented, e.g.,
[7], [3]. Most of the proposed temporal strata translate
temporal query language statements to SQL, but do not
perform any systematic optimization or processing. Mean-
while, we provide a framework for the division of
processing between the stratum and the underlying DBMS.

10 CONCLUSIONS AND RESEARCH DIRECTIONS

Temporal query representation, optimization, and proces-
sing mechanisms are needed to achieve built-in temporal
support in DBMSs. However, previously proposed conven-
tional and temporal algebras have to varying degrees
overlooked such aspects as duplicates, ordering, and
coalescing. In addition, past work on temporal query
optimization primarily considered the efficient processing
of only some operations, e.g., joins, and did not delve into
general query optimization.

This paper offers a general foundation for optimizing
conventional and temporal queries, which is suitable for
providing temporal support via a stand-alone temporal

DBMS or via a layer on top of a conventional DBMS. This
foundation offers comprehensive and precise handling of
duplicates and order for conventional and temporal
queries, as well as coalescing for temporal queries. The
foundation is enabled by a temporally extended, list-based
algebra, which enhances existing relational algebras. The
algebra is independent of the specific user-level variant of
the relational data model and is also independent of the
user-level relational query language.

Six types of equivalences among algebraic query expres-
sions are identified, leading to six types of transformation
rules that can be exploited during query optimization.
These sets of rules go beyond all such existing sets known to
the authors. Depending on whether order, duplicate
removal, and coalescing are required for the result of a
query, the query optimizer may apply different types of
transformation rules. A practical mechanism is provided for
determining when the type of a transformation rule is
applicable to a query. Finally, an algorithm that generates
equivalent query plans is presented.

This approach partitions the work required by the
database implementor to develop a provably correct query
optimizer into four tasks: The database implementor has to

1. specify operations formally in A-calculus,

2. design appropriate transformation rules, determine
for each which of the six equivalences apply, and
prove that the transformation rules are correct,

3. augment the setting and adjusting of the properties
so that the enumeration algorithm applies the
transformation rules correctly, and

4. ensure that the mapping generates a correct initial
query plan.

To complete the framework for query optimization and
evaluation (recall Fig. 1), a number of steps remain. A
mapping step, not covered in this paper, converts the query
into an initial plan. Once a specific query language is
chosen, checks should be included that, for a query plan,
ensure that the tasks assigned to the DBMS are expressible
in the language the DBMS supports, and that the operations
assigned to the stratum have corresponding implementa-
tion algorithms.

The algorithm given in Section 7 generates from this plan
a number of query plans according to the heuristics
provided. The next step is to select the plan with the
expected lowest cost. In the stratum architecture, the
challenge is to come up with a unified cost model for
stratum and DBMS operations, and with cost functions.
Cost functions for operations performed in the DBMS are in
general not known, but the statistics are possible to obtain.
The issues regarding costing are interesting research
challenges. Another challenge is to develop strategies for
dividing the processing between the stratum and the
DBMS, integrating transformation rules with heuristics
and cost estimation techniques. In addition, multiple
implementations of operations, e.g., several join implemen-
tations that return differently ordered relations, should be
considered.

Once a query plan is chosen, the query parts to be
performed in the DBMS should be translated into SQL.
Results should be returned to the stratum for possible
further processing. If the result of the stratum is needed for
subsequent operations in the DBMS, a temporary table

48 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 1,

should be created. The translation from the algebra to SQL
is also left for future research. Finally, the operations
located in the stratum should be evaluated in an efficient
manner. There has been significant work by others on this
problem, cf. [38].

This paper has provided a mechanism for representing
queries and for query transformation, which is at the core of
query optimization. Intended as a foundation for the
efficient processing of SQL-like queries, the algebra in-
cludes the standard operations called for by this type of
queries. The operations were specified in recursive-style
definitions that used operations such as head, tail, and
concatenation. The inclusion of these and other list
operations in the algebra may be explored. In addition,
the algebra may be extended to support modifications,
NOW-relative values [9] and transaction time [18]. It might
be appropriate to use an automatic theorem prover to
ensure the correctness of the transformations, the property
definitions, and the plan enumeration algorithm for all
cases.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful and helpful comments. This research
was supported in part by the Danish Technical Research
Council through Grant 9700780, by the US National Science
Foundation through Grant 1IS-9817798, by the Chorochro-
nos project, funded by the European Commission DG XII,
contract no. FMRX-CT96-0056, and by a grant from the
Nykredit Corporation.

REFERENCES

[1] J. Albert, “Algebraic Properties of Bag Data Types,” Proc. Very
Large Data Base Conf., pp. 211-219, 1991.

[2] J.F. Allen, “Maintaining Knowledge about Temporal Intervals,”
Comm. ACM, vol. 26, no. 11, pp. 832-843, 1983.

[3] M.H. Bohlen, “The Tiger Temporal Database System,” see
www.cs.auc.dk/~tigeradm/, current as of 1 Dec. 2000.

[4] M.H. Bohlen, R. Busatto, and C.S. Jensen, “Point versus Interval-
Based Temporal Data Models,” Proc. IEEE Int’l Conf. Data Eng.,
pp- 192-200, 1998.

[5] C. Bettini, C.E. Dyreson, W.S. Evans, R.T. Snodgrass, and X.S.
Wang, “A Glossary of Time Granularity Concepts,” Temporal
Databases: Research and Practice, pp. 406-413, 1998.

[6] M.H. Bohlen, C.S. Jensen, and R.T. Snodgrass, “Temporal
Statement Modifiers,” ACM Trans. Database Systems, tentatively
scheduled for vol. 25, no. 4, Dec. 2000.

[77 M.H. Bohlen, “Temporal Database System Implementations,”
ACM SIGMOD Record, vol. 24, no. 4, pp. 53-60, 1995.

[8] M.H. Bohlen, R.T. Snodgrass, and M.D. Soo, “Coalescing in
Temporal Databases,” Proc. Very Large Data Base Conf., pp. 180-
191, 1996.

[9] . Clifford, C.E. Dyreson, T. Isakowitz, C.S. Jensen, and R.T.

Snodgrass, “On the Semantics of ‘Now’ in Databases,” ACM

Trans. Database Systems, vol. 22, no. 2, pp. 171-214, 1997.

U. Dayal, N. Goodman, and R.H. Katz, “An Extended Relational

Algebra with Control over Duplicate Elimination,” Proc. ACM

Symp. Principles of Database Systems, pp. 117-123, 1982.

Temporal Databases: Research and Practice. O. Etzion, S. Jajodia, and

S. Sripada, eds., Springer-Verlag, 1998.

H. Garcia-Molina, J.D. Ullman, and J. Widom, Database System

Implementation. Prentice Hall, 2000.

SK. Gadia and S.S. Nair, “Algebraic Identities and Query

Optimization in a Parametric Model for Relational Temporal

Databases,” IEEE Trans. Knowledge and Data Eng., vol. 10, no. 5,

pp- 793-807, 1998.

[10]

(1]
(12]

[13]

(14]
(15]

[10]

(171

(18]

[19]

(20]

(21]

(22]

(23]
(24]

(25]

[26]

(27]

(28]

[29]

[30]

(31]

(32]

(33]
(34]
(33]

[36]

[37]

(38]

JANUARY/FEBRUARY 2001

M.J.C. Gordon, The Denotational Description of Programming
Languages. Springer-Verlag, 1987.

S. Grumbach and T. Milo, “Towards Tractable Algebras for Bags,”
Proc. Symp. Principles of Database Systems, pp. 49-58, 1993.

H. Gunadhi and A. Segev, “A Framework for Query Optimization
in Temporal Databases,” Proc. Fifth Int’l Conf. Statistical and
Scientific Database Management, pp. 131-147, 1990.

W.H. Inmon, Building the Data Warehouse, second ed. John Wiley
and Sons, 1996.

“A Consensus Glossary of Temporal Database Concepts,”
Temporal Databases: Research and Practice, C.S. Jensen and
C.E. Dyreson, eds., pp. 367-405, 1998.

CS. Jensen and R.T. Snodgrass, “Temporal Data Management,”
IEEE Trans. Knowledge and Data Eng., vol. 11, no. 1, pp. 36-45, 1999.
C.S. Jensen, M.D. Soo, and R.T. Snodgrass, “Unifying Temporal
Data Models via a Conceptual Model,” Information Systems, vol. 19,
no. 7, pp. 513-547, 1994.

W. Kiessling, “On Semantic Reefs and Efficient Processing of
Correlation Queries with Aggregates,” Proc. Very Large Data Bases
Conf., pp. 241-249, 1985.

A. Klug, “Equivalence of Relational Algebra and Relational
Calculus Query Languages Having Aggregate Functions,”
J. ACM, vol. 29, no. 3, pp. 699-717, 1982.

D.E. Knuth, “Semantics of Context-Free Languages,” Mathematical
Systems Theory, Volume 2, pp. 127-145, June 1968.

N. Kline and R.T. Snodgrass, “Computing Temporal Aggregates,”
Proc. IEEE Int’l Conf. Data Eng., pp. 222231, 1995.

L. Libkin and L. Wong, “New Techniques for Studying Set
Languages, Bag Languages, and Aggregate Functions,” Proc. ACM
Symp. Principles of Database Systems, pp. 155-166, 1994.

T.Y.C. Leung, H. Pirahesh, P. Seshadri, and]J.M. Hellerstein,
“Query Rewrite Optimization Rules in IBM DB/2 Universal
Database,” Readings in Database Systems, third ed., M. Stonebraker
and J. Hellerstein, eds., Morgan Kaufmann, pp. 153-168, 1998.
T.Y.C. Leung and R.R. Muntz, “Stream Processing: Temporal
Query Processing and Optimization,” Temporal Databases: Theory,
Design, and Implementation, A.U. Tansel et al., eds., Benjamin/
Cummings, pp. 329-355, 1993.

L.E. McKenzie, Jr. and R.T. Snodgrass, “Evaluation of Relational
Algebras Incorporating the Time Dimension in Databases,” ACM
Computing Surveys, vol. 23, no. 4, pp. 501-543, 1991.

LS. Mumick, H. Pirahesh, and R. Ramakrishnan, “The Magic of
Duplicates and Aggregates,” Proc. Very Large Data Base Conf.,
pp- 264-277, 1990.

I.S. Mumick, S.J. Finkelstein, H. Pirahesh, and R. Ramakrishnan,
“Magic is Relevant,” Proc. ACM SIGMOD, pp. 247-258, 1990.

G. Ozsoyovglu and R.T. Snodgrass, “Temporal and Real-Time
Databases: A Survey,” IEEE Trans. Knowledge and Data Eng., vol. 7,
no. 4, pp. 513-532, 1995.

G. Slivinskas, C.S. Jensen, and R.T. Snodgrass, “Query Plans for
Conventional and Temporal Queries Involving Duplicates and
Ordering,” TIMECENTER Technical Report TR-49, 1999.

R.T. Snodgrass, “The Temporal Query Language TQuel,” ACM
Trans. Database Systems, vol. 12, no. 2, pp. 247-298, 1987.

The TSQL2 Temporal Query Language. R.T. Snodgrass, ed., Kluwer
Academic Publishers, 1995.

R.T. Snodgrass, Developing Time-Oriented Database Applications in
SQL. Morgan Kaufmann, 1999.

K. Torp, C.S. Jensen, and R.T. Snodgrass, “Stratum Approaches to
Temporal DBMS Implementation,” Proc. IEEE Int’'l Database Eng.
and Applications Symp., pp. 4-13, 1998.

J. Yang, H.C. Ying, and J. Widom, “TIP: A Temporal Extension to
Informix,” Proc. ACM SIGMOD, p. 596, 2000.

C. Zaniolo, S. Ceri, C. Faloutsos, R.T. Snodgrass, V.S. Subrahma-
nian, and R. Zicari, Advanced Database Systems. Morgan Kaufmann
Publishers, 1997.

SLIVINSKAS ET AL.: A FOUNDATION FOR CONVENTIONAL AND TEMPORAL QUERY OPTIMIZATION ADDRESSING DUPLICATES AND... 49

Giedrius Slivinskas received the BS degree in
computer science and mathematics from Vilnius
University, Lithuania, in 1997, and the MS
degree in computer science from Aalborg Uni-
versity, Denmark, in 1998. He is currently a PhD
student in the Department of Computer Science
at Aalborg University. His past and present
research includes work in query processing
and optimization, middleware, temporal data-
bases, data warehousing, and multidimensional
indexing. He is a member of ACM SIGMOD.

Christian S. Jensen is a professor of Computer
Science at Aalborg University, Denmark, where
he directs the Nykredit Center for Database
Research. Prior to joining the faculty of Aalborg
University in 1990, he conducted his graduate
studies at the University of Maryland. During the
1990s, he was with the University of Arizona
during four sabbaticals. His research focuses on
the area of database systems and spans issues
of semantics, modeling, and performance. With
his colleagues, Dr. Jensen receives substantial national and interna-
tional funding for his research. He is a member of the editorial boards of
the IEEE Transactions on Knowledge and Data Engineering and the
ACM SIGMOD Digital Review. He was the general chair of the 1995
International Workshop on Temporal Databases and a vice program
committee chair and a best papers awards committee member for the
1998 |EEE International Conference on Data Engineering, and he was a
coprogram committee chair for the Workshop on Spatio-Temporal
Database Management, held with VLDB ’99. In 2001, he will cochair the
program committee of the Seventh International Symposium on Spatial
and Temporal Databases and, in 2002, he will chair the program
committee of the Eighth International Conference on Extending
Database Technology. He continues to serve on the program and other
committees for a number of conferences, including ACM SIGMOD,
CAISE, EDBT, IEEE Data Engineering, SSDBM, TIME, and VLDB, and
he serves regularly as a reviewer for all the major database journals. He
also serves on several boards of advisors and directors for companies.
He is a senior member of the IEEE, a member of the ACM and ACM
SIGMOD, and the IEEE Computer Society.

Richard T. Snodgrass received the PhD
degree from Carnegie Mellon University in
1982 and joined the University of Arizona in
1989, where he is a professor of computer
science.

He is chair of ACM SIGMOD. He also chairs
the ACM publications board and the ACM SIG
Governing Board Portal Committee. He is an

/ associate editor of the ACM Transactions on
I Database Systems, is on the editorial board of
the International Journal on Very Large Databases, and served on the
editorial board of the IEEE Transactions on Knowledge and Data
Engineering. He chaired the program committees for the 1994 ACM
SIGMOD Conference and the 1993 International Workshop on an
Infrastructure for Temporal Databases, was a vice-chair of the program
committees for the 1993 and 1994 International Conferences on Data
Engineering, and will chair the American program committee for the
2001 International Conference on Very Large Databases. He chaired
the TSQL2 Language Design Committee, edited the book, The TSQL2
Temporal Query Language (Kluwer Academic Press), and is now
working with the ISO SQL3 committee to add temporal support to that
language. He initiated the SQL/Temporal part of the SQL3 draft
standard. He is a coauthor of Advanced Database Systems (Morgan
Kaufmann), a coeditor of Temporal Databases: Theory, Design, and
Implementation (Benjamin/Cummings), and author of Developing Time-
Oriented Database Applications in SQL (Morgan Kaufmann). He
codirects TimeCenter, an international center for the support of temporal
database applications on traditional and emerging DBMS technologies.
His research interests include temporal databases, query language
design, query optimization and evaluation, storage structures, database
design, and software development databases. He is an ACM fellow and
a senior member of the IEEE.

