
1

The Tiled Bitmap Forensic Analysis Algorithm
Kyriacos E. Pavlou and Richard T. Snodgrass,Senior Member, IEEE

Abstract— Tampering of a database can be detected
through the use of cryptographically-strong hash func-
tions. Subsequently-applied forensic analysis algorithms
can help determine when, what, and perhaps ultimately
who and why. This paper presents a novel forensic
analysis algorithm, the Tiled Bitmap Algorithm, which is
more efficient than prior forensic analysis algorithms.
It introduces the notion of a candidate set (all possible
locations of detected tampering(s)) and provides a complete
characterization of the candidate set and its cardinality.An
optimal algorithm for computing the candidate set is also
presented. Finally, the implementation of the Tiled Bitmap
Algorithm is discussed, along with a comparison to other
forensic algorithms in terms of space/time complexity and
cost. An example of candidate set generation and proofs
of the theorems and lemmata and of algorithm correctness
can be found in the appendix.

Index Terms— Database Management, Security, in-
tegrity, and protection, Temporal databases.

I. M OTIVATION

Widespread news coverage of collusion between
auditors and the companies they audit (e.g., En-
ron, WorldCom) helped accelerate recent passage
of federal laws (e.g., Health Insurance Portability
and Accountability Act: HIPAA [12], Sarbanes-
Oxley Act [13]) that mandate better controls on
electronic data.Compliant recordsare those re-
quired by myriad laws and regulations to follow
certain “processes by which they are created, stored,
accessed, maintained, and retained” [2].

We previously proposed an innovative approach
in which cryptographically strong one-way hash
functions allow the detection of acorruption event
(CE), which is any event that corrupts the data
and compromises the database. The corruption event
could be due to an adversary, including an auditor
or an employee or even an unknown bug in the
software (be it the DBMS or the file system or
somewhere in the operating system), or a hardware
failure, either in the processor or on the disk [10].
Tamper detection is accomplished by hashing data

K. Pavlou and R. Snodgrass are with the University of Arizona.

manipulated by transactions and periodicallyvali-
dating the audit log database to detect when it has
been altered. Validation involves sending the hash
value computed over all the database to an external
notarization service, which will indicate whether
that value matches one previously computed. Should
tampering have occurred, the two hash values will
not match.

At this point, all that is known is that at some
time in the past, data somewhere in the database
has been tampered.Forensic analysisis needed to
ascertainwhen the tampering occurred, andwhat
data was altered. Knowing the “when” and “what”
can give indirect clues to the CIO and CSO that
would perhaps allow them to ultimately determine
who the adversary is and why the corruption was
done. The identification of the adversary is not
explicitly dealt with.

Validation provides a single bit of information:
has the database been tampered with? To provide
more information about when and what, we hash
the data of various sequences of transactions during
validation. The database transactions are hashed in
commit order creating ahash chain. Then, during
forensic analysis of a subsequent validation that
detected tampering, those chains can be rehashed
to provide a sequence of truth values (success or
failure), which can be used to narrow down “what.”

We have elsewhere [7] proposed the Monochro-
matic, RGB, and Polychromatic forensic analysis
algorithms. These algorithms differ in the amount
of work necessary during normal processing (com-
puting additional hash chains during periodic val-
idation) and the precision of the when and what
estimates produced by forensic analysis. Here we in-
troduce a more efficient algorithm, the Tiled Bitmap
Algorithm.

We first present the threat model, then the Tiled
Bitmap Algorithm by way of an example. This
algorithm requires what we term as thecandidate
set. We then consider the more general problem
of characterizing the candidate set, which can be
utilized to produce two approaches for computing

2

that set. This is followed by an evaluation of the
implemented algorithm. We end with a discussion
of previous work and a summary.

II. PARTIES INVOLVED AND THREAT MODEL

In this section we introduce the parties involved
and the underlying threat model.

The parties involved are:
• The DBMS
• An external digital notarization service. This is

a company which can digitally notarize docu-
ments and then validate their correctness.

• The validator. This is a DBMS application
which periodically contacts the digital notariza-
tion service.

• The forensic analyzer. This is a DBMS ap-
plication responsible for executing the chosen
forensic analysis algorithm.

Few assumptions are made about the threat
model. The system is assumed to be secure until an
adversary gets access, at which point he has access
to everything: the DBMS, the operating system, the
hardware, and the data in the database. We still
assume that the notarization and validation services
remain in a trusted computing base. This can be
done by making them geographically and perhaps
organizationally separate from the DBMS and the
database [5], thereby effecting correct tamper de-
tection even when the tampering is done by highly-
motivated insiders. (A recent FBI study indicates
almost half of attacks were by insiders [1].) To
prevent spoofing between the DBMS and the valida-
tor, it is possible to use a combination of Trusted
Platform Modules (TPMs), mutual authentication,
and a secure communication channel. The specifics
of this scheme are beyond the scope of this paper.

The basic mechanism described in the next sec-
tion provides correct tamper detection. If an ad-
versary modifies even a single byte of the data
or its timestamp, the independent validator will
detect a mismatch with the notarized document,
thereby detecting the tampering. The adversary
could simply re-execute the transactions, making
whatever changes he wanted, and then replace the
original database with his altered one. However,
the notarized documents would not match in time.
Avoiding tamper detection comes down to inverting
the cryptographically-strong one-way hash function.
An extensive presentation of the approach, perfor-
mance limitations, tamper detection, threat model

and other forensic analysis algorithms can be found
elsewhere [8], [10].

III. A N EXAMPLE

Consider a database recording when privacy re-
lease authorizations were signed by a patient (in the
US all patients are now required by HIPAA [12]
to sign such authorizations). For ease of discussion
we’ll use a granularity of an hour. Dr. Dan inad-
vertently revealed confidential health information to
an insurance company on hour 30, shortlybefore
patient Pam actually signed the authorization (on
hour 31). Dr. Dan later realized his mistake, which
is an offense under HIPAA and can have significant
legal implications. So on hour 51 Dr. Dan colludes
with his friend the database administrator to alter
the database to back-date that authorization from
hour 31 to hour 28. The database now implies that
authorization had been received on hour 28, just
before the confidential information was transferred
on hour 30: everything looks fine.

In order to ensure HIPAA compliance, the health
care company that Dr. Dan works for uses a
database management system incorporating tamper
detection and forensic analysis. Each transaction
is hashed when it is committed and linked to the
previous transaction. Every 16 hours the system runs
the validator, which rehashes all the transactions and
compares the value with the previously-notarized
and stored hash value. The time interval between
two successive validations is termed thevalidation
interval, or IV (see Table I). The validator also
computes partial chains that will later be useful
in forensic analysis. Specifically, it computes the
five hash chains shown in Figure 1, hash chain
c0 through hash chainc4, over the previous 16
hours, storing five hash values in a secure database
available only to an external digital notarization
service. Each 16-hour collection of partial hash
chains is termed atile.

When the validator runs at hour 64, it detects the
tampering. The forensic analysis algorithm springs
into action. It first reports to the compliance service
that the database was tampered sometime within the
last sixteen hours, between hour 49 and hour 64.
That helps bound the “when” of the tampering. The
algorithm then recomputes some of the partial hash
chains on the tampered data and sends the new hash
values to the notarization service, which responds

3

15131211109876543210 14:r

t ltb

c

c

c

c

c0

3

1

2

c

c

c

c

1

2

3

4

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

1

1 1

1

1 1

1

1

1

1

1

1

1 1

1

1

1 1

0

1

1

1

1

0

1

1

1

0

1

1

1

1

1

1

10

4

Target
bit pattern

3221201918:g 17 22 23 24 25 26 27 28 29 30 31

Fig. 1. The hash chains of a single (second) tile.tl is the actual
time of authorization, whiletb is the backdated authorization time.
The rectangles mark the elements of the candidate set.

with “success” (the old and new values match) or
“failure,” for each hash chain queried.

Specifically, the algorithm linearly scans all the
tiles in the database to identify in which tile(s) the
tampering occurred. The “success” and “failure”
response of thec0 chain of each tile will, in this
case, narrow down the tampering to the tile covering
hours 17 to 32. Note that each tile that includes
a tampering can be independently analyzed, and a
corruption across tiles, say changing a timestamp
from hour 31 (in the second tile) to hour 7 (in
the first tile) can be analyzed by examining each
tile independently. In Dr. Dan’s case, the validation
of the c0 chain will report a “failure,” for only the
17–32 tile. This tells the algorithm that the “what”
of the tampering was data stored between hours 17
and 32, a sixteen-hour period. However, we would
like to narrow down the tampering to a much finer
granularity: that of a single hour, or at least down
to a few hours. (It turns out that depending on when
the corruption occurred, sometimes we can do very
well and sometimes less well.)

In Figure 1, Dr. Dan’s back-dating of the autho-
rization from hour 31 to hour 28 is shown at the
top, as a left-pointing arrow. The first hash chain,
c0, is also shown at the top.

The algorithm now recomputes the other four
partial hash chains for this tile,c1 throughc4. Four
partial hash chains are used to get down to an hour
granularity, given that each tile is 16 hours, which
is the validation intervalIV .

The finest spatial granularity of the corrupted
data would be an explicit attribute of a tuple or a
particular timestamp attribute. However, this proves
to be costly and hence we defineRs, the finest
granularity chosen to express the uncertainty of the
spatial bounds of a corruption event.Rs is called
the spatial detection resolution.

The database administrator specifies bothIV and
Rs, in this case, 16 hours and 1 hour, respectively.
An Rs of 1 hour implies four other chains, ex-
cluding c0, are needed in a tile (sincelg(IV) =
log2(16) = 4). If we wanted a finer granularity of,
say, 15 minutes (1/4 hour), we would need an ad-
ditional two chains (i.e.,lg(16÷ 1

4
) = lg(64) = 6).

Hash chainc1 covers the first eight hours of the
tile. Hash chainc2 covers the first four hours, then
skips four hours, then covers hours 8 through 11.
Similarly, c3 covers four two-hour periods, with
embedded skips, andc4 covers every other hour.
(Hash chain linking is discussed in more detail
elsewhere [10].)

Changing the timestamp on an authorization is
equivalent to removing that authorization from all
hash chains that cover the original time and adding
that authorization to all hash chains that cover the
inserted time. Examination of Figure 1 will explain
why hour 28, in which the authorization was added
by Dr. Dan, appears in hash chainsc0 and c2.
Hour 31, from which the authorization was removed
by Dr. Dan, appears in hash chainsc0 and c4.
Hence,c1 andc3 report “success” andc0, c2, andc4

report “fail.”
We can assemble the success and failure results

for the four hash chainsc1 throughc4 into a 4-bit
binary number, with failure denoted with “0” and
success with “1”. The number that results from this
particular back-dating from hour 31 to hour 28 is
1010. We term this value thetarget binary number,
or target. The target is the input to the forensic
analysis. Our task is to take this binary number, the
target, and figure out what could have happened.

The truth values shown at the bottom of the figure
indicate the target string that would result had the
corruption event tampered with data stored at the
indicated hour. For example, changing the data of a
tuple that was originally stored in the first hour of
this interval would have rendered all of the chains
as failure, resulting in a value of 0000.

Recall that our corruption event occurred at
hour 51, changing a timestamp from 31 to 28,

4

TABLE I

SUMMARY OF NOTATION USED.

Symbol Name Definition

An event that compromises
CE Corruption event the database

The time between two
IV Validation interval successive validations

Spatial detection Finest granularity of a CE’s
Rs resolution spatial bounds uncertainty

Time of first Time instant at which
τFVF validation failure the CE is first detected

the hash chains provide a target of 1010. What
could such a target indicate? It could indicate the
corruption of data during a single hour, or any
combination of timestamp and/or data during two
or more separate hours such that the resulting target
after validation is equal to 1010. For example,
one possibility is that only the data in hour 27
(r = 10) was modified. Another is that the times-
tamp was moved from 31 (r = 14 = 11102) to 28
(r = 11 = 10112), again yielding a target1010. This
is in fact what happened. A different possibility is
that the data in hours 28 and 31 were corrupted
independently. A fourth possibility is that the time
was moved from 28 to 31. Other possibilities are a
change from hour 27 to 31, a change from hour 27
to hour 32, a change from hour 27 to hour 28, or a
change in the other direction. All these possibilities
and many others result in a target of 1010. Precisely
because this list of possibilities can get quite long,
we introduce in the next section the notion of
candidate set which retains comprehensiveness but
is a lot simpler.

There are two special cases worth discussing
separately. If target bit pattern is 1111 then it is
not the case that no corruption has happened. To
begin with, we arecertain that there is corruption
in this tile becausec0 reported “failure.” The only
thing that pattern 1111 implies is that no corruption
has occurred in the time granules covered by hash
chainsc1, c2, c3, c4. The only granulenot covered
by these last four hash chains is the last granule
(15) so we can conclude (by eliminating all other
possibilities) that the corruption must have been
located in time granule 15. This is the only case
we are certain that there are no false positives.

On the other hand, if the target bit pattern is 0000
then a corruption event can be anywhere in the tile’s
16 time granules. Even though this does not affect
correctness, this is the worst case scenario where

// input: τFV F is the time of first validation failure
// IV is the validation interval
// k is used for the creation ofCt,k

// Rs is the spatial detection resolution
// output:Cset, an array of binary numbers
function Tiled Bitmap(τFV F , IV , k, Rs)
1: t← 0 // the target
2: Cset ← Ctemp ← ∅
3: τ ← 1
4: while τ < τFV F do
5: if ¬ val check(c0(τ)) then
6: n← lg(IV /Rs)
7: for i← n to 1
8: t← t + 2n−i·val check(ci(τ))
9: Ctemp ← candidateSet(t, n, k)
10: for each r ∈ Ctemp

11: g ← renumber(r, τ , Rs)
12: Cset ← Cset ∪ {g}
13: τ ← τ + IV

14: return Cset

Fig. 2. The Tiled Bitmap Algorithm.

we could potentially have the maximum number of
false positives.

IV. THE TILED BITMAP ALGORITHM

We formally define the problem as follows.
Problem Definition: The task is to compute from
a single target all the possible corruption events,
which we term thecandidate set.

For the example in the previous section,
the candidate set would comprise the hours
{27, 28, 31, 32}. We now present an algorithm to
do this.

In the algorithm shown in Figure 2,IV is the
number of hours between validations (in the ex-
ample,IV = 16). We use a helper function called
val check. This function takes a hash chain as a
parameter and returns the boolean result of the
validation of that chain.

The partial hash chains within a tile are denoted
by c0(τ), c1(τ), . . . , clg (IV)(τ), with ci(τ) denoting
the ith hash chain of the tile which starts at time
instantτ . On line 4 the algorithm iterates through
the different tiles and checks if the longest partial
chain c0(τ) evaluates to FALSE. If not, it moves
on to the next tile. If the chain evaluates to FALSE
(line 5), the algorithm iterates through the rest of the
partial chains in the tile (line 7) and “concatenates”
the result of each validation to form the target

5

number (line 8). Then the candidateSet function
is called (line 9) to compute all the candidate set
elements from the target number according to the
user-specified parameterk discussed in the next
section. On lines 10–12 the candidate granules are
renumbered to reflect their global position. The
function renumber() on line 11 usesRs to find
the global position ofr, computingg as a single
granule, or group of granules ifRs > 1. Once the
Cset is reported the CSO can exactly pinpoint the
corrupted tuples and can thus weed out the false
positives. In order to achieve this he must compare
the data stored in the backup tapes with the data
contained in the granules.

We now state the running time of the
Tiled Bitmap Algorithm. Let D be the
number of granules (hours) before the
first validation failure (for the example,
D = 64). The “while” loop on line 4 takes
⌈D/IV ⌉ in the worst case. In reality, because of the
“if” statement on line 5 the body of the loop gets
executed only if corruption is initially detected by
usingc0(τ). Hence, the actual number of times the
loop is executed isΘ(F) where F is the number
of times the validation of ac0(τ) chain fails. The
“for” loop on line 7 takes lg(IV /Rs) while the
candidateSet function takesΩ(lg(IV /Rs) + 2z(t)),
where z(t) is the number of zeros in the target
binary numbert (see Section V). The loop on
line 10 takesΘ(2z(t)). Hence the runtime of this
algorithm is

Ω(F · (lg(IV /Rs) + (lg(IV /Rs) + 2z(t)) + 2z(t)))

= Ω(F · (lg(IV /Rs) + 2z(t)))

= O((D/IV) · (lg(IV /Rs) + 2z(t)))

= O((D · lg(IV /Rs))/IV + D)

given that in the worst caseF takes the value
(D/IV), which is the total number of tiles, and
2z(t) takes the valueIV , which the total number of
granules in a tile.

There is one important aspect left unaddressed in
the above algorithm: the candidateSet function. But
before we can present this latter algorithm, we must
formally characterize the candidate set.

V. CHARACTERIZING THE CANDIDATE SET

In the forensic analysis context, the parameter
k passed to the algorithm represents theactual
number of granules corrupted. In the example shown

in Figure 1, k = 2. However, we usually have
no knowledge of the value ofk. What we have
is only the target from which we have to find
the possible bit patterns (each generated by the
validation of the chains in the tile assuming that
corruption occurred by itself) that when bitwise
ANDed produce thetarget. The reason for requiring
that the different bit patterns produce thetarget
when ANDed is because this is effectively what
happens when the corruptions occursimultaneously
within a tile. This arises from the mechanics of
forensic analysis. Specifically, each corruption event
renders some of the chains as “failing.” A chain will
succeed in the end only if it succeeds in every one of
the corruption events. So in the example, chainsc1

andc3 succeed, but chainsc2 andc4 fail. The set of
all such bit patterns which could produce thetarget
whenANDed is termed thecandidate set. In order
to be more rigorous in our analysis we proceed to
give a formal characterization of the candidate set.

We define the lengthl of a binary numberb,
denoted by|b| = l, as the number of its digits. From
this point forward we considerl to be fixed. candi-
dateSet essentially “sums up” the pre-images of all
the binary numbers of lengthl, B = {b : |b| = l},
under a family of bitwiseAND functions whose
domain is a finite Cartesian product.

ANDk : B
k −→ B

ANDk((b1, b2, . . . , bk)) = b1 ∧ b2 ∧ . . . ∧ bk

Observe that the maximum numberk of sets par-
ticipating in the Cartesian product is2l (i.e., every
granule in the tile is corrupted), since ifk is allowed
to take a value beyond that, it will force a repetition
of one of the binary numbers. For forensic analysis
purposes this implies that the same granule has been
corrupted more than once. This is not informative
or useful in any way since repeatedANDing opera-
tions with thesamebinary number leave the result
invariant (the operation isidempotent). This is also
compatible with forensic analysis since we only care
if a granule is corrupted or not—if we wanted to
know more we would need to increase the resolution
by choosing a smaller granule size (i.e., smallerRs).
In other words, repetition is not allowed and hence
for a givenk-tuple all its components are distinct.
Also note that the value ofk uniquely identifies a
specificANDk function in the above family.

6

We formally define the set of all binary numbers
which appear as components in at least one of the
pre-images (i.e.,k-tuples) of a specific target binary
numbert the candidate set:

Ct,k = {b ∈ B : ∃ b1, b2, . . . , bk−1 ∈ B s.t.

ANDk((b, b1, . . . , bk−1)) = t} .

The ∧ operation is commutative: the order of the
operands does not matter, and that is why this can
be defined more simply as a set of booleans rather
than as a set ofk-tuples of booleans. The word
“candidate” was used to name this set because in
forensic analysis, its elements correspond bijectively
to the granules (in the example, the hours indicated
in Figure 1), which are candidates where corruption
may potentially have occurred. In Dr. Dan’s case,
the candidate set would be the hours 27, 28, 31,
and 32 that is,r = 10, r = 11, r = 14, andr = 15.

Observe that, it is not the case that|Ct,k| = k,
i.e., k is not the cardinality of the candidate set.
The cardinality in the example is 4: in this case the
algorithm can narrow down the possibilities only
to four granules, two actual ones (k = 2) and
two false positives. The candidate set will comprise
all possiblebinary numbers that could produce the
target bit pattern, and not just the granules corrupted
in a specific case. Hence, the candidate set will
always include the actualk granules that were
corrupted together with other potentially corrupted
granules. This ensures correctness but allows for the
existence of false positives.

For convenience we can express these sets in dec-
imal, though our algorithms read and write in binary.
For example:C1010,1 = {1010} = {10}, C1010,2 =
{1010, 1011, 1110, 1111} = {10, 11, 14, 15}. 1001
is not inC1010,2 because 1001 cannot be in the pre-
image of1010. Note that even though two binary
target strings may have the same numerical value, if
their length is different then their candidate sets will
be different. For example, the candidate setC000,2

is different fromC0000,2.
Let z(t) be the number of zeros in the bi-

nary numbert, e.g., z(1010) = 2. By definition
1 ≤ k ≤ 2l and 0 ≤ z ≤ l. The behavior ofCt,k

is interesting: ask increases the candidate set for a
fixed t remains invariant and equal to the candidate
set fork = 2, until some threshold value2z(t) after
which it becomes empty. Simply put,Ct,k obeys an
all-or-none law.

Lemma 1:
Ct,k = Ct,2 if l ≥ z(t) > 0 and 2 ≤ k ≤ 2z(t).
In other words, the candidate set remains invariant
given that the stated conditions are met.

Proof: Given in Appendix A.
A complete characterization of the candidate sets

is given below.
Theorem 1:

Ct,k =















{t} , k = 1 (1)
∅ , z(t) = 0 ∧ k > 1 (2)
Ct,2 6= ∅ , l ≥ z(t) > 0 ∧ 2 ≤ k ≤ 2z(t) (3)
∅ , l ≥ z(t) > 0 ∧ k > 2z(t) (4)

Proof: Given in Appendix B.
Theorem 1 is the reason for which we decided

to make k user-configurable in the Tiled Bitmap
pseudocode. If the CSO by some other means has
any indication for the value ofk, i.e., the actual
number of corruptions occurred, then he can pass
that information to the algorithm. If the algorithm
returns an empty candidate set then the CSO can
deduce that his initial knowledge/guess for the value
of k was incorrect. If the CSO has noa priori
knowledge about the value ofk, as is usually the
case, then according to Theorem 1 the CSO need
only give k the default value of 2 and not worry
that any other choice fork would compromise the
forensic analysis results.

Corollary 1:

|Ct,k| =















1 , k = 1
0 , z(t) = 0 ∧ k > 1
2z(t) , l ≥ z(t) > 0 ∧ 2 ≤ k ≤ 2z(t)

0 , l ≥ z(t) > 0 ∧ k > 2z(t)

Proof: This follows directly from Theorem 1.
For example, with our target bit pattern of

t = 1010, we havez(t) = 2 and thecandidate setis
C1010,2 = {10, 11, 14, 15} with |C1010,2| = 22 = 4.

We now turn to ways in which the candidate set
may be computed. We first give an algorithm that
is optimal in time, except for a very few cases.
Following some further observations on candidate
sets, we show how, given a candidate set, one can
calculate other candidate sets with a smallerl in
constant time.

VI. COMPUTING THE CANDIDATE SET

Figures 3, 4, 5, and 6 present an optimal algo-
rithm for computing the candidate set given the
target stringt andk, and again assuming a fixedl.
Recall that candidateSet is used in the Tiled Bitmap

7

// input: t is a binary target number
// l is the length oft
// k is a function index forANDk

// output:Ct,k is an array of binary numbers
// (also created is an array of zeros,Z)
1: function candidateSet(unsigned intt, int l, int k)
2: Ct,k ← new array()
3: z ← 0
4: Z← new array()
5: for i← l − 1 to 0
6: if t & (1 << i) = 0 then z ← z + 1
7: Z[l − i− 1]← z
8: if k < 1 ∨ k > 2l then report NOT DEFINED
9: else if k = 1 then Ct,k ← {t}
10: else if (z = 0 ∧ k > 1) ∨ (l ≥ z > 0 ∧ k > 2z)
11: then Ct,k ← ∅
12: else if (l ≥ z > 0) ∧ (2 ≤ k ≤ 2z) then
13: rightmost← createRightmost(t, l)
14: Ct,k ← generate(t, rightmost[l], l, Ct,k)
15: Ct,k ← funkySort(z, Ct,k)
16: return Ct,k

Fig. 3. The candidateSet function.

// input: t is the target bit number
// l is the length of the bit representation oft
// output: the populatedrightmostarray
1: function createRightmost(unsigned intt, int l)
2: int i, j, flag
3: j ← −1
4: flag← FALSE
5: rightmost← new array()
6: for i← l − 1 to −1
7: if flag then j ← l − i− 2
8: if t & (1 << i) = 0 then flag← TRUE
9: elseflag← FALSE
10: rightmost[l − i− 1]← j
11: return rightmost

Fig. 4. The createRightmost function.

Algorithm. It generates the elements (bit patterns) in
the candidate set from the target patternt preserving
bit positions with 1s and creating combinations of
patterns of 1s and 0s using the remaining positions
having 0s. Finally, it sorts the patterns in ascending
order of their numeric values by using an interesting
linear-time sort. (An example of the candidate set
generation for our target oft = 1010 can be found in
Appendix G.) All arrays and strings use zero-based
indexing. All parameters are passed by value.

Let us now briefly examine this algorithm. We

// input: t is the modified bit pattern at each stage
// of the recursion
// p is the position of one of the zeros int
// l is the length of the bit representation oft
// Ct,k array in which candidate granules
// are accumulated
// output:Ct,k contains candidate granules (unsorted)
1: function generate(unsigned intt, int p, int l,

arrayCt,k)
2: if p = −1 then Ct,k.append(t)
3: else
4: Ct,k ← generate(t, rightmost[p], l, Ct,k)
5: Ct,k ← generate(t + (1 << (l − p− 1)),

rightmost[p], l, Ct,k)
6: return Ct,k

Fig. 5. The generate function.

// input: z is the number of zeros int
// Ct,k is the result of generate()
// output:Ct,k sorted in ascending order
1: function funkySort(intz, arrayCt,k)
2: sorted← new array()
3: indices← new array()
4: indices[0]← 0
5: int i, offset, power
6: offset← 0
7: power← 1 << z
8: for i← 1 to (1 << z)− 1
9: if (i & (i− 1)) = 0 then
10: power← power>> 1
11: offset← 0
12: indices[i]← indices[offset] + power
13: offset← offset+ 1
14: for i← 0 to (1 << z)− 1
15: sorted[i]← Ct,k.get(indices[i])
16: return sorted

Fig. 6. The funkySort function.

first start by looking at the candidateSet function
(Figure 3) and discuss each different function as
we encounter it.

The use of theZ array on lines 4 and 7 will be
explained later in the discussion following Theo-
rem 2. Lines 8–12 follow the result of Theorem 1.
Then on line 13 the createRightmost helper function
is called (Figure 4) to preprocess the target binary
number t and to fill the rightmost array in order
to answer the “rightmost zero” query in constant
time. More specifically,rightmost[p] is the index (bit
position) of the rightmost zero to the left of indexp

8

non-inclusive. Within this functioni iterates overt
from left to right (high-order to low-order bits). The
flag is required because we must remember what we
saw in the previous iteration: ifflag = TRUE we
saw a 0, otherwise we saw a 1. This runs inΘ(l).

On line 14 (Figure 3) the generate function
(Figure 5) is called. This is a recursive function
which creates the candidate set elements. Given a
position p, which is a specific index in the zero-
based enumeration (left to right) of the binary
numbert, it finds the index of the rightmost zero
to the left of p using therightmost array. It first
recurses on that index maintaining the same binary
number (line 4) and then sets the digit at positionp
to 1 and recurses on the same indexrightmost[p] but
with this new number (line 5). We can consider the
input target stringt as capturing all the2z(t) numbers
that must be generated during the recursion, so we
can consider the input size to ben = 2z(t). Also, at
each recursive call the position of the zero processed
is never revisited so the input size at each call is
essentially halved. Moreover, the amount of work
done at each stage of the recursion is constant
hence the formula that captures this recursion is
T (n) = 2T (n

2
)+Θ(1). The solution of this formula

is Θ(n) so the running time of the generate function
is Θ(2z(t)). However, a side-effect of this recursive
creation of the candidate set elements is that the
elements are not generated in numeric order.

On line 15 of candidateSet (Figure 3) we call
the sorting function. Even though the elements are
not sorted there does exist a pattern in the order
in which they are created. This funkySort function
(Figure 6) creates the sequence of indices which
when used to index into theCt,k array will result
in the ordering of the candidate set elements. This
is achieved by performing a single pass over the
indicesarray and creating each new index by ma-
nipulating appropriately previous ones (lines 8–13)
within the funkySort function.

For example, with a binary target oft = 10000,
i.e., 16 in decimal, after the generate function
finishes the candidate set will beCt,k =
{16, 24, 20, 28, 18, 26, 22, 30, 17, 25, 21, 29, 19, 27,
23, 31} in this order. Examining closely the set
we see that in order to create thesorted array
we must recursively visit the first element of
each subsequent half ofCt,k. Line 12 creates this
sequence of indices: 0, 8, 4, 12, 2, 10, 6, 14, 1, 9,
5, 13, 3, 11, 7, 15. More specifically, by starting

TABLE II

CANDIDATE SETS FOR TARGETS|t| = 4 WITH k = 2

Binary
Number |Ct,2| Ct,2

t
{0, 1, 2, 3, 4, 5, 6, 7,

0000 16 8, 9, 10, 11, 12, 13, 14, 15}
0001 8 {1, 3, 5, 7, 9, 11, 13, 15}
0010 8 {2, 3, 6, 7, 10, 11, 14, 15}
0011 4 {3, 7, 11, 15}
0100 8 {4, 5, 6, 7, 12, 13, 14, 15}
0101 4 {5, 7, 13, 15}
0110 4 {6, 7, 14, 15}
0111 2 {7, 15}
1000 8 {8, 9, 10, 11, 12, 13, 14, 15}
1001 4 {9, 11, 13, 15}
1010 4 {10, 11, 14, 15}
1011 2 {11, 15}
1100 4 {12, 13, 14, 15}
1101 2 {13, 15}
1110 2 {14, 15}
1111 0 ∅

from 0 the 8 can be created by0 + 2z(t)−1 where
z(t) = 4. Then, 4 and 12 can be obtained by adding
22 to each of 0 and 8. Then 2, 10, 6 and 14 are
obtained by adding21 to 0, 8, 4, 12 respectively.
Finally, the last 8 numbers are obtained by adding
20 to the first 8 numbers. This explains why at
elements appearing at indices which are powers of
2 in the indices array, theoffset is reset to zero
and thepower is halved. On lines 14–15 (Figure 6)
we use the sequence of indices we created and the
actual sorting happens. This pass over theindices
array runs inΘ(2z(t)).

The running time of candidateSet isΘ(l + 2z(t)).
Thus the algorithm is optimal most of the time,
using the lower bound given in Section V, except
for the very few cases whenl > 2z(t). In terms of
space complexity the algorithm given here requires
O(l + 2z(t)) space.

VII. A N OPTIMAL CANDIDATE SET

ALGORITHM, GIVEN A SUMMARY SET

We define thesummary setas the set of all
candidate sets of all binary numbers of lengthl.

Sl,k = {Ct,k : ∀t ∈ B s.t. |t| = l}
For l = 4 and k = 2, the last column in Table II
provides the elements ofS4,2.

We now show that for fixedk and givenSl,k one
can calculate allSl′,k s.t. l′ < l without resorting
to the algorithm given previously. This allows us to
find the candidate set for a suffix ofy whenever we
already have the candidate set fory. The technique

9

shown below can potentially be faster. We define
the candidate array, denotedAt,k, to be an array
which contains the elements ofCt,k sorted in as-
cending numerical value. Then,At,k[x : y] selects
all elements in the candidate array from indexx to
y. (NB: At,k[i] = At,k[i : i]). Also, for reasons of
ease and precision we annotateA with the length
of the binary number whose value was previously
implicit, as a leading subscript.

Given a candidate arraylAy,k for a spe-
cific target string y, we wish to compute the
candidate array l−xAt,k where t is a suffix
(l = |y| > l − x = |t| ≥ 1) of y. EachSl,k captures
all the candidate sets for alll′ < l. This method
creates each element ofSl′,k by exploiting the fact
that each of the binary numbers of lengthl′ is
a suffix of more than one corresponding binary
number of lengthl . For example, the candidate set
C1010,2 can be computed from the candidate sets of
01010, 001010, 101010 and so on. Lety = p • t =
{0, 1}xt for some prefixp of lengthx. Let Suffixi(s)
denote the suffix of strings starting at positioni.

Let us look at some examples to
develop some intuition. Given 4A0010,2 =
[0010, 0011, 0110, 0111, 1010, 1011, 1110, 1111], we
wish to compute3A010,2. Observe thatt = 010
is y = 0010 with the leftmost ‘0’ removed.
Removing the leading ‘0’ fromy results in a string
t which cannot encode any numbers in the range
23 to 24 − 1. Thus the candidate array of3A010,2

will have the same elements as the candidate
array of 4A0110,2 except for the numbers encoded
by the extra leading digit. We know that each
additional ‘0’ present in the target string doubles
the cardinality of the candidate set, thus a removal
of the zero will halve the number of candidate set
elements. Observe also that the elements in the
second half of4A0010,2 have essentially the same
bit pattern as the elements in the first half but with
a ‘1’ at the leftmost position instead of a ‘0’, e.g.,
1110 has the same bit pattern as 0110 apart from
the bit in the leftmost position.

Thus in order to compute3A010,2 we can truncate
the leftmost digit from all the elements in the
original candidate set. By removing the leftmost
digit from each of the elements in4A0010,2, we
get 010, 011, 110, 111, 010, 011, 110, 111. The
first half of the elements will have a leading ‘0’
removed, something which will not change their
numerical value, while the second half which will

have a leading ‘1’ removed will produce identical
numbers of length 3 to the truncated numbers in
the first half. Since the cardinality of3A010,2 is half
that of 4A0010,2, and since the two halves of4A0010,2

have the same elements after the truncation and by
knowing that3A010,2 = [010, 011, 110, 111] we can
verify that:

3A010,2 = [Suffix1(4A0010,2[0]), Suffix1(4A0010,2[1]),

Suffix1(4A0010,2[2]), Suffix1(4A0010,2[3])]

= [010, 011, 110, 111] = [2, 3, 6, 7]

Let us consider a different example with the
original target string beingy = 1010 and the
same suffix t = 010 as before. In this case
4A1010,2 = [1010, 1011, 1110, 1111] all elements
necessarily start with a ‘1’. Since removing the
leading ‘1’ from y to get t does not affect the
number of zeros in the strings the cardinalities
of the two candidate sets is the same. Removing
the leftmost ‘1’ from all the elements of4A1010,2

will yield directly the desired elements of the new
candidate set:

3A010,2 = [Suffix1(4A1010,2[0]), Suffix1(4A1010,2[1]),

Suffix1(4A1010,2[2]), Suffix1(4A1010,2[3])]

= [010, 011, 110, 111] = [2, 3, 6, 7]

With these valuable observations we can now state
the theorem.

Theorem 2:Assume y = p • t = {0, 1}xt,
0 < x < l, 0 ≤ z(t) ≤ l − x andq = 2z(t). Then:

l−xAt,k =































N/A, k > 2l−x (1)
[t] , k = 1 (2)
∅ , z(t) = 0 ∧ 1 < k ≤ 2l−x (3)
⋃

0≤i<q[Suffixx(lAy,2[i])],
l − x ≥ z(t) > 0 ∧ 2 ≤ k ≤ q (4)

∅ , l − x ≥ z(t) > 0 ∧ k > q (5)
Proof: Given in Appendix D.

The strategy for computing the candidate sets
using this new method is given below. First we
change line 9 of the original TiledBitmap function

9: Ctemp ← candidateSet(target, n, k)
to

9: Ctemp ← candidateSetCached(target, n, k)

We introduce a list, cache[] of records
(y, ly, k, Cy,k, Z) which is updated with every
call to the function candidateSet. Each such record
stores the candidate setCy,k computed by the
function, the target numbery, the lengthly of y,

10

// input: t is a binary target number
// l is the length oft
// k is a function index forANDk

// output:Ct,k, a candidate set either computed
// anew or derived fromCy,k

1: function candidateSetCached(unsigned intt,
int l, int k)

2: tstart ← −1
3: for i← 0 to cache.length−1
4: tstart ← findSuffix(cache[i].y, t)
5: if tstart ≥ 0 ∧ k = cache[i].k then
6: return candidateSetSuffix (cache[i].Cy,k,

tstart, k, cache[i].ly, cache[i].Z)
7: return candidateSet (t, l, k)

Fig. 7. The candidateSetCached function.

the parameterk, and the correspondingZ array
for y. In order to achieve this, we change the
candidateSet function to store the candidate set in
the cache, before returning it.

15: Ct,k ← funkySort(z, Ct,k)
16: append(cache, (t, lt, k, Ct,k , Z))
17: return Ct,k

A new function candidateSetCached (Figure 7)
checks to see if a pre-computed candidate set which
can be used by this new algorithm, already exists.

Note thattstart is the index in the original string
y where the suffixt starts. The running time of the
candidateSetCached function isO(l · cache.length),
which is the worst case running time for executing
lines 3 and 4. The candidateSetSuffix function given
in Figure 8 provides the algorithm for creating the
new candidate setCt,k from a cached candidate set
Cy,k.

Since creating the candidate set fory involves
scanning all ofy to find the zeros we can at the
same time maintain an array which accumulates the
number of zeros encountered so far during the scan.
This array is theZ array which was created in the
function candidateSet (lines 4, 7). We can index into
this array using the position which suffixt starts in
y and thus get the number of zeros in constant time.
For example, fory = 01101010 andt = 1010 given
in terms of tstart which is the start position oft
in y, we can scany from left to right and create
the arrayZ = [1, 1, 1, 2, 2, 3, 3, 4]. This arrays gives
the number zeros in every suffix ofy. Thus,z(t) =
z(y) − Z[tstart − 1]. In this casetstart = 4, and so
z(1010) = z(01101010)− Z[4− 1] = 4− 2 = 2.

// input: Cy,k is the original candidate set
// tstart is the bit position at which suffixt
// starts iny
// ly is the length of original target stringy
// Z array fory
// output: the candidate setCt,k

1: function candidateSetSuffix (arrayCy,k,
int tstart, int k,
int ly, arrayZ)

2: Ct,k ← new array()
3: lt ← ly − tstart

4: zt ← zy − Z[tstart − 1]
5: mask← (1 << lt)− 1
6: y ← Cy,k[0]
7: t← y & mask
8: if k < 1 ∨ k > 2lt then report Not Defined
9: else if k = 1 then Ct,k ← {t}
10: else if (zt = 0 ∧ 1 < k ≤ 2lt) ∨

(lt ≥ zt > 0 ∧ k > 2zt) then Ct,k ← ∅
11: else if (lt ≥ zt > 0) ∧ (2 ≤ k ≤ 2zt) then
12: for i← 0 to 2z(t) − 1
13: Ct,k.append(Cy,k[i] & mask)
14: return Ct,k

Fig. 8. The candidateSetSuffix function.

In addition, themask(Figure 8, lines 7 and 13)
is used as a means of setting the firstx bits of
each original candidate set element to zero, which
is the equivalent in a sense of taking the suffix
of the corresponding binary string. For example,
if the candidate set element is18, with binary
representation10010, and we want to take the suffix
starting at index2, then themask= 7 (00111 in
binary). Thus, by bitwiseANDing themaskand the
element, we get010 = 2. Note that the masking
does not simply set the higher order bits to zero
but it truncates the number, i.e., the length actually
decreases. This is important because we seek to
derive from the candidate set of10010 the candidate
set of 010 and not the set for00010. The latter is
impossible to derive in the way described in this
section sinceC00010,2 is a supersetof C10010,2.

The “for” loop on line 12 dominates the running
time of the above algorithm. Hence, the algorithm,
in the worst case, runs inΘ(2z(t)), which is optimal.

However, we can do better by using a different
representation for the candidate set of the suffixt.
Since the elements ofCt,k are contiguous elements
of Cy,k starting at position 0 then the candidate set of
t can be given as a range of values. This is achieved

11

just by maintaining a pointer to the positionq−1 in
the candidate array ofy marking the last element of
Ct,k. Thus, only two numbersmask, andq = 2z(t),
both of which can be computed in constant time, are
needed to capture the candidate set of any suffix of
targety. To create themaskwe uselt (as seen on
line 5) which was computed from the input integer
tstart on line 3. Obtainingq is easy since we have
already computedz(t) on line 4. Thus, the first and
last elements of the candidate set for the suffix can
be given asCy,k[0] & maskand Cy,k[q − 1] & mask
respectively. This approach avoids the expensive
“for” loop on line 12 and makes the algorithm run
in Θ(1).

It is preferable to use the candidateSetSuffix
Algorithm in one particular situation: to find the
candidate set for the suffix ofy whenever we
already have the candidate set fory. Consider
the following examples. Forl = 4 we want to
calculate C1010,7 and C010,3. C1010,7 = ∅ since
|C1010,7| = 22 = 4 < k = 7. In the case ofC010,3 we
have3 ≥ z(t) = 2 > 0 and2z(t) = 4 > k = 3 so

3A010,3 =
⋃

1≤i≤4

[Suffix1(4A1010,2[i])]

=
⋃

1≤i≤4

[Suffix1[1010, 1011, 1110, 1111]]

= [010, 011, 110, 111]

and thusC010,3 = {2, 3, 6, 7}. If we decide to use the
faster constant running time approach the result will
be given asmask= 0111 andq = 22 = 4 and hence
the first element inC010,3 is 4A1010,2[0] & 0111 =
1010 & 0111 = 010 = 2 while the last element is
4A1010,2[4− 1] & 0111 = 1111 & 0111 = 111 = 7.

Assume that we are auditing a variety of
databases, each with a particularl value (for the
example in this paper,l = 4). Within the forensic
analyzer, we could pre-compute a summary set
for lmax, which is the maximum of thel values
that were specified for the databases that were
being audited. During forensic analysis of a specific
database corruption, given the resulting target string
and thel value for this particular database (with
l ≤ lmax), this algorithm could calculate in constant
time the candidate set, which consists of all the
possible corrupted granules that could have yielded
that target number for that value ofl.

VIII. I MPLEMENTATION AND EVALUATION

Elsewhere we have introduced the Monochro-
matic, the RGB, and Polychromatic Algorithms [7].
All algorithms employ the same approach of tamper
detection and forensic analysis by hashing transac-
tion data and periodically validating the resulting
hash chains. The main differences between the
algorithms lie in the number of hash chains used and
their structure. The simplest is the Monochromatic
Algorithm, which sequentially hashes all data to
create a hash chain that incrementally grows over
the data of the entire database. Thecumulative
natureof this chain has two consequences. First, it
limits the detection of corruption to a single event
since periodic validations will yield a sequence of
“success” results followed by a sequence of “fail-
ure” results. The interface in the transition between
these two sequences marks the site of the first
(oldest) corruption. Second, the cumulative nature
of the chain enables a binary search on the sequence
of “successes” and “failures” to locate the transition
very quickly.

The RGB Algorithm augments the Monochro-
matic Algorithm by periodically superimposing
(non-cumulative) partial hash chains over the entire
database. The name of the algorithm is derived from
the color-coding of the different partial hash chains.
In this case, the cumulative chain can be used to
perform binary search to quickly locate the oldest
corruption and then switch to using the “colored”
partial chains to explore the rest (more recent part)
of the database. This algorithm can detect up to two
corruption events.

The Polychromatic Algorithm retains the main
Red, Green, and Blue partial chains of RGB and in-
troduces more Red and Blue chains to create groups
of chains similar to a tile. This has the advantage
that it can arbitrarily shrink the spatial detection
resolution by introducing alogarithmic number of
hash chains as opposed to a linear number needed
in RGB. The Polychromatic Algorithm, as with the
RGB Algorithm, can only detect only up to two
corruption events but could potentially be modified
to handle multiple corruptions.

The Tiled Bitmap Algorithm introduced here can
be thought of as a refinement/replacement of the
Polychromatic Algorithm. The new algorithm can
use the cumulative chain of the Monochromatic
Algorithm (not elaborated on here). It extends the

12

TABLE III

RUNNING TIME COMPLEXITY OF FORENSICANALYSIS

ALGORITHMS

Running Time
Algorithm (Rs = 1)

Monochromatic O(lg(D/IV))
RGB O(D/IV)

Tiled Bitmap O((D · lg IV)/IV + D)

idea of the RGB Algorithm of using partial chains,
and it refines the groups of hash chains of the
Polychromatic Algorithm.

The advantage of the Tiled-Bitmap Algorithm is
that it lays down aregular pattern(a “tile”) of such
chains over contiguous segments of the database.
What is more, it inherits all the advantages of the
Polychromatic Algorithm: the chains in the tile form
a bitmap which can be used for easy identification
of the corruption region, and a logarithmic number
of chains can be used to reduceRs.

The other advantage of the Tiled Bitmap Algo-
rithm is that can detect multiple corruption events
(up to D of them, i.e., all granules were corrupted)
something that the Monochromatic, RGB, and Poly-
chromatic Algorithms cannot. On the other hand it
suffers from false positives while the previous three
algorithms do not. (More information on the rate of
false positives of the Tiled Bitmap Algorithm can be
found elsewhere [8].) Table III shows the running
time for three of the forensic analysis algorithms
(the Polychromatic Algorithm is omitted because
it is replaced by the Tiled Bitmap Algorithm).
We assume that the spatial detection resolution
Rs is equal to 1 for simplicity. Observe that the
algorithms become progressively slower because of
the increased number of chains maintained and
used during forensic analysis. The Monochromatic
Algorithm, while being the fastest algorithm, suffers
from the fact that only the first corruption event
can be detected. As noted the Tiled Bitmap Al-
gorithm can be slightly optimized by retaining the
cumulative chain of the Monochromatic in order to
locate the first corrupted tile by performing binary
search, although this refinement does not affect its
asymptotic running time.

Recall that all algorithms rely on an external
notarization service in order to validate the audit
log. However, each such contact costs real money.
Hence, we quantify the cost of the algorithms

TABLE IV

WORST-CASE COST/SPACECOMPLEXITY OF FORENSIC

ANALYSIS ALGORITHMS

Cost
Algorithm (Rs = 1)

Monochromatic O(D)
RGB O(D)

Tiled Bitmap O(D · (1 + lg IV)/IV)

 50

 100

 150

 200

 250

 300

 50 100 150 200 250

C
os

t (
nu

m
be

r
of

 c
on

ta
ct

s)

Number of Hours (D)

Mono (P)
Mono (A)

Tiled Bitmap (P)
Tiled Bitmap (A)

 50

 100

 150

 200

 250

 300

 50 100 150 200 250

C
os

t (
nu

m
be

r
of

 c
on

ta
ct

s)

Number of Hours (D)

Fig. 9. The cost of the Monochromatic and Tiled Bitmap Algorithms.

as the number of contactswith the notarization
service during a specific duration of the normal
operation of the system, i.e., whenever a part of
the database is notarized or validated. The units
of the cost are therefore number of notarizations
plus number of validations. We chose to deal with
only notarizations and validations occurring before
corruption or forensic analysis, because otherwise
the cost would be dependent on the number of cor-
ruptions. This would render the comparison unfair
since the Monochromatic and RGB Algorithms can
only detect a limited number of corruptions. More
information on the mathematical formulation of the
cost can be found elsewhere [8]. It is desirable to
minimize this cost for each algorithm while trying
to extract as much information possible. Table IV
shows the cost for each of the forensic algorithms
assuming a spatial detection resolution of one hour
(Rs = 1) and a single corruption event. In this case
we observe the opposite trend compared to the one
observed for the running times of the algorithms.
For a sufficiently large validation intervalIV the
Tiled Bitmap Algorithm has the smallest cost. This
is because the ratio(1 + lg IV)/IV becomes less
than one.

This quantification of cost also reflects the space

13

complexity of the forensic algorithms since each of
the contacts with the external notarization service
corresponds to a hash value (of chains) which must
be initially computed (and re-computed for compar-
ison during validation) and maintained within the
system. None of algorithms in Table IV require extra
space over the collection of hash values themselves.

A 1250-line C code implementation is available at
http://www.cs.arizona.edu/projects/
tau/tbdb/. The code implements several forensic
analysis algorithms, including the candidateSet
and candidateSetSuffix construction algorithms, the
Tiled Bitmap Algorithm, and the Monochromatic
Algorithm. This C code implementation uses the
more efficient pass-by-reference for arrays and
strings compared to the pseudocode given in
Section VI. All algorithms were tested extensively
and their theoretical costs were experimentally
validated. Appendix F provides proofs of
correctness for all functions introduced in this
paper. We also have developed several graphical
user interfaces which include a convenient visual
representation of the spatial and temporal extent(s)
of detected corruption(s).

Figure 9 shows the results of the experimental
cost validation for the Monochromatic and Tiled
Bitmap Algorithms (the RGB Algorithm has not
been implemented). The experiments used the fol-
lowing setup:D = 1 to 256, Rs = 1, and IV = 8.
Rather than using the cost formulas in order notation
(as given in Table IV) to create the graphs, we used
more involved (and more accurate) cost functions
derived for each algorithm. Note that the cost plot
shows both the predicted forensic cost (denoted by
“(P)” in the plot legend) and actual cost values
(denoted by “(A)” in the plot legend). The actual
cost values were computed by inserting appropriate
counters in the C code implementation for the
Monochromatic and Tiled Bitmap algorithms. The
different types of symbols on the curves were added
for clarity and correspond to a subset of the actual
data points. As can be seen in Figure 9 the predicted
and actual cost for the two algorithms are essentially
identical. A more detail explanation of the derived
costs, and experimental comparisons between algo-
rithms can be found elsewhere [8].

IX. PREVIOUS WORK

There has been a great deal of work on records
management, and indeed, an entire industry has

arisen to provide solutions for these needs, moti-
vated recently by Sarbanes-Oxley [13] and other
laws requiring compliant record storage. In this
context, a “record” is a version of a document.
These systems utilize magnetic disks (as well as
tape and optical drives) to provide WORM storage
of compliant records. We wish to extend the concept
of compliant records to tuples of a table stored in a
database management system.

Computer forensics is now an active field, with
over fifty books published in the last ten years.
However, these books are generally about prepar-
ing admissible evidence for a court case, through
discovery, duplication, and preservation of digital
evidence. There are few computer tools for these
tasks, in part due to the heterogeneity of the data.
One substantive example of how computer tools can
be used for forensic analysis is Mena’s book [6].

Goodrich et al. introduce new techniques for
using main-memory indexing structures for data
forensics [3]. They encode authentication infor-
mation in the way a data structure is organized
(not in the stored values) so that alterations can
be detected. Their techniques are based on a new
reduced-randomness construction for nonadaptive
combinatorial group testing, using message authen-
tication codes (MAC) built using cryptographically
strong, one-way hash functions. In the database
context, we have introduced in previous papers the
approach of using cryptographic hash functions to
detect database tampering [10] and of introducing
additional hash chains to improve forensic analy-
sis [7]. To the best of our knowledge there are
no other competing forensic analysis algorithms for
high-performance databases.

Strachey has considered table lookup to increase
the efficiency of bitwise operations [11]. He pro-
vides a logarithmic time/logarithmic space algo-
rithm for reversing the bits in a word. Our second
algorithm requires only constant time, but the table
must be of exponential space.

Enumerating all solutions (pre-images) is a key
step in formal verification. Sheng and others have
developed efficient pre-image computation algo-
rithms [4], [9]. These algorithms are similar to the
ones introduced in this paper in that they all enumer-
ate all possible solutions. The formal verification
algorithms differ in that they are computing pre-
images of a state transition network, rather than of
bitwise AND functions, as in our paper.

14

X. SUMMARY

Forensic analysis commences when a crime has
been detected, in this case the tampering of a
database. Such analysis endeavors to ascertain when
the tampering occurred, and what data was altered.

Elsewhere we proposed several forensic analysis
algorithms [7]. The present paper expands upon that
work by presenting theTiled Bitmap Algorithm,
which is cheaper and more powerful than prior
algorithms. This algorithm employs a logarithmic
number of hash chains within each tile to narrow
down thewhenandwhat.

Checking the hash chain values produces a binary
number; it is the task of the algorithm to com-
pute the pre-image of bitwiseAND functions of
that number. This produces acandidate setwhich
identifies all the potentially corrupted granules. We
showed that the running time of the algorithm is
linear in the length of time the database has been in
existence and linear in the size of the computed can-
didate set. We also note that previous algorithms do
not handle multiple corruption events well, whereas
the Tiled Bitmap Algorithm can independently an-
alyze corruption events occurring both in different
tiles and multiple corruption events occurring within
a single tile. However, the Tiled Bitmap Algorithm
suffers from false positive results while prior algo-
rithms (Monochromatic, RGB, Polychromatic) do
not.

In the later parts of the paper we analyzed
completely the behavior of the candidate sets and
developed an optimal algorithm to produce these
candidate sets. We then introduced a constant-time
algorithm which is preferable in the case when
the target binary number is a suffix of another
binary number for which a candidate set already
exists. Finally, we compared prior forensic algo-
rithms with the Tiled Bitmap Algorithm, providing
a thorough space and time complexity analysis.
We discussed the implementation of the algorithms
and experimentally validated their cost. The Tiled
Bitmap Algorithm uses additional chains (which
incur a logarithmic runtime factor) to detect multiple
corruption events, while requiring fewer requests of
an external notarization server.

The ultimate goal is an algorithm that retains the
logarithmic performance (of the additional chains)
of the Tiled Bitmap Algorithm while further simpli-
fying the analysis within a tile, furthering narrowing

the bounds on when the tampering occurred, and
providing additional forensic information, such as
the direction of the tampering, i.e., whether the
information was back-dated or post-dated.

ACKNOWLEDGMENTS

This research was supported in part by NSF
grants IIS-0415101, IIS-0639106, and EIA-0080123
and with partial support from a grant from Microsoft
Corporation. The reviewers were very helpful in
improving the presentation.

REFERENCES

[1] CSI/FBI, “Tenth Annual Computer Crime and Security
Survey,” July 2005, http://www.cpppe.umd.edu/
Bookstore/Documents/2005CSISurvey.pdf
(accessed April 16, 2009).

[2] P. A. Gerr, B. Babineau, and P. C. Gordon, “Compliance: the
effect on information management and the storage industry,”
Enterprise Storage Group Technical Report, May 2003,
http://www.enterprisestrategygroup.com/
ESGPublications/ReportDetail.asp?ReportID=
201 (accessed April 21, 2009).

[3] M. T. Goodrich, M. J. Atallah, and R. Tamassia, “Indexing
Information for Data Forensics,” inProceedings of the Confer-
ence on Applied Cryptography and Network Security, Springer
Lecture Notes in Computer Science 3531, pp. 206–221, 2005.

[4] B. Li, M. S. Hsiao, and S. Sheng, “A Novel SAT All-Solutions
Solver for Efficient Preimage Computation,” inProceedings of
the IEEE International Conference on Design, Automation and
Test in Europe, Volume 1, February 2004.

[5] M. Malmgren, “An Infrastructure for Database Tamper
Detection and Forensic Analysis,” Honors Thesis, University
of Arizona, May 2007.http://www.cs.arizona.edu/
projects/tau/tbdb/MelindaMalmgrenThesis.pdf
(accessed March 27, 2009).

[6] J. Mena,Investigative Data Mining for Security and Crim-
inal Detection, Butterworth Heinemann, 2003.

[7] K. E. Pavlou and R. T. Snodgrass, “Forensic Analysis of
Database Tampering,” inProceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 109–
120, Chicago, June, 2006.

[8] K. E. Pavlou and R. T. Snodgrass, “Forensic Analysis of
Database Tampering,” ACMTransactions on Database Systems
33(4):Article 30, 47+25 pages, November 2008.

[9] S. Sheng and M. S. Hsiao, “Efficient Preimage Computation
Using A Novel Success-Driven ATPG,” inProceedings of the
IEEE International Conference on Design, Automation and Test
in Europe, Volume 1, March 2003.

[10] R. T. Snodgrass, S. S. Yao, and C. Collberg, “Tamper Detection
in Audit Logs,” in Proceedings of the International Conference
on Very Large Databases, pp. 504–515, Toronto, Canada,
September 2004.

[11] C. Strachey, “Bitwise operations,”Communications of the ACM
4(3):146, March 1961.

[12] U.S. Dept. of Health & Human Services, The Health Insurance
Portability and Accountability Act (HIPAA), 1996,http://
www.cms.hhs.gov/HIPAAGenInfo/ (accessed April 16,
2009).

[13] U.S. Public Law No. 107-204, 116 Stat. 745. The Public
Company Accounting Reform and Investor Protection Act,
2002.

15

APPENDIX

This appendix includes the proofs of all the
theorems and lemmata mentioned in the paper, in
Sections A through E. Section F is comprised of the
proofs of correctness for all the functions introduced
in the paper. A worked example of the candidate set
generation for the targett = 1010 can be found in
Section G.

A. Proof of Lemma 1

Lemma 1: Ct,k = Ct,2 if l ≥ z(t) > 0 and
2 ≤ k ≤ 2z(t). In other words, the candidate set
remains invariant given that the stated conditions
are met.

Proof:
First we show that Ct,k ⊆ Ct,2. Let
ANDk((b1, b2, . . . , bk)) = t for some t. Then
b1, b2, . . . , bk ∈ Ct,k. Also, b1, b2, . . . , bk ≥ t
becauset = min{Ct,k}. Consider the following
2-tuples:(b1, t), (b2, t), . . ., (bk, t). If we apply the
AND2 function to each 2-tuple the result ist, due
to the minimality oft which masks all other binary
numbers inCt,k . Thus, all ofb1, b2, . . . , bk ∈ Ct,2.

Conversely, we show thatCt,k ⊇ Ct,2. Given
a series of 2-tuples(b1, b2), (b3, b4), . . ., (bk−1, bk)
which are pre-images oft under the functionAND2,
and thereforeb1, b2, . . . , bk ∈ Ct,2, we can create
the followingk-tuple(b1, b2, . . . , bk) which is a pre-
image of t under theANDk function. The reason
for this is because bitwiseANDing is an associative
operation. Thusb1, b2, . . . , bk ∈ Ct,k. Therefore we
have proved thatCt,k = Ct,2.

B. Proof of Theorem 1

Theorem 1:

Ct,k =















{t} , k = 1 (1)
∅ , z(t) = 0 ∧ k > 1 (2)
Ct,2 6= ∅ , l ≥ z(t) > 0 ∧ 2 ≤ k ≤ 2z(t) (3)
∅ , l ≥ z(t) > 0 ∧ k > 2z(t) (4)

Proof:
Case (1):k = 1

We want to find the binary numbers that map tot.
In this casek = 1, i.e., the pre-image is unique and
not ANDed with another number to producet. The
function is essentially the identity function so the
candidate set isCt,1 = {t}.

Case (2):z(t) = 0, k > 1
Since z(t) = 0 the target binary number is
t = 111 · · ·1, i.e., a binary string of only ‘1’s.
We require thatk (at least 2) binary numbers
are ANDed in order to producet. Suppose these
numbers exist. Also, the formulation of the problem
requires that they are all distinct. Then at least one
of them will have a ‘0’ as a digit because111 · · ·1
is the only number of lengthl with no zeros. But
this implies that their image under theAND function
will also have at least one ‘0’ digit which contra-
dicts the fact that the target binary numbert has
z(t) = 0. Therefore, no suchk numbers can exist.
ThusC11···1,k = ∅ for k > 1.

Cases (3) and (4) are closely related.
Case (3)l ≥ z(t) > 0 ∧ 2 ≤ k ≤ 2z(t):

Lemma 1 provides this case.
Case (4)l ≥ z(t) > 0 ∧ k > 2z(t):

Here the target binary number has at least one
‘0’ and we require at least two binary numbers
to be ANDed in order to producet. Only binary
numbers which have at least as many ‘1’s, and at
the same positions, as the target string can achieve
this. Thus the positions of the ‘1’s are fixed and only
the positions with zeros int can have variations,
i.e., 1 or 0. This explains why the cardinality of
the candidate set is2z(t): there arez(t) positions
(the number of zeros) and each can independently
take two values. Ifk exceeds the cardinality of
|Ct,2| = 2z(t) then we are trying to findk-tuples
which have a greater number of components than
the total number of distinct binary numbers in
Ct,2. This would force repetition in the components
and this by definition is prohibited. Thus no such
k-tuples can exist andCt,2 will be empty.

The proof reveals a very simple characteriza-
tion for the candidate sets. A candidate set, in
essence, comprises all the binary numbers which
have ‘1’s at the same positions as the targett
and have at least as many total number ‘1’s ast.
Starting with our example target stringt = 1010,
all the elements inC1010,2 will have the form
1 1 where could be 1 or 0. More specifically,
C1010,2 = {1010, 1011, 1110, 1111}. This explains
why a binary string of all ‘1’s, denoted by11 · · ·1,
appears in all the candidate setsCt,2 (except its
own, i.e.,C11···1,2), whereas, a binary string of all
‘0’s, denoted by00 · · ·0, appears only in its own
candidate set. (See also the discussion at the end of
Section III for more intuition on this.)

16

The proof also implies that the target binary num-
ber will always be an element of its own candidate
set, and actually the smallest such element, i.e.,
t = min{Ct,k}. Other elements will have one or
more ‘1’s in positions that have ‘0’s int, and thus
will be larger thant. This puts a lower bound of
Ω(2z(t)) on the creation of a specific candidate set.
This is because one must spend2z(t) time to create
all of the 2z(t) combinations.

C. Proof of Lemma 2

Lemma 2:For k = 2, the candidate sets of all
the binary numbers of lengthl are unique.

Proof:
Case (1): We haveCt,2 and Ct′,2 with t 6= t′,

|t| = |t′|, andz(t′) 6= z(t) wherez(t) and z(t′) are
the number of zeros of targetst andt′ respectively.
Assume without loss of generality thatz(t) > z(t′).
Then, since both numbers have the same length
there exists at least one position int where t has
a ‘0’ and t′ has a ‘1’. Sincet′ has a ‘1’ at that
position thenall the numbers in its candidate set
will have a ‘1’ at that same position. This is not
the case with the numbers inCt,k since they can
have either a ‘0’ or a ‘1’ at that position. Therefore
Ct,2 6= Ct′,2.

Case (2): We haveCt,2 andCt′,2 with t 6= t′ and
both t′ and t have the same number of zerosz(t).
This implies they also have the same number of ‘1’s
since they both have the same length. However, for
the two numbers to be different, there must exist at
least one position int wheret has a ‘0’ andt′ has a
‘1’. Using the same argument as before this implies
that Ct′,2 6= Ct,2.

Given this lemma, fork = 2, there are2l can-
didate sets of the binary numbers of fixed lengthl,
i.e., |Sl,2| = 2l.

D. Proof of Theorem 2

Theorem 2: Assume y = p • t = {0, 1}xt,
0 < x < l, 0 ≤ z(t) ≤ l − x andq = 2z(t). Then:

l−xAt,k =































N/A, k > 2l−x (1)
[t] , k = 1 (2)
∅ , z(t) = 0 ∧ 1 < k ≤ 2l−x (3)
⋃

0≤i<q[Suffixx(lAy,2[i])],
l − x ≥ z(t) > 0 ∧ 2 ≤ k ≤ q (4)

∅ , l − x ≥ z(t) > 0 ∧ k > q (5)

Proof:
Case (1):

The candidate set is not defined when we try to
deduce a candidate set for a binary number of length
l − x given that the (original)k is greater than the
total number of possible numbers that can be created
using l − x digits, i.e., 2l−x. This is true since as
discussed at the beginning of the paper this would
force repetition of a binary number.

Case (2), Case (3) and Case (5):
These follow directly from the proof of Theorem 1.

Case (4):
It is worth elucidating here the nature of the number
q. This number can be thought of as the cardinality
of the candidate set of the suffixt: q = 2z(t) accord-
ing to Corollary 1. It can alternatively be defined as
q = (1/2z(p)) · |lCy,2|, that is, it is the cardinality
of the candidate set of the original targety scaled
down by a power of 2. This power of 2 is given by
the number of zeros present in the truncated prefix
p. Regardingq in this respect is consistent with the
its initial assumption asq = 2z(t). This is true since
y = {0, 1}xt ⇒ z(y) = z(p) + z(t), which in turn
implies thatq = (1/2z(p)) · |lCy,2| = 2z(y)/2z(p) =
2z(t).

We prove case (4) by induction onx. Define
proposition:
P (x) : l−xAt,k =

⋃

0≤i<q[Suffixx(lAy,2[i])] for
(l − x ≥ z(t) > 0) ∧ (2 ≤ k ≤ 2z(t)) andq = 2z(t).

Basis of induction: ProveP (1) is true.
Let x = 1. Here the prefix p is a single
bit. We have thatq = (1/2z({0,1})) · |lCy,2| =
2z(t), y = {0, 1} • t and we want to prove
that l−1At,k =

⋃

0≤i<q[Suffix1(lAy,2[i])]. Thus,
l−1At,k = [Suffix1(lAy,2[1]), Suffix1(lAy,2[2]), . . . ,
Suffix1(lAy,2[q])]. What P (1) essentially claims is
that the new candidate arrayl−xAt,k can be com-
puted by simply selecting the firstq elements of
the candidate arraylAy,k and removing the leftmost
digit from each such element selected.

Case (i) Assume thatp = 0 (this corresponds
to the example, given in Section VII, of deriving
3A010,2 from 4A0010,2). With respect to this first
digit of the target binary stringy we can divide
the elements of its candidate array into two groups:
those which have a ‘1’, and those which have a
‘0’ at that leftmost position. Due to the way these
elements are created, resulting in the elements of
the candidate array being sorted in increasing order,
the elements with a ‘1’ for a leftmost digit must all

17

l−(x+1)At′,k = (l−x)−1At′,k apply basis of induction

=
⋃

0≤i<q̂

[Suffix1(l−xA{0,1}t′,2[i])] where q̂ =
1

2z({0,1})
|l−xC{0,1}t′,2|

=
⋃

0≤i<q̂

[Suffix1(l−xA{0,1}t′,k[i])] candidate set is invariant whenk ≤ 2z(t′)

=
⋃

0≤i<q̂

[Suffix1(l−xAt,k[i])] since{0, 1} • t′ = t

=
⋃

0≤i<q̂

[Suffix1(
(

⋃

0≤j<q

[Suffixx(lAy,2[j])]
)

[i])] by inductive hypothesis

=
⋃

0≤i<q̂

[(
⋃

0≤j<q

[Suffix1(Suffixx(lAy,2[j])])[i])] the suffix and union operations commute

=
⋃

0≤i<q′

[Suffix1(Suffixx(lAy,2[i]))]

=
⋃

0≤i<q′

[Suffixx+1(lAy,2[i])]

Fig. 10. The inductive step of Theorem 2.

appear after those with a ‘0’ at the same position.
Depending upon its position, each digit encodes
the numbers in the range2i−1 to 2i − 1 where i
(1 ≤ i ≤ l) is the position of the digit numbering
the string from right to left. So by removing the
leading ‘0’ from y results in a stringt which
cannot encode any numbers in the range2l−1 to
2l − 1. Thus the candidate array ofl−1At,k will
have the same elements as the candidate array of
lAy,k = lAy,2 except for the numbers encoded
by the extra leading digit. But we know that each
additional ‘0’ introduced doubles (the position can
be filled by a ‘0’ or a ‘1’) the count of numbers that
can be encoded which implies removing a ‘0’ will
halve the count of numbers encoded:z(p) = 1 ⇒
z(t) = z(y) − 1 ⇒ |l−1Ct,k| = 2z(t) = 2z(y)−1 =
1
2
|lCy,k|. Thus the two groups of elements mentioned

in the beginning will be equinumerous: the elements
in the second half have essentially the same bit
pattern as the elements in the first half but with
a ‘1’ at the leftmost position instead of a ‘0’.
By removing the leftmost digit from each of the
elements inlAy,k, the first half will have a leading
‘0’ removed, something which will not change their
numerical value, while the second half which will
have a leading ‘1’ removed will produce identical
numbers of lengthl − 1 to the truncated numbers

in the first half. This is the reason whyl−1At,k will
comprise the suffixes starting at position 1, of the
elements in the first half (i.e.,(1/21) · |lCy,2| = q)
of the numbers in the arraylAy,2.

Case (ii) Assume thatp = 1 (this corresponds
to the example, given in Section VII, of deriving
3A010,2 from 4A1010,2). In this case the situation is
simpler since all the elements inlAy,k can only start
with a ‘1’. Since the number of zeros int remains
unaltered (z(p) = 0 ⇒ z(y) = z(t)), this implies
that |l−1Ct,k| = |lCy,k|. Thus removing the leftmost
digit from all the elements oflAy,k will yield
directly the desired elements of the new candidate
set since each of the truncated elements will have
the same numerical value as their binary number
counterparts of lengthl with a ‘0’ at the leftmost
position. Again the new candidate arrayl−1At,k will
comprise the suffixes starting at position 1, of theq
(= (1/20) · |l−1Ct,k|) first elements (in this case all
of them) of lAy,k.

Inductive step: Prove thatP (x) −→ P (x + 1)

We assume thatl−xAt,k =
⋃

0≤i<q[Suffixx(lAy,2[i])],
where q = (1/2z(p)) · |lCy,2|, and y = p • t
= {0, 1}xt is true and seek to use this
inductive hypothesis to provel−(x+1)At′,k =
⋃

0≤i<q′[Suffixx+1(lAy,2[i])] where {0, 1}t′ = t ⇒
y = {0, 1}xt = {0, 1}x{0, 1}t′ = {0, 1}x+1t′,

18

and q′ = (1/2z(p)+z({0,1})) · |lCy,2|. The inductive
step is shown in Figure 10. By the first principle
of mathematical induction the initial proposition is
true.

E. Proof of Theorem 3

Candidate sets also exhibit the following fun-
damental property: they are related (specifically,
through set intersection) to the candidate sets of the
constituent binary numbers that combine (through
logical OR) to form the target.

Theorem 3:Let Ct,k , t ∈ B, anda1, a2, . . . , am ∈
B s.t.

∨m

j=1 aj = t for somem ≤ 2|t| and let also
2 ≤ k ≤ 2z(t). Then:

Ct,k = CWm
j=1

aj ,k =

m
⋂

j=1

Caj ,k

Proof:
Forward direction=⇒:
Let ANDk((b1, b2, . . . , bk)) = t. This implies
b1, b2, . . . , bk ∈ Ct,k. We need to show that
b1, b2, . . . , bk ∈

⋂m

j=1 Caj ,k. By definition we know
thatb1∧b2∧. . .∧bk = t. However, we are also given
that

∨m

j=1 aj = t. Thus,
∨m

j=1 aj = t =
∧k

i=1 bi.
Therefore, we must prove that for everybi (1 ≤
i ≤ k) there exists a series ofk − 1 distinct binary
numbers (and different frombi), d1, d2, . . . , dk−1

such that bi ∧ d1 ∧ d2 ∧ . . . ∧ dk−1 = aj ⇒
bi, d1, d2, . . . , dk−1 ∈ Caj ,k for eachaj, 1 ≤ j ≤ m.
In other words, each one of thebis must appear in
the pre-image of each one of theajs.

We proceed to show how to produce all the
requisitebi, d1, . . . , dk−1 given a specificbi and aj

pair. Let x be the number of ‘1’s in the binary
number t, y be the number of ‘1’s in a specific
bi, andw the number of ‘1’s in a specificaj . Then
y ≥ x sincebi must have at least the same number of
‘1’s, and at the same positions, as the target number
t. This is true for allbi since for a ‘1’ to appear at a
specific position int thenall the binary numbersbi,
which whenANDed producet, must have a ‘1’ at
the same position. Likewise,x ≥ w sinceaj must
have at most the same number of ‘1’s as the target
numbert. Again, this is true for allaj since for a
‘1’ to be preserved at a specific position int at least
one of theaj must have a ‘1’ at that same position.
Using the observation above we begin with some
bi and pick d1 to be aj. This works because we
want a numberd1 which has a zero at the same

positions asaj does, in order to mask any ‘1’sbi

has at those positions.d1 should also have a ‘1’
whereveraj does, so that the ‘1’is preserved after
the AND operation. Note that ifaj has a ‘1’ at a
certain position we are guaranteed to have a ‘1’ at
the same position inbi becauset will have a ‘1’ at
that position (as discussed previously). All the rest
of thek−2 binary numbers can be created fromaj

and there are enough of them:2z(aj) − 1 (the ‘−1’
is there because we are excludingaj itself) where
z(aj) is the number of zeros inaj . We are given
that k ≤ 2z(t) and sincew + z(aj) = x + z(t) = l
and x ≥ w then z(t) ≤ z(aj). Thus,k − 2 < k ≤
2z(t) ≤ 2z(aj) ⇒ k − 2 ≤ 2z(aj) − 1. This implies
that each of thebi is an element of each of theCaj ,k

and therefore an element of their intersection. Thus,
CWm

j=1
aj ,k ⊆

⋂m

j=1 Caj ,k.
Backward direction ⇐=: Conversely, let

b ∈
⋂m

j=1 Caj ,k. Then (b ∈ Ca1,k) ∧ (b ∈
Ca2,k) ∧ . . . (b ∈ Cam,k). This implies thatb has
a ‘1’ at the same positions asa1, b has a ‘1’ at
the same positions asa2 and so on untilam. Thus
the fact thatb belongs to all the candidate sets of
the ais, fixes the positions of the ‘1’s while the
remaining positions could be ‘0’ or ‘1’. Thusb
captures a certain set of numbers. Now, consider
∨m

j=1 aj = t. We know thatt, as a result of anOR
operation, will have a ‘1’ wherever at least oneai

has a ‘1’ at that position, and a ‘0’ wherever all
ais have a ‘0’ at that position. The candidate set of
targett comprises all the numbers which have a ‘1’
at the same position ast and at least as many ‘1’s
as t, i.e., wherevert has a ‘0’ the pre-images can
have a ‘0’ or a ‘1’. But this is exactly the same set
of numbers captured byb so b ∈ Ct,k. Therefore,
CWm

j=1
aj ,k ⊇

⋂m

j=1 Caj ,k.
This lemma provides a pleasing symmetry be-

tween the logicalAND in the definition of the
candidate set and the logicalORused above to form
the target.

F. Proofs of Correctness

In this section we provide proofs of correctness
for the various algorithms proposed. To make this
easier, Figure 11 shows the dependency graph be-
tween the functions implementing the Tiled Bitmap
Algorithm. A directed edge from nodeA to nodeB
is interpreted as “functionA (may) call(s) function
B.” We will provide the proofs by considering the
functions in a bottom-up fashion.

19

candidateSetSuffix

Tiled_Bitmap

candidateSet candidateSetCached

createRightmost generate funkySort

Fig. 11. The dependency graph of the functions implementingthe
Tiled Bitmap Algorithm.

Lemma 3:The createRightmost function (Fig-
ure 4), given a binary targett of length l creates
an array namedrightmostof size l + 1. An element
rightmost[p] (0 ≤ p ≤ l) is the index of the
rightmost zero int to the left of indexp (in t),
non-inclusive. If such an index does not exist or is
not defined, thenrightmost[p] = −1.

Proof: At position p we need to know the
position of the rightmost zero to the left ofp.
Hence, we scan the target from left to right and
mark in rightmost[p] (where p = l − i − 1) the
index j at which we observed the latest zero. The
use of theflag variable is required because we
need to remember in the next iteration what digit
we saw in the current iteration (lines 8–9). If we
saw a zero (line 7) the value ofj is updated and
stored inrightmost[p]; otherwise the previous value
is used (line 10). Note that on line 8 during the
iteration for whichi = −1, the left shift amount in
the conditional becomes negative (i.e., the value is
shifted to the right). This does not affect correctness
since this is the last iteration.

Lemma 4:The generate function (Figure 5),
given a binary targett and a position of one of
the 0s int, enumeratesCt,k, that is, all2z binary
numbers derived fromt.

Proof: For an arbitraryp and t the function
creates two subsets ofCt,k. The first subset is
created by the recursive call on line 4 and comprises
all the elements which havet[p] = 0 and for all
digits to the left oft[p]: if the digit of t is 1 it stays
as 1 in the enumeration, and if the digit is 0 it is
either 0 or 1 in the enumeration. These two cases
correspond to lines 4 and 5 in the recursive call.

The second subset is created by the recursive call
on line 5 and comprises all the elements which have

t[p] = 1 and for all digits to the left oft[p]: if the
digit of t is 1 it stays as 1 in the enumeration, and if
the digit is 0 it is either 0 or 1 in the enumeration.

Lemma 5:The funkySort function (Figure 6),
given Ct,k resulting from the generate function,
returns the array sorted in ascending order.

Proof: The sort is “funky” because it is
linear and is based on the particular way generate()
enumerates the elements ofCt,k. As discussed in
Section VI this function first computes an array of
indices (lines 8–13), which requires linear time, and
then simply scans the indices array to arrive at the
sortedCt,k, also requiring linear time.

Lemma 6:The candidateSetSuffix function (Fig-
ure 8), given a candidate setCy,k and the index
tstart at which the suffixt starts iny, computes the
candidate setCt,k.

Proof: The candidateSetSuffix algorithm is a
direct translation of Theorem 2 into code. Line 8 of
the function corresponds to case (1) of the theorem.
Line 9 corresponds to case (2), line 10 to cases
(3) and (5), and finally, lines 11–13 correspond to
case (4). The mathematical proof of the theorem’s
correctness can be found in Appendix D.

Lemma 7:The candidateSet function (Figure 3),
given a target numbert, computesCt,k in ascending
order.

Proof: The first part of the function is a direct
translation of Theorem 1 into code. Line 8 of the
code is correct by definition of the Cartesian product
in Section V. Line 9 of the code corresponds to case
(1) of the theorem. Lines 10–11 correspond to cases
(2) and (4), and lines 12–15 correspond to case (3).
The mathematical proof of the theorem’s correctness
can be found in Appendix B.

The correctness of createRightmost is established
in Lemma 3. The correctness of generate is guaran-
teed by calling the function withrightmost[l] and by
Lemma 4. The function funkySort guarantees that
Ct,k is sorted by Lemma 5. Given the correctness of
the algorithms this function depends on, calling the
functions createRightmost, generate, and funkySort
(lines 13, 14, 15), in that sequence, candidateSet
yields the desired result.

Lemma 8:The candidateSetCached function
(Figure 7), given a target numbert and a cache
that was previously computed on line 16 of the

20

createRightmost

=sorted 10 11 14 15

Ct,2[0] Ct,2[2] Ct,2[1] Ct,2[3]sorted =

p = 3

p = 1

p = −1

Ct,2

=t

3210

=t

43210

−1−1 1 1 3=rightmost

iterate
= 20 1 3indices

iterate

=t

0 1 2 3

Z = 0 0 21

iterate

=t 1010

1 10 0
0 1 2 3

z

candidateSet

Tiled_Bitmap

generate funkySort

1010 1011 11111110

1010

10111010

= 10 14 11 15

1 10 0
1 3

Fig. 12. Example of generation of the non-trivial candidateset for targett = 1010 with no cache available.

candidateSet function (Section VII), returns the
candidate setCt,k either computed anew or derived
from Cy,k.

Proof: In this function we assume that the
start of the suffix can be computed correctly by
findSuffix(not given). If the suffix exists thentstart

will be greater or equal to 0 so the only task left
is to decide (depending on thek associated with
thecache) whether to call the candidateSetSuffix or
the candidateSet function. Given that the two func-
tions are correct by Lemmata 6 and 7, respectively,
candidateSetCached yields the desired result.

Theorem 4:The TiledBitmap function (Fig-
ure 2), given a time of first validation failure, returns
the set of possible corrupted granules.

Proof: The function iterates through all tiles
(line 4) and checks each tile ending at timeτ if it
is corrupted or not (line 5). If it is, TiledBitmap
either calls candidateSet (line 9, Figure 2) or can-
didateSetCached (replacement line 9, Section VII)
so that the candidate set is generated. Once the

candidate set (Ctemp) is correctly computed, the
granules are renumbered to reflect their global po-
sition (line 11).

G. Example of Candidate Set Generation

This section describes the creation of the candi-
date set for the specific targett = 1010, illustrated
in Figure 12. We assume here the candidate set
needs to be created from scratch, i.e., we are not
dealing with a trivial case and a cache does not
exist. The rectangles in the figure denote functions
whose name appears above the box. The solid-
tipped arrows in the figure denote function calls
while the open-tipped arrows denote a correspon-
dence between numbers or the direction of iteration.

Initially, the target t = 1010 is constructed by
the TiledBitmap function and then is passed to
candidateSet. Within candidateSet theZ array is
created (lines 5–7 of Figure 3) by inspecting the bits
in the target from left to right and marking at each
position inZ how many 0s have been encountered
thus far. At index 0 the value inZ is 0 because at

21

the same index 0 int the bit is not 0 but 1. On the
other hand, at index 1 the value inZ is 1 because
at index 1 int the bit is 0. For this reason, the last
element inZ is equal to the number of zeros int
and this count (in this case, 2) is stored in variablez.

The value inz is used throughout the generation
of the candidate set (as witnessed in the pseu-
docode). However, theZ array itself is only used in
the candidate set generation algorithm employing
a cache and therefore will not be discussed from
here on.

The createRightmost function is called by candi-
dateSet in order to construct therightmostarray. The
function iterates from right to left checking again for
zeros and remembering at the current iteration/index
i the bit value in the previous indexi−1 (during the
previous iteration). The index of the most recently
encountered zero is stored in the currentrightmost
index. This is because,rightmost[i] gives the index
of the rightmost zero to the left of indexi, non-
inclusive. The value -1 is stored if such an index
is not defined. Thus, in our examplerightmost[0] =
−1 because att[0] there aren’t any bits to the left
of it and hence the index of the rightmost 0 is not
defined. Similarly,rightmost[1] = −1 because at the
same index/bit position 1 int the only number to
the left of t[1] is the 1 att[0]; hence no rightmost
zero is defined. On the other hand, at index 2 int
a rightmost zero to the left oft[2] is defined, viz.,
it is the zero at index 1,t[1] = 0. Hence the index
1 at which the zero appears in is stored at index 2
in the rightmostarray. Note that in order to avoid
failing to register the index of the last zero (i.e., 3)
the iteration has to go one step beyond the last bit
of t.

Using the rightmost array and the targett the
candidateSet function calls the recursive function
generate. In Figure 12 the rectangular box of the
generate function shows the results of the recursive
calls in the form of a binary tree. At each level in
the tree the indexp of the zero under consideration
is given to the left of the tree and at the same time
marked over the position of the binary number with
a solid black dot. Recall that at each recursive call
the new indexp′ is the value stored atrightmost[p].
The terminating condition is satisfied when the
index p is not defined, i.e.,p = −1. The leaves
of the binary tree are the elements of the candidate
set which are shown in decimal form in theCt,2

array. Clearly the elements are not enumerated in

sorted order.
For this reason, candidateSet calls the function

funkySort. The funkySort function first creates an
array (indices) by staring from 0 and adding succes-
sively decreasing powers of 2 (starting from2z−1)
to the results of the addition just produced (see
also Section VI). The elements of theindicesarray
when used to index intoCt,2 produce in thesorted
array the sorted elements of the candidate set. In
our example, theindices array is constructed by
starting with 0 then adding2z−1 = 21 = 2 to 0
to get 2. Then adding20 to 0 and 2 in order to
create the indices 1 and 3. Then iterating through
indicesfrom left to right and using the values 0, 2,
1, 3 to index intoCt,2 accomplishes the sorting in
sorted= {10, 11, 14, 15}. This works because of the
particular way the generate function enumerates the
candidate set elements.

