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Temporal and Real-Time Databases: A Survey 
Gultekin Ozsoyoilu and Richard T. Snodgrass 

Abstract-A temporal database contains time-varying data. In a 
real-time database transactions have deadlines or timing constraints. 
In this paper we review the substantial research in these two previ- 
ously separate areas. First we characterize the time domain; then 
we investigate temporal and real-time data models. We evaluate 
temporal and real-time query languages along several dimensions. 
We examine temporal and real-time DBMS implementation. Fi- 
nally, we summarize major research accomplishments to date and 
list several unanswered research questions. 

Index Terms-Object-oriented databases, relational databases, 
query languages, temporal data models, time-constrained data- 
bases, transaction time, user-defined time, valid time. 

I. INTRODUCTION 

ME is an important aspect of all real-world phenomena. T Events occur at specific points in time; objects and the 
relationships among objects exist over time. The ability to 
model this temporal dimension of the real world and to re- 
spond within time constraints to changes in the real world as 
well as to application-dependent operations is essential to 
many computer applications, such as accounting, banking, 
econometrics, geographical information systems, inventory 
control, law, medical records, multimedia, process control, 
reservation systems, and scientific data analysis. 

Conventional databases represent the state of an enterprise at 
a single moment of time. Although the contents of the database 
change as new information is added, these changes are viewed as 
modifications to the state, deleting the old, out-of-date data from 
the database. The current contents of the database may be 
viewed as a snapshot of the enterprise. Additionally, conven- 
tional DBMSs execute queries and transactions in their order of 
arrival and provide no guarantees of query or transaction com- 
pletion times. 

In this paper we survey two database research areas that 
may benefit from cross infusion: temporal database research 
for providing application-independent DBMS support for 
time-varying information, and real-time database research for 
completing database operations within time constraints. Our 
view is that real-time database research may benefit directly 
from utilizing temporal data models in real-time transaction 
and query specification and management, thereby providing 
better temporal data semantics and better querying capabilities. 
Temporal database research may benefit indirectly from the 
use and extension of temporal data models into another area- 
namely, real-time databases. We attempt here to capture and 
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summarize the major concepts, approaches, and implementa- 
tion strategies generated by these two research areas. We use a 
common terminology to emphasize concepts independently 
generated. Wherever possible, we list research directions relat- 
ing the two areas. 

A temporal database is one that supports some aspect of 
time [95]. We will shortly discuss more specific characteriza- 
tions that concern the kind of time(s) supported. Most applica- 
tions manage historical information, yet conventional DBMSs 
provide little support. 

In most of the literature, a real-time database is defined as a 
database in which transactions have deadlines or timing con- 
straints. Real-time databases are commonly used in real-time 
computing applications that require timely access to data. And, 
usually, the definition of timeliness is not quantified; for some 
applications it is milliseconds, and for others it is minutes [203]. 
Therefore, real-time databases are perhaps better viewed as time- 
constrained databases. In this survey we define a real-time data- 
base as one that has timing constraints in every operational as- 
pect, such as responding to queries; processing transactions; 
processing database insertions, deletions, and updates; and 
maintaining database integrity via integrity constraint enforce- 
ment and view management. Although current literature on real- 
time database research discusses temporal data and “temporal 
consistency constraints,” it does not utilize temporal data models 
and temporal query languages. Since real-time databases natu- 
rally deal with time, researchers should use models and theories 
developed in temporal databases. 

A series of five bibliographies concerning temporal data- 
bases [29], [142], [201], [197], [I141 lists some 600 papers 
through October 1993. A bibliography on space and time in 
databases [I21 lists 144 temporal database papers. An anno- 
tated bibliography on schema evolution [ 1611 includes eight 
temporal database papers. 

A book edited by Tansel provides a still-current snapshot of 
temporal database research [207]. Several chapters supplement 
this survey, particularly the excellent surveys on temporal rea- 
soning [ 1481 and on temporal deductive databases [ 181. 

Other surveys include those on temporal data models [97], 
[187], temporal query languages [38], [144], [189], and tem- 
poral access methods [ 1681. 

In the past eight years, about 150 papers on real-time data- 
bases have been published. There are several surveys on this 
topic [126], [159], [2131, [231]. 

Our emphasis is not on peripheral research areas that may be 
useful to temporal and real-time databases, such as main- 
memory databases, active databases, or multidimensional 
(spatial) databases. Instead, we hope to provide a general under- 
standing of the major issues of temporal and real-time databases; 
space limitations preclude our delving into any topic in detail. 
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In the following sections we review the substantial research 
on temporal and real-time databases. Section I1 examines the 
time domain: its structure, dimensionality (interestingly, there 
are several time dimensions), temporal indeterminacy, and the 
types of time associated with real-time data. Section I11 exam- 
ines the many temporal and real-time data models proposed in 
the literature. 

We consider languages for expressing temporal queries in 
Section IV. We briefly discuss and compare some three dozen 
temporal relational and object-oriented query languages. Real- 
time data and query languages are discussed in Section V, 
which presents the characteristics of real-time data and trans- 
actions and new types of data and transaction consistency re- 
quirements unique to real-time databases. 

The topic of Section VI is real-time and temporal DBMS 
implementation. We examine the impact on each DBMS com- 
ponent of adding real-time and temporal support and discuss 
query processing and transaction processing in some detail. 

In Section VI1 we summarize the major accomplishments of 
research into real-time and temporal databases and conclude 
by pointing to future work. 

11. THE TIME DOMAIN 

In this section we focus on time itself. The next section will 
combine time with facts to model time-varying information. 

A, Structure 

We initially assume that there is one dimension of time. The 
distinctions we address here will apply to each of several di- 
mensions we consider in the next section. 

Early work on temporal logic centered around two structural 
models of time, linear and branching [160], [218]. In the linear 
model, time advances from past to future in a totally ordered 
fashion. In the branching model, also termed the possiblefutures 
model, time is linear from the past to “now,” where it then di- 
vides into several time lines, each representing a potential se- 
quence of events [225]. Along any future path, additional 
branches may exist. The structure of branching time is a tree 
rooted at now. The most general model of time in a temporal 
logic represents time as a partially ordered set [62]. Additional 
axioms can be introduced to specify other, more refined models 
of time. For example, we can specify linear time by adding an 
axiom imposing a total order on this set. Recurrent processes 
may be associated with a cyclic model of time [39]. 

Axioms may also be added to temporal logics to character- 
ize the density of the time line [218]. Combined with the linear 
model, discrete models of time are isomorphic to the natural 
numbers, implying that each point in time has a single succes- 
sor [44]. Dense models of time are isomorphic to the rationals 
or the reals: between any two moments of time another mo- 
ment exists. Continuous models of time are isomorphic to the 
reals; that is, they are dense and, unlike the rationals, contain 
no “gaps.” In the continuous model, each real number corre- 
sponds to a “point” in time; in the discrete model, each natural 
number corresponds to a nondecomposable unit of time with 
an arbitrary duration. Such a nondecomposable unit of time is 

referred to as a chronon [95]. A chronon is the smallest dura- 
tion of time that can be represented in this model. It is not a 
point, but a line segment on the time line. Although time itself 
is generally perceived to be continuous, most proposals for 
adding a temporal dimension to the relational data model are 
based on the discrete time model. 

Axioms can also describe the boundedness of time. Time can 
be bounded orthogonally in the past and in the future. Models of 
time may include the concept of distance (most temporal logics 
do not do so, however; exceptions include [ 1601). With distance 
and boundedness, restrictions on range can be applied. The sci- 
entific “Big Bang” cosmology posits that time began with the 
Big Bang, 12 k 6 billion years ago. There is much debate on 
when it will end, depending on whether the universe is open or 
closed (Hawking provides a readable introduction to this contro- 
versy [SO]). If the universe is closed, time will end when the 
universe collapses back onto itself in what is called the “Big 
Crunch.” If it is open, time will go on forever, with the finite 
energy of the universe eventually dissipating. 

Finally, one can differentiate relative time from absolute time 
(more precise terms are unanchored and anchored). For exam- 
ple, ‘9 A.M., January 1, 1992” is an absolute time, whereas “9 
hours” is a relative time. This distinction, though, is not as crisp 
as one would hope, because absolute time is absolute only with 
respect to another time (in this example, midnight, January 1, 
A.D. 1). Relative time differs from distance in that the former 
has a direction; for example, one could envision a relative time 
of -9 hours, whereas a distance is unsigned. 

B. Dimensionality 

In the context of databases, two time dimensions are of gen- 
eral interest [ 18.51. Valid time denotes the time a fact was true 
in reality. An event’s valid time is the time the event occurred 
in the real world, independent of its recording in some data- 
base. Valid time can also be in the future, if it is expected that 
a fact will be true at a specified future time. Transaction time 
is the time during which the fact was present in the database as 
stored data. A fact’s transaction time (an interval) identifies 
the transaction that inserted the fact into the database and the 
transaction that removed the fact from the database. 

These two dimensions are orthogonal. A data model sup- 
porting neither is termed a snapshot, as it captures only a sin- 
gle snapshot in time of both the database and the enterprise 
modeled by the database. A data model supporting only valid 
time is termed a valid-time model; one that supports only 
transaction time is termed a transaction-time model; and one 
that supports both valid and transaction time is termed bitem- 
poral (temporal is a generic term implying some kind of time 
support) [95]. Both linear and branching transaction time have 
been employed in temporal databases. 

While valid time may be bounded or unbounded (as we saw, 
cosmologists feel that it is at least bounded in the past), transac- 
tion time is bounded on both ends. Specifically, transaction time 
starts when the database is created (before the creation time, 
nothing was stored) and doesn’t extend past the present (no facts 
are known to have been stored in the future). Changes to the 
database state are required to be stamped with the current trans- 
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action time. Hence, transaction-time and bitemporal relations are 
append-only, making them prime candidates for storage on 
write-once optical disks. As the database state evolves, transac- 
tion times grow monotonically. In contrast, successive transac- 
tions may mention widely differing valid times. 

The two time dimensions are not homogeneous; transaction 
time has a different semantics than valid time. Valid and trans- 
action time are orthogonal, though there are generally some 
application-dependent correlations of the two times. As a 
simple example, consider the situation where a fact is recorded 
as soon as it becomes valid in reality. In such a specialized 
bitemporal database, called degenerate [98], valid and trans- 
action times are identical. 

Multiple transaction times may also be stored in the same 
relation, termed temporal generalization [98]. For example, a 
fact may be stored in one relation, with one associated trans- 
action time, and later copied to a summary relation, with a 
different associated transaction time. By retaining the original 
transaction time, the summary relation can support queries that 
select information based on when that information resided in 
the original relation. 

These valid and transaction times may also be related to 
each other, or to the valid time, in various specialized ways. 

A third kind of time may be included in the time domain: 
user-defined time. This term indicates that the semantics of 
these values are known only to the user and are not interpreted 
by the DBMS, in contrast to valid and transaction times, 
whose semantics are supported by the DBMS. 

Recently a separate kind of time, termed event time [36] or 
decision time, has been defined (we’ll use the latter term, to 
avoid confusion with the time of an event in an active or real- 
time database). The decision time of a fact, such as the pro- 
motion of a professor to a new rank, is the time that decision 
occurred-i.e., the time the promotion was determined. This 
time may be different from the valid time of the new position 
and from the transaction time when the new position was re- 
corded. Decision time is an instant; valid and transaction times 
generally are intervals. Decision time may be recorded as a 
valid time for a separate table (e.g., a promotion table, as dis- 
tinct from a rank table). Whether the increased complexity of 
including decision time in the data model is justified by the 
increased expressive power is still an open issue [ 1121. 

C. Indeterminacy 

Information that is temporally indeterminate can be charac- 
terized as “don’t know exactly when” information. This kind 
of information is prevalent; it arises in various situations, in- 
cluding finer system granularity, imperfect dating techniques, 
uncertainty in planning, and unknown or imprecise event 
times. There have been several proposals for adding temporal 
indeterminacy to the time model [ S I ,  [65], [117], as well as 
more specific work on accommodating multiple time granu- 
larities [122], [223], [221]. The possible chronons model [56] 
unifies treatment of both aspects [57]. In this model, an event 
is determinate if when (i.e., during which chronon) it occurred 
is known. A determinate event cannot overlap two chronons. If 
when an event occurred is unknown, but that it did occur is 

known, the event is temporally indeterminate. The indetermi- 
nacy refers to the time the event occurred, not whether the 
event occurred. Temporal indeterminacy occurs only in valid 
time. The granularity of a transaction time timestamp is the 
smallest intertransaction time. Transaction times are always 
determinate since the chronon during which a transaction takes 
place is always known. 

D. Time in Red-Time Databases 

Current real-time database research does not explicitly distin- 
guish between the various time dimensions and the related time 
issues that we survey here. However, close inspection reveals 
that real-time databases use valid time and transaction time [30], 
[69], [126], [159], [190], [191], [213]. Valid time is used for 
data items that have immediate counterparts (external objects) in 
the real (physical) world. External events corresponding to value 
changes for these external objects are closely monitored, and 
write-only transactions record them to the database. For exam- 
ple, programmable logic controllers use specialized sensors and 
channels to detect events with their actual occurrence times. An 
example event may be “to detect furnace temperature changes 
when they are above a threshold x.” 

Real-time databases use transaction time for transactions 
that set parameters of a real-time system with the help of a 
real-time database and specialized output devices. That is, the 
event of setting the value of a real-world object is performed 
by a transaction. An example may be a transaction “to increase 
the coolant level of a furnace to level y when a computed data- 
base value goes above the threshold x.” However, such an 
event’s occurrence time can be any time between the transac- 
tion-begin time and the transaction-commit time. (Usually, 
these transactions are never aborted or rolled back.) Also, 
transaction time is used when new values are derived for data 
items on the basis of other data items’ values. Times associ- 
ated with these derived values generally correspond to trans- 
action-commit times. 

Real-time database research usually does not refer to the 
“future” and does not assume a linear, bounded (in the past 
and until “now”) time model. However, we expect the use of 
temporal models with a linear- or branching-time future for 
real-time databases. 

Presently, real-time database research does not deal with tem- 
poral indeterminacy. However, temporally indeterminate infor- 
mation is encountered frequently in real-time systems as un- 
known or imprecise event times. For example, a furnace’s tem- 
perature changes, but we are not sure exactly when; this change 
and its time must be stored in the database and made available to 
real-time operations such as queries and transactions. Clearly, 
real-time transaction processing should be extended with data 
models that allow temporal indeterminacy. 

Transactions themselves have time constraints (deadlines) 
that are specified in varying granularities as distances with 
respect to a specified time. Such constraints relate valid and 
transaction times in that the transaction-commit time must be 
before the specified valid time. 

For some real-time systems, called hard real-time systems, 
missing a deadline has serious implications and should not 
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happen. But the values of data items in the database, however 
recent, may be incorrect because the reality being modeled 
changed immediately after the value was recorded [213]. The 
possibility of incorrect data, and thus incorrect computation, 
has serious implications in hard real-time systems. 

mogeneous model [63], which is a precursor to his heteroge- 
neous model (Gadia-2). We also omit the data model used as 
the basis for defining temporal relational completeness [431, 
because it is a generic data model that does not force decisions 
on most of the aspects to be discussed here. 
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~251 both 
[99] both 
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[92] transaction 
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Clearly, not all real-time applications need timely behavior 
for all database operations. However, one can find real-time 
applications [loo] that need timeliness in some, if not all, da- 
tabase operations. For example, stock market, air traffic con- 
trol, and on-board airplane databases all require timely data- 
base updates and transaction completions, while factory-floor 
databases commonly require timely query and transaction 
completions but not necessarily timely database updates. 

Data Model 
- 
- 

Temporal Re- 

111. DATA MODELS 

[IO11 valid 
[ 1371 transaction 
[ 1391 valid 

We now turn to associating time with facts. Research in tem- 
poral data models and real-time data models have proceeded 
independently, with little cross-fertilization. 

A. Temporal Data Models 

Time has been added to many data models, including the 
entity-relationship model [ l l ] ,  [51], [58], [115], [227], se- 
mantic data models [73], [217], knowledge-based data models 
[49], and deductive databases [18], [28]. However, by far the 
majority of work in temporal databases is based on the rela- 
tional and object-oriented data models. For this reason, we 
focus on these two data models in this discussion. 

Support for t i e  in conventional database systems is entirely at 
the level of user-defined time (i.e., attribute values drawn from a 
temporal domain). The tuple calculus-based language SQL92 D a t e  
has a granularity of a day; a Time has a granularity of a second, but 
a range of only 100 hours; a Timestamp combines the range of a 
Date with the granularity of a second (there are Timestamp vari- 
ants with a granularity of fractions of a second) [ 1461. 

Time support in conventional database system implementa- 
tions are limited in scope and are, in general, unsystematic in 
their design [48]. SQL-92 corrects some inconsistencies in the 
time support provided by the commercial database system 
DB2, but inherits its basic design limitations. 

None of the other object-oriented database standards, in- 
cluding OMG’s IDL data model supporting CORBA [ 1521 and 
ODMG-93 [35], support valid or transaction time. In fact, 
CORBA doesn’t even support user-defined time. ODMG’s 
support of user-defined time is identical to that of SQL-92. 

An effort to consolidate approaches to temporal data models 
and calculus-based query languages has just been completed, 
achieving a consensus extension to SQL-92 and an associated 
data model upon which future research can be based. This ex- 
tension is called the Temporal Structured Query Language, or 
TSQL2 [ 1881. An analogous consensus object-oriented exten- 
sion to SQL3 would be highly desirable, but thus far little pro- 
gress has been made toward this goal. 

Table I lists most of the temporal relational data models that 
we are aware of in the literature.’ We omit Gadia’s multiho- 

1.  Many models are described in several papers; the one referenced is the 
first journal paper that defined the model. 

TABLE I 
TEMF’ORAL RELATIONAL DATA MODELS 

Dimension(s) 

Data Model 

both 

lational Model I 
- 1 11401 I valid 

- valid 
Temporal I [175] I valid 

DataModel I 

Databank 
Model 

Identifier I 
ADM I 

A?ei Ariav 

Bassiouni 

Ben-Zvi I 
Gadia- 1 7 
Gadia-2 

HDM 

HRDM 

Jones 
Lomet 

Lorentzos 

Lum 
McKenzie 
Navathe 

Tansel 
Wiederhold 

Some models are defined only over valid time or transaction time; 
others are defined over both. The last column gives a short iden- 
tifier that denotes the model; the table is sorted on this column? 

2. If a model has not been given a name, we use the name of its first designer 
as an identifier; we also use this method for models with identical acronyms. 
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Single Interval 
Chronon (pair of 

chronons) 
Timestamped ADM Bassiouni 

Attribute Caruso Gadia 2 
Values Lorentzos McKenzie 

Tansel 
Timestamped Sciore-2 

Groups of 
Attributes 

Timestamped Ariav Ahn 
Tuples HDM Ben-Zvi 

Lum Jones 
Sadeghi Navathe 
Segev Sarda 

Wiederhold Snodgrass 
Y au 

Timestamped TEDM OSAM*/T 
Objects W A D  

Table II classifies the extant object-oriented temporal data 
models. We further discuss its fourth column in Section III.A.2. 
Models with “arbitrary” in the third and fourth columns support 
time with user- or system-provided classes; hence, anytlung is 
possible. NIA denotes “not applicable.” 

Only a few relational or object-oriented data models ex- 
plicitly support user-defined time; where absent, such support 
is not difficult to add. 

TABLE I1 
TEMPORAL OBJECT-ORIENTED DATA MODELS 

Valid-time 
Element (set 
of chronons) 

Bhargava 
Gadia-1 
HRDM 

TOODM 

BCDM 

Oriented 
Data 

Model 

A . I .  Valid Time 

We can compare temporal data models along the valid-time 
dimension by asking three basic questions: How is valid time 
represented? How are facts associated with valid time? How 
are attribute values represented? Here we list some of the 
many answers to these questions. 

Valid time can be represented with single-chronon identifiers 
(event timestamps), with intervals (as interval timestamps), or as 
valid-time elements, which are finite sets of intervals [64]. Valid 
time can be associated with individual attribute values, groups of 
attributes, or an entire tuple or object. Another alternative, asso- 
ciating valid time with sets of tuples (i.e., relations) or object 
graphs, has not been incorporated into any of the proposed data 
models, primarily because it lends itself to high data redundancy. 
Table I11 categorizes most of the data models in terms of valid 
time representation. We do not include the OODAPLEX, 
Sciore-1, and TIGUKAT data models because valid time is arbi- 
trarily specifiable in these models. 

TABLE LII 
REPRESENTATION OF VALID TIME 

A.2. Transaction Time 

The same general issues are involved in transaction time, 
but there are about three times as many alternatives, partly 
because transaction time is often used to support versioning, 
which generally implies an object-oriented data model. Table 
IV characterizes the choices made in the various data models. 
OODAPLEX is not included, as it can support virtually any of 
these options (that is also possible in TIGUKAT, but specific 
support for versioning has been added to the data model and 
language). More detail on the representation “Other” appears 
in the fourth column of Table 11. Specifically, data models 
supporting versions often allow arbitrary, user-supplied iden- 
tifiers to be associated with versions. One model even allows 
an entire version hierarchy to be associated with a version. 

A.3. A Suite of Temporal Data Models 

A temporal data model should simultaneously satisfy many 
goals. It should clearly and concisely capture the semantics of 
the application to be modeled. It should be a consistent, mini- 
mal extension of an existing data model, such as the relational 
model. The best temporal data model presents all the time- 
varying behavior of a fact or object coherently. The data 
model should be easy to implement, while attaining high per- 
formance. The experience of the past 15 years and some 40 
data models appearing in the literature demonstrate that de- 
signing a temporal data model with all these characteristics is 
elusive at best and probably not possible. 

TSQL2 takes a different tack [99]. This language employs 
the Bitemporal Conceptual Data Model as its underlying data 
model, in which temporal databases are designed and queries 
are expressed. This data model retains the simplicity and gen- 
erality of the relational model, A separate, representational 
data model of equivalent expressive power, employed for im- 
plementation, ensures high performance. Other, presentational 
data models may be used to render time-varying behavior to 
the user or application. Thus, a coordinated suite of data mod- 
els can achieve goals that no single data model can. 



518 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 4. AUGUST 1995 

Time- 
stamped 

bute 
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TABLE IV 
REPRESENTATION OF TRANSACTION TIME 

Element 
nons) (set of 

chro- 

Caruso 

Sciore- 
2 

Ariav 
DATA 
DM/T 

stamped 
Objects 

Snod- 
grass 

Postgres 

TIGU- 
KAT 

7- TOODM 

I Lomet I Yau I 
Time- I IRIS I I I 

Time- 
stamped 
Sets of 

Graph TISSE 

Other 

Sciore- 
1 

OVM 

IRIS 
Kim 

MA- 
TISSE 

MA- 
TISSE 

B. Real-time Data Models 

Until recently, real-time database research literature has not 
specifically dealt with data modeling issues, much less tempo- 
ral data modeling issues. Most of the literature, especially on 
real-time transaction processing, assumes a database with data 
items of varying granularity. This approach has limitations 
since it does not utilize semantic knowledge (in general and of 
time) that may be very useful to the system for meeting trans- 
action deadlines. 

The relational model is used as a data model for real-time 
databases [190]; but researchers have not extended it with the 
semantics of time. There are, however, two proposed real-time 
query-processing approaches that modify the relational model: 
1) the use of sets of approximate relations [184], [220], de- 
fined for any relation in the relational model for timely 
evaluation of queries, and revised iteratively for a better ap- 
proximation and a better query response; and 2) the use of 
fragmentation lattices of relations [84], [ 1551, also for query- 
processing. Neither approach adds a temporal dimension to the 
data model. 

Recently, there has been some initial research into adapting 
the object-oriented data model for real-time databases, both 

because one can utilize its rich data semantics in real-time 
transaction processing [54] and because complex real-time 
applications may need its advantages [125], such as complex 
objects, encapsulation, methods, and messages. Significant 
research is needed to provide these features in real-time data- 
bases requiring timeliness and meeting of time guarantees. For 
example, the storage of complex objects and the implementa- 
tion of complex-object algebra operators [ 1541 carry high time 
costs that must be reduced for real-time databases. More im- 
portantly, time cost formulas for such operators are highly 
parameterized, making it difficult to provide guarantees for 
expected complex-object algebra time costs with small vari- 
ances. As another example, encapsulation of objects in object- 
oriented databases brings a number of advantages [16]. How- 
ever, encapsulation also forces users to access objects in re- 
stricted ways, possibly delaying timely execution of transac- 
tions. Clearly, the balance between providing new data- 
modeling features and ensuring timeliness in database opera- 
tions should be further investigated. 

Di Pippo and Wolfe propose a real-time object-oriented 
database that supports a rich variety of data semantics and 
temporal consistency constraints and a range of transaction 
correctness criteria that relax serializability [54]. This model 
also permits bounded, temporary “imprecision” in data values 
and transaction output by allowing concurrent, but not serializ- 
able, executions of transactions. The idea is to let time- 
constrained transactions compete with incorrect data as long as 
the introduced error (i.e., the “imprecision”) is bounded. Lee 
and Son propose a simple real-time object-oriented database 
system with atomic objects and a class manager [125]. Both 
approaches are being implemented but have not yet been ex- 
perimentally evaluated. 

Various temporal data models and temporal query lan- 
guages may be more suitable for particular real-time databases. 
The choice of temporal data model and query language will 
have an as-yet-undefined effect on how to provide completion- 
time guarantees for queries. 

IV. TEMPORAL QUERY LANGUAGES 

A data model consists of a set of objects with some struc- 
ture, a set of constraints on those objects, and a set of opera- 
tions on those objects [212]. In the two previous sections we 
have investigated the structure of and constraints on the ob- 
jects of temporal relational databases, the temporal relations. 
In this section we complete the picture by discussing the op- 
erations, specifically temporal query languages. 

Table V lists the major temporal relational query language 
proposals to date. The “Underlying Data Model” column re- 
fers to Table I. The next column lists the conventional query 
language on which the temporal proposal is based, from the 
following: DEAL, an extension of the relational algebra incor- 
porating functions, recursion, and deduction [52]; ZL,, an in- 
tensional logic formulated in computational linguistics [ 1471; 
QBE, Query-by-Example, a domain calculus-based query lan- 
guage [232]; Quel, a tuple calculus-based query language, 
originally defined for the Ingres relational DBMS [82]; rela- 
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tional algebra, a procedural language with relations as objects 
[46]; and SQL, a tuple calculus-based language, the lingua 
franca of conventional relational databases [ 1461. Most of the 
temporal relational query languages have a formal definition. 
Some of the calculus-based query languages have an associ- 
ated algebra that provides a means of evaluating queries. 
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Ariav SQL no 
Snod- Quel yes [145] 

[145] 

Table VI lists the object-oriented query languages that 
support time. Note that many "nested" relational query lan- 
guages and data models, such as HQuel, HRDM, HTQuel, 
TempSQL, and TBE, have features that might be considered 
object-oriented. 

The data model and conventional query language on which 
the temporal query language is based are identified in the third 

McKen- rela- yes N/A 
zie tional 

algebra 

and fourth columns. The fifth column indicates whether the 
language has been implemented. A few proposals provide al- 
gebras for their query languages. It is rare for an object- 
oriented query language to have a formal semantics. 

TABLE VI 
TEMPORAL OBJECT-ORIENTED QUERY LANGUAGE 

TISSE I I TISSE I 
OODA- I [228] I OODA- I DA- I I [501 

/OQL alge- 

We do not consider the related topics of temporal reasoning 
(also termed inferencing or rule-based search) [ 1051, [ 1271, 
[148], [200] and temporal abstraction [181], [182], which uses 
artificial intelligence techniques to perform more sophisticated 
analyses of temporal relationships and intervals, generally with 
much lower query-processing efficiency. Also not included are 
knowledge representation languages, such as Telos [ 1491 or 
TSOS [15], which, although supporting valid or transaction 
time, or both, are not strictly object-oriented query languages. 

We first examine user-defined time, as it is the most 
straightforward aspect of time to support, in both the data 
model and the query language. 

A. User-Defined Time 

User-defined time is supported by most commercial rela- 
tional DBMSs as another domain that can be associated with 
attributes. Hewlett-Packard's object-oriented query language 
OSQL [141] and UniSQL [lo91 continue in the SQL tradition 
by including Date, Time, and Timestamp types. 

Overmyer and Stonebraker proposed making time an ab- 
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stract data type, with its own set of operations [153]. Many of 
the object-oriented query languages (e.g., Postgres [205] and 
ZQL [27]) can support user-defined time in just this fashion. 

Others have advocated that various notions of time (see 
Section 11) be supported more directly, as either a regular or a 
primitive class (i.e., a class with no attributes). The primary 
benefit is that the object-oriented data model’s power (with 
subtyping, inheritance, and polymorphic functions with late 
binding) can be used to express the semantics of time appro- 
priate to the application. 

B. Valid Time 
Valid-time support can have a much greater impact than user- 

defined-time support. There are three general approaches to 
adding valid-time support to a data model and query language. 

The first approach utilizes the substantial expressive power of 
the relational or object-oriented data model directly and thus 
requires no changes to either the model or the query language to 
support time-varying information. Lorentzos and Johnson’s tem- 
poral relational algebra is the defining example in the relational 
domain [ 1391. Among object-oriented query languages, 00- 
DAPLEX and TQL utilize this approach. The OODAPLEX type 
system, supporting the parameterized types of set, multiset, tu- 
ple, and function, is sufficient for modeling temporal informa- 
tion. The TIGUKAT type system is also sufficient. The advan- 
tages are that the user can specify various valid-time semantics 
(as is also true of user-defined time), and the schema specifica- 
tion and query languages remain uncluttered by additional time- 
specific clauses-assuming, of course, that the necessary fea- 
tures, including functions and sets as first-class citizens, are 
available. Users are required to “roll their own” time support 
when specifying the schema and queries. This approach renders 
query optimization much more difficult, as the language pro- 
vides no hints that access methods or storage structures oriented 
toward time-varying values should be employed. 

A second approach is to include general extensions to the data 
model and query language for other reasons and then show how 
these extensions can support time-varying information. This 
approach has been used only with object-oriented query lan- 
guages. Sciore has advocated the use of annotations [202] to 
support the various kinds of versioning, including histories, re- 
visions, and alternatives [172]. The VISION system adopted a 
similar approach. Query optimization is still difficult, since all 
time manipulation is done by user-defined functions (which 
themselves could perhaps be individually optimized). 

In contrast to the previous approaches, most researchers 
have proposed specific data modeling and query language 
constructs to support information varying over valid time. This 
is the approach adopted by the vast majority of temporal rela- 
tional query languages. Most add numerous new constructs 
and temporal operators, yet attempt to retain snapshot re- 
ducibility [ 1861 to the nontemporal query language on which 
they are based, ensuring that the user’s intuition about the base 
language carries over to the temporal extension. 

Turning to object-oriented query languages, TOODM, the 
data model behind TOSQL and TOOSQL, encodes attribute 
values as time sequences, which are sequences of value and 

temporal element pairs [163], [164]. The OQLE query lan- 
guage for the temporal object-oriented knowledge representa- 
tion model OSAM*TT incorporates an optional when clause, as 
well as a set of temporal functions and operators [206]. Sciore 
has extended the EXTRA data model [32] to differentiate be- 
tween versioned and unversioned attributes and has made sev- 
eral changes to the EXCESS query language to support selec- 
tion of times and default times, termed contexts [ 1731. TEDM 
supports evolution, fusion, and fission of objects over time 
[31]. The Illustra DBMS, a commercialization of Postgres, 
includes a time series datablade that allows value and times- 
tamp pair sequences as attribute values. 

C. Transaction Time 
Transaction time indicates when facts were logically present 

in the database, as opposed to when facts were true in reality. 
Transaction time support is necessary when one would like to 
roll back the state of the database to a previous point in time. 
Transaction time is also useful when storing versions, say, of 
an engineering design. In such situations, transaction time is 
often branching, in contrast to the linear time model underly- 
ing valid time. 

In considering transaction time support, an important distinc- 
tion must be made: either the tuples, object instances, or attrib- 
utes are themselves versioned (termed extension versioning), or 
the definitions of those objects are versioned (termed schema 
versioning). If extension versioning is adopted, then schema 
versioning may or may not be supported. If extension versioning 
is not supported, then schema versioning is not relevant, as only 
the most recent version of the schema need be retained. 

C. I .  Extension Versioning 

As with valid-time support, there are three general ap- 
proaches to supporting extension versioning. The first is to use 
the model directly, making no changes to the data model or 
query language. OODAPLEX follows this approach. Since the 
time semantics is arbitrary (the user can implement whatever is 
desired), transaction time can be accommodated. 

In the second approach, general data model and query lan- 
guage extensions are exploited to support time-varying infor- 
mation. Sciore’s annotations, discussed earlier, can be used to 
support revisions and alternatives (i.e., branching transaction 
time). Generic references are also capable of supporting trans- 
action time [173], as are the metafunctions in VISION [34]. 

The third approach modifies the data model and language to 
explicitly support transaction time. As with valid time, most 
proposals are in this camp. TSQL2 is perhaps the most ambi- 
tious, supporting both arbitrary expressions on the transaction- 
time timestamp associated with tuples, and vacuuming, which 
purges old data from the system to reduce secondary storage 
requirements [96], [205]. 

Chou and Kim’s versioning model [40], [ 1081 has garnered 
the widest acceptance in the object-oriented community. It has 
been implemented in ORION [ l l l ] ,  in the IRIS object- 
oriented DBMS [20], [224] (though it has not yet been incor- 
porated in the commercial version and its query language 
OSQL), and in OQL [1021. Objects are versioned with 
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branching transaction time, with the added feature of two ver- 
sions merging to create a new version; hence, transaction time 
is truly a graph, rather than a tree. 

C.2. Schema Versioning 

In schema evolution, the schema can change in response to 
the application’s varying needs. In schema versioning, multi- 
ple schemas are logically in effect. Schema versioning has 
been examined in both relational databases [21], [143], [161], 
[ 1621 and object-oriented databases. The Chou-Kim model 
accommodates the most extensive form of schema versioning 
of object-oriented data models. Schema versioning under the 
Chou-Kim model has not yet been implemented, though Chou 
and Kim have presented detailed data structures, storage repre- 
sentations, and object-accessing algorithms [ 1 lo]. Multiple 
schemas may also be defined via object-oriented views [23] or 
semantic contexts [ 131 (which should be differentiated from 
Sciore’s contexts [ 1731). An essential difference between these 
approaches and schema versioning is that in the latter an object 
created in a specific schema version is visible only in that 
schema version, rather than in all views or contexts [24]. 

We now turn to data models and query languages support- 
ing real-time applications. 

v. REAL-TIME DATA AND TRANSACTION PROPERTIES 

Real-time transactions must be timely-they must be 
scheduled so as to complete within their time constraints 
(deadlines) and satisfy transaction constraints. Timely execu- 
tion of transactions requires good estimates of their worst-case 
execution times, which are very difficult to obtain when 1) 
transactions’ execution times depend on the values of data 
items they access (e.g., the range of a looping construct in a 
transaction is defined through the value of a data item), 2) 
transactions block or abort due to data and resource conflicts, 
and 3) U 0  scheduling or buffer management techniques affect 
transaction execution times. 

Hard transactions are those for which missing a deadline is 
disastrous and must not happen. If completed transactions are 
assigned values (to measure the benefits gained by completing 
them), a hard transaction with a missed deadline is given a 
large negative value. Soft transactions may miss their dead- 
lines and still have some monotonically decreasing value as- 
signments that drop to zero at some point P in time. For firm 
transactions, P and the deadline are the same. 

The following factors [120], [159], [213], [231] character- 
ize real-time transactions and influence the transaction- 
processing techniques used to schedule them [ 1201: 

1) The implication of missing a specified transaction dead- 
line: hard, soft, orfirm transactions. 

2) Transaction arrival pattern: periodic, sporadic, or 
aperiodic. 

3) Data access type: Random (i.e., unknown) or predefined 
with a) write-only (update) transactions that collect in- 
formation about the state of the real world and write into 
the database, or b) read-only transactions that read the 

values of data items and modify the state of the real 
world through specialized output devices. 

4) Accessed-object properties: The real-world object whose 
state is maintained by a data item in the database may be 
continuous (i.e., its state always has a value and may 
change at any time) or discrete. 

5 )  Knowledge of items to be used: Whether the accessed 
items are known a priori. 

6) CPU and U 0  time knowledge: Whether the CPU and U 0  
usage of transactions are known a priori. 

For some real-time applications, it is desirable to have real- 
time databases that provide a (preferably semantically rich) 
data model, satisfy integrity constraints, and permit only seri- 
alizable transaction executions [22]. Such databases are said to 
be internally consistent [ 1321. Clearly, for these applications, 
the database should maintain the traditionally accepted trans- 
action correctness properties known as the ACID properties 
(atomicity, consistency, isolation, and durability) [72]. 

For some real-time databases, an externally consistent data- 
base may be more important than serializable transactions 
[132]. A database is externally consistent if, whenever a real- 
world object changes its value, its counterpart data item in the 
database (if it exists) also changes. External consistency re- 
quires that the data used by a transaction always reflect the 
physical environment at the time. In comparison, internal con- 
sistency requires that the data in the database satisfy prede- 
fined constraints. In applications that need a timely response to 
external state changes (e.g., autopilot systems, automated fac- 
tories with robots), external consistency often takes prece- 
dence over internal consistency. Thus, for some applications, 
executing transactions that maintain external consistency takes 
precedence over having serializable transactions or satisfying 
the database’s integrity constraints all the time [ 1321. 

Clearly, it is possible to have an externally consistent data- 
base and serializable transactions that always use the most 
recent values of data items: One can detect, at a cost, transac- 
tions that use externally inconsistent data and abort them or 
roll them back. But such an approach may be too wasteful. On 
the other hand, it is not possible to have both external consis- 
tency and integrity constraint satisfaction, as newly inserted 
values of external objects may cause immediate integrity con- 
straint violations. For example, an integrity constraint involv- 
ing a factory furnace temperature and the furnace coolant level 
may be violated by rising temperature levels. Also, external 
consistency maintenance may lead to triggers. For example, 
violation of the factory furnace constraint may trigger a trans- 
action that informs an operator or requests an automated agent 
to increase coolant levels. Transactions that need the most up- 
to-date data item values of external objects may require abor- 
tions. For example, a transaction that performs periodic com- 
putations and initiates physical activities on objects produced 
in the furnace may need to be aborted and restarted due to fur- 
nace temperature changes. Finally, integrity constraint viola- 
tions may need to be resolved by new transactions. The inter- 
play between external and internal consistency is an unex- 
plored research area. 

The preceding discussion suggests that, at least for some 
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real-time database applications, transactions interact and syn- 
chronize with each other. That is, transactions in such envi- 
ronments cooperate. In contrast, transactions in traditional 
databases are isolated and compete with each other for com- 
pletion. The concept of cooperating transactions has three 
implications: 

1) The traditional correctness notion, serializability, for 
transaction execution must be extended or replaced by 
new correctness notions. The next section discusses two 
such correctness notions. 

2) Transaction interaction in some real-time database envi- 
ronments has similarities with those encountered in active 
databases [67] in which various events and conditions 
trigger actions of other transactions. An example is “if 
transaction Furnace-Temp-Alarm writes object Alarm 
between now and (now + 1 minute) then start and com- 
plete transaction Notify-Automated-Agent in 1 second.” 
A major difference between this example and active da- 
tabases is that the transaction Notify-Automated-Agent is 
given a completion deadline. 

3) Transactions in these new real-time database environ- 
ments now synchronize (i.e., cooperate) with each other 
much like processes (tasks) of concurrent-computing 
models. For example, the periodic transaction Objects- 
Produced-in-Furnace, upon seeing an old furnace tem- 
perature value, may “wait” for a “recent” value of data 
item Furnace-Temperature to be added to the database 
by transaction Modify-Furnace-Temperature and then 
continue execution. Such waits can be specified and con- 
trolled either by an independent agent such as a transac- 
tion managerhcheduler that enforces rules or, directly, by 
process communication techniques such as semaphore 
waits and signals or message passing. A survey of exter- 
nal and internal consistency definitions concluded that 
“there may be a room for a theory of interactions of pro- 
grams that are both cooperating” (as in concurrent proc- 
esses) “and competitive” (as in transactions) [69]. Our 
view is that real-time database researchers should inves- 
tigate this theory of interaction among “programs,” re- 
gardless of whether they are called programs or transac- 
tions, since such programs interact directly with a data- 
base. The survey also contains an insightful comparison 
between a transaction and a process. 

Another major difference between conventional and real- 
time database transaction processing is their approach to re- 
solving data and resource conflicts. conventional databases 
attempt either to be fair in data and resource allocation or to 
maximize resource utilization. In real-time databases, timely 
transaction execution is more important, and both fairness and 
maximum resource utilization become secondary goals. A re- 
lated issue is measuring transaction-processing performance. 
In contrast with conventional databases that use transaction 
response time and throughput as performance measures, real- 
time databases use the percentage of transactions that complete 
within their deadlines or the total value of completed transac- 
tions, using a function that assigns values to completed trans- 
actions. Finally, real-time transactions are prioritized on the 

basis of their deadlines and values, and the transaction man- 
ager uses transaction priorities in transaction scheduling as 
well as in transaction conflict resolution. 

A. Real-Time Temporal Data and Transaction Consistency 

For real-time databases in safety-critical real-time systems, 
the data’s validity as well as its correct use by transactions 
becomes very important. Real-time temporal data constraints 
originate from the fact that the age of data in the database is 
important for some real-time transactions and that, sometimes, 
members of a set of data values stored in the database must 
have similar age values [132], [135], [219]. 

We make a distinction between base (data) items, which cor- 
respond to external objects and whose values are associated with 
valid times recorded by specialized input devices of a real-time 
system, and derived (data) items, whose values are associated 
with absolute transaction times. Assume that each base item 
value has an absolute valid time, indicating the real-world data 
observation time, and a validity interval, the length of the time 
following the absolute valid time during which the value is con- 
sidered valid. Real-time temporal data constraints have two 
components [136], the first of which is readily applicable to any 
temporal database, not just a real-time database [98]: 

1) Absolute data consistency states that the validity interval 
of the most recent value of a base (or derived) item is al- 
ways longer than the time interval between its absolute 
valid (or absolute transaction) time and “now.” This indi- 
cates that the data has absolute validity. 

2) Relative data consistency. Frequently in real-time data- 
bases, a set of data items must be observed within a small 
time interval so that the items can be used to derive a new 
value for a data item. Such a set forms a relatively consis- 
tent set of items. For example, the temperature and the 
pressure of a furnace together may be used to compute 
the “safety level” of the furnace and thus must be meas- 
ured close in time. These two data items, together with 
the safety level item, form a relatively consistent set of 
items. Note that each relatively consistent set is associ- 
ated with a time interval, called the relative validity in- 
terval. We can define the current relatively consistent set 
of items as follows: Consider the most recent value v of a 
base or derived item d and any relatively consistent set R 
that contains d. Then d is the current relative set consis- 
tent with respect to R if the time distance between the 
time of v and the time of the most recent value of each 
item in R is less than the relative validity interval of R .  
We can also define the total relative set consistency of d 
with respect to R as follows: For any value w of d, there 
exists a set S of values, one for each item in R, such that 
the time distance between w and any value in S is less 
than the relative validity interval of R. 

One open research problem on real-time temporal data 
constraints involves enforcing relative consistency of data 
items in a database when there are multiple and overlapping 
relatively consistent sets and/or when new data items are being 
added to and deleted from the database. 

The consistency of real-time transactions is related to the 
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temporal consistency requirements of data items. Real-time 
systems commonly use real-time databases to store data about 
physical devices and to set parameters of physical devices. 
Therefore, transactions must read the “most recent” values of 
data items as defined by the following two constraints [231]: 

1) External transaction consistency. Ideally, most real-time 
transactions would read and use the current values of ex- 
ternal objects in their computations. However, this may 
not be possible as the most recent values in the database 
may differ from the current values of real-world objects. 
External transaction consistency means that the differ- 
ence between the time of a transaction operation on a 
data value and the absolute valid time of the data value is 
less than a given small threshold. 

2) Temporal transaction consistency. Real-time transactions 
may use a snapshot of the real world. Therefore, data val- 
ues read by a transaction ideally would have the same valid 
or transaction times. Again, this may not be possible. Let V 
denote the values of a set of items that a given transaction 
T reads. Then T is temporally consistent if the difference 
between the valid or transaction times of any two base or 
derived values in Vis less than a given small threshold. 

The performance of a class of lock-based, multiversion con- 
currency control algorithms in maintaining temporal transac- 
tion consistency for periodic transactions has been empirically 
evaluated under mixed workloads of read-only, write-only, and 
read-write transactions [ 1961. Maintaining temporal transac- 
tion consistency proved easier when conflicting transactions 
were close in the lengths of their periods. Also, the transaction 
conflict pattern had a more significant effect on temporal 
transaction consistency than the transaction load level. 

Assume that there are write-only transactions that periodically 
record real-world changes in the database. Two real-time trans- 
action consistency enforcement issues are the following: 1) 
Given a set of transactions with consistency requirements, find 
the period of each write-only transaction so that the consistency 
requirements of other transactions are satisfied. 2) Given a set of 
periodic write-only transactions, find the level of real-time trans- 
action consistency that can be guaranteed [131]. 

Transaction consistency notions other than those we’ve de- 
scribed may be useful. For example, referring to the temporal 
transaction consistency constraint, there may be distinct 
threshold values for different subsets of V. It is also possible to 
define a range of transaction correctness criteria that relax se- 
rializability to permit interleaved executions of transactions 
that use incorrect item values (but are bounded in their abso- 
lute differences with the correct item values) [54]. More re- 
search is needed to find new, general-purpose consistency no- 
tions for cooperating transactions in real-time databases. 

B. Real-Time Query Languages 

There is no reported research on real-time database query 
languages or transaction specification languages that allow 
users to specify time constraints, temporal constraints, tempo- 
ral properties of data values, and semantic knowledge useful 
for query/transaction processing. The reason for this is that, 
until recently, specifying a query or a transaction involved 

only specifying a time constraint and temporal transaction 
constraints, which can be achieved by means of simple exten- 
sions to conventional query languages or transaction specifi- 
cation techniques. In the near future, research will be needed 
in real-time query and transaction specification languages that 
will allow users to specify semantic knowledge and interac- 
tions of cooperating transactions, and that are based on various 
temporal data models. These languages may also be based on 
temporal and modal logics [59] or on models of concurrent 
processes [ 1231. 

VI. ARCHITECTURAL ISSUES 

We now turn to the implementation of temporal and real- 
time data models and query languages. For both temporal and 
real-time databases, we focus on relational databases; there is 
little experience with implementing temporal or real-time 
object-oriented databases. 

A. Temporal-Query Processing 

We discuss two aspects here: query optimization and query 
evaluation. 

Temporal-query optimization is substantially more involved 
than conventional-query optimization for several reasons. 
Temporal-query optimization is more critical, and thus easier 
to justify expending effort on, than conventional optimization. 
The relations that temporal queries are defined over may be 
larger and often grow monotonically, implying that unopti- 
mized queries take longer and longer to execute. It is reason- 
able to try harder to optimize queries on such data and to 
spend more execution time to perform the optimization. 

The predicates used in temporal queries are harder to opti- 
mize [ 1281, [ 1291. In traditional database applications, queries 
generally specify equality predicates (hence the prevalence of 
equijoins and natural joins); if an inequality predicate is in- 
volved, it is rarely in combination with other such predicates. 
In contrast, in temporal queries, joins with a conjunction of 
several inequality predicates appear more frequently. For ex- 
ample, the TSQL2 OVERLAP operator is translated into two 
less-than predicates on the underlying timestamps. Optimiza- 
tion techniques in conventional databases focus on equality 
predicates and often implement inequality joins as Cartesian 
products, with their associated inefficiency. 

On the other hand, there is greater opportunity for query 
optimization when time is present [129]. Time advances in 
one direction; the (transaction) time domain is continu- 
ously expanding, and the most recent time point is the larg- 
est value in the domain. This implies that a natural cluster- 
ing on sort order will manifest itself, which can be ex- 
ploited during query optimization and evaluation. Query 
optimization can also consider time-oriented integrity con- 
straints. The integrity constraint begin(t) I end(t) holds for 
every time-interval tuple t .  Also, for many relations, the 
intervals associated with a key are contiguous in  time, with 
one interval starting exactly when the previous interval 
ended [53], [175], [176]. An example is salary data, where 
the intervals associated with the salaries for each employee 
are contiguous. Semantic query optimization can exploit 
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these integrity constraints, as well as additional ones that 
can be inferred [61], [178], [183]. 

The importance of efficient query optimization and evaluation 
for temporal databases was underscored by an initial study that 
analyzed the performance of a brute-force approach to adding time 
support to a conventional DBMS. In this study, the Ingres DBMS 
was minimally extended to support TQuel [8]. The results were 
very discouraging. Sequential scans, as well as access methods 
such as hashing and ISAM, suffered from rapid performance deg- 
radation due to ever-growing overflow chains. Because adding 
time creates multiple tuple versions with the same key, reorganiza- 
tion did not help to shorten overflow chains. The objective of work 
in temporal query evaluation is to avoid looking at all the data, 
because the alternative implies that queries will continue to slow 
down as the database accumulates facts. We emphasize that these 
results do not imply that converting a time-varying database im- 
plemented on a conventional DBMS will be much less efficient on 
a brute-force temporal DBMS. In fact, simulating a time-varying 
database on a conventional DBMS, which is currently the only 
alternative available to application programmers, will produce all 
the problems just listed. 

There have been four basic responses to this challenge. The 
first was a proposal to separate the valid-time and transaction- 
time data, which grows monotonically, from the current data, 
whose size is fairly stable and whose access is more frequent 
[ 1401. This separation, termed femporal partitioning, signifi- 
cantly improved performance of some queries [9] and was later 
generalized to allow multiple cached states, which further im- 
prove performance [94]. The other three responses were the 
design of new query optimization strategies, new join algo- 
rithms, and new temporal indexes. 

A . I .  Query Optimization 

A single query can be optimized by replacing the algebraic 
expression with an equivalent one that is more efficient, by 
changing an access method associated with a particular operator, 
or by adopting a particular implementation of an operator. The 
first alternative requires a definition of equivalence, in the form 
of a set of tautologies. Tautologies have been identified for many 
of the algebras listed in Table V. Some of these temporal alge- 
bras support the tautologies defined in the standard relational 
algebra, enabling existing query optimizers to be used. 

Determining which access method is best for each algebraic 
operator requires metadata-statistics on the stored temporal 
data-and cost models-predictors of the execution cost for 
each operator implementatiodaccess method combination. 
Temporal data requires additional metadata, such as the time 
interval over which the relation is defined (termed the lifespan 
[42]), lifespans of the tuples, surrogate and tuple arrival distri- 
butions, distributions of time-varying attributes, regularity and 
granularity of temporal data, and frequency of the null values 
sometimes introduced when attributes within a tuple are not 
synchronized [174]. Such statistical data may be updated by 
random sampling or by a scan through the entire relation. 

There has been some work in developing cost models for 
temporal operators. An extensive analytical model has been 
developed and validated for TQuel queries [9], [lo], and se- 

lectivity estimates on the size of the results of various temporal 
joins have been derived [70], [1741. 

In global query optimization, a collection of queries is simul- 
taneously optimized, with the goal of producing a single query 
evaluation plan that is more efficient than the collection of indi- 
vidual plans [171], [177]. A state transition network appears to 
be a good way to organize this complex task [94]. Materialized 
views are expected to play an important role in achieving high 
performance in the face of temporal databases of monotonically 
increasing size. For an algebra to utilize this approach, incre- 
mental forms of the operators are necessary (see [92]). 

A.2. Temporal Joins 

Researchers have considered a wide variety of binary joins, 
including time-join and time-equijoin (TE-join) [42]; event- 
join and TE-outerjoin [7 11; contain-join, contain-semijoin, 
and intersect-join [ 1291; and temporal natural join [ 1991. The 
various algorithms proposed for these joins have generally 
been extensions to nested loop or merge joins that exploit sort 
orders or local workspace, as well as hash joins. More work is 
necessary to design a join strategy that is superior over most of 
the parameter space. 

A.3. Temporal Indexes 

Conventional indexes have long been used to reduce the 
need to scan an entire relation to access a subset of its tuples. 
Indexes are even more important in temporal relations that 
grow monotonically in size. There has been a great deal of 
research in temporal indexing over the past five years. The 
worst-case performance for most proposals has been evaluated 
in terms of total space required, update per change, and several 
important queries [ 1681. Average-case analysis is of course 
much more difficult. While preliminary performance studies 
have been carried out for each of these indexes in isolation, 
there has been little effort to empirically compare them. An 
empirical comparison would have to consider the differing 
abilities of each (those supporting no nontemporal keys would 
be useful for doing temporal Cartesian products but perhaps 
less useful for temporal joins involving equality predicates on 
nontemporal attributes). It would also have to consider various 
underlying distributions of time and nontemporal keys (the 
indexes presume various nonuniform distributions to achieve 
their performance gains over conventional indexes, which gen- 
erally assume a uniform key distribution). 

B. Transaction Processing 

Several researchers have investigated adapting existing con- 
currency control and transaction management techniques to 
support transaction time. The subtle issues involved in choos- 
ing whether to timestamp at the beginning of a transaction 
(which restricts the concurrency control method that can be 
used) or at the end of the transaction (which may require data 
written earlier by the transaction to be read again to record the 
transaction) have been resolved in favor of the latter through 
some implementation tricks that effectively eliminate the need 
for additional reads [47], [138], [204]. (We revisit this issue in 
the context of real-time databases in Section VI.B.2.) Times- 
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tamping in a distributed setting has also been considered, as 
has integrating temporal indexes with concurrency control to 
increase the available concurrency [ 1381. Finally, since a 
transaction-time database contains all past versions of the da- 
tabase, it can be used to recover from media failures that cause 
a portion or all of the current version to be lost [ 1381. 

In the remainder of this section, we discuss the issues re- 
lated to processing real-time transactions. Evaluations of the 
techniques discussed were made by means of either a testbed 
system (e.g., [87]) or simulation (e.g., [3], [76], [215]). One 
exception is the approximate analysis of real-time databases 
[79], which used an analytical approach to approximate the 
steady-state fraction of real-time transactions that complete 
successfully. 

B. I .  Processing Transactions with Hard Deadlines 

All transactions with hard deadlines must complete within 
their deadlines. This means that they must be scheduled with 
complete knowledge, which in turn means that the various 
transaction factors listed in Section V must be known a priori. 
For example, transaction arrival patterns must be known; that 
is, transactions must be periodic. Also, transaction data access 
types, items to be accessed, and CPU and I/O access times 
must be known. With this knowledge, tight estimates of worst- 
case transaction execution times can be obtained, and real-time 
task-scheduling techniques can be used to guarantee timely 
transaction execution. 

B.2. Processing Transactions with Soft Deadlines 

Transaction Priority Assignment Policies. Priorities and 
values for real-time transactions are used for conflict resolu- 
tion and CPU scheduling. The literature contains various 
transaction priority or value assignment algorithms [26], [75], 
[76], [86], [91], [134] and their evaluations [3], [ l] ,  [86]. 
Some of these policies are earliest-deadline-first, highest- 
value-first, least-slack-time-first (where slack time is the 
maximum amount of time a transaction can spend without exe- 
cuting and still complete within its deadline), fixed-priority- 
with-a-priority-ceiling, and weighted-priorities. One interest- 
ing approach is a dynamic priority assignment policy, in which 
a continuous workload evaluation method evaluates the prior- 
ity of a transaction several times during its execution [83]. 
Priority assignment algorithms are important since they di- 
rectly influence the performance of the transaction-scheduling 
algorithms. 

Concurrency Control Techniques with Serializability. Con- 
currency control techniques for real-time databases that use 
serializability as the correctness criteria include lock-based 
protocols such as two-phase locking and its variants [3], [ l] ,  
[71, [60], [861, [88], [179], [180], [193], [214], [216], optimis- 
tic concurrency control protocols [74], [78], [88], [121], and 
timestamp-ordering protocols [ 1331, [ 1951, [215]. These 
techniques detect conflicts between two real-time transactions 
or between one real-time transaction and a set of real-time 
transactions. 

For lock-based protocols, transaction conflicts are resolved 
by either transaction blocking or transaction abort. When a 

data item held by a transaction is requested by another trans- 
action with a conflicting lock request such as a write-lock, the 
alternatives for resolving such a conflict are to block or abort 
the lock-requesting transaction or to abort the lock-holding 
transaction. When a higher-priority transaction is blocked by a 
lower-priority transaction during conflict resolution, priority 
inversion results. One way to avoid this unfortunate situation is 
to use priority inheritance [ 1791, in which the lower-priority 
transaction that is blocking other transactions inherits the high- 
est priority of the transactions it blocks, until it releases the 
lock. Note that even with an inherited priority, a transaction 
may later block other higher-priority transactions, thereby in- 
creasing its priority even further. 

The priority abort approach [3], in contrast, grants the lock to 
the higher-priority transaction. If the lock-requesting transaction 
has higher priority, it is granted the lock after the lock-holding 
transaction aborts. Otherwise, the lock-requesting transaction is 
blocked. The performances of priority inheritance and priority 
abort and their variations have been compared in several studies 
[I], PI ,  [771, P91, [ 2 W .  

Other lock-based protocols for real-time databases include 
ordered sharing [5], [6], [7] that eliminates blocking, and dy- 
namic adjustment of the serialization order [133] of transac- 
tions in order to execute high-priority transactions before low- 
priority transactions. 

Timestamp-ordering protocols [ 1941, [215], [216] assign 
timestamps to transactions when they start, for resolving con- 
flicts during transaction execution. Compared with the opti- 
mistic concurrency control that resolves transaction conflicts at 
the end of transaction execution and during transaction valida- 
tion, the timestamp-ordering protocols’ early conflict resolu- 
tion is an advantage. On the negative side, timestamp-ordering 
protocols suffer from priority inversion in the sense that a 
higher-priority transaction is aborted when it attempts to ac- 
cess a data item modified by a lower-priority transaction with a 
higher timestamp value. Different priority-based timestamp- 
ordering protocols are proposed and evaluated in the literature 
[195]. One interesting approach is to assign timestamps to 
transactions dynamically whenever actual conflicts occur [ 191. 
A similar approach is to assign timestamp intervals, instead of 
a single value, to transactions, and to adjust (reduce) the inter- 
vals when conflicts arise to guarantee serializable transactions 
[191, WO]. 

Optimistic concurrency control protocols validate (certify) 
transactions for commitment after they complete execution 
[74], [77], [78], [87]. Conflicts among transactions are solved 
with aborts and restarts. The advantage of the optimistic con- 
currency control technique is that it is nonblocking and dead- 
lock-free, making it attractive for real-time databases. On the 
other hand, transaction aborts and restarts waste resources that 
may be critical for real-time databases. 

Optimistic protocols can use backward validation, in which the 
validating transaction is checked against committed transactions 
and is either aborted due to conflicts or committed. An alternative 
is forward validation, in which the validating transaction is 
checked against the currently running, active transactions, and, in 
the case of conflict, the validating transaction or other conflicting 
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transactions are aborted. The literature contains various real-time 
optimistic protocol variants based on forward validation, and their 
experimental evaluations [74], [87]. Instead of using knowledge of 
the dynamic read sets of active transactions, these variants use 
transaction priorities [74], [88], force the validating transaction 
into a wait state until the conflicts are resolved [74], or dynami- 
cally adjust the serialization order [ 1241. 

Other concurrency control techniques for real-time data- 
bases include using multiple copies of data [119], [213] and 
hybrid protocols that combine lock-based, timestamp- 
ordering-based, and optimistic concurrency control techniques 
[ 1951. Comparative evaluations of most of these techniques are 
not yet available. 

The discussion in this section so far has assumed the use of 
flat transactions. When a transaction consists of subtransac- 
tions, each to be executed in a distributed database environ- 
ment, deadlines can be assigned to each subtransaction indi- 
vidually to reflect its importance and urgency [159]. Several 
heuristics to this subtask deadline assignment problem have 
been proposed and evaluated [ 1071, both for subtransactions 
that execute serially and for subtransactions that execute in 
parallel. However, these proposals accommodate only one- 
level nested transactions. The problem has not been investi- 
gated for nested transactions with arbitrary depth. In fact, very 
little research has considered using nested transactions in a 
real-time database environment. 

Concurrency Control Techniques that Relax Serializability. 
For real-time databases in which transaction serializability is 
not absolutely necessary, performance may be improved by 
allowing nonserializable or temporarily nonserializable trans- 
action execution. One such approach is epsilon serializability 
[106], [158], [192], [226], which allows bounded inconsis- 
tency during conflict resolution. Conflicting accesses for read- 
only transactions due to read-write conflicts are permitted us- 
ing a divergence control algorithm, as long as inconsistencies 
are within a prespecified limit. Another approach is to use 
application semantics and data similarities to obtain higher 
levels of concurrency among transactions [ 1 161, [ 1 181. Im- 
precise data values and partial computations are utilized for 
the same purpose in [ 1301. 

C. Stored Data Manager 

Many storage structures have been proposed, including re- 
verse chaining (all history versions for a key are linked in re- 
verse order) [21], [47], [140], accession lists (a block of time 
values and associated tuple ID’S between the current store and 
the history store), clustering (storing history versions together 
on a set of blocks), stacking (storing a fixed number of history 
versions), and cellular chaining (linking blocks of clustered 
history versions, with analytical performance modeling to 
compare their space and time efficiency) [9]. Page layout for 
temporal relations is more complicated than for conventional 
relations if the nonfirst normal form (i.e., nonatomic attribute 
values) is adopted, as is proposed in many of the temporal data 
models listed in Section 111. Often such attributes are stored as 
linked lists-for example, representing a valid-time element 
(set of valid-time chronons) as a linked list of intervals. Hsu 

and Snodgrass have developed an analytical model to deter- 
mine the optimal block size for such linked lists [85]. 

D. Buffer Management for Real-Time Transaction 
Scheduling 

In conventional databases, buffer contention among trans- 
actions can impact performance significantly. Prioritized ver- 
sions of two buffer management algorithms, priorify-least- 
recently-used (priority-LR U )  and priority-DBMIN, have been 
investigated [33]. Priority-LRU groups buffer elements into 
priority levels, each level holding the pages of transactions 
with the same priority. Pages are replaced from the LRU page 
of the lowest-priority group. Priority-DBMIN allocates a set of 
buffer elements (“locality set”) for each file, to be accessed by 
each transaction before the transaction is admitted, and uses an 
optimum replacement policy for each locality set. An easier-to- 
implement version of priority-DBMIN exhibits even better 
performance [90]. 

Another approach assumes that write requests are delayed to 
the end of transaction execution and uses different queues to 
buffer read and write requests [2]. The idea is to have a mini- 
mum free buffer space in the write buffer for write requests 
and always to process read requests first, as long as the write 
requests can be placed in the write buffer without reducing the 
free space to a size less than the specified minimum. A variant 
of this approach creates deadlines for writing the contents of a 
buffer element into the disk and uses these deadlines to service 
write requests [2]. 

E. Scheduling Disk U 0  for Real-Time Transaction 
Processing 

Because disk U0 constitutes a significant part of transaction 
execution time, it is natural to revise disk U0 scheduling algo- 
rithms to ensure timely transaction execution. Conventional disk- 
scheduling algorithms, called SCAN algorithms, sort U 0  re- 
quests and service them by scanning disk cylinders. Several 
variants of a SCAN algorithm have been proposed for real-time 
databases [2], [33] and empirically evaluated. An algorithm 
called FD-SCAN (feasible deadline SCAN), which decides the 
scanning direction by locating the U0 request with the earliest 
feasible deadline, has shown superior performance. 

In another study [ 11, transactions are assumed to perform all 
write requests when they commit, and write requests have the 
lowest priority as they are related to transactions that have 
completed execution. Read requests are then assigned priori- 
ties on the basis of their deadlines. Priority inheritance can be 
added to this scheme for write requests that block other high- 
priority transactions (due to write locks) [119]. 

SCAN algorithms can also be revised with the knowledge of 
prioritized groups of disk requests [33]. Another approach 
tries to balance time constraints of disk requests and the 
overall U0 performance in terms of the average seek time [37]. 

VII. CONCLUSIONS AND FUTURE WORK 

Temporal database research has been active for about 20 
years. Initially the focus was on temporal relational databases. 
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A decade ago research on temporal object-oriented data mod- 0 We should determine whether increased efficiency and 
els was launched under the guise of versions in an engineering ease of use justifies the added complexity of explicit 
database [ 1571. Real-time database research is somewhat temporal constructs in the object-oriented temporal data 
newer, with the first papers appearing in 1986. model and query language. Resolving this issue is a pre- 

requisite for the design of a consensus temporal object- 
the two fields: oriented query language. 

There have been many significant accomplishments within 

The semantics of the time domain, including its structure, 
dimensionality, indeterminacy, and real-time aspects, is 
well understood. 
Much research has focused on temporal data models, in- 
cluding both relational and object-oriented models, ad- 
dressing this extraordinarily complex and subtle design 
problem. Satisfying all desirable objectives within a sin- 
gle model is probably unattainable. Instead, a coordi- 
nated suite of data models, each tailored to a particular 
aspect, is a more appropriate approach. 
Many temporal query languages have been proposed. 
The numerous types of temporal queries are fairly well 
understood. Half the proposed temporal query languages 
have a strong formal basis. 
Several commercial temporal object-oriented DBMSs are 
now on the market. 
The real-time and temporal database communities are 
starting to interact. A first step is the adoption of com- 
mon terminology and a delineation of shared concepts 
originating in the two areas. 
The interaction of transaction time support and concur- 
rency control and transaction management has been 
studied to some depth. Most of the research in real-time 
databases has focused on modifying and adapting the 
traditional transaction-processing techniques of conven- 
tional databases and the task-scheduling techniques of 
real-time svstems. 

The following research areas need to be addressed: 

Real-time data models, supporting timely database op- 
erations, should be temporal, to capture semantic knowl- 
edge needed for timely execution of database operations. 
Temporal and real-time database design is still in its in- 
fancy, hindered by the plethora of temporal data models 
and the absence of real-time data models. With the emer- 
gence of the temporal relational query language TSQL2, 
we can now investigate the task of database modeling 
within the context of this consensus language. 
In some real-time databases, transactions cooperate, rather 
than compete [ 1321. Such transaction interactions should 
be investigated. A theory of cooperating transactions 
should be developed for real-time databases, perhaps 
similar to cooperating transaction hierarchies [151], or co- 
operative software-engineering environment transactions 
[81]. Such a theory may involve flat transactions and trans- 
action execution rules, or nested transactions in which 
subtransactions have execution rules. Also, this theory 
should be developed both with and without serializability 
because applications may or may not need serializable 
transactions. The notion of a linear transaction time model 
must be modified to accommodate nonserial transactions. 

Users need real-time query languages to specify the se- 
mantic knowledge captured in real-time data models and 
to use it in various ways. Also, users need transaction 
execution specification languages to specify the interac- 
tions of cooperating transactions. 

0 Integrity constraints-particularly time-constrained ac- 
cess, manipulation, and enforcement of (possibly tempo- 
ral) integrity constraints-must be investigated in depth. 

0 Achieving adequate performance in a temporal or real- 
time DBMS remains a challenge. In temporal databases, 
we need empirical studies comparing temporal join al- 
gorithms and temporal indexing. In real-time databases, 
we need more research on techniques that satisfy integ- 
rity constraints and temporal data and transaction con- 
straints and that provide timely enforcement of database 
view consistency when the underlying database changes. 

This development of new models and theories may provide a 
sound basis for real-time and temporal databases. We feel that 
closer interaction of the previously isolated research communi- 
ties will yield database technology supporting all applications 
involving data with a time component. 
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