
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO. 4, AUGUST 1996 563 

Extending Existing Dependency Theory 
to Temporal Databases 

Christian S. Jensen, Richard T. Snodgrass, and Michael D. So0 

Abstract-Normal forms play a central role in the design of relational databases. Several normal forms for temporal relational 
databases have been proposed. These definitions are particular to specific temporal data models, which are numerous and 
incompatible. This paper attempts to rectify this situation. We define a consistent framework of temporal equivalents of the important 
conventional database design concepts: functional dependencies, primary keys, and third and Boyce-Codd normal forms. This 
framework is enabled by making a clear distinction between the logical concept of a temporal relation and its physical 
representation. As a result, the role played by temporal normal forms during temporal database design closely parallels that of 
normal forms during conventional database design. These new normal forms apply equally well to all temporal data models that 
have timeslice operators, including those employing tuple timestamping, backlogs, and attribute value timestamping. As a basis for 
our research, we conduct a thorough examination of existing proposals for temporal dependencies, keys, and normal forms. To 
demonstrate the generality of our approach, we outline how normal forms and dependency theory can also be applied to spatial and 
spatiotemporal databases. 

Index Terms-Temporal relation, valid time, transaction time, functional dependency, data semantics, normal form, database design. 

+ 
1 INTRODUCTION 

central goal of relational database design is to produce A a database schema, consisting of a set of relation schemas. 
Each relation schema is a collection of attribute names and 
their associated domains. 

Normal forms are an attempt to characterize "good re- 
lation schemes. A wide variety of normal forms have been 
proposed, the most prominent being third normal form and 
Boyce-Codd normal form. An extensive theory has been 
developed to provide a solid formal foundation. 

There is also a need for temporal normal forms and under- 
lying concepts that may serve as important guidelines during 
temporal database design. In response to this need, an array of 
temporal normalization concepts have been previously pro- 
posed, including first tmporal normal form [421, two variants 
of time normal form 141, [321, and P and Q normal forms 1261. 

These proposals are significant since each, in the context 
of a particular temporal data model, can be used to design 
temporal database schemas. However, the specificity of the 
proposals is a weakness since a given normal form inherits 
the inherent peculiarities of its data model, and, having 
chosen a particular temporal normal form, it is unsatisfac- 
tory to be required to define all of the normal forms anew 
for each of the two dozen existing temporal data models 
[451 should another model be better suited for representing 
the semantics of the application. Furthermore, the existing 
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normal forms often deviate substantially in nature from 
conventional normal forms and are in some sense not 
"true" extensions of these, for a variety of reasons that we 
detail later in this paper. 

In this paper, we show how temporal normal forms, in- 
cluding the related concepts of temporal dependencies and 
temporal keys, may be defined so that they apply to all tem- 
poral data models, and so that temporal database design 
concepts closely parallel their conventional counterparts. We 
do not simply focus on a single temporal data model. In- 
stead, we utilize a new data model, termed the bitemporal 
conceptual data model (BCDM), that in some sense is the 
"largest common denominator" of existing temporal models 
[21]. Specifically, we have shown how to map relations and 
operations in several quite different temporal relational data 
models into relations and operations in this data model. This 
is an important property, as it ensures that the normal forms 
expressed in this model are applicable also to other models. 
We define the temporal normal forms in the context of this 
model. Our proposal accommodates valid-time, transaction-time 
and bitemporal relations [431, [201. We also note that the 
BCDM has been adopted as the underlying data model of the 
consensus temporal query language TSQL2 [47]. Design of 
TSQL2 schemas thus directly benefits from the definitions of 
temporal dependencies and normal forms introduced here. 

Our focus is on the design of temporal database sche- 
mas. A substantial body of work exists on the specification 
and efficient checking of more general temporal, or dy- 
namic, integrity constraints. The dependencies, keys, and 
normal forms of this paper can be seen as constraints on 
database instances, but are different in two respects. Unlike 
general constraints, they impact the design of temporal da- 
tabases. And since the focus is on database design, on-line 
checking of the constraints is not of relevance here. 

1041-4347/96$05.00 01996 IEEE 

mailto:rts@cs.arizona.edu
mailto:soo@babbage.csee.usf.edu
mailto:transkde@computer.org


564 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 8, NO 4, AUGUST 1996 

We also believe that additional normalization concepts 2.1 Conventional Functional DeDendency 
are needed that take the different temporal characteristics 
of data into consideration, but the development of such 
concepts is beyond the scope of this paper. Instead, this 
paper is restricted to providing data-model independent 
mappings of the existing conventional normalization con- 
cepts to temporal databases. 

We also limit the scope of the paper to so-called intrastate 
dependencies [5]. Intrastate dependencies are defined in 
terms of individual snapshots of a temporal database. For 
example, the conventional notions of functional depend- 
ency and multivalued dependency are, by definition, intra- 
state dependencies. Interstate dependenaes, on the other 
hand, express constraints between attribute values in dif- 
ferent snapshots. 

The paper is organized as follows. In Sections 2,3, and 4, 
we examine all existing definitions, to our knowledge, of 
temporal dependencies, keys, and normal forms, respec- 
tively. This is the first thorough survey of work in these 
areas. Each section first briefly describes the relevant con- 
ventional normalization concepts, and lists a number of 
important properties that should carry over to their tempo- 
ral counterparts. On this basis, the temporal database de- 
sign proposals known to us are introduced and evaluated. 
The existing definitions satisfy many, but not all, of the 
properties required of entirely natural extensions of con- 
ventional normal forms. The existing temporal design con- 
cepts provide an initial foundation upon which we subse- 
quently build. 

The topic of Section 5 is the bitemporal conceptual data 
model. We describe the type of relation supported by the 
BCDM, and briefly describe a few algebraic operators 
needed to support the new temporal normal forms defined 
in the next section, where we then develop temporal coun- 
terparts of the conventional dependencies, keys, and nor- 
mal forms, again, limiting ourselves in this paper to intra- 
state variants. This is done is such a way that virtually all of 
the conventional normalization theory carries over to the 
temporal context. The result is that the role played by tem- 
poral normal forms during temporal database design 
closely parallels that of normal forms during conventional 
database design. This is possible, in part, because of a care- 
ful choice of temporal data model. Section 7 explores the 
properties of the temporal framework. 

To demonstrate the generality of our approach, we out- 
line, in Section 8, how normal forms and dependency the- 
ory can also be applied to spatial and spatiotemporal data- 
bases [2]. Recent work, conclusions, and future research are 
the subjects of Sections 9 and 10. 

2 PREVIOUS PROPOSALS FOR TEMPORAL 
DEPENDENCIES 

In this section, we consider previous proposals of temporal 
dependencies (in chronological order, of course!). To pro- 
vide a basis for this, we first review the definition of the 
conventional functional dependency, and then we highlight 
those properties that we feel should also be satisfied by 
corresponding temporal database dependencies. 

Throughout the paper, we generally use R to denote an 
arbitrary relation schema, and u(R) to denote that r is an 
instance of R. Explicit (nontemporal) attributes of a relation 
schema are generally denoted A,, . . ., A,, and X and Y are 
used to denote sets of attributes. For tuples, the symbol s is 
used (possibly indexed), and s[Xl  denotes the projection of 
tuple s onto the attributes X. 

For the purpose of database design, a functional de- 
pendency [Ill is an intensional property of a database 
schema. We associate with each schema a set of all in- 
stances that are possible in the modeled reality, termed the 
meaningful insfances. 
DEFINITION. Let a relation schema R be defined as R = (Al, A2, . . ,, 

A,), and let X and Y be sets of attributes of R. The set Y is 
functionally dependent on the set X ,  denofed X -+ Y ,  if for 
all meaningfiil instances r oJR, 

'ds,, s2 E r(s,[Xl = s,[X] - s,[Y1 = s2[Y1). 

I f  X + Y, we say that X determines Y.  A functional de- 
pendency X + Y is trivial if Y c X. 

A functional dependency describes (and constrains) the 
set of possible extensions of a relation. Which functional 
dependencies are applicable to a schema reflects the reality 
being modeled and the intended use of the database. De- 
termining the relevant functional dependencies is a primary 
task of the database designer. 

The two most important normal forms, third normal form 
[lo] and BoyceCodd normal form [12], as well as the concept 
of key, all rely on the concept of functional dependency. 
EXAMPLE. To illustrate, consider a database recording the 

phone numbers, departments, and employees in a 
company. This can be modeled with the schema 

Emp = (Name, Dept, PhNo). 
In this company, an employee can belong to only one 
department, meaning that Name + Dept. An em- 
ployee may have several phone numbers, so Name 
does not determine PhNo. 

DEFINITION. The closure of a set of functjonal dependencies, F ,  is 
the set of dependencies, denoted F , that are logically im- 
plied by F .  

Rather than applying the definition of functional de- 
pendency directly, it is customary to apply a set of infer- 
ence rules to derive new, implied dependencies. Arm- 
strong's axioms, a set of three inference rules, are among 
the most popular of such rules. This set has been proven to 
be sound and complete, meaning that precisely those de- 
pendencies that can be derived using the definition 
of functional dependency can also be derived using the 
rules [31. 
EXAMPLE. In the example database, the closure of the given 

functional dependency contains the following addi- 
tional nontrivial dependencies. 
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{Name, PhNo) 4 (Dept] 
(Name, PhNo) -+ {Name, Deptl 
{Name, PhNo) -+ {PhNo, Deptl 
{Name, PhNol + {Name, PkNo, Deptl 

As a basis for the subsequent discussion, we summarize 
here two fundamental qualities of dependencies (e.g., 
functional). 
D1. Dependencies are intensional, not extensional, properties. 

While it may require only few textual modifications to 
change an extensional definition into an obvious inten- 
sional counterpart, the conceptual difference between 
intensional and extensional concepts is significant. De- 
pendencies and noirmal forms are applied to relation 
schemas during database design where no instances 
are present yet. Thus, extensional definitions make lit- 
tle sense conceptually. 

D2. Dependencies are defined independently of the repre- 
sentation of a relation. These concepts are based on se- 
mantics, not on an arbitrary representation. 
The meaning of this desideratum will become clearer 
once the necessary concepts have been introduced; see 
Section 5.3. Briefly, in some data models it is possible to 
have different relation instances that nevertheless con- 
tain the same temporal information (i.e., are snapshot 
equivalent [21]). Such instances should satisfy the exact 
same dependencies. Further, instances in different 
temporal data models with the same information con- 
tent should satisfy the same dependencies. 

While conventional dependencies may share additional 
qualities, these two qualities are fundamental and are satis- 
fied by all conventiona I dependencies, including multival- 
ued and join dependencies. 

We add a third desideratum that is also related to the 
discussions on temporal keys in Section 3. However, it is 
more appropriately applied to functional dependencies. 
D3. Functional dependencies are used to define keys. 
We now characterize each of the previously proposed tem- 
poral dependencies based on these desiderata. 

2.2 Extensional versus Intensional Database 

In one of the first papers on temporal databases, Clifford 
and Warren make the distinction between extensional data- 
base constraints, which ”can be said to hold (or not hold) 
simply on the basis of the extension of the database with 
respect to a single state” [9, p. 2461 (where ”single state” is 
at a particular point in time), and intensional database con- 
straints, which ”can be said to hold (or not hold) only by 
examining at least two states of the” valid-time database 
(this terminology is somewhat inconsistent with the normal 
definition of intensional as applying to all possible states, or 
extensions). They classify conventional functional depend- 
encies as extensional constraints. They then show that their 
intensional logic (IL,) allows one to specify explicitly that a 
functional dependency must hold over all states of the da- 
tabase. Their logic is also able to specify other kinds of in- 

Constraints 

tensional constraints, such as ”No employee can later re- 
turn to the same department.” 

Concerning the subject of this paper, this early work is 
preliminary, in that a functional dependency over time was 
never defined. Subsequent efforts, to be discussed next, to 
define temporal variants of functional dependencies have 
taken different tacks. We feel, however, that the general 
approach introduced in Clifford’s paper is the appropriate 
one. We will define in Section 6 a temporal functional depend- 
ency and associated normal forms by formalizing the notion 
that a functional dependency should hold over all states. 

2.3 Dynamic Functional Dependencies 
In the context of a formal model for the evolution of data- 
bases in time, Vianu extended the notion of functional de- 
pendencies (FDs) to hold over consecutive states of a data- 
base. In this definition, U is a set of attributes in the rela- 
tional schema, U represents the values of these attributes in 
a state of the database, and U represents the values of these 
attributes in the next state of the database (Vianu provides 
formal definitions for these sets). The basic idea is to have 
attribute values in consecutive states determine values of 
other attributes in these states. 
DEFINITION. ”A dynamic func!ional dependency (DFD) over U 

is an FD X 4 Y over UU such that, for each A E Y, XA n 
U # 0 and XA n 3 # 0.... Infoumally, the above condition 
on FDs X + Y over UU ensure; that X + Y does not imply 
any nontrivial FDs over U or U .  (These would not truly be 
dynam& constraints.) For example, if U = ABC, then 
A B is a DFD, while A + BC is not.” [52, p .  361. 

In an example provided by Vianu of an ”equal opportu- 
nity” policy, a new salary is determined solely by merit in 
conjunction with the old salary. This policy may be en- 
coded in the DFD MERIT SAL -+ S A L .  

This definition satisfies Desiderata D1 and D2 listed in 
Section 2.1. No keys are defined in terms of DFDs. 

In the present paper, we will be concerned only with de- 
pendencies on temporal databases that can be expressed on 
individual snapshots. Dynamic functional dependencies 
address a different problem. Also, we will accommodate 
valid-time, transaction-time, and bitemporal relations; dy- 
namic dependencies are defined solely over transaction- 
time relations. 

2.4 Temporal Dependency in the Temporal 

The Time Relational Model (TRM) [32] is a valid-time data 
model. Valid-time is supported by appending to each tuple 
two time attributes (Ts, T,) denoting that the tuple was valid 
during the closed interval [T,, T,]. 

As the basis for the definition of a temporal normal form 
(to be introduced later), Navathe and Ahmed defined the 
notion of temporal dependency as follows. 
DEFINITION. There exists a temporal dependency between two 

time-varying attributes, A, and A,, in a relation schema 
R = (Al, A,, ..., A,, T,, T,) if there exists an extension r(R) 
containing two distinct tuples, t and t’, that satisfy each of 
the following three properties. 

Relational Model 
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1 Emp I Dept I M g r  I T, I Te I 

1) t[Kl = t‘[Q where K is the time invariant key. 

3) t[AJ = t’[A,] XOR t[All = t’[All. 
[32, p .  1561 and 111 

2) t[TJ = t’[T,] - 1 v tyre] = t[T,I - 1. 

Emp 
Bill 
Bill 

Thus, two attributes are mutually dependent if we are able 
to find, in some extension, two tuples that represent the 
same object of the modeled reality, have consecutive valid- 
time intervals, and agree on attribute A, and disagree on 
attribute AI or disagree on A, and agree on AI. If two attrib- 
utes are not mutually dependent, then they are termed syn- 
chronous, as they change simultaneously. 

The desire is to include only synchronous attributes in a 
relation. Otherwise, when the value of an attribute changes, 
the other attributes retain their previous value; these values 
must be replicated in the new tuple, creating redundant 
information. 
EXAMPLE. Consider the following relation instance with 

time-invariant key Emp. 

Dept M g r  T, ‘e 

Shipping Z o e  1 4 
Loading Zoe 5 10 

Bill 
Bill 

]Shipping] Z o e  I 1 1  4 
I Loading I Zoe I 5 1  10 

Emp 
< [ I ,  IO], Bill > 

In this relation instance a temporal dependency exists 
between the Dept and Mgr attributes. Because of this 
temporal dependency, the Emp and Mgr attribute 
values had to be copied to a new tuple when Bill 
changed departments. 

This dependency satisfies only Desideratum D1. It is de- 
pendent on the representation of a temporal relation and is 
not used for defining keys. 

2.5 Nested Relations with Valid-Time 
Tansel and Garnett showed how nested relations can be 
augmented with valid-time to support complex objects [50]. 
This data model uses attribute value timestamping. Attrib- 
ute values have the form <t, v> where t is a valid-time ele- 
ment (a set of maximal valid-time intervals) and ZI is a con- 
ventional attribute value. Informally, t indicates the time 
intervals when the attribute had the value 21. Attribute val- 
ues may be either atomic attribute values, as just described, 
or they may be nested relations themselves. 

This model does not define temporal dependencies. In- 
stead, it defines snapshot multivalued dependencies be- 
tween atomic attribute values, where the valid time associ- 
ated with the atomic attribute value IS treated as an explicit 
part of the attribute. 
EXAMPLE. Consider the following relation instance with key 

Emp. For simplicity, we only show a single valid-time 
interval associated with each attribute. 

Dept M g r  
< [ I ,  41, Shipping > , < [ I ,  61, Zoe > 
< [5, IO], Loading > < [7, I O ] ,  Janet z 
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and was managed by Zoe. From time 5 to time 6, Bill 
worked for the loading department. During this time 
his manager remained Zoe. At time 7 and continuing 
until time 10, Bill remained at the loading department 
but had Janet as his manager. 

We can unnest the nested relation to explicitly 
show the multivalued dependencies. Some of the tu- 
ples produced in the unnesting may not be meaning- 
ful since their attribute timestamps have an empty 
intersection. 

The first, tkird, and fourth tuples in the unnested 
relation encode the same facts over the intervals [l, 41, 
[5,61, and 17,101, respectively, as does the single tuple 
in the nested relation. The second tuple does not rec- 
ord a meaningful fact since the intersection of its at- 
tribute timestamps is empty. 

If we regard the attributes as atomic, i.e., the times- 
tamps contained in the attributes are considered ex- 
plicit values, it should be clear from the unnested rela- 
tion that the multivalued dependencies Emp ++ Dept 
and Emp + Mgr hold. Moreover, these dependen- 
cies are the traditional multivalued dependencies used 
in snapshot database design to obtain fourth normal 
form relation schemas. 

The central observation is that multivalued dependen- 
cies exist between the key attribute and set-valued attrib- 
utes in nested relations. While also present in nontemporal 
nested relations 1331, the same observation holds when 
valid-time is added to the model. Tansel and Garnett use 
these multivalued dependencies to guide the normalization 
of nested valid-time schemas. 

This approach satisfies Desideratum D1, but not D2 
(although the distinction between semantics and represen- 
tation perhaps is somewhat unclear). Desideratum D3 is 
not applicable to multivalued dependencies. 

2.6 The Interval Extended Relational Model 

The interval extended relational model (IXRM) [27] inte- 
grates (n-dimensional) intervals into the snapshot relational 
model and meets in this way the needs of many application 
areas. The intervals, one per attribute, may be drawn from 
any data type, including time and space. Interval-valued 
attributes are accommodated, and new operators that ma- 
nipulate relations with interval attributes are defined. 

The IXRM is not a temporal data model. The timestamps 
in a tuple do not specify when that tuple, or even an attrib- 
ute value in that tuple, was valid. Put differently, the query 
language does not interpret interval attributes as temporal 
attributes. The IXRM was designed to be used in applica- 
tions (e.g., soil management, e.g., [261) where according 
interval attributes temporal semantics would render such 
attributes of little use. Rather, such timestamps are more 
properly thought of as useu-defined time [43]. The IXRM is 
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mentioned here because, while it is not a valid-time model, 
database users may think of relations in this model as repre- 
senting valid-time relations. Indeed, some of the operators 
of the IXRM query language may conveniently be used for 
valid-time queries. 

Lorentzos extended the notion of functional dependency 
in two ways. In the following definitions, I(D) denotes 
the domain of intervals delimited by points in domain D; 
and X(D) denotes an arbitrary domain of either points or 
intervals. 

DEFINITION. "If R(A = I(D), B = X(D), C = X(D)) is a relation 
scheme it is said that A Interval Functionally Deter- 
mines (IFD) B if and only if whenever (q, bl, cl) E R, 
(ag, b,, c,) E R and al = a, then bl = b,." 127, p. 431. 

Note that the value of attribute C is not used in the defini- 
tion. Hence, this dependency is similar to the snapshot 
functional dependency, with the added constraint that the 
left-hand side be an attribute over an interval domain, in- 
terpreted as an atomic value. 

Of relevance for the next definition, the result of 
S-UNFOLD[A](R), where R is a relation instance and A is an 
interval-valued attribute of R, is obtained by "expanding" 
each tuple of R in turn. An argument tuple is expanded by 
generating one result tuple for each point in its A interval 
value. The point becomes the new A value of the result tuple 
which is otherwise left unchanged. For example, unfolding 
the tuple ([I, 31, b, c) yields ((1, b, c), (2, b, c), (3, b, c)). 
DEFINITION. "Let R(A = X(Dl), B = X(D,), C = X(D,)) be a rela- 

tion scheme and let S = S-UNFOLD[A](R). It  is said that 
A Point Functionally Determines (PFD) B if and only if 
whenever (al, b,, c,) E S ,  (a,, b,, c,) E S and al = a, then 

In this dependency, an interval is not interpreted as an 
atomic value, but rather as a set of points. 

Note that a PFD implies an IFD, but not vice versa. These 
dependencies may be combined to treat some interval- 
valued attributes as atoimic and others as sets of points. 

These dependencies are intensional properties, but are tied 
to the representation of a relation. They are used to define 
temporal keys. Hence, they satisfy Desiderata D1 and D3. 

b, = b,." 127, p. 441. 

2.7 Wijsen's Temporal Dependency Theory 
Wijsen and his colleagues have recently extended snapshot 
dependency theory to an object-based data model, i.e., a 
data model supporting object-identity [54], [55]. This data 
model is a sequence of snapshot relations indexed by valid- 
time. Four types of dependencies are defined: snapshot 
functional dependencies (SFDs), dynamic functional de- 
pendencies (DFDs), temporal functional dependencies 
(TFDs), and interval dependencies (IDS) [55], [56]. 

SFDs are intrastate dependencies, i.e., they are defined in 
terms of a single snapshot in a temporal database. Essen- 
tially, an SFD is the conventional functional dependency 
extended with object-identity. 

DFDs, TFDs, and IDS are interstate dependencies, i.e., they 
apply to the sequence of snapshots constituting the temporal 
relation. Like SFDs, these dependencies use object identity. 
DFDs constrain pairs of adjacent valid-time states; TFDs and 
IDS constrain a sequence of multiple valid-time states. 

In terms of the desiderata, this proposal satisfies Desid- 
eratum D1, in that the defined dependencies are intensional 
properties. However, the reliance on object-identity forces the 
proposal to be representation-dependent. The dependencies 
are used to specify keys, and so satisfy Desideratum D3. 

2.8 Summary 
We have surveyed several interesting definitions of tempo- 
ral dependencies. A few, such as Tansel and Garnett and 
Lorentzos, treat relations with temporal information as 
snapshot relations with explicit temporal attributes. The 
remaining dependencies, specifically Vianu's dynamic de- 
pendency, Navathe and Ahmeds temporal dependency, 
and Wijsen et al.'s DFD, TFD, and ID, are interstate de- 
pendencies, and thus are more ambitious than the intrastate 
dependencies considered further in this paper. 

3 PREVIOUS PROPOSALS FOR TEMPORAL KEYS 

We now turn to the related topic of defining keys for a 
temporal data model. We briefly review the notion of keys 
in conventional databases and the important properties of 
conventional keys. Then the existing temporal database 
keys are introduced and contrasted with the properties of 
conventional keys. 

3.1 Conventional Keys 
DEFINITION. The set of attributes X is a superkey of R if X + R. 

A superkey is minimal if when any attribute is removed, it 
is no longer a superkey. A relation schema may have many 
minimal keys, termed candidate keys. One suck key is 
selected as the primary key. 

EXAMPLE. In the example database, introduced in the previ- 
ous section, there are two superkeys, {Name, PhNo] 
and (Name, PhNo, Dept). Only the former is minimal; 
hence, it is the primary key, and there are no other 
candidate keys. 

The following five fundamental properties are held by 
the definitions of snapshot keys. We find it desirable that 
temporal keys also have these properties. 
K1. Keys are intensional. 
K2. Keys are properties of stored (base) relations only. 
K3. Particular attributes are not a priori designated as keys. 

In some temporal data models, relations have manda- 
tory timestamp attributes. The values of such attributes 
indicate when the nontemporal attribute values are 
valid (or current). The desideratum states that these 
mandatory attributes or other attributes should not be 
required to always be (part of) keys. Rather, the data- 
base designer should be able to choose more freely. 

K4. Keys are independent of the representation. 
This desideratum, along with the previous one, will be 
clarified in Section 5.3. 

K5. Primary keys are minimal. 
Next, we examine various proposals for temporal keys. 

Relation instances are used for illustration, even though the 
notion of key should be applied to relation schemas during 
database design. The key attributes are underlined. 
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Dept ~ start end 
Shipping 1 5 
Shipping 5 10 

3.2 Keys in the Time Relational Model 
In Ben-Zvi’s pioneering dissertation [41, the standard defi- 
nition of snapshot key is retained (though the definition is 
stated informally, without explicit reference to functional 
dependencies). To explain the notion of temporal key, we 
must first introduce the notions of tuple-version, tuple- 
version-set, and time-relation as defined in the Time Rela- 
tional Model. 
DEFINITION, ”Given a Relation R, a Key K for R, and letting 

D, = (dl, d,, dS, ... d,) denote a typical tuple in R. A 
Tuple-Version I,, is the ordered list: 

I, = (D, I Tisl T;3, Tie, T:el T;) .” 

”A Tuple-Version-Set, L, is a set of Tuple-Versions 
[I, / i = 1, . . . m} , all having the same key value Ki which 
compose the whole history of a unique tuple; this tuple can 
be uniquely determined by the key Ki.” 

”Given a Relation R, a Time-Relation Ri is the collection 
of all tuple-version-sets {L, j = 1, .,. n} consfructed from 
R’s tuples.” 14, pp .  47-501. 

The five T attributes used above encode the valid and 
transaction time of a tuple-version. A time-relation is a set 
of tuple-version-sets. 

A set of attributes K is a temporal key of a time-relation, 
R,, if 1) the attributes K form a (conventional) key of the 
corresponding nontemporal relation, R, and 2) the tuple- 
version-sets in R, are defined by partitioning tuple-versions 
so that tuple-versions with identical values for the attrib- 
utes K are in the same tuple-version-set. 

This definition has several notable properties. Clearly, 
the definition of a temporal key is intensional and satisfies 
Desideratum K1. As views are not discussed in this context, 
it is not known whether Desideratum K2 is satisfied. Unlike 
conventional relations, a time-relation has precisely one 
temporal key. This is so because tuple-versions partitioned 
on a set of attributes K are generally not guaranteed to also 
be partitioned on any other set of attributes. A temporal key 
is a priori designated, violating Desideratum K3, because a 
particular temporal key is chosen to achieve a desirable 
structuring of the tuple-versions. The choice of temporal 
key is not determined by the representation of a time- 
relation, so Desideratum K4 is satisfied. Finally, the notion 
of minimality of temporal keys for time-relations makes 
little sense, since a time-relation can only have a single key. 
The temporal key of a time-relation, R,, may or may not be 
a minimal key of the corresponding snapshot relation, R. 

3.3 The HQL Data Model 
In the data model associated with the query language HQL 
[36], valid-time relations are represented by snapshot rela- 
tions where tuples are timestamped with intervals. Thus, a 
valid-time relation with explicit attributes A,, ..., A, is 
represented by a snapshot relation with schema (Al, . . ., A,, 
start, end). 

Without providing further explanation of the notion of 
key, it is required that the attributes start and end be part of 
any primary key. 

Two points can be made. First, using both timestamp at- 
tributes seems unnecessary. Indeed, one of the attributes is 
redundant, violating the minimality requirement of a pri- 
mary key. Second, the definition of key appears to be repre- 
sentation-dependent. In summary, this definition may sat- 
isfy Desiderata Kl-K3 (insufficient discussion makes it im- 
possible to know for sure), but it does not satisfy Desiderata 
K4 or K5. 

EXAMPLE. Consider the following relation instance. 

The primary key of the relation schema is {Emp, start, 
end}. It may be observed that generally either {Emp, 
start} or {Emp, end) are sufficient. 

3.4 The TRM Data Model 
A key of a TRM relation schema is defined as follows. In 
the definition, the time-invariant key (TIK) is the primary 
key of a snapshot version of the valid-time relation schema. 
DEFINITION. The candidate keys of a TRM relation schema are 

(TIK, T,) or (TIK, TJ, i.e., the snapshot key appended with 
either the starting or ending timestamp. (TIK, T,) is desig- 
nated as the primary key [321. 

This definition is clearly intensional and therefore satis- 
fies Desideratum K1. However, the definition does not sat- 
isfy Desideratum K2 since derived relations have the given 
key. Similarly, Desiderata K3 and K4 are not satisfied since 
T, (or T,) must be part of a candidate key, and the definition 
is dependent on the given tuple-timestamped representa- 
tion. We assume Desideratum K5 is satisfied since the TIK 
is assumed to be a minimal key. 

3.5 The Interval Extended Relational Model 
As before, we emphasize that the IXRM is not a temporal 
data model, in that it supports only user-defined time 1271. 
It can, however, be used as the representation of a valid- 
time relation. 

Keys are defined in this data model in terms of point and 
interval functional dependencies, in a manner very similar 
to snapshot keys. A key is required to be minimal. As 
Lorentzos mentions “the” key, it is assumed that only the 
primary key was being defined. T h s  definition of key satis- 
fies all but Desideratum K4. 
EXAMPLE. Consider a sample relation instance. 

The key of this relation is T, since T determines {Emp, 
Dept}. 

3.6 The TempSQL Data Model 
Gadia and Nair define a special notion of key in the data 
model associated with the query language TempSQL [17], 
1311. To examine this concept, the type of relation employed 
must be understood first. 
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EXAMPLE. Consider the following relation instance indicat- 
ing the managers for departments. 

Attribute values are stamped with finite unions of 
intervals (i.e., valid-time elements [16]). All informa- 
tion about the shipping department is contained in 
the first tuple, whiich states that Bill was the manager 
from time 10 to 14 and that A1 was the manager from 
time 15 to 19. 

We now state the definition, then explain it using the ex- 

R as its key, is a finite 
set of nonempty tuples such that no key attribute value of a 
tuple changes with time, and no two tuples agree on all 
their key attributes.” [17, p .  101. 

The definition lists two requirements that must be ful- 
filled for a set of attributes to be a key. In the example, the 
attribute Dept is a key because for each tuple, there is only 
one value of attribute Dept and no two tuples have the 
same value for attribute Dept. 

It appears that a key is a property of a relational in- 
stance, making the definition extensional. Also, the defini- 
tion is independent of the notion of temporal functional 
dependency. The dependencies Dept 3 Mgr and Mgr -+ 
Dept are assumed to hold, making both Dept and Mgr keys 
of the schema (Dept, Mgr) in the conventional sense. Yet, in 
the relation instance above, the attribute Mgr is not a key in 
the sense defined here An operator is available that re- 
structures the instance to yield the following, equivalent 
relation, now with Mgr as the only key. 

ample. 
DEFINITION. “A relation over R, with K 

Dept 

[15, 301 Loading 

To summarize, this definition of key satisfies Desiderata 
K3 and K4, but does not satisfy Desiderata K1 or K2 
(because operators can change the key of a relation). Pri- 
mary keys are not defined in the model. 

3.7 Wijsen’s Theory of Keys 
In conjunction with their work in temporal dependency 
theory, Wijsen and his colleagues have developed a notion 
of keys for temporal relations [54], [55]. Three types of keys, 
snapshot keys (SK), dynamic keys (DK), and temporal keys 
(TK), corresponding to the notions of snapshot functional 
dependency, dynamic dependency, and temporal depend- 
ency, respectively, are defined. Recall from Section 2.7 that 
a major motivation for this work was to incorporate the 
concept of object-identity into a temporal database. As ob- 
ject-identity is normally a hidden attribute of an object, i.e., 
is an attribute that cannot be directly referenced or queried, 
the defined keys attempt to make the identification of tu- 
ples belonging to the same object possible. 

For example, the snapshot key is (informally) defined as 
follows. 

DEFINITION. A snapshot key is a set of attributes that snapshot 
functionally determines the object-identity of an object, for 
any snapshot which can be taken from a temporal database. 
The snapshot key is also minimal. [Rephrasing of defini- 
tion, 154, p .  1511. 

As can be seen, a snapshot key uses the object-identity in its 
definition, though the object-identity is not part of the key. 
Notice also, that the snapshot key is an intrastate key, i.e., 
the snapshot key does not express constraints between at- 
tribute values in snapshots taken at different times. 

This definition satisfies all of the desiderata except Desid- 
eratum K4, since it relies on object-identity. 

Dynamic keys and temporal keys are defined using inter- 
state dependencies. For example, a dynamic key, like a dy- 
namic functional dependency, holds between adjacent states 
of a temporal database, and a temporal key, like a temporal 
functional dependency, holds between disjoint intervals of 
time. 

Interstate dependencies and keys are beyond the scope 
of this paper. Our temporal key, to be defined later, is very 
similar to Wijsen’s snapshot key, except we do not rely on 
the presence of an object-identity attribute. 

3.8 Summary 

We have surveyed several interesting notions of keys. Each 
of the given proposals adapt the notion of conventional 
relational keys to temporal databases, but none of the keys 
individually satisfy all five desiderata in Section 3.1. We 
base our work on the foundation provided by these previ- 
ous proposals. 

4 PREVIOUS PROPOSALS FOR TEMPORAL NORMAL 
FORMS 

We wish to develop normalization concepts that closely 
parallel their counterparts in conventional normalization 
theory. We therefore begin by briefly reviewing the two 
most important relational normal forms, third normal form 
and Boyce-Codd normal form. This leads to a formulation 
of the common aspects of conventional normal forms that 
we wish our temporal normal forms to possess. Existing 
temporal normal forms are then introduced and examined 
with respect to these properties. 

4.1 Conventional Normal Forms 
A normal form is an intensional property of a database 
schema that follows from a set of (functional, multivalued, 
or other) dependencies. The goal of database design is to 
obtain a set of relation schemas that, together with their 
dependencies, satisfy the normal forms. 

We define the two most important normal forms, third 
normal form [lo] and Boyce-Codd normal form 1121. 
DEFINITION. The pair of a relation schema, R, and a set, F ,  of 

functional dependencies on R is in third normal form 
(3NF) if for all nontrivial dependencies, X -+ Y, in F’, X is 
a superkey for R or each attribute in Y is contained in a 
minimal key for R. 
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DEFINITION. The pair of a relation schema, R, and a set, F ,  of 
functional dependencies on R is in Boyce-Codd normal 
form (BCNF) if for all nontrivial dependencies X -+ Y in 
F’, X is a superkey for R. 

The normal forms only allow the existence of certain 
functional dependencies, making other functional depend- 
encies illegal. As we shall see, illegal dependencies indicate 
either the need for null values, the possible existence of up- 
date anomalies, or the presence of redundant information. 
By obeying the normal forms, some of these undesired ef- 
fects are avoided. 
EXAMPLE. Returning to the example in Section 2.1, Emp = 

(Name, Dept, PhNo), we have Name -+ Dept. Since 
Name is not a superkey, BCNF is violated. As Dept is 
not part of any minimal key, 3NF is also violated. As 
we may expect, a database using this schema exhibits 
several problems. 

First, insertion anomalies are possible. If we want to 
insert the department of an employee but do not know 
the employee’s telephone number, either the informa- 
tion cannot be inserted or the phone number must be 
represented by a null value. This is also true when we 
do not know the employee’s department. Normal 
forms attempt to avoid excessive use of null values. 

Second, update anomalies are possible through re- 
dundant information. For example, whenever a new 
telephone number is inserted for an employee, the de- 
partment information must be repeated. Apart from 
being wasteful of space, this means that whenever an 
employee switches departments, several tuples, one for 
each of the employee’s telephone numbers, must be 
updated. If one such tuple is not updated then an in- 
consistency will be generated in the database. Normal 
forms attempt to avoid redundancy. 

Third, deletion anomalies are possible. Suppose 
that an employee no longer needs a telephone, and all 
telephone numbers for that employee are deleted 
from the database. When the last tuple containing that 
employee’s telephone is deleted, the removal of that 
tuple results in the loss of the employee’s department 
information. Again, undesirable null values may be 
used to overcome this problem. 

Decomposition is one way to address these problems, by 
breaking up a large relational schema into several smaller 
schemas, each of which satisfy the normal forms. 
EXAMPLE. All of the anomalies previously mentioned with 

the example relational schema are avoided by de- 
composing the schema into EmpDept = (Name, Dept) 
and EmpPhNo = (Name, PhNo), both of which are in 
BCNF. 

In some applications, queries involving a join of two re- 
lations occur frequently. As joins are expensive operations, 
performance considerations may dictate that the relation 
schemas be merged, even if the resulting schema does not 
conform to a desirable normal form. Thus, anomalies and 
redundancy may be tolerated in order to enhance the per- 
formance of the database management system. 

Additional normal forms exist that are more restrictive 
than BCNF. For example, fourth normal form [13] is a close 
parallel of BCNF, but which relies on the notion of multi- 
valued dependencies [60]. 

We do not address these normal forms, for two reasons. 
First, they are generally believed to have less relevance in 
practical database design. Second, no proposals for tempo- 
ral counterparts of these have been proposed. Still, even 
though we do not cover these further normal forms in this 
survey, temporal versions of such normal forms such as 
fourth normal form may be defined within the framework 
developed in Section 6.3. 

In summary, the fundamental qualities of the conven- 
tional normal forms may be outlined as follows. 
N1. Normal forms are intensional, not extensional, proper- 

ties. 
As argued before, while this may be a subtle distinc- 
tion, it is a conceptually important one. 

N2. Normal forms are defined solely in terms of dependen- 
cies that exist or do not exist. 

N3. Normal forms are properties of stored (base) relations 
only-redundancy and anomaly issues do not apply to 
(computed) views. 
We have seen that normal forms are motivated by the 
desire to avoid update anomalies and redundancy. 
These issues are only of interest for base relations as 
they are the only relations that must be stored, and 
they are the only relations that can be updated. Normal 
forms do not apply to views or derived relations, and 
they are independent of query languages. 

N4. Normal forms are defined independently of the repre- 
sentation of a relation. These concepts are based on se- 
mantics, not on an arbitrary representation. 

The meaning of this desideratum will become clearer 
once the necessary concepts have been introduced; see 
Section 5.3. 

While conventional normal forms may share additional 
qualities, these four qualities are all fundamental and are 
satisfied by all conventional normal forms. We characterize 
each of the previously proposed temporal normal forms 
based on these desiderata. 

When presenting the various normal forms, it is con- 
venient to illustrate these by means of sample relation in- 
stances. While normal forms may be applied to individual 
instances, we emphasize that normal forms should be ap- 
plied to relation schemas during database design. 

4.2 Time Normal Form 
In his Time Relational Model, Ben-Zvi defined the first 
temporal normal form. The definition employs the concepts 
of contiguous and noncontiguous time-relations. Intui- 
tively, a time-relation is contiguous if ”there are no ’holes’ 
in the effective-time history of each tuple-version set” ([4, p. 
1371; a formal definition is also provided). To illustrate this, 
consider a tuple-version-set that records the department 
history of employee Bill. If it is always the case that when 
Bill resigns from one department, he immediately starts in 
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another department, there are no times (i.e., no ”holes’’) 
during Bill’s employment when he does not have a de- 
partment value. A time-relation ”R, is noncontiguous if it is 
not contiguous.” 
DEFINITION. “A time-relation R, is in time normal form if Rela- 

tion R is in any normal form and either all its attributes 
are contiguous or noncontiguous.” [4, p .  1391. 

Here, R is the underlying conventional relation on which R, 
is defined (see Section 3.2). 

The rationale for this normal form is two-fold. In the ex- 
ample above, if tuple-version-sets are known to be contigu- 
ous, users need not explicitly terminate the employment of 
an employee in one department when recording that the 
employee is now with another department-the system is 
capable of doing this. Next, the contiguity may be exploited 
in the implementation of a time-relation. It is not necessary 
to explicitly record when an employee left a department as 
this time may be inferred from the time when the employee 
joins another department. 

One confusing aspect of the definition is that it refers to 
attributes as contiguous or noncontiguous, even though 
these notions are only defined for relations. A second con- 
fusion is whether first normal form qualifies. Earlier discus- 
sion of R implies that it is in first normal form. 

This definition satisfies Desiderata N1 and N3. It does not 
satisfy Desiderata N2 (since contiguity is not defined in terms 
of functional dependencies) or N4 (since the definition of 
contiguity is in terms of the representation of a time-relation). 

4.3 First Temporal Normal Form 

Segev and Shoshani define, in their Temporal Data Model, 
a normal form, lTNF, for valid-time relations [42]. To un- 
derstand this normal form, we need to first describe their 
data model and the special variant of the timeslice operator 
employed there. 

Valid-time relation schemas have a distinguished, so- 
called surrogate, attribute. Surrogates represent objects in 
the modeled reality, and the time-varying attribute values 
in a tuple of a relation instance may be thought of as con- 
taining information about the object represented by the sur- 
rogate of the tuple. 

The special timeslice operator relies on the presence of 
the surrogate attribute. It takes a valid-time relation and a 
time value as arguments and returns, for each surrogate 
value, all the values of each time-varying attribute that are 
valid at the time given as argument. Thus, the result con- 
tains precisely one tuple per surrogate, valued with at least 
one time varying attribute value, valid at the time argu- 
ment. As another consequence, time-varying attributes may 
be set-valued, leading to a non-1NF result relation. 
DEFINITION. For a relation to be in first temporal normal form 

(lTNF), ”a time-slice at point t has to result in a standard 
1NF-relation.” [42, p .  171. 

In addition to giving a conceptual definition, the authors 
present two representation-dependent definitions of lTNF, 
for valid-time relations represented by snapshot relations 
using interval and event tuple timestamping, respectively. 
For the interval-based representation, containing the attrib- 

Te 
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Utes Ts  (the starting valid time) and T, (the ending valid 
time), the following definition is given. 

DEFINITION. ”A relation with a schema, R(S, A,, ..., A,, T,, T,), 
is in lTNF if there do not exist two tuples 
r (s , a l ,  . . . , a:, t,, te)  and Y (s , al , . . . , a:, t, , t, ) such 
that s’ = s2 and the intetwals [ti, t t l  and it:, tZ1 intersect.” 
[42, p .  171. 

EXAMPLE. Consider the following interval timestamped re- 
lation instance where the Emp attribute is assumed to 
contain surrogate values. 

Bill Shipping 
Bill Loadin 10 

2 2  2 2  2 1 1  1 1  1 

,i 
This relation instance is in lTNF since no two tuples 
with the same surrogate have overlapping time inter- 
vals. 

The normal form has a specific purpose within the Tem- 
poral Data Model. In essence, the model extends the rela- 
tional model with surrogates. It then proceeds by defining a 
timeslice operator that uses the surrogates in a way that 
leads to the possibility of getting set-valued attributes in 
results of timeslice operations. This normal form is intro- 
duced to ensure that the results of timeslice operations are 
always tuples with atomic attribute values. Thus, lTNF is 
required rather than desirable. 

This normal form has a different motivation than do 
conventional normal forms and it is needed because of non- 
relational extensions in the data model. First, the normal 
form is extensional-it applies to a relation instance, not a 
relation schema as do conventional normal forms. Second, 
the normal form is based on an operator which relies on a 
designated attribute, the surrogate attribute. In the conven- 
tional relational model, no attribute is special. 

In summary, 1TNF does satisfy Desideratum N4, as a 
conceptual definition is provided. However, lTNF does not 
satisfy Desiderata N1 (since normal forms are defined on 
relations, rather than relation schemas), N2 (though the 
conceptual definition does employ the notion of snapshot 
lNF), or N3 (since operators are expected to preserve lTNF, 
and are only defined over 1TNF relations). 

4.4 Time Normal Form 
This normal form for valid-time relations also applies to an 
interval tuple-timestamped representation [32]. Unlike 
BenZvi’s Time Normal Form and Segev and Shoshani’s 
lTNF, it is based on the notion of temporal dependency, 
defined in Section 2. 
DEFINITION. A valid-time relation ”is in time normal form 

(TNF) if and only if it is in [snapshot] BCNF and there 
exists no temporal dependency among its time varying at- 
tributes.” 132, p .  1571. 

EXAMPLE. Consider the following relation instance with 
time-invariant key Emp. 
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Our previous observation that a temporal depend- 
ency exists between the Dept and Mgr attributes 
means that this relation instance violates TNF. 

This definition satisfies Desiderata N1 and N2, but it 
does not satisfy Desiderata N3 (because operators are de- 
fined only on TNF relations) or N4. Also, snapshot normal 
forms, e.g., BCNF, and therefore snapshot functional de- 
pendencies are applied to the representations of valid-time 
relations [32], violating Desideratum N4. The clear distinc- 
tion between the meaning of and the representation of a 
valid-time relation is a more recent development in tempo- 
ral databases. 

4.5 The HSQL Data Model 

In the valid-time data model associated with the query lan- 
guage HSQL [40], there is an explicit distinction between 
valid-time relations and their snapshot relation representa- 
tions. Thus a valid-time relation T?, = (Al, ..., A,) is repre- 
sented by a snapshot relation R = (Al, . . ., A,, PERIOD) [391. 
It is claimed, but not demonstrated, that conventional nor- 
malization techniques apply to the design of a valid-time 
database. One of the purposes of this paper is to give a 
formal and concrete characterization of the sense in which 
this is true. 

4.6 P and Q Normal Forms 
A so-called P Normal Form is defined for the Interval Ex- 
tended Relational Model. We give a simplified definition; 
the original definition (127, p .  491) used a rather complex 
algebraic operator. 
DEFINITION. The schema of an interval extended relation, repre- 

senting a valid-time relation, is said to be in P Normal 
Form (PNF) zf, in all extensions of that relation scheme, no 
two tuples with the same key value have overlapping or 
adjacent time intervals. 

This normal form satisfies Desiderata N1 and N3. In this 
temporal context, we use relations in the IXRM for repre- 
senting valid-time relations, but as discussed above IXRM 
relations are not valid-time relations. Consequently, PNF 
does not satisfy Desiderata N2 or N4. 

A second normal form is also defined. We now give a 
simplified version. 
DEFINITION. The schema of an interval-extended relation, repre- 

senting a valid-time relation, is said to be in Q Normal 
Form (QNF) if it is in PNF and the schema contains ex- 
actly one nonkey attribute. [Rephrasing of [27, p .  5111. 

EXAMPLE. Consider the following interval timestamped in- 
stance with primary key {Emp, Period}. 

This relation is not in QNF since the Dept and Mgr 
attributes are both nonkey attributes (and since PNF 
is violated). 

This normal form also satisfies Desiderata N1 and N3. 
As before, since IXRM relations merely represent valid-time 

relations and QNF relies on PNF, QNF does not satisfy De- 
siderata N2 or N4. 

4.7 Summary 
All existing temporal normal forms known to the authors 
have been surveyed. While none of them completely satis- 
fied all qualities that could be expected from a natural ex- 
tension of conventional normal forms, each presented in- 
teresting ideas. And together the normal forms provide a 
platform from which it is possible to reach further. 

The data models mentioned in this context present nota- 
ble exceptions, as the majority of the two dozen temporal 
data models proposed thus far do not discuss functional 
dependencies, keys, or normal forms at all. 

On the other hand, it would be best to provide model- 
independent definitions. It is generally not possible to apply 
model-specific definitions (like those surveyed) of func- 
tional dependencies or keys to other data models in a 
straightforward fashion. 

5 A BITEMPORAL CONCEPTUAL DATA MODEL 

We feel that the reason why so many temporal data models 
have been proposed, and why so many temporal keys and 
temporal normal forms have been defined, is that previous 
models attempted to simultaneously retain the simplicity of 
the relational model, present all the information concerning 
an object in one tuple, and ensure ease of implementation 
and query evaluation efficiency. 

It is clear from the number of proposed models that 
meeting all of these goals simultaneously is a difficult, if not 
impossible task. We therefore advocate a separation of con- 
cerns. The time-varying semantics is obscured in the repre- 
sentation schemes by other considerations of presentation 
and implementation. We feel that the data model proposed 
in this section is the most appropriate basis for expressing 
this semantics. However, in many situations, it is not the 
most appropriate way to present the stored data to users, nor 
is it the best way to physically store the data. We have de- 
fined mappings to several representations; these representa- 
tions may be more amenable to presentation and storage, 
while retaining the semantics of the conceptual data model. 

We first formally characterize a bitemporal relation. 
Then we define the set of bitemporal algebra operators nec- 
essary for the introduction of normal forms. The objects and 
their operations constitute the bitemporal conceptual data 
model, or BCDM [21]. Finally, we outline a few of the repre- 
sentational data models in which instances and operators 
can be mapped to and from the BCDM. 

5.1 Objects in the Model 
Tuples in a bitemporal conceptual relation instance are as- 
sociated with time values from two orthogonal time do- 
mains, namely valid time and transaction time. Valid time 
is used for capturing the time-varying nature of the portion 
of reality being modeled, and transaction time models the 
update activity associated with the relation. 

For both time domains, we assume that the database 
system has limited precision; the smallest time units are 



JENSEN ET AL.: EXTENDING EXISTING DEPENDENCY THEORY TO TEMPORAL DATABASES 573 

Emp Dept 

AI Shipping 

termed chvonons [20]. This restriction greatly simplifies im- 
plementation, and as no database system known to the 
authors supports time domains with unlimited precision, 
the restriction appears acceptable. 

The time domains have total orders, and both are isomor- 
phic to subsets of the domain of natural numbers. The 
domain of valid times may be given as IDvT = {tl, t,, ..., t k ) ,  

and the domain of transaction times may be given as Dn = 

(til, t;, . . ., t;) U (UC) where UC (’’until changed) is a distin- 
guished value that is used for indicating that a tuple is cur- 
rent in the database. A valid-time chronon is thus an element 
of DvT, a transaction-time chronon is an element of Dn, and 
a bitemporal chronon is an ordered pair of a transaction-time 
chronon and a valid-time chronon. We expect that the valid- 
time domain is chosen so that some times are before the cur- 
rent time and some times are after the current time. We also 
define a set of names DA = (A,, A,, ..., AnA 1 for explicit at- 
tributes and a set of attribute domains DD = (D,, D,, . . . , DnD ] . 

In general, the schema of a bitemporal conceptual rela- 
tion, R, consists of an arbitrary number, e.g., n, of explicit 
attributes from DA with domains in DD, and an implicit 
timestamp attribute, T, with domain ZDTTXDw. A set of 
bitemporal functional (and multivalued) dependencies on 
the explicit attributes are part of the schema. For now, we 
ignore these dependenciies-they are treated in detail later. 

A tuple, x = (al, a2, . . , a, I tb), in a bitemporal conceptual 
relation instance, r(R), consists of a number of attribute val- 
ues associated with a bitemporal timestamp value. For con- 
venience, we will employ the term ”fact” to denote the in- 
formation recorded or encoded by a tuple, and we say that 
“a tuple encodes a fact.” No additional assumptions are 
intended by this usage. 

An arbitrary subset of the domain of valid times is associ- 
ated with each tuple, meaning that the fact recorded by the 
tuple is true in the modeled reality during each valid-time chro- 
non in the subset. Each individual valid-time chronon of a 
single tuple has associated a subset of the domain of transac- 
tion times, meaning that the fact, valid during the particular 
chronon, is current in the relation during each of the transac- 
tion-time chronons in the subset. Any subset of transaction 
times less than the current time and including the value UC 
may be associated with a valid time. Notice that while the 
definition of a bitemporal chronon is symmetric, this expla- 
nation is asymmetric. This asymmetry reflects the different 
semantics of transaction and valid time. 

We have thus seen that a tuple has associated a set of so- 
called bitemporal chronons in the two-dimensional space 
spanned by transaction time and valid time. Such a set is 
termed a bitemporal element [201 and is denoted tb. Because 
no two tuples with mutually identical explicit attribute val- 
ues (termed value-equivalent [441) are allowed in a bitempo- 
ral relation instance, the full time history of a fact is con- 
tained in a single tuple. 

In graphical representations of bitemporal space, we 
choose the x-axis as the transaction-time dimension, and the 
y-axis as the valid-time dimension. Hence, the ordered pair 
(t, v) represents the bitemporal chronon with transaction 

T 

((5, IO), . . . , (5,15),. .. , (9, IO), .. . ,(9, Is), 
(10,5), . . . , (10,20), . . . , (14,5), . . . , (14, 20), 

AI Loading 
(15, lo), . . . , (15,15). .. ,(19, lo), . . . , (19,15)) 

(( UC, lo), . . . , (UC, 15)) 
1 Bill Shipping (1 {( UC, 2 5 ) ,  . . . , (UC, 30)) 

E( Bil1,S hip) 

5 

0 
0 5 10 15 20 25 30 

Fig.1. A conceptual bitemporal relation. 

Depending on the extent of decomposition, a tuple in a 
bitemporal relation may be thought of as encoding an 
atomic or a composite fact. We simply use the terminology 
that a tuple encodes a fact and that a bitemporal relation 
instance is a collection of (bitemporal) facts. 

Valid-time relations and transaction-time relations are 
special cases of bitemporal relations that support only valid 
time or transaction time, respectively. Thus a valid-time 
tuple has associated a set of valid-time chronons (termed a 
valid-time element and denoted t,,), and a transaction-time time t and valid time v. “ I  
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tuple has associated a set of transaction-time chronons 
(termed a transaction-time element and denoted tt).  For clar- 
ity, we use the term snapshot relation for a conventional re- 
lation. Snapshot relations support neither valid time nor 
transaction time. 

5.2 Operators in the Model 
The previous section described the objects in the bitemporal 
conceptual data model, tuples timestamped with bitempo- 
ral elements. We now define some algebraic operators on 
these objects that will be used in the definition of temporal 
normal forms. A complete operator set for the BCDM can 
be found elsewhere 1211, [481. 

We first define bitemporal analogs of some of the snap- 
shot relational operators, to be denoted with the super- 
script . 

Define a relation schema R = (Al, . . ., A, I T), and let Y be 
an instance of this schema. Let D be an arbitrary set of ex- 
plicit (i.e., non-timestamp) attributes of relation schema R. 
The projection on D of r, Z;(Y), is defined as follows. 

“B” 

7CL(Y) = {z(IDi+l) 1 %  E Y ( Z [ D ]  = X[D]) A 

Vy E r ( y D I =  dDI* y[Tl c z[TI) A 

Vt E z[T]3y E u(y[D] = z[D]  A t E y[T])J 

The second line ensures that no chronon in any value- 
equivalent tuple of Y is left unaccounted for, and the third 
line ensures that no spurious chronons are introduced. 

Let P be a predicate defined on A,, . . ., A, (we use A as a 
shorthand for these attributes). The selection P on r, o;(Y), 
is defined as follows. 

D:(Y) = {z Iz E r A P(z[A])]  

As can be seen from the definition, O;(Y)  simply performs 
the familiar snapshot selection, with the addition that each 
selected tuple carries along its timestamp T. 

In the bitemporal natural join, two tuples join if they 
match on the join attributes and have overlapping bitempo- 
ral element timestamps. Define Y and s to be instances of R 
and S, respectively, and let R and S be bitemporal relation 
schemas given as follows. 

R (A,, ..., A,, B,, . . ., Bi I T) 
S = (Al, ..., A,, C1, ..., C, IT) 

The bitemporal natural join of Y and s, Y W” s, is defined 
below (again we use shorthands for these attributes). As 
can be seen, the timestamp of a tuple in the join-result is 
computed as the intersection of the timestamps of the two 
tuples that produced it. 
y ~ B s  = Iz(n+l+m+l) I gX E r3y E s(x[A] = y[Al A 

x[Tlny[Tl f 0 A 

z[A] = x[A] A z [B]  = x[B] A 

d c ]  = y[c1 A 

ZITI = dT1 n yITI)l 

We have only defined operators for bitemporal relations. 
The similar operators for valid-time and transaction-time 

relations are special cases. The valid and transaction-time 
natural joins are denoted w and w’, respectively. The 
same naming convention is used for the remaining operators. 

Finally, we define two operators that select on valid time 
and transaction time. Let t ,  denote a time value not ex- 
ceeding the current time and let t, denote an arbitrary time. 
The transaction-timeslice operator (pB) evaluates to a relation 
timestamped with valid-time elements’ and the valid- 
timeslice operator (zB) yields a relation timestamped with 
transaction-time elements. 

V 

B pt, ( Y )  = {z(~+’) I3x E r(z[A] = x[A] A 

z[T,] = {t,~(tl,t,) E ~ [ T l l  A ZIT,] f 0)) 

rB (r) = {z(~+’) )3x E r(zIA1 = x[Al A 
t2 

z[Tt1 = {t,I(t,, t,) E x[TI1 A z[T,I # 011 

Here, pf (Y) simply returns all tuples in r that were current 

during the chronon t,. The timestamp of a returned tuple is 
set to all valid-time chronons associated with t,. Operator 
z;(Y) performs the same operation except the roles of f, 

and t, are reversed. 

EXAMPLE. Consider the empDep relation shown in Fig. la.  
The following result is produced by z:2 (empDep). 

AI Load uc 

Using the graphical representation, valid timeslice can be 
visualized by drawing a horizontal line through the graph 
at the given valid time. The tuples returned are those that 
overlap with the drawn line. The timestamps of the re- 
turned tuples are set to the segments of transaction time 
corresponding to the overlapped regions. 

There also exist timeslice variants that extract a snapshot 
relation from valid-time relations and transaction-time re- 
lations. To extract from Y the tuples current at time t ,  and 
valid in the database during t ,  (termed a snapshot of Y), it is 
immaterial whether r is first transaction timesliced and then 
valid timesliced or first valid timesliced and then transac- 
tion timesliced. In the following, we will use the former 
order, i.e., use z l  (p: (Y)) where superscript indicates a 
valid-time operator, to produce a snapshot from Y. 

Note that since relations in the data model are homoge- 
neous, i.e., all attribute values in a tuple are associated with 
the same timestamp [16], the valid or transaction timeslice 
of a relation will not introduce any nulls into the resulting 
relation. 

“V” 

5.3 Summary 
We have previously described the role of the BCDM in the 
context of a temporal DBMS where data models are needed 
for several tasks [Zl ] .  Specifically, the BCDM is intended to 
provide the conceptual model that the query language, e.g., 

1. Operator p was originally termed the vollback operator, hence its name. 
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TSQL2, is based on. Other, so-called representational data 
models are better suited for the tasks of physical storage or 
data display and are utilized for those tasks. As a conse- 
quence the conceptual database schema, designed using 
normalization techniques to be described in the next sec- 
tion, is captured in the context of the BCDM. 

The integration of several temporal data models within 
the same DBMS hinges on the concept of snapshot equiua- 
lence, to be defined in Section 7. Snapshot equivalence is a 
formalization of the notion that two temporal relations 
have the same information content, and it provides a natu- 
ral means of comparing rather disparate representations. 
We have previously developed mappings, respecting snap- 
shot equivalence, between instances of the BCDM and in- 
stances of each of the five existing bitemporal data models: 
a 1NF tuple timestamped data model 1441, a data model 
based on INF timestamped change requests recorded in 
backlog relations 1181, a non-1NF data model in which at- 
tribute values were stamped with rectangles in transaction- 
time/valid-time space [17] (discussed in Section 3.6), a 
bitemporal data model where a bitemporal relation is a se- 
quence of non-1NF tuples [291, [301 and a 1NF data model 
using five timestamps [41 (discussed in Sections 3.2 and 
4.4). We also showed how the relational algebraic operators 
defined in the previous section could be mapped to analo- 
gous operators in the representational models. 

A database designer would design the conceptual 
schema of the database as a (normalized) collection of 
BCDM relation schemas. The mappings then make it possi- 
ble to store and display BCDM relations as snapshot 
equivalent instances of other data models. In the next sec- 
tion, we show how existing dependency theory generalizes 
naturally to the BCDM. ]Defining dependencies in terms of 
BCDM schemas, which are purely conceptual and not in- 
tended for implementation, satisfies the desiderata in Sec- 
tions 2.1, 3.1, and 4.1, respectively, that dependencies, keys, 
and normal forms be independent of a particular represen- 
tation of a temporal relatiion. 

6 GENERALIZING DEPENDENCY AND NORMAL FORM 
THEORY 

In this section we generalize in turn the concepts of func- 
tional dependencies, keys, and the normal forms themselves. 

6.1 Temporal Dependencies 
Functional dependencies are intensional, i.e., they apply to 
every possible extension. This intuitive notion already en- 
compasses time, for a functional dependency may be inter- 
preted as applying at any time in reality and for any stored 
state of the relation. 

To be more specific, consider the restricted case of a trans- 
action-time relation r, with schema R = (A,, . . ., A, I TJ, and a 
parallel snapshot relation J with the same schema (but with- 
out the implicit timestamp attribute): R’ = (Al, ..., A,). The 
current state of r will faithfully track the current state of r :  
Past states of J will be retained in r, and can be extracted via 
the appropriate timeslice operator. A functional dependency 
on R’ will hold for all possible extensions, and hence for all 

past states of r’. Hence, the same functional dependency 
must hold for all snapshots of Y (this insight first appeared 
over a decade ago [9]>. A similar argument can be applied to 
valid-time relations and to bitemporal relations, yielding the 
following characterization. 
DEFINITION. Let X and Y be sets of nontimestamp attributes of a 

temporal relation schema, RB, and let t ,  and t2 be arbitrary 
times, with t ,  not exceeding the current time. A temporal 

T functional dependency, denoted X + Y, exists on RB if, 
for all meaningful instances rB of RB, 

Vt ] ,  t,Vs,, s2 E z;(p;(rB))(sI[xl = SJXI =3 s,[Yl = s,[Yl). 

Note that temporal functional dependencies are generali- 
zations of conventional functional dependencies. In the 
definition of a temporal functional dependency, a temporal 
relation is perceived as a collection of snapshot relations. 
Each such snapshot of any extension must satisfy the corre- 
sponding functional dependency. 

Also note that this definition applies equally well to 
valid-time, transaction-time, and bitemporal relations, util- 
izing the relevant variants of the transaction and valid 
timeslice operators. While we differentiate valid-time, 
transaction-time, and bitemporal operator variants, the 
temporal functional dependency is generic, applying to all 
forms of temporal relations, with the appropriate operator 
variants coming into play. The designation in a temporal 
functional dependency refers to the generic adjective 
”temporal.” 

The close parallel between conventional functional de- 
pendencies and temporal functional dependencies means 
that inference rules such as Armstrong’s axioms have close 
temporal counterparts that play the same role in the tempo- 
ral context as do the nontemporal rules in the nontemporal 
context. 
EXAMPLE. Consider again the database associating phone 

numbers, departments, and employees in a company. 
While employees come and go, and phones are added 
and dropped as needed, at any one time an employee 
can belong to only one department, and may have 
zero, one, or several phone numbers. Expressing these 
properties using temporal dependencies, we have 
simply Name + Dept. 

Temporal multivalued dependencies 1601 may be de- 
fined using the same template as that used for defining 
temporal functional dependencies. 

Snapshot dependencies apply to snapshot relations, and 
temporal dependencies apply to temporal relations. Fur- 
ther, a snapshot relation records information that is cur- 
rently believed to currently be true. A bitemporal relation 
with the same explicit attributes is capable of also recording 
previous beliefs and beliefs about the past and future. In 
this sense, a bitemporal relation schema may record more 
information than its snapshot counterpart. 

If a temporal relation schema is used for recording the 
same information as its snapshot counterpart, a snapshot 
functional dependency on the snapshot schema implies the 
corresponding temporal functional dependency on the 

“T” 

T 
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temporal relation, and vice versa. To make this correspon- 
dence between snapshot functional dependencies and tem- 
poral functional dependencies more precise, it is practical 
to first make precise the notion of snapshot and temporal 
relation schemas recording the same information. 
DEFINITION. Let R = (A,, A,, ..., A,) be a snapshot relation 

schema and RB = (Al, A,, . . ., A, I T) be a bitemporal rela- 
tion schema. Let r and rB range over all possible instances 
of schemas R and RB, respectively, and let t ,  and t2 be arbi- 
trary times where t, does not exceed the current time. Then, 
schemas R and R are said to record corresponding in- 
formation if the following three conditions are satisfied. 

1) v r B  Vt,, t,(t, # t2 =$ z l (p : ( rB) )  = 0) 

2) v r B  3r(r = ~ : 0 w ( p ~ 0 ~ ( r 5 ~ N  
3)  v ~ ~ r B ( z ~ o w ( p ~ o w ( r B ) )  = r )  

B 

Note that the first condition restricts instances of RB to only 
record information that is valid precisely when it is also 
current in the database. Using this definition, the following 
relationship exists between snapshot and temporal func- 
tional dependencies. 
THEOREM 1. Let R be a snapshot relation schema, and let X and Y 

be subsets of the attributes of R. Also, let RB be a bitemporal 
relation schema with the same explicit attributes as R. Let the 
two schemas record corresponding information. Then 
X + Y holds for R if and only if X 5 Y holds for R’. 

PROOF. The two directions of implication are shown in turn. 
To show the first, we assume that X -+ Y holds on R 
and show that an arbitrary instance Y“ of RB satisfies 

X + Y. To show this, we must show that for all t ,  and 
t,, T: ( p t  (rB)) satisfies X + Y .  From the premise of the 
theorem, it follows immediately that this is the case for 
t, = t, = now and for t, # t,. Now consider the remaining 
case, where t ,  = t2 # now. We must show that for all t, 
rt = zy(p:(rB)) satisfies X + Y. Again by the premise, 

R and RB also recorded corresponding information at 
(any) time t. At time t, now = t, so the definition of the 
premise implies that rt is identical to some instance of 
R. As Y satisfies the dependency, so does rt. 

The second direction of implication is straightfor- 
ward. If X 5 Y  holds for RB then for all instances 
rB(RB) and times t ,  and t,, X + Y holds for 
z t  (pf: ( rD) ) .  Since R and R record corresponding in- 
formation, each instance of r(R) is identical to some 
timeslice of an instance of RB and thus satisfies the 

T 

B 

dependency. 0 

It is important to note that two separate data models are in- 
volved here. The dependency X -+ Y applies to the snapshot 
data model only, whereas X&Y applies to temporal data 
models: valid-time, transaction-time, and bitemporal data 

models. The theorem gives specific content to the statement 
that the notion of temporal functional dependency as defined 
in this paper is a natural generalization of the well-known 
notion of a snapshot functional dependency. 

However, it is not always the case that functional de- 
pendencies on snapshot schemas generalize to snapshot 
functional dependencies on temporal schemas, even when 
the timestamp attribute is factored in (cf. [39]). Assume that 
(Al, . . ., A, I T) is the schema for a temporal relation RB. An 
instance of RB can be interpreted in two rather different 
ways: as an instance in the bitemporal conceptual data 
model, where the timestamp attribute is implicit and is ac- 
corded a special semantics, or as an instance in the snap- 
shot data model, with schema (A,, ..., A,, T), where T is 
simply another explicit attribute. We can compare func- 
tional dependencies in the two interpretations. 

THEOREM 2. With X and Y denoting arbitrary nontimestamp 
attributes of a relation schema, 

xum + Y i b  X 5 Y .  

PROOF. The following instance satisfies EmpU{T) + Dept 
but not Emp 5 Dept. Note that the conventional func- 
tional dependency treats T as just another attribute, 
with values such as “10-25” being atomic (e.g., like 
strings). 
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DEFINITION. A set of attributes X of a temporal relation schema is 
a temporal superkey of R if X + R .  The primary tem- 
poral key is a minimal temporal superkey. 

EXAMPLE. Considering again the Emp relation schema in- 
troduced in Section 2.1, we see that there are two 
temporal superkeys, {Name, PhNo) and {Name, 
PhNo, Deptl, with the former being minimal, and 
thus serving as the primary temporal key. 

As with functional dependencies, snapshot keys gener- 
alize to temporal keys, but only when using temporal de- 
pendencies. Specifically, if X is the primary key of the 
(snapshot) relation schema R, then X is also the primary 
temporal key, but if XU {TI is the (snapshot) primary key of 
the representation of the temporal relation, it may not be 
the case that X is a temporal key. 

6.3 Temporal Normal Forms 
We can now generalize snapshot normal forms in a manner 
similar to generalizing keys. 
DEFINITION. A pair (R, F )  of a temporal relation schema R and a 

set of associated temporal functional dependencies F is in 
temporal third normal form (T3NF) if for all nontrivtal 
temporal functional dependencies X+Y in F', X is a 
temporal superkey for R or each attribute of Y IS part of a 
minimal temporal key of R. 

DEFINITION. A pair (R, F ) )  of a temporal relation schema R and a 
set of associated temporal functional dependencies F is in 
temporal Boyce-Codd normal form (TBCNF) if for all 
nontrivial temporal functional dependencies X -+ Y in F', 
X is a temporal superkey for R. 

The comments made in connection with dependencies in 
Section 6.1 about the inadequacy of using snapshot defini- 
tions incorporating the timestamp attribute apply here as 
well. For example, Theorem 1 can be generalized to R is in 
BCNF if and only if RB is in TBCNF. 
EXAMPLE. The temporal relational schema Emp = (Name, 

Dept, PhNo I T) violates both T3NF and TBCNF. 
These definitions are based on the temporal functional 

dependencies described in Section 6.1, which, in turn, were 
extensions of the snapshoi functional dependencies. 

As in our definitions, Tansel and Garnett [50] adapt well- 
understood snapshot techniques to a temporal setting, but 
the two approaches are quite different. In Section 2.5, we 
saw how Tansel and Garnett applied snapshot dependency 
theory directly to support normalization for their nested 
valid-time relations. Tansel and Garnett do not define new 
temporal dependencies; rather, they use conventional snap- 
shot dependencies on tiniestamped attributes. Essentially, 
they have embedded a valid-time model within a nested 
snapshot model, and then directly applied conventional 
dependency and normalization techniques. In contrast, the 
temporal normal forms defined above are based on a tem- 
poral data model, the BCDM, where conventional depend- 
ency theory and normalization concepts do not directly 
apply, but must first be extended temporally. 

T 

T 

T 

Temporal versions of other conventional normal forms 
based on functional and multivalued dependencies may be 
expressed analogously, e.g., second normal form and fourth 
normal form. One can also define temporal variants of join 
dependencies [34], fifth normal form (also called project- 
join normal form) [14], embedded join dependencies 1131, 
inclusion dependencies [7], template dependencies [381, 
domain-key normal form [151, and generalized functional 
dependencies [37]. The extensions exploit the intensional 
quality of these properties (i.e., applying to every extension 
implies applying over all time), as well as the simplicity of 
the bitemporal conceptual data model. 

6.4 Evaluation 
It should be clear from the preceding discussion that the 
bitemporal conceptual data model, with its associated defi- 
nitions of functional dependency and normal forms, satis- 
fies all desiderata listed in Section 2.1. It should also be evi- 
dent that the definition of key in this model satisfies all five 
desiderata listed in Section 3.1, and that TBCNF and T3NF 
satisfy all four desiderata listed in Section 4.1. 

We now briefly compare our approach in turn to each of 
the previously proposed definitions of temporal normal 
forms and temporal keys. 

The purpose of Ben-Zvi's Time Normal Form [4] was to 
make updates more user-friendly and to aid in chosing a 
space efficient internal representation of a time-relation. The 
normal form required the "corresponding" snapshot relation 
to be in any normal form. It also utilized the concept of conti- 
guity, which does not rely on any notion of dependency. 

The normal form lTNF was introduced as a requirement 
to relations in the Temporal Data Model [42] that ensures 
that the results of applying a special valid-timeslice opera- 
tor are 1NF relations. Without this requirement, non-1NF 
results are possible because the definition of the operator 
relies on the presence of a distinguished surrogate attribute 
[42]. The timeslice operators defined in Section 5.2 do not 
rely on any distinguished attribute and always returns 1NF 
relations. In our framework, 1TNF may be defined as fol- 
lows: A relation schema R is in 1TNF if the surrogate at- 
tribute S is a temporal key, i.e., S 5 R .  Thus, lTNF is an 
application of the concept of a key. 

Time normal form (TNF) was defined to ensure that 
time-varying attributes were synchronous, i.e., change at 
the same time [32]. This aspect is not accommodated in our 
definitions of temporal normal forms. 

Using our definition of temporal key, P Normal Form 
(PNF) [27] will automatically be satisfied. In our frame- 
work, PNF is thus also an application of the concept of a 
key. Q Normal Form appears to have similarities with 
Navathe's concept of synchrony, and in any case is not 
accommodated in our definitions. 

The snapshot normal forms were also applied to the rep- 
resentations of valid-time relations in several data models 
[32], [391, [271, [50]. This contrasts with our framework, 
where temporal normal forms are applied to conceptual 
temporal relations. 

Concerning keys, we formalized and extended the no- 
tions present in the HQL [36], HSQL [39], and IXRM [271 
data models, using the more general concept of temporal 
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dependency. The concept of key in the TempSQL data 
model [171 appears to be inconsistent with the concept of a 
snapshot key. 

7 PROPERTIES OF TEMPORAL NORMAL FORMS 

In conventional database design, the notions of lossless-join 
and dependency preserving decomposition are essential. 
This section covers issues related to these notions in the 
temporal context. 

During database design a conventional (i.e., nontemporal) 
relation schema is brought to satisfy a normal form by de- 
composing it. A decomposition should have two important 
properties. First, the decomposition should be lossless, i.e., the 
contents of the original relation should be available simply by 
performing a natural join on the new relations, permitting the 
decomposition to be reversed without loss of information. 
More formally, a decomposition of schema R is lossless if 
every extension of R is the natural join of its projection onto 
the schemas resulting from the decomposition. 
DEFINITION. Let X and Y be arbitrary sets of nontimestamp at- 

tributes of a temporal relation schema R. Then the pair X, 
Y is a lossless-join decomposition with respect to the 
join ba i f ,  for all r(R) that satisfy the sef of functional de- 
pendencies on R, 

Y = nx ( r )  Da Try ( U ) .  

It is possible to guarantee that a given decomposition is 
lossless. This condition is used to guide the decomposition 
process, ensuring that the generated decompositions are 
practical. Assume that a single schema is decomposed into 
two smaller schemas. If both of the smaller schemas contain 
a superkey of one of the smaller schemas then the decom- 
position is guaranteed to be lossless. 
THEOREM 4. The decomposition X, Y of a relation schema R with 

a set of functional dependencies F is lossless (w.r.t. w) if 

x n Y+ XE P o y X  n Y + YE F+. 
The proof may be found elsewhere [24], [51]. 

Second, the decomposition should be dependency pre- 
serving, in that it must be possible to ensure that all de- 
pendencies are preserved when a relation is updated with- 
out requiring any joins to be performed. 
DEFINITION. A decomposition D = {R,, . . ., RJ of R is depend- 

ency preserving with respect to a sef of functional de- 
pendencies F if 

(nR, ( F )  U ... U nRm (F))’ = Ft 

Here, 7cR ( F )  denotes the set of functional dependencies 

from F defined on the attributes of R, 1511. 

Some decomposition algorithms can be proven to be de- 
pendency preserving; others jettison this property in favor 
of more desirable ones, such as the lossless-join property. 
For example, Korth and Silberschatz present a simple 3NF 
decomposition algorithm that preserves dependencies, and 
they present a BCNF decomposition algorithm that gener- 

ally does not preserve dependencies (but always yields a 
lossless-join decomposition) [241. Note that BCNF is more 
restrictive than 3NF and therefore avoids more redundancy 
than does 3NF. While it is always possible to obtain a 3NF 
decomposition that is dependency preserving and lossless, 
such is not the case for BCNF. If a dependency preserving 
BCNF decomposition is not possible, 3NF is usually pre- 
ferred, at the risk of added data redundancy. 

We now apply these concepts to temporal relations. Spe- 
cifically, we utilize the temporal natural join operator to 
identify such lossless join decompositions. 
DEFINITION. Let X and Y be arbitrary sets of explicit attributes of 

a temporal relation schema R. Then the pair X ,  Y is a 
lossless-join decomposition with respect to the join DQ 

if for all r(R) that satisfy the set of temporal functional de- 

Next, we set the stage for proving the temporal equiva- 
lent of Theorem 4. In doing so, we first define two bitempo- 
ral relation instances, Y and s, to be snapshot equivalent, 
Y s, if for all times t ,  not exceeding the current time and 
for all times t,, z l ( p t ( r ) )  = z:(pg(s)) .  We have shown 
elsewhere [21] that the notions of snapshot equivalence and 
identity of relations coincide in the BCDM model, i.e., that 
Y ,  = Y ,  is equivalent to Y, Y,, with Y ,  and Y ,  being relation 
instances in the BCDM. We also need the following result, 
which states that the temporal join and projection operators 
reduce to, or are natural generalizations of, their snapshot 
counterparts. 

LEMMA. For bitemporal relation instances Y and s as given in the 
definitions of temporal projection and join (in Section 5.2) 
and times t ,  and t,, t ,  not exceeding the current time, 

B 

pendencies on R, Y = n i ( r ) t x  B B  zY(r).  

Proofs are omitted for brevity. A proof of a property 
similar to the second may be found elsewhere [21]. 

We can now prove the temporal equivalent of Theorem 4. 
As a result of this theorem, the algorithms for normal form 
decomposition in conventional relational databases are ap- 
plicable to temporal databases as well. 
THEOREM 5. The decomposition X, Y of a temporal relation 

schema, R, with a set of temporal dependencies, F ,  is 
lossless (w.r.t. w”) if 

X ~ Y ~ X E F +  ~ ~ x ~ Y ~ x X F ~  

PROOF. Let r be an instance of R (i.e., that satisfies F) .  
Showing that the definition of lossless holds is 
equivalent to showing that Y n;(r) WB n;(r), 
which, in turn, is equivalent to showing that for all 
times t, not exceeding the current time and times t2, 

7;  (PE ( r ) )  = 7 ;  ( p ;  (n;(r) wB z;(r))). 

From the premise and the definition of temporal 
functional dependency, we have that ~ z ( p E  ( Y ) )  satis- 
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fies X n Y + X or X n Y + X . Theorem 4 then applies, 
meaning that 

z; (p; (Y)) = n,(zE (p; (7,))) w ny(zE (p; (Y))). 

Next, it follows from the two properties stated in 
the previous lemma that this is equivalent to the 
right-hand side of the formula displayed above. All of 
this holds for arbitrary times t ,  and t,, and the theo- 
rem follows. 0 

With the property of snapshot equivalence, we next de- 
fine the property of snapshot subset. 
DEFINITION. A temporal relation instance r is a snapshot subset 

of a temporal relation instance s, r E s, if 

holds for all times t ,  not exceeding the current time and all 
times t, . 

Unlike for snapshot equivalence, r1 E r, does not imply 
r1 c r,. For example, let Y, = {(Bill I((5, lo)})} and r2 = 

{(Bill l((5, lo), (5, 11)))). Then Y, & r2, but r1 r2 as the two 
relations contain distinct tuples. 

The following theorem states three additional properties 
of the temporal natural join. The snapshot natural join has a 
parallel for each of these properties. For example, the first 
property states that in general, a decomposition is lossy, 
i.e., may produce additional, spurious tuples that makes it 
impossible to identify the true information. 
THEOREM 6. Let r be a bitemporal relation instance of a schema 

that includes the sets X and Y of nontimestamp attributes. 
Also let y be an instance of a bitemporal relation schema 
with precisely the nontimestamp attributes X ,  and let ;1 be 
an arbitrary relation instance. The following three proper- 
ties hold. 

Y : Z B , ( Y ) W B  Z; ( r )  

n l ( r )  E n i (n i ( r )wB n!(r)) 

PROOF. We consider the first property only; the other prop- 
erties may be provein in similar fashion. For any snap- 
shot relation ;, it is the case that r" xx (r") W n y  (r'). 
In particular, this holds for rS equal to 7:: (p: (Y)), for 

arbitrary times t ,  and t,, with t ,  not exceeding the cur- 
rent time. From the lemma also used in the previous 
theorem, it follows that 

The first property then follows from the definition of 

In an entirely analogous way, by using the modified ver- 
sion of the relational operators given in Section 5.2 and the 
concept of snapshot equivalence, one can extend other prop- 
erties of functional dependencies to hold for temporal func- 

snapshot subset just given. U 

tional dependencies. Also, every concept defined above is 
applicable, as special cases, to both valid-time and transac- 
tion-time relations, using the appropriate temporal operators. 

Our approach uses the bitemporal conceptual data 
model, along with the timeslice operators p and z, to define 
the notion of a temporal functional dependency. It is possi- 
ble to map such dependencies into representational data 
models. Specifically, if appropriate valid and transaction 
timeslice operators are defined in the representational 
model, then the definition of temporal functional depend- 
ency and the various temporal normal forms apply directly 
to that model. 

Elsewhere [211, we have provided timeslice operators for 
the popular data models of tuple timestamping (e.g., 141, 
1321, [351, [401, [46]), backlogs (e.g., 1231, [19]), and attribute 
value timestamping (e.g., [8], [161, 1251, 1291, [301, [@I). 
Those operators, combined with the definitions provided in 
this paper, enable model-specific definitions of temporal 
functional dependencies, keys, and normal forms. 

The result is a consistent and wholesale application of 
existing dependency and normalization theory to valid- 
time, transaction-time, and bitemporal databases in a wide 
variety of temporal relational data models. 

8 APPLICATION TO SPATIAL DATABASES 

The graphical representation of a bitemporal element as an 
area in the two-dimensional valid-time/transaction-time 
space (see Fig. lb) leads one to consider spatial databases, 
which are either two dimensional (e.g., index by latitude 
and longitude over the surface of the Earth, cf. [28]) or three 
dimensions (e.g., the third dimension being altitude or 
depth, cf. [22]). In fact, the entire discussion of generalizing 
normal form and dependency theory to accommodate time 
can be applied to space. In this section, we outline this cor- 
respondence. 

Each relation in the spatial data model would be "space- 
stamped with an implicit spatial element s, which is a set of 
n-dimensional quanta (the spatial analog of the temporal 
"chronon"). For two-dimensional modeling, bispatial 
elements would be used; for three-dimensional modeling, 
trispatial elements would be used. Spatial extensions of the 
relational operators could be defined. For example, x-slice 
and y-slice operators, analogous to valid and transaction 
timeslice, could be defined. The spaceslice of a relation r, 
then, is a relation containing the tuples in Y that apply to 
specified values of x and y .  

The functional dependency X + Y can be generalized to 
a spatial functional dependency, denoted X + Y, by formal- 
izing the dependency predicate to apply to all space slices 
of all possible extensions, as well as to a spatiotemporal func- 
tional dependency, denoted Xs%TY, that would take all 
space slices and time snapshots of all possible extensions. 
The spatial and spatiotemporal functional dependencies 
introduced here are highly restricted, as they are defined in 
terms of single space slices and time snapshots. 

Like the temporal functional dependency, these depend- 
encies would be natural generalizations of the snapshot 
functional dependency. More specifically, the statement 

SP 
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concerning temporal functional dependencies in Theorem 1 
would also apply to these new dependencies. 

Finally, it is possible to generalize all of the other de- 
pendency results, multivalued, fourth, and fifth normal 
forms, etc., to the spatial and spatiotemporal regimes. 

9 RECENTWORK 

While the present paper was in review, there were two 
other extensions of existing dependency theory to temporal 
databases. Both built upon the work described here, and in 
fact referenced prior versions of this paper. We describe 
these briefly here. 

Wijsen and his colleagues have adapted his dependency 
theory to a relational model without object identity [57], 
1581, 1591. In his most recent work [591, he adapts his ap- 
proach to the valid-time subset of the BCDM. His snapshot 
functional dependency captures the same notion as our 
temporal functional dependency, while being expressed in 
a different notation. The notions of keys and normal forms 
defined in terms of snapshot functional dependencies also 
closely track the ones defined here. 

Wang et al. [531 extended temporal functional dependen- 
cies to accommodate temporal granularities. Specifically, their 
dependency, also termed a temporal functional dependency, must 
hold for an entire granule, say a day or month. As such, it is 
more properly considered an interstate dependency. 

10 SUMMARY AND FUTURE RESEARCH 

In this paper, we have defined consistent temporal extensions 
of the concepts of functional dependencies, keys, and normal 
forms. We briefly surveyed conventional normalization con- 
cepts and extracted desiderata enumerating those properties 
of conventional concepts that we would like temporal nor- 
malization concepts to also possess. We further conducted the 
first thorough survey of previous contributions related to tem- 
poral relational database design. In part, this was done in an 
attempt to build maximally on existing contributions and to 
put our proposal into a proper perspective. 

Our definitions were shown to be more natural exten- 
sions than those previously proposed, in the sense that they 
satisfied all desiderata. The generality of our approach was 
indicated by applying it to spatial databases. The result is a 
consistent and wholesale application of existing depend- 
ency and normalization theory to valid-time, transaction- 
time, bitemporal, spatial, and spatiotemporal databases, in 
a variety of existing temporal relational data models, al- 
lowing temporal and spatial database design to closely 
track conventional database design. 

We emphasize here the three fundamental decisions that 
made this possible. First, we used snapshot equivalence of 
temporal relations (defined as having identical snapshots 
over all valid and transaction times) as a formalization of 
the notion of temporal relations having the same informa- 
tion content. Second, we focused on the semantics of tem- 
poral relations rather than their representation. Our use of 
snapshot equivalence in conjunction with the fact that 
query languages of representational models generally pro- 
vide the means of computing snapshots enabled this con- 

ceptual focus. The concepts apply globally, across most if 
not all existing representational temporal data models. As a 
result, new concepts are not needed for each representa- 
tional data model. Third, we chose a simple data model that 
has the important feature that relation instances with the 
same information content are identical. 

Our normal forms do not address all the issues that 
come into play when the schema for a temporal database is 
being designed. First, the normal forms do not consider the 
semantics of time-varying attributes, such as whether they 
are continuously varying or are stepwise constant. Sec- 
ondly, the normal forms do not consider important effi- 
ciency concerns. Specifically, synchronous attributes, as 
defined by Navathe [321, may be seen to affect the space 
efficiency of the storage of a temporal relation or the time 
efficiency of evaluating a temporal query, yet are not rele- 
vant to the semantics of the temporal relation. Finally, more 
general interstate (and interslice) constraints such as "No 
employee can later return to the same department," or "No 
employee can be assigned to departments in geographically 
separate plants" should be explored. 

A fully articulated design methodology utilizing the 
normal forms presented here and taking into account the 
time semantics of tuples and attributes and efficiency con- 
cerns is still needed. 
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