The Tiled Bitmap Forensic Analysis Algorithm

Kyriacos E. Pavlou and Richard T. SnodgraSenior Member, IEEE

Abstract— Tampering of a database can be detected manipulated by transactions and periodicalili-
through the use of cryptographically-strong hash func- dating the audit log database to detect when it has
tions. Subsequently-appliedforensic analysis algorithms heen altered. Validation involves sending the hash
can help determine when, what, and perhaps ultimately oo computed over all the database to an external
who and why. This paper presents a novel forensic . - . .
analysis algorithm, the Tiled Bitmap Algorithm, which is notarization service which Wlll indicate whether
more efficient than prior forensic analysis algorithms. thatvalue matches one previously computed. Should
It introduces the notion of a candidate set (all possible tampering have occurred, the two hash values will
locations of detected tampering(s)) and provides a complet not match.
characterization of the candidate set and its cardinalityAn At this point, all that is known is that at some
optimal algorithm for computing the candidate set is also time in the past, data somewhere in the database
presented. Finally, the implementation of the Tiled Bitmap ’ . .

Algorithm is discussed, along with a comparison to other has be?“ tampere@orensp analysigs needed to
forensic algorithms in terms of space/time complexity and ascertainwhen the tampering occurred, anahat
cost. An example of candidate set generation and proofs data was altered. Knowing the “when” and “what”

of the theorems and lemmata and of algorithm correctness can give indirect clues to the CIO and CSO that

can be found in the appendix. would perhaps allow them to ultimately determine
Index Terms— Database Management, Security, in- Who the adversary is and why the corruption was
tegrity, and protection, Temporal databases. done. The identification of the adversary is not

explicitly dealt with.
Validation provides a single bit of information:
has the database been tampered with? To provide

Widespread news coverage of collusion betwe&#ore information about when and what, we hash
auditors and the companies they audit (e.g., EWe data of various sequences of transactions during
ron, WorldCom) helped accelerate recent passagdidation. The database transactions are hashed in
of federal laws (e.g., Health Insurance Portabiliommit order creating &ash chain Then, during
and Accountability Act: HIPAA [12], Sarbanesforensic analysis of a subsequent validation that
Oxley Act [13]) that mandate better controls ofletected tampering, those chains can be rehashed
electronic data.Compliant recordsare those re- to provide a sequence of truth values (success or
quired by myriad laws and regulations to followfailure), which can be used to narrow down “what.”
certain “processes by which they are created, stored¥e have elsewhere [7] proposed the Monochro-
accessed, maintained, and retained” [2]. matic, RGB, and Polychromatic forensic analysis

We previous|y proposed an innovative approa@Hgoritth. These algorithms differ in the amount
in which cryptographically strong one-way hasRf work necessary during normal processing (com-
functions allow the detection of eorruption event Puting additional hash chains during periodic val-
(CE), which is any event that corrupts the datflation) and the precision of the when and what
and compromises the database. The corruption evegimates produced by forensic analysis. Here we in-
could be due to an adversary, including an auditBPduce a more efficient algorithm, the Tiled Bitmap
or an employee or even an unknown bug in tHdlgorithm.
software (be it the DBMS or the file system or We first present the threat model, then the Tiled
somewhere in the operating system), or a hardwdtémap Algorithm by way of an example. This
failure, either in the processor or on the disk [LOflgorithm requires what we term as tbandidate

Tamper detection is accomplished by hashing d&@t We then consider the more general problem
of characterizing the candidate set, which can be

K. Paviou and R. Snodgrass are with the University of Arizona Utilized to produce two approaches for computing

. MOTIVATION



that set. This is followed by an evaluation of thand other forensic analysis algorithms can be found
implemented algorithm. We end with a discussiogisewhere [8], [10].
of previous work and a summary.

Il. PARTIES INVOLVED AND THREAT MODEL Il.- AN EXAMPLE

In this section we introduce the parties involved Consider a database recording when privacy re-

and the underlying threat model. lease authorizations were signed by a patient (in the
The parties involved are: US all patients are now required by HIPAA [12]
« The DBMS to sign such authorizations). For ease of discussion

« An external digital notarization service. This isve’ll use a granularity of an hour. Dr. Dan inad-
a company which can digitally notarize docuvertently revealed confidential health information to
ments and then validate their correctness. an insurance company on hour 30, shoitkgfore
« The validator. This is a DBMS applicationpatient Pam actually signed the authorization (on
which periodically contacts the digital notarizahour 31). Dr. Dan later realized his mistake, which
tion service. is an offense under HIPAA and can have significant
« The forensic analyzer. This is a DBMS aplegal implications. So on hour 51 Dr. Dan colludes
plication responsible for executing the chosewith his friend the database administrator to alter
forensic analysis algorithm. the database to back-date that authorization from
Few assumptions are made about the thré¥ur 31 to hour 28. The database now implies that
model. The system is assumed to be secure until@ithorization had been received on hour 28, just
adversary gets access, at which point he has acdegfore the confidential information was transferred
to everything: the DBMS, the operating system, tH& hour 30: everything looks fine.
hardware, and the data in the database. We stillln order to ensure HIPAA compliance, the health
assume that the notarization and validation serviced&e company that Dr. Dan works for uses a
remain in a trusted computing base. This can bl@tabase management system incorporating tamper
done by making them geographically and perhagstection and forensic analysis. Each transaction
organizationally separate from the DBMS and the hashed when it is committed and linked to the
database [5], thereby effecting correct tamper derevious transaction. Every 16 hours the system runs
tection even when the tampering is done by highl§he validator, which rehashes all the transactions and
motivated insiders. (A recent FBI study indicatesompares the value with the previously-notarized
almost half of attacks were by insiders [1].) T@nd stored hash value. The time interval between
prevent spoofing between the DBMS and the validtwo successive validations is termed taidation
tor, it is possible to use a combination of Trustetterval, or Iy, (see Table I). The validator also
Platform Modules (TPMs), mutual authenticatiorgomputes partial chains that will later be useful
and a secure communication channel. The specifiosforensic analysis. Specifically, it computes the
of this scheme are beyond the scope of this papéive hash chains shown in Figure 1, hash chain
The basic mechanism described in the next seg- through hash chairry, over the previous 16
tion provides correct tamper detection. If an advours, storing five hash values in a secure database
versary modifies even a single byte of the datvailable only to an external digital notarization
or its timestamp, the independent validator wilervice. Each 16-hour collection of partial hash
detect a mismatch with the notarized documertthains is termed &le.
thereby detecting the tampering. The adversaryWhen the validator runs at hour 64, it detects the
could simply re-execute the transactions, makiigmpering. The forensic analysis algorithm springs
whatever changes he wanted, and then replace i@ action. It first reports to the compliance service
original database with his altered one. Howevdhat the database was tampered sometime within the
the notarized documents would not match in tim&ast sixteen hours, between hour 49 and hour 64.
Avoiding tamper detection comes down to invertinghat helps bound the “when” of the tampering. The
the cryptographically-strong one-way hash functioalgorithm then recomputes some of the partial hash
An extensive presentation of the approach, perfarhains on the tampered data and sends the new hash
mance limitations, tamper detection, threat modehlues to the notarization service, which responds



The finest spatial granularity of the corrupted
g 17 18 19 20 21 22 23 24 25 26 27 28 29 30 332 data would be an explicit attribute of a tuple or a
"~ particular timestamp attribute. However, this proves
to be costly and hence we defing,, the finest

. granularity chosen to express the uncertainty of the
— Y " A spatial bounds of a corruption evert, is called
Lt LT LT LT LT L Y the spattial detection resolution

The database administrator specifies bathand
R, in this case, 16 hours and 1 hour, respectively.
An R, of 1 hour implies four other chains, ex-
cluding ¢y, are needed in a tile (sinckg(ly) =
log,(16) = 4). If we wanted a finer granularity of,

Target say, 15 minutes1(/4 hour), we would need an ad-

bit pattern ditional two chains (i.e.]Jg(16 + 1) = 1g(64) = 6).

8 9 101112131415 Hash chain, covers the first eight hours of the
tile. Hash chairn:, covers the first four hours, then

Fig. 1.  The hash chains of a single (second) dleis the actual gying four hours, then covers hours 8 through 11.

time of authorization, while, is the backdated authorization time. _. ". . .

The rectangles mark the elements of the candidate set. Similarly, c; covers four two-hour periods, with

embedded skips, and, covers every other hour.

with “success” (the old and new values match) gHash chain linking is discussed in more detall

“failure,” for each hash chain queried. elsewhere [10].)

Specifically, the algorithm linearly scans all the Changing the timestamp on an authorization is
tiles in the database to identify in which tile(s) thequivalent to removing that authorization from all
tampering occurred. The “success” and “failurefiash chains that cover the original time and adding
response of the, chain of each tile will, in this that authorization to all hash chains that cover the
case, narrow down the tampering to the tile coverinigserted time. Examination of Figure 1 will explain
hours 17 to 32. Note that each tile that includeshy hour 28, in which the authorization was added
a tampering can be independently analyzed, andy Dr. Dan, appears in hash chairg and c,.
corruption across tiles, say changing a timestarifour 31, from which the authorization was removed
from hour 31 (in the second tile) to hour 7 (irby Dr. Dan, appears in hash chaimg and c,.
the first tile) can be analyzed by examining eadHence,c; andc; report “success” and,, c,, andcy
tile independently. In Dr. Dan’s case, the validatioreport “fail.”
of the ¢, chain will report a “failure,” for only the  We can assemble the success and failure results
17-32 tile. This tells the algorithm that the “whatfor the four hash chains; throughc, into a 4-bit
of the tampering was data stored between hours linary number, with failure denoted with “0” and
and 32, a sixteen-hour period. However, we woukliccess with “1”. The number that results from this
like to narrow down the tampering to a much fingoarticular back-dating from hour 31 to hour 28 is
granularity: that of a single hour, or at least dowh010. We term this value thiarget binary number
to a few hours. (It turns out that depending on wheor target The target is the input to the forensic
the corruption occurred, sometimes we can do veaypalysis. Our task is to take this binary number, the
well and sometimes less well.) target, and figure out what could have happened.

In Figure 1, Dr. Dan’s back-dating of the autho- The truth values shown at the bottom of the figure
rization from hour 31 to hour 28 is shown at thedicate the target string that would result had the
top, as a left-pointing arrow. The first hash chaircorruption event tampered with data stored at the
¢o, IS also shown at the top. indicated hour. For example, changing the data of a

The algorithm now recomputes the other fouuple that was originally stored in the first hour of
partial hash chains for this tile; throughc,. Four this interval would have rendered all of the chains
partial hash chains are used to get down to an has failure, resulting in a value of 0000.
granularity, given that each tile is 16 hours, which Recall that our corruption event occurred at
is the validation intervaly, . hour 51, changing a timestamp from 31 to 28,

£ PP eL

m O O O
o r O o
B OO
O o r o
H O P, O
O R R O
L =)
o o o R
- O B
P P o
O O R R
R O R R
o - B B
= = =

110

LA TN T
o oo o

_1
o
=
N
w
I
a1
o
~



TABLE | Il input: 7py 5 is the time of first validation failure

SUMMARY OF NOTATION USED. Il Iy is the validation interval
[ Symbol | Name | Defnition | Il k is used for t_he creatlpn af'y _
e | comon [ An event that compromises 1 R, is the spatial d_etectlon resolution
orruption event | the gatabase /Il output:C,,,;, an array of binary numbers
Iy | Validation interval| [Ne lime between two function Tiled_Bitmap(rvr, Iv, k, R;)

successive validations

R Spatial detection | Finest granularity of a CE’S Lo te0 Il the target
s resolution spatial bounds uncertainty 20 Csep — Cromp — 0
v Time of first Time instant at which 3 T 1
validation failure | the CE is first detected 4 while 7 < P do
5: if — val_checkgy (7)) then

the hash chains provide a target of 1010. Whéit n <« lg(lv/R;)
could such a target indicate? It could indicate the fori—mntol
corruption of data during a single hour, or an§ t — t+2""".val_checkg; (7))
combination of timestamp and/or data during tw® Cremp — candidateSet( n, k)
or more separate hours such that the resulting tarét for each r € Ciepyp
after validation is equal to 1010. For examplél: g < renumberf, 7, R;)
one possibility is that only the data in hour 2%2 Cyet — Coet U{g}

(r = 10) was modified. Another is that the timesl3: T—T1+1Iy

tamp was moved from 3%+ (= 14 = 1110,) to 28 14 return Ci

(r =11 =1011,), again yielding a target010. This Fig. 2. The Tiled Bitmap Algorithm.

is in fact what happened. A different possibility is . .

that the data in hours 28 and 31 were corrupt¥¢e could.potentlally have the maximum number of

independently. A fourth possibility is that the timdalse positives.

was moved from 28 to 31. Other possibilities are a

change from hour 27 to 31, a change from hour 27 V. THE TILED BITMAP ALGORITHM

to hour 32, a change from hour 27 to hour 28, or a We formally define the problem as follows.

change in the other direction. All these possibilitieBroblem Definition: The task is to compute from

and many others result in a target of 1010. Preciselysingle target all the possible corruption events,

because this list of possibilities can get quite longshich we term theandidate set.

we introduce in the next section the notion of For the example in the previous section,

candidate set which retains comprehensiveness thé candidate set would comprise the hours

is a lot simpler. {27,28,31,32}. We now present an algorithm to
There are two special cases worth discussing this.

separately. If target bit pattern is 1111 then it is In the algorithm shown in Figure 2 is the

not the case that no corruption has happened. Aomber of hours between validations (in the ex-

begin with, we arecertain that there is corruption ample, I,y = 16). We use a helper function called

in this tile because;, reported “failure.” The only val_check. This function takes a hash chain as a

thing that pattern 1111 implies is that no corruptioparameter and returns the boolean result of the

has occurred in the time granules covered by hagllidation of that chain.

chainscy, ¢, c3, c4. The only granulenot covered  The partial hash chains within a tile are denoted

by these last four hash chains is the last granWlg cy(7), ci(7), ..., cig(1,)(7), With ¢;(7) denoting

(15) so we can conclude (by eliminating all othethe i** hash chain of the tile which starts at time

possibilities) that the corruption must have bednstantr. On line 4 the algorithm iterates through

located in time granule 15. This is the only casthe different tiles and checks if the longest partial

we are certain that there are no false positives. chain c¢o(7) evaluates to FALSE. If not, it moves
On the other hand, if the target bit pattern is 00Qfh to the next tile. If the chain evaluates to FALSE

then a corruption event can be anywhere in the tilgkne 5), the algorithm iterates through the rest of the

16 time granules. Even though this does not affggartial chains in the tile (line 7) and “concatenates”

correctness, this is the worst case scenario whéne result of each validation to form the target



number (line 8). Then the candidateSet functian Figure 1,k = 2. However, we usually have
is called (line 9) to compute all the candidate seb knowledge of the value ok. What we have
elements from the target number according to tle only the target from which we have to find
user-specified parametdr discussed in the nextthe possible bit patterns (each generated by the
section. On lines 10-12 the candidate granules amdidation of the chains in the tile assuming that
renumbered to reflect their global position. Theorruption occurred by itself that when bitwise
function renumber() on line 11 useB, to find ANDed produce théarget The reason for requiring
the global position ofr, computingg as a single that the different bit patterns produce tharget
granule, or group of granules i, > 1. Once the when ANDed is because this is effectively what
C,e; is reported the CSO can exactly pinpoint theappens when the corruptions ocsimultaneously
corrupted tuples and can thus weed out the falggthin a tile. This arises from the mechanics of
positives. In order to achieve this he must compaf@rensic analysis. Specifically, each corruption event
the data stored in the backup tapes with the datnders some of the chains as “failing.” A chain will
contained in the granules. succeed in the end only if it succeeds in every one of
We now state the running time of thehe corruption events. So in the example, chains
Tiled Bitmap Algorithm. Let D be the andc; succeed, but chains ande, fail. The set of
number of granules (hours) before thall such bit patterns which could produce tiagget
first validation failure (for the example,whenANDed is termed theandidate setin order
D = 64). The “while” loop on line 4 takes to be more rigorous in our analysis we proceed to
[D/Iy] in the worst case. In reality, because of thgive a formal characterization of the candidate set.
“if” statement on line 5 the body of the loop gets We define the length of a binary numben,
executed only if corruption is initially detected bydenoted byb| = [, as the number of its digits. From
usingcy (7). Hence, the actual number of times ththis point forward we considdrto be fixed. candi-
loop is executed i9(F) where F' is the number dateSet essentially “sums up” the pre-images of all
of times the validation of a(7) chain fails. The the binary numbers of length B = {b: |b| = I},
“for” loop on line 7 takeslg(ly/Rs) while the under a family of bitwiseAND functions whose
candidateSet function takel(lg(ly/R,) + 2*®), domain is a finite Cartesian product.
where z(t) is the number of zeros in the target

binary numbert (see Section V). The loop on AND, : B* — B
line 10 takes©(2:")). Hence the runtime of this
algorithm is AND; ((by, b2, ..., b)) =by Aba A... Abg

2(1 z(t
UF - (Ig(Iv/R,) + (I(Iv /Ry) +270) + 270)) Observe that the maximum numbkrof sets par-
= Q(F - (1g(Iv/Rs) +2°Y))  ticipating in the Cartesian product # (i.e., every
= O((D/1Iy) - (g(Iy/R,) +2°))  granule in the tile is corrupted), sincefifis allowed
= O((D - 1g(Iyv/Ry)) /Iy + D) to take a value beyond that, it will force a repetition
_ _ of one of the binary numbers. For forensic analysis
given that in the worst casé’ takes the value nyrposes this implies that the same granule has been
(D/1Iyv), which is the total number of tiles, anGorrupted more than once. This is not informative
27(t) takes the valudy,, which the total number of or yseful in any way since repeat&dDing opera-
granules in a tile. tions with thesamebinary number leave the result
There is one important aspect left unaddressed;ifyariant (the operation iglempotent This is also
the above algorithm: the candidateSet function. Bebmpatible with forensic analysis since we only care
before we can present this latter algorithm, we mugty granule is corrupted or not—if we wanted to

formally characterize the candidate set. know more we would need to increase the resolution
by choosing a smaller granule size (i.e., smallg).
V. CHARACTERIZING THE CANDIDATE SET In other words, repetition is not allowed and hence

In the forensic analysis context, the paramet@r a givenk-tuple all its components are distinct.
k passed to the algorithm represents thetual Also note that the value of uniquely identifies a
number of granules corrupted. In the example showpecificAND, function in the above family.



We formally define the set of all binary numbers Lemma 1:
which appear as components in at least one of thg, = C,, if [ > 2(t) > 0 and2 < k < 2°0.
pre-images (i.e k-tuples) of a specific target binaryin other words, the candidate set remains invariant

numbert the candidate set given that the stated conditions are met.
Proof: Given in Appendix A. ]
Cig = {b€B:3by,by,... .01 €EB st A complete characterization of the candidate sets
ANDy((b, by, ..., bk_1)) =t} . is given below.
Theorem 1:
The A operation is commutative: the order of the 0 E—1 (1)
operands does not matter, and that is why this can 0 ’z(t) —OAE> 1 (2)
be defined more simply as a set of booleans rather, = Cpy £ (Z)’l > (1) > 0A2 < k < 270 (3)
than as a set ok-tuples of booleans. The word @m ’l > ) > 0Nk < 9= (4)

“‘candidate” was used to name this set because in p.Joe Given in Appendix B. 0
forensic analysis, its elements correspond bijectively-l-heorem 1 is the reason for which we decided

to the granules _(in the example, the hours indica_t%j make k user-configurable in the Tiled Bitmap

in Figure 1), which are candidates where corrupti eudocode. If the CSO by some other means has
may pote_ntially have occurred. In Dr. Dan’s cas(g;y indication for the value of, i.e., the actual
the candlda'Fe set would be the hoursd27, 28, Humber of corruptions occurred, then he can pass
and 32 that isy = 10, » =11, 7 = 14, andr = 15. 3¢ information to the algorithm. If the algorithm

~ Observe that, it is not the case that .| = %, returns an empty candidate set then the CSO can
.e., k is not the cardinality of the candidate Setyeqyce that his initial knowledge/guess for the value
The cardinality in the example is 4: in this case thgs ;. \vas incorrect. If the CSO has na priori
algorithm can narrow down the possibilities Onllénowledge about the value df, as is usually the

to four granules, two actual one# (= 2) and caqe then according to Theorem 1 the CSO need
two false positives. The candidate set will COMPrisgyly give k the default value of 2 and not worry

all poss_iblebinary number_s that could produce thg, 5 any other choice fok would compromise the
target bit pattern, and not just the granules corruptegdansic analysis results.

in a specific case. Hence, the candidate set Wi"CoroIIary 1:
always include the actuak granules that were

corrupted together with other potentially corrupted 1 , k=1
granules. This ensures correctness but allows for t’”@ f = 0 , 2(t) =0Ak>1
existence of false positives. b 2200 1> 2(t) >0A2< k<220
For convenience we can express these sets in dec- 0, 12z2(t)>0Ak>20
imal, though our algorithms read and write in binary. Proof: This follows directly from Theorem 1.7
For example:Cig0; = {1010} = {10}, Cio02 = For example, with our target bit pattern of

{1010,1011,1110,1111} = {10,11,14,15}. 1001 t = 1010, we havez(t) = 2 .and thecandidate seis

is not in Clo10.2 because 1001 cannot be in the préioio2 = {10,11,14,15} with |C1p10,2| = 2° = 4.
image 0f1010. Note that even though two binary VW& now turn to ways in which the candidate set
target strings may have the same numerical valueMgy beé computed. We first give an algorithm that

their length is different then their candidate sets wiff Optimal in time, except for a very few cases.

is different from Cooo.». sets, we show how, given a candidate set, one can

Let z(t) be the number of zeros in the bi_calculate other candidate sets with a smallen

nary numbert, e.g., 2(1010) = 2. By definiton constant time.

1<k<2 and0 < z < I. The behavior ofC

is interesting: ag increases the candidate set fora VI COMPUTING THE CANDIDATE SET

fixed ¢t remains invariant and equal to the candidate Figures 3, 4, 5, and 6 present an optimal algo-
set fork = 2, until some threshold valug*® after rithm for computing the candidate set given the
which it becomes empty. Simply put; , obeys an target stringt and k£, and again assuming a fixéd
all-or-none law. Recall that candidateSet is used in the Tiled Bitmap



7

/[ input: ¢ is a binary target number /[ input: ¢ is the modified bit pattern at each stage

I [ is the length oft I of the recursion
1l k is a function index forAND, Il p is the position of one of the zeros in
Il output:Cy ;, is an array of binary numbers I [ is the length of the bit representation fof
I (also created is an array of zer@, I Cy, array in which candidate granules
1: function candidateSet(unsigned intint [, int k) // are accumulated
2. Cyr < new array() /I output:C, ;, contains candidate granules (unsorted)
33 2«0 1: function generate(unsigned it int p, int [,
4.  Z < new array() array Cy 1)
5. fori«—1[—11t00 2. if p=—1 then C,;.append()
6: if t&(1<<i)=0thenz«— z+1 3 else
7: Z[l—i—1] « z 4: Cx < generate( rightmostp|, [, Cyx)
g if k <1Vk>2 then report NOT_DEFINED s: Cix < generate(+ (1 << (I —p—1)),
9. elseifk=1then C;p «— {t} rightmostp|, I, Cy )
10. elseif(z=0Ak>1)V(I>2>0Ak>2)6 return Cyy
1% then Ct,k —0 Fig. 5. The generate function.
12: elseif(l> 2> 0) A (2 <k <27) then
13: rightmost« createRightmost( /) /I input: z is the number of zeros ih
14: Cy < generatef rightmost{l], [, Cix)  // C,x is the result of generate()
15: Cyr, « funkySortg, Cix) Il output:C, ;. sorted in ascending order
16: return Cyy 1: function funkySort(intz, array C; ;)
Fig. 3. The candidateSet function. 2. sorted« new array()
3: indices«< new array()
/[ input: ¢ is the target bit number 4: indiced0] < 0
I [ is the length of the bit representationif:  int 7, offset power
/I output: the populatedghtmostarray 6: Offset— 0
1: function createRightmost(unsigned ifitint [) 7. power«— 1 << z
2: int 1,7, flag g fori—1to(l<<z)—1
3 j——1 0: if (i1&(:1—1)) =0 then
4. flag+— FALSE 10: power « power>> 1
5:  rightmost«— new array() 11: offset— 0
6. fori—1—1to—1 12: indicesi| < indicegoffset 4+ power
7: if flagthen j « [ —i—2 13: offset— offset+ 1
8: if t& (1 <<i)=0thenflag— TRUE 14 fori«—0to (1l <<z)—1
9: elseflag — FALSE 15: sorted:] < C .get(ndicesi))
10: rightmostl —i — 1] < j 16: return sorted

11: return rightmost Fig. 6. The funkySort function.

Fig. 4. The createRightmost function.
first start by looking at the candidateSet function

Algorithm. It generates the elements (bit patterns) (Figure 3) and discuss each different function as
the candidate set from the target pattepreserving we encounter it.
bit positions with 1s and creating combinations of The use of theZ array on lines 4 and 7 will be
patterns of 1s and 0s using the remaining positioagplained later in the discussion following Theo-
having Os. Finally, it sorts the patterns in ascendimgm 2. Lines 8-12 follow the result of Theorem 1.
order of their numeric values by using an interestinthen on line 13 the createRightmost helper function
linear-time sort. (An example of the candidate sét called (Figure 4) to preprocess the target binary
generation for our target éf= 1010 can be found in numbert and to fill the rightmostarray in order
Appendix G.) All arrays and strings use zero-based answer the “rightmost zero” query in constant
indexing. All parameters are passed by value. time. More specificallysightmos{p] is the index (bit
Let us now briefly examine this algorithm. Weposition) of the rightmost zero to the left of indgx



TABLE Il

non-inclusive. Within this function iterates ovet
CANDIDATE SETS FOR TARGETSt| = 4 WITH k = 2

from left to right (high-order to low-order bits). The

flag is required because we must remember what we ,\?J?j‘gﬁr Conl s
saw in the previous iteration: iflag = TRUE we : " "
saw a 0, otherwise we saw a 1. This rungafi). {0,1,2,3,4,5,6,7,
On line 14 (Figure 3) the generate function 0000 | 16 | 8,9,10,11,12,13,14,15}
. : lod. This i Ve functi 0001 8 | {1,3,5,7,9,11,13,15}
(Figure 5) is called. This is a recursive function 0010 8 [ {2.3.6.7.10, 11,14, 15]
which creates the candidate set elements. Given a 0011 4 | {3,7,11,15}
position p, which is a specific index in the zero- 0100 8 |{4,56,7,12,13 14,15}
based enumeration (left to right) of the binary . }2; }ig
numbert, it finds the index of the rightmost zero o111 > {715
to the left of p using therightmostarray. It first 1000 8 | {8,9,10,11,12,13,14, 15}
recurses on that index maintaining the same binary 18(1’3 j {?61}’1 1?74“%
number (line 4) and then sets the digit at position 01l T 3 }11’15’} 16}
to 1 and recurses on the same indightmostp| but 1100 4 | {12,13,14, 15}
with this new number (line 5). We can consider the 1101 2 | {13,15}
input target string as capturing all the=®) numbers iﬁ‘; g ém’ 15}

that must be generated during the recursion, so we
can consider the input size to be= 2:®, Also, at (-1

each recursive call the position of the zero procességM O the 8 can be created Iiy+ 2~ where.

is never revisited so the input size at each call %t) = 4. Then, 4 and 12 can be obtained by adding
essentially halved. Moreover, the amount of work (© €ach of 0 and 8. Then 2, 10, 6 and 14 are

. N \
done at each stage of the recursion is constémtamed by adding” to O, 8, 4, 12 respectively.

hence the formula that captures this recursion Ifénally, the last 8 numbers are obtained by adding

T(n) = 2T(Z) + ©(1). The solution of this formula 2 O the first 8.numb.ers.. This gxplains why at
is ©(n) so the running time of the generate functiof €MeNtS appearing at indices which are powers of
is ©(2°). However, a side-effect of this recursivé " the indices array, theoffsetis reset to zero

creation of the candidate set elements is that tﬁ@d thepoweris halved. O_n I!nes 14-15 (Figure 6)
elements are not generated in numeric order. we use the sequence of indices we created and the

On line 15 of candidateSet (Figure 3) we Caﬁ\ctual sorting happens. This pass over itndices

the sorting function. Even though the elements af&fay 'uns '.n@<2.z(t))' . “(0)
not sorted there does exist a pattern in the order! N€ running time O.f can(_:lldateSet(ii&(l+2 )
in which they are created. This funkySort functioﬂ_h_us the algorithm is optlma_l most_of the time,
(Figure 6) creates the sequence of indices whilf'ﬁ'ng the lower bound given in ZS(t()ectlon V, except
when used to index into thé,, array will result '°" the very few cases wheh> 277. In terms of
in the ordering of the candidate set elements. Thif3¢€ Sg)mplexny the algorithm given here requires
is achieved by performing a single pass over tl%a+2 ) space.
indicesarray and creating each new index by ma-
nipulating appropriately previous ones (lines 8-13)  VII. AN OPTIMAL CANDIDATE SET
within the funkySort function. ALGORITHM, GIVEN A SUMMARY SET

For example, with a binary target of= 10000, We define thesummary setas the set of all
i.e.,, 16 in decimal, after the generate functiocandidate sets of all binary numbers of length
finishes the candidate set will be”;, = Sip={Cir:VteB st |t| =1}
{16, 24,20, 28, 18, 26, 22, 30, 17, 25,21, 29, 19, 27, Forl = 4 and k = 2, the last column in Table Il
23,31} in this order. Examining closely the seprovides the elements &f, ,.
we see that in order to create trsorted array We now show that for fixed and givenS; ; one
we must recursively visit the first element otan calculate allSy ; s.t.I” < [ without resorting
each subsequent half @f, ;. Line 12 creates thisto the algorithm given previously. This allows us to
sequence of indices: 0, 8, 4, 12, 2, 10, 6, 14, 1, find the candidate set for a suffix gfwhenever we
5, 13, 3, 11, 7, 15. More specifically, by startinglready have the candidate set forThe technique



shown below can potentially be faster. We defineave a leading ‘1’ removed will produce identical
the candidate array denotedA, ;, to be an array numbers of length 3 to the truncated numbers in
which contains the elements @f,; sorted in as- the first half. Since the cardinality @40 is half
cending numerical value. Thenl, x[z : y] selects that of 440102, @nd since the two halves @10 2

all elements in the candidate array from indexo have the same elements after the truncation and by
y. (NB: A;x[i] = Aygli : i]). Also, for reasons of knowing that; A0 = [010,011,110, 111] we can
ease and precision we annotatewith the length verify that:

of the binary number whose value was previously

implicit, as a leading subscript. 3oz = [SUf_fbi (4A40010,2(0]), SUffiX(z;Aoomg[l]),
Given a candidate arrayA,, for a spe- Suffix (1 Aoo10,2[2]), Suffix (440010,2(3])]
cific target stringy, we wish to compute the = [010,011,110,111] = [2, 3,6, 7]

candidate array;_,A;, where ¢ is a suffix ) _ _
(I=ly|>1—x=]|tl >1)ofy. EachS,, captures .L(_at us conS|de_r a dn‘ferent example with the
all the candidate sets for all < I. This method Original target string beingy = 1010 and the
creates each element 6f ;. by exploiting the fact Same suffixt = 010 as before. In this case
that each of the binary numbers of lengthis 44102 = [1010,1011,1110,1111] all elements

a suffix of more than one corresponding bina?ecgssanly start with a ‘1’. Since removing the
number of lengtt . For example, the candidate ségading ‘1’ from y to get¢ does not affect the
Clo10,2 Can be computed from the candidate sets gember of zeros in the s.trlngs the cardlnalltlgs
01010, 001010, 101010 and so on. Leyy = p et = of the two candidate sets is the same. Removing

{0, 1}°¢ for some prefixp of lengthz. Let Suffix(s) (e leftmost ‘1’ from all the elements ofA 1105
denote the suffix of string starting at position. will yield directly the desired elements of the new

Let us look at some examples tgandidate set:
develop some intuition. GivenyAgp2 = 4 _ [Suffix (LA o). Suffix (, A )
0010,0011,0110,0111, 1010, 1011, 1110, 1111), we °~ **? [Sﬁ,‘(‘;l 101072[2])’8 ﬁ"i(z 1010,22]%
wish to compute;Agpo. Observe that = 010 uffix (4 A1010.2[2]), SUffiX (4A1010.2[3])]
is y = 0010 with the leftmost ‘O’ removed. = [010,011,110,111] = [2, 3,6, 7]

Rem_ovmg the leading ‘0" frony results In a string With these valuable observations we can now state
t which cannot encode any numbers in the range. theorem

3 4 ;
2‘ to 2 1. Thus the candidate array @f401072‘ Theorem 2:Assumey — p et — {0,1)%,
will have the same elements as the candidate _ oz(t) :

<x<l,0<z2(t)<l—=xandq=2*". Then:
array of 4A¢1102 except for the numbers encode

by the extra leading digit. We know that each ([ N/A, k> 2= (1)
additional ‘O’ present in the target string doubles [t] k=1 (2)
the cardinality of the candidate set, thus a removal /- 2(t) =0A1< k<277 (3)
of the zero will halve the number of candidate sét™*+ = Uo<icqSUffix (1A, o [1])],

elements. Observe also that the elements in the -1 >2(t) >0N2<k<q(4)
second half of,Ag10o have essentially the same \ (/- l—x>2(t) >0NEk>q(5)
bit pattern as the elements in the first half but with  Proof: Given in Appendix D. O

a ‘1’ at the leftmost position instead of a ‘0", e.g., The strategy for computing the candidate sets
1110 has the same bit pattern as 0110 apart frarsing this new method is given below. First we
the bit in the leftmost position. change line 9 of the original TileBitmap function
Thus in order to computgA,o . we can truncateé 9: Ciemp < candidateSetérget n, k)
the leftmost digit from all the elements in théo .
original candidate set. By removing the leftmost 9 Cremp < candidateSetCached(get n, k)
digit from each of the elements inAgpi02, We We introduce a list, cachg¢] of records
get 010, 011, 110, 111, 010, 011, 110, 111. THe,!,.k,.C,k, Z) which is updated with every
first half of the elements will have a leading ‘Ocall to the function candidateSet. Each such record
removed, something which will not change thestores the candidate set,; computed by the
numerical value, while the second half which wilfunction, the target numbey, the lengthl, of y,



10

/[ input: ¢ is a binary target number Il input: C, ;. is the original candidate set

Il [ is the length oft Il tstare 1S the bit position at which suffix
Il k is a function index forAND, Il starts iny
Il output:C; 4, a candidate set either computed // l, is the length of original target string
I anew or derived fronC I Z array fory

1: function candidateSetCached(unsignediint /I output: the candidate s€t,

int [, int k) 1: function candidateSetSuffix (arra§/, x,
Ustart < —1 int Totarts int k,
for i +— 0 to cache.length1 int [, arrayZ)

tstart < findSuffixcachei).y, t)
if tsiare > 0 Ak = cachéi].k then
return candldateSetSufflxc(achéz] ks

tstart, k, cachéil].l,, cachéi].Z)
7: return candidateSett( [, k)

Cy < new array)

lt — ly - tstart

2t Zy - Z[tstart - 1]

mask— (1 << ;) —

y — Cyl0]

t — y & mask

if K <1V k> 2" then report Not Defined
the parameterk, and the corresponding array else ifk =1 then C; «— {t}

for y. In order to achieve this, we change theO elseif(zx=0AN1<k<2t)vV

Fig. 7. The candidateSetCached function.

© O NSO DN

candidateSet function to store the candidate set in (le > 2> 0N k>2%)then Cyj, — 0
the cache, before returning it. 11: elseif(l; > z, > 0) A (2 < k < 2%) then
12: for i — 0 to 25 — 1
15: Ctx < funkySorte, Ct ) 13; C; x-appendC, ,[i] & mask

16: append¢ache (¢, 1, k,Cyi, Z))

14: return Cyy
17: return Cy

Fig. 8. The candidateSetSuffix function.
A new function candidateSetCached (Figure 7)
checks to see if a pre-computed candidate set whicHn addition, themask(Figure 8, lines 7 and 13)
can be used by this new algorithm, already existss used as a means of setting the figstoits of
Note thatt,,, is the index in the original stringeach original candidate set element to zero, which
y where the suffix starts. The running time of theis the equivalent in a sense of taking the suffix
candidateSetCached function(X! - cache.length of the corresponding binary string. For example,
which is the worst case running time for executindg the candidate set element i3, with binary
lines 3 and 4. The candidateSetSuffix function giveepresentation0010, and we want to take the suffix
in Figure 8 provides the algorithm for creating thetarting at index2, then themask= 7 (00111 in
new candidate sef}; from a cached candidate sebinary). Thus, by bitwiséANDing themaskand the
Cy k- element, we get10 = 2. Note that the masking
Since creating the candidate set fgrinvolves does not simply set the higher order bits to zero
scanning all ofy to find the zeros we can at thebut it truncates the number, i.e., the length actually
same time maintain an array which accumulates tlecreases. This is important because we seek to
number of zeros encountered so far during the scalerive from the candidate set 69010 the candidate
This array is theZ array which was created in theset of 010 and not the set fop0010. The latter is
function candidateSet (lines 4, 7). We can index intmpossible to derive in the way described in this
this array using the position which suffixstarts in section sinceCyyo10,2 i asupersedf Cigoio,2.
y and thus get the number of zeros in constant time.The “for” loop on line 12 dominates the running
For example, for; = 01101010 andt = 1010 given time of the above algorithm. Hence, the algorithm,
in terms ofty,, Which is the start position of inthe worst case, runs i@(2:®"), which is optimal.
in y, we can scarny from left to right and create However, we can do better by using a different
the arrayZ = [1,1, 1,2, 2, 3, 3,4]. This arrays gives representation for the candidate set of the suffix
the number zeros in every suffix of Thus,z(t) = Since the elements af, ; are contiguous elements
2(y) — Z[tstare — 1]. In this casety,,+ = 4, and so of C,  starting at position O then the candidate set of
2(1010) = 2(01101010) — Z[4 — 1] =4 — 2 = 2. t can be given as a range of values. This is achieved



11

just by maintaining a pointer to the positign-1 in VIIl. | MPLEMENTATION AND EVALUATION

the candidate array of marking the last element of .
Cy . Thus, only two numbersnask andq = 2, Elsewhere we have introduced the Monochro-

both of which can be computed in constant time, af@atic, the RGB, and Polychromatic Algorithms [7].
needed to capture the candidate set of any suffix/f algorithms employ the same approach of tamper
targety. To create themaskwe usel; (as seen on detection and forensic analysis by hashing transac-
line 5) which was computed from the input integefon data and periodically validating the resulting
taare ON line 3. Obtaining; is easy since we havehash chains. The main differences between the
already computed(t) on line 4. Thus, the first andalgorithms lie in the number of hash chains used and
last elements of the candidate set for the suffix cHIr structure. The simplest is the Monochromatic
be given asC,, ,[0] & maskand C, ;[¢ — 1] & mask Algorithm, which sequentially hashes all data to
respectively. This approach avoids the expensigeeate a hash chain that incrementally grows over

in O(1). nature of this chain has two consequences. First, it

It is preferable to use the candidateSetSuffu{nits the_de_tectio_n Of corruptio_n to a single event
Algorithm in one particular situation: to find thefIrlce periodic validations will yield a sequence of

candidate set for the suffix of whenever we success” results followed by a sequence of “fail-
already have the candidate set for Consider ure” results. The interface in the transition between

the following examples. Fof — 4 we want to these two sequences marks the site o_f the first
calculate Cyor0- and Coos. Crorer = 0 since (oldest) cc_)rruptlon. Sec_ond, the cumulative nature
Choto7] = 22 — 4 < k=7.Inthe case ofjg 5 We of the chain enables a binary search on the sequence
haves > A)=2>0and2"® =4 > k=3 SO of “successes” and “failures” to locate the transition

very quickly.
The RGB Algorithm augments the Monochro-
sAol0s = U [Suffix (4. A1010,2[7])] matic Algorithm by periodically superimposing
1<i<4 (non-cumulative) partial hash chains over the entire

_ U [Suffix [1010, 1011, 1110, 1111]] database. The name of the algorithm is derived from
the color-coding of the different partial hash chains.
In this case, the cumulative chain can be used to
perform binary search to quickly locate the oldest
corruption and then switch to using the “colored”
and thuCy;0 3 = {2, 3, 6, 7}. If we decide to use the partial chains to explore the rest (more recent part)
faster constant running time approach the result wif the database. This algorithm can detect up to two
be given asnask= 0111 andg = 2% = 4 and hence corruption events.
the first element inCoio3 iS 4A410102[0] & 0111 = The Polychromatic Algorithm retains the main
1010& 0111 = 010 = 2 while the last element isRed, Green, and Blue partial chains of RGB and in-
4Ar010,2[4 — 1] & 0111 = 1111& 0111 =111 = 7. troduces more Red and Blue chains to create groups
Assume that we are auditing a variety off chains similar to a tile. This has the advantage
databases, each with a particulavalue (for the that it can arbitrarily shrink the spatial detection
example in this papet, = 4). Within the forensic resolution by introducing dogarithmic number of
analyzer, we could pre-compute a summary daash chains as opposed to a linear number needed
for Imax Which is the maximum of thé values in RGB. The Polychromatic Algorithm, as with the
that were specified for the databases that wdré&sB Algorithm, can only detect only up to two
being audited. During forensic analysis of a speciftorruption events but could potentially be modified
database corruption, given the resulting target stritgy handle multiple corruptions.
and thel value for this particular database (with The Tiled Bitmap Algorithm introduced here can
I < Imay), this algorithm could calculate in constanbe thought of as a refinement/replacement of the
time the candidate set, which consists of all tHeolychromatic Algorithm. The new algorithm can
possible corrupted granules that could have yieldede the cumulative chain of the Monochromatic
that target number for that value of Algorithm (not elaborated on here). It extends the

1<i<4

= [010,011,110,111]



12

TABLE 1lI TABLE IV

RUNNING TIME COMPLEXITY OF FORENSICANALYSIS WORSTCASE COST/SPACE COMPLEXITY OF FORENSIC
ALGORITHMS ANALYSIS ALGORITHMS
Algorithm Ru(r}l;:ung Bme Algorithm (RCo:stl)
Monochromatic O(lg(D/Iv)) Monochromatic O(D)
RGB O(D/Iv) RGB O(D)
Tiled Bitmap | O((D -1glv)/Iv + D) Tiled Bitmap | O(D- (1 +1glv)/Iv)

300

Mono (P) —+—
Mono (A)
Tiled Bitmap (P) ---%---

idea of the RGB Algorithm of using partial chains, | s
and it refines the groups of hash chains of the
Polychromatic Algorithm.
The advantage of the Tiled-Bitmap Algorithm is
that it lays down aegular pattern(a “tile”) of such
chains over contiguous segments of the database.
What is more, it inherits all the advantages of thé wof
Polychromatic Algorithm: the chains in the tile form
a bitmap which can be used for easy identification =
of the corruption region, and a logarithmic number
of chains can be used to redufe. % bﬁumbemmwﬁ(é? 200 =
The other advantage of the Tiled Bitmap Algo-
rithm is that can ‘?'eteCt multiple corruption evem‘lﬁg. 9. The cost of the Monochromatic and Tiled Bitmap Alg¢jamis.
(up to D of them, i.e., all granules were corrupted)
something that the Monochromatic, RGB, and Polgs the number of contactwith the notarization
chromatic Algorithms cannot. On the other hand dervice during a specific duration of the normal
suffers from false positives while the previous thregperation of the system, i.e., whenever a part of
algorithms do not. (More information on the rate ofhe database is notarized or validated. The units
false positives of the Tiled Bitmap Algorithm can bef the cost are therefore number of notarizations
found elsewhere [8].) Table Il shows the runninglus number of validations. We chose to deal with
time for three of the forensic analysis algorithmgnly notarizations and validations occurring before
(the Polychromatic Algorithm is omitted becausgorruption or forensic analysis, because otherwise
it is replaced by the Tiled Bitmap Algorithm).the cost would be dependent on the number of cor-
We assume that the spatial detection resoluti@fptions. This would render the comparison unfair
R, is equal to 1 for simplicity. Observe that the&ince the Monochromatic and RGB Algorithms can
algorithms become progressively slower becausedHly detect a limited number of corruptions. More
the increased number of chains maintained affformation on the mathematical formulation of the
used during forensic analysis. The Monochromatiest can be found elsewhere [8]. It is desirable to
Algorithm, while being the fastest algorithm, sufferginimize this cost for each algorithm while trying
from the fact that only the first corruption evenp extract as much information possible. Table IV
can be detected. As noted the Tiled Bitmap Akhows the cost for each of the forensic algorithms
gorithm can be slightly optimized by retaining theissuming a spatial detection resolution of one hour
cumulative chain of the Monochromatic in order PR, = 1) and a single corruption event. In this case
locate the first corrupted tile by performing binarye observe the opposite trend compared to the one
search, although this refinement does not affect §8served for the running times of the algorithms.
asymptotic running time. For a sufficiently large validation interval, the
Recall that all algorithms rely on an externaliled Bitmap Algorithm has the smallest cost. This
notarization service in order to validate the audi$ because the ratidl + lgIy/)/I,, becomes less
log. However, each such contact costs real monéyan one.
Hence, we quantify the cost of the algorithms This quantification of cost also reflects the space

contacts)
N
(=3
o

ber of
»
(4
o




13

complexity of the forensic algorithms since each @frisen to provide solutions for these needs, moti-
the contacts with the external notarization servie&ated recently by Sarbanes-Oxley [13] and other
corresponds to a hash value (of chains) which mudaws requiring compliant record storage. In this
be initially computed (and re-computed for compacontext, a “record” is a version of a document.
ison during validation) and maintained within th@hese systems utilize magnetic disks (as well as
system. None of algorithms in Table IV require extreape and optical drives) to provide WORM storage
space over the collection of hash values themselvescompliant records. We wish to extend the concept
A 1250-line C code implementation is available aif compliant records to tuples of a table stored in a
http://ww. cs. ari zona. edu/ proj ects/ database management system.
t au/ t bdb/ . The code implements several forensic Computer forensics is now an active field, with
analysis algorithms, including the candidateSeter fifty books published in the last ten years.
and candidateSetSuffix construction algorithms, tiowever, these books are generally about prepar-
Tiled Bitmap Algorithm, and the Monochromatidng admissible evidence for a court case, through
Algorithm. This C code implementation uses thdiscovery, duplication, and preservation of digital
more efficient pass-by-reference for arrays amiidence. There are few computer tools for these
strings compared to the pseudocode given tasks, in part due to the heterogeneity of the data.
Section VI. All algorithms were tested extensivel{ne substantive example of how computer tools can
and their theoretical costs were experimentalle used for forensic analysis is Mena’s book [6].
validated. Appendix F provides proofs of Goodrich et al. introduce new techniques for
correctness for all functions introduced in thiasing main-memory indexing structures for data
paper. We also have developed several graphi¢glensics [3]. They encode authentication infor-
user interfaces which include a convenient visugiation in the way a data structure is organized
representation of the spatial and temporal extent(bt in the stored values) so that alterations can
of detected corruption(s). be detected. Their techniques are based on a new
Figure 9 shows the results of the experiment@duced-randomness construction for nonadaptive
cost validation for the Monochromatic and Tile&éombinatorial group testing, using message authen-
Bitmap Algorithms (the RGB Algorithm has notijcation codes (MAC) built using cryptographically
been implemented). The experiments used the fatrong, one-way hash functions. In the database
lowing setup:D = 1to 256, R; = 1, and Iy =8. context, we have introduced in previous papers the
Rather than using the cost formulas in order notati@fproach of using cryptographic hash functions to
(as given in Table V) to create the graphs, we usetect database tampering [10] and of introducing
more involved (and more accurate) cost functiorgiditional hash chains to improve forensic analy-
derived for each algorithm. Note that the cost plefis [7]. To the best of our knowledge there are
shows both the predicted forensic cost (denoted R other competing forensic analysis algorithms for
“(P)” in the plot legend) and actual cost V8.|Ueﬁigh-performance databases.
(denoted by “(A)” in the plot legend). The actual strachey has considered table lookup to increase
cost values were computed by inserting appropriaife efficiency of bitwise operations [11]. He pro-
counters in the C code implementation for thgides a logarithmic time/logarithmic space algo-
Monochromatic and Tiled Bitmap algorithms. Theithm for reversing the bits in a word. Our second
different types of symbols on the curves were adde@ghorithm requires only constant time, but the table
for clarity and correspond to a subset of the actugjust be of exponential space.
data points. As can be seen in Figure 9 the predicted=nymerating all solutions (pre-images) is a key
and actual cost for the two algorithms are essentiallyey in formal verification. Sheng and others have
identical. A more detail explanation of the derivegleyeloped efficient pre-image computation algo-
costs, and experimental comparisons between algghms [4], [9]. These algorithms are similar to the
rithms can be found elsewhere [8]. ones introduced in this paper in that they all enumer-
IX. PREVIOUS WORK ate qll possi_ble s_olutions. The formal ve_rification
' algorithms differ in that they are computing pre-
There has been a great deal of work on recorigages of a state transition network, rather than of
management, and indeed, an entire industry hggyise AND functions, as in our paper.



14

X. SUMMARY the

bounds on when the tampering occurred, and

providing additional forensic information, such as

Forensic analysis commences when a crime hag

direction of the tampering, i.e., whether the

been detected, in this case the tampering of;&ormation was back-dated or post-dated.

database. Such analysis endeavors to ascertain when
the tampering occurred, and what data was altered.

ACKNOWLEDGMENTS

Elsewhere we proposed several forensic analysisThis research was supported in part by NSF
algorithms [7]. The present paper expands upon thatnts 11S-0415101, 11S-0639106, and EIA-0080123

work by presenting theTiled Bitmap Algorithm and

with partial support from a grant from Microsoft

which is cheaper and more powerful than priaCorporation. The reviewers were very helpful in
algorithms. This algorithm employs a logarithmigmproving the presentation.

number of hash chains within each tile to narrow
down thewhenandwhat

Checking the hash chain values produces a binatyl
number; it is the task of the algorithm to com-
pute the pre-image of bitwisND functions of
that number. This produces andidate setwhich [2]
identifies all the potentially corrupted granules. We
showed that the running time of the algorithm is
linear in the length of time the database has been in
existence and linear in the size of the computed ca
didate set. We also note that previous algorithms d
not handle multiple corruption events well, whereas
the Tiled Bitmap Algorithm can independently an-[4]
alyze corruption events occurring both in different
tiles and multiple corruption events occurring within
a single tile. However, the Tiled Bitmap Algorithm
suffers from false positive results while prior algo-
rithms (Monochromatic, RGB, Polychromatic) do
not.

In the later parts of the paper we analyzedsg)
completely the behavior of the candidate sets and
developed an optimal algorithm to produce thesé!
candidate sets. We then introduced a constant-time
algorithm which is preferable in the case when
the target binary number is a suffix of another®
binary number for which a candidate set already
exists. Finally, we compared prior forensic algo-[9]
rithms with the Tiled Bitmap Algorithm, providing
a thorough space and time complexity analysis.
We discussed the implementation of the algorithni®]
and experimentally validated their cost. The Tiled
Bitmap Algorithm uses additional chains (which
incur a logarithmic runtime factor) to detect multiple11]
corruption events, while requiring fewer requests (Hz]
an external notarization server.

The ultimate goal is an algorithm that retains the
logarithmic performance (of the additional chains[ 3
of the Tiled Bitmap Algorithm while further simpli-
fying the analysis within a tile, furthering narrowing

3]

[5]

REFERENCES

CSI/FBI, “Tenth Annual Computer Crime and Security
Survey,” July 2005, http://ww. cpppe. und. edu/
Bookst or e/ Docunent s/ 2005CSI| Sur vey. pdf

(accessed April 16, 2009).

P. A. Gerr, B. Babineau, and P. C. Gordon, “Compliance th
effect on information management and the storage industry,
Enterprise Storage Group Technical Report, May 2003,
http://ww. enterprisestrategygroup. cont

ESGPubl i cati ons/ Report Detai |l . asp?Report| D=
201 (accessed April 21, 2009).

M. T. Goodrich, M. J. Atallah, and R. Tamassia, “Indexing
Information for Data Forensics,” iRroceedings of the Confer-
ence on Applied Cryptography and Network Secugringer
Lecture Notes in Computer Science 3531, pp. 206-221, 2005.
B. Li, M. S. Hsiao, and S. Sheng, “A Novel SAT All-Solutien
Solver for Efficient Preimage Computation,” Rroceedings of
the IEEE International Conference on Design, Automatiod an
Test in EuropeVolume 1, February 2004.

M. Malmgren, “An Infrastructure for Database Tamper
Detection and Forensic Analysis,” Honors Thesis, Unigrsi
of Arizona, May 2007htt p: // www. cs. ari zona. edu/
proj ect s/ tau/thbdb/ Mel i ndaMal ngr enThesi s. pdf
(accessed March 27, 2009).

J. Mena,Investigative Data Mining for Security and Crim-

inal Detection, Butterworth Heinemann, 2003.

K. E. Pavlou and R. T. Snodgrass, “Forensic Analysis of
Database Tampering,” iRProceedings of the ACM SIGMOD
International Conference on Management of Dapgp. 109—
120, Chicago, June, 2006.

K. E. Pavlou and R. T. Snodgrass, “Forensic Analysis of
Database Tampering,” ACNIransactions on Database Systems
33(4):Article 30, 47+25 pages, November 2008.

S. Sheng and M. S. Hsiao, “Efficient Preimage Computation
Using A Novel Success-Driven ATPG,” iRroceedings of the
IEEE International Conference on Design, Automation anst Te
in Europe Volume 1, March 2003.

R. T. Snodgrass, S. S. Yao, and C. Collberg, “Tamper Qete

in Audit Logs,” in Proceedings of the International Conference
on Very Large Databasespp. 504-515, Toronto, Canada,
September 2004.

C. Strachey, “Bitwise operationsCommunications of the ACM
4(3):146, March 1961.

U.S. Dept. of Health & Human Services, The Health Insae
Portability and Accountability Act (HIPAA), 199t t p: //
www. cis. hhs. gov/ H PAAGenl nf o/ (accessed April 16,
2009).

U.S. Public Law No. 107-204, 116 Stat. 745. The Public
Company Accounting Reform and Investor Protection Act,
2002.



15

APPENDIX Case (2)z(t) =0,k > 1

This appendix includes the proofs of all th?S'r'_C(alﬂt')nl ig tgebfsgg?;tsg:ggr%fng:pybt?iisls

theorems and lemmata mentioned in the paper . quire thatk (at least 2) binary numbers
Sections A through E. Section F is comprised of thee AN?Z)ed in order to produce. Su yose these
proofs of correctness for all the functions introduce b - =2Upp

in the paper. A worked example of the candidate Srélflmbers exist. Also, the formulation of the problem

eneration for the taragt— 1010 can be found in requires that they are all distinct. Then at least one
%ection G get= of them will have a ‘0’ as a digit becaudél---1

is the only number of length with no zeros. But

this implies that their image under tA&D function
A. Proof of Lemma 1 will also have at least one ‘0’ digit which contra-
Lemma 1:Cp = Cis if I > 2(t) > 0 and dicts the fact that the target binary numbehas

9 < k< 2 In other words. the candidate s (t) = 0. Therefore, no suctk numbers can exist.

. . . . .. hUSCH...Lk = ( for k > 1.
remains invariant given that the stated condltlonsCases (3) and (4) are closely related.

are rgf;'of_ Case (3) > 2(t) > 0 A2 < k < 2°0);
First we show that C;, C (2. Let Leggg: (1452\/;??)8;%5;2?'QZ(t)_
ANDy;((by,bg,...,b;)) = t for some t. Then ~ '

Here the target binary number has at least one
‘0’ and we require at least two binary numbers
to be ANDed in order to producé. Only binary
numbers which have at least as many ‘1’s, and at
the same positions, as the target string can achieve
this. Thus the positions of the ‘1’s are fixed and only
the positions with zeros in can have variations,
i.e., 1 or 0. This explains why the cardinality of
the candidate set i8*("): there arez(t) positions
(the number of zeros) and each can independently
take two values. Ifk exceeds the cardinality of
|Ci2| = 2% then we are trying to findi-tuples
which have a greater number of components than
the total number of distinct binary numbers in
C'2. This would force repetition in the components
and this by definition is prohibited. Thus no such
k-tuples can exist and’; » will be empty. O]

B. Proof of Theorem 1 The proof reveals a very simple characteriza-
tion for the candidate sets. A candidate set, in

bl,bg,...,bk c ka. Also, bl,bg,...,bk >t
becauset = min{C;,}. Consider the following
2-tuples:(by,t), (bo,t), ..., (b, t). If we apply the
AND, function to each 2-tuple the result is due
to the minimality oft which masks all other binary
numbers inC, ;. . Thus, all ofby, by, ..., b € Cyo.

Conversely, we show that,, 2> C;.. Given
a series of 2-tuplesby, bs), (b3, bs), -, (br_1,bg)
which are pre-images afunder the functiolAND,,
and thereforeb,, by, ..., b, € (2, we can create
the following k-tuple (by, ba, . . ., bx) Which is a pre-
image oft under theAND, function. The reason
for this is because bitwis&NDing is an associative
operation. Thusy, b, ..., b, € C; . Therefore we
have proved that’; , = C} 5.

Theorem 1: essence, comprises all the binary numbers which

{t) k=1 (1) have ‘I's at the same positions as the target

0 () =0Ak>1 (2) and have at least as many total number ‘1'stas
Cik = Cra#0,1>2(t) >0A2 < k<220 (3) Starting with our example target string= 1010,
0 1> 2(t) > 0Nk > 220 (4) all the elements inCipp will have the form

1..1.. where. could be 1 or 0. More specifically,

Proof: Cho102 = {1010,1011,1110,1111}. This explains
Case (L)k =1 why a binary string of all ‘1’s, denoted bl - - - 1,

We want to find the binary numbers that maptto appears in all the candidate sefs, (except its

In this casek = 1, i.e., the pre-image is unique anawn, i.e.,C4;..12), whereas, a binary string of all
not ANDed with another number to produ¢eThe ‘O’s, denoted by00---0, appears only in its own
function is essentially the identity function so theandidate set. (See also the discussion at the end of
candidate set is; ; = {t}. Section Il for more intuition on this.)



16

The proof also implies that the target binary num-  Proof:

ber will always be an element of its own candidate Case (1):
set, and actually the smallest such element, i.@he candidate set is not defined when we try to
t = min{C;,}. Other elements will have one omeduce a candidate set for a binary number of length
more ‘1’s in positions that have ‘O’s ify and thus [ — x given that the (original) is greater than the
will be larger thant. This puts a lower bound oftotal number of possible numbers that can be created
Q(2:®) on the creation of a specific candidate seatsing! — = digits, i.e.,2/~*. This is true since as
This is because one must spetid) time to create discussed at the beginning of the paper this would
all of the 25 combinations. force repetition of a binary number.

Case (2), Case (3) and Case (5):

C. Proof of Lemma. 2 These follow directly from the proof of Theorem 1.

_ Case (4):
Lemma 2:For k = 2, the candidate sets of allit js worth elucidating here the nature of the number
the binary numbers of lengthare unique. g. This number can be thought of as the cardinality
Proof: of the candidate set of the suffixq = 2:® accord-

Case (1): We have’,, and Gy, with t # #, ing to Corollary 1. It can alternatively be defined as
|l = |t'], and=(#') # =(t) wherez(t) andz(¢') are ; — (1/2:@)).",C, |, that is, it is the cardinality
the number of zeros of targetsand:’ respectively. of the candidate set of the original targesscaled
Assume without loss of generality thatt) > z(#').  down by a power of 2. This power of 2 is given by
Then, since both numbers have the same lengffa number of zeros present in the truncated prefix
there exists at least one position invheret has ;, Regarding; in this respect is consistent with the
a ‘0" and #' has a ‘1. Sincet’ has a ‘1" at that jts injtial assumption ag = 2:®. This is true since
position thenall the numbers in its candidate sef, — {0,137t = 2(y) = 2(p) + z(t), which in turn
will have a ‘1" at that same position. This is Nojmplies thatq = (1/22®)) . |,C, 0| = 22W)/22) =
the case with the numbers i@, ;, since they can 9=(t) ’
have either a ‘0’ or a "1’ at that position. Therefore \we prove case (4) by induction on. Define
Cia # Cy . proposition:

Case (2): We havé),; andCy » with t # ¢ and P(2) ¢ 1A = Ugeo [SUffix (1A, o[i])] for
both ¢ andt have the same number of zereg). (1— x> 2(t) >’0) A (2 <k q< 93(0)) and’q — 92(1).
This implies they also have the same number of 1's g5sis of induction: PFové;(l) is true.
since they both have the same length. However, i0& . — | Here the prefixp is a single
the two numbers to be different, there must exist gi; \we have thaty = (1/2°001)) . |,0, .| =
least one position in wheret has a ‘0’ and’ has a 2:) y = {0,1} ¢ t and we want té” prove
‘1. Using the same argument as before this impligg,; 1Ak = Uyer [SUffix (1A, [i])]. Thus,
that Cy» # Ci.a. T Ay = [Suffix (A, (1)), Suffix (1A, 5[2)), ...

_Given this lemma, fok: = 2, there gre2l can- - suffix (,A4,.2[q])]. What P(1) essentially claims is
didate sets of the binary numbers of fixed length in4t the new candidate array, A, , can be com-

.e.,|Spaf = 2. puted by simply selecting the firgt elements of
the candidate array4, , and removing the leftmost

D. Proof of Theorem 2 digit from each such element selected.

Theorem 2:Assumey = p et = {0,1}°, Case (i) Assume thap = 0 (this corresponds

0<a<l,0<z(t)<l—xandg=2"". Then: to the example, given in Section VII, of deriving
T - ' " 3Apwe from 4Ap02). With respect to this first

[ N/A, k> 2i-= (1) digit of the target binary string/ we can divide
[t] k=1 (2) the elements of its candidate array into two groups:
a - (/A 2(t)=0A1< k<2=® (3) those which have a ‘1’, and those which have a
I—e Ttk = Uo<icq[SUffix. (1A, 2[i])], ‘0’ at that leftmost position. Due to the way these
l—x>2(t)>0A2<k<q(4) elements are created, resulting in the elements of
/. l—x>2z(t)>0Ak>q(5) thecandidate array being sorted in increasing order,

\

the elements with a ‘1’ for a leftmost digit must all



17

—@r)Av e = (—a)-14vk apply basis of induction

. ) . 1
= U [Suffix (1_z Ago,13e 2[1])] whereg = W|l—xc{0,l}t’,2|

0<i<qg

= | [suffix(1_,Aj1yr[i])]  candidate set is invariant whén< 2+(*)
0<i<qg

= | [suffix (1, Ay [i])] since{0,1} ot/ =1¢
0<i<qg

= | Isuffix(( | [Suffix (;A,2[5])])[i])] by inductive hypothesis
0<i<q 0<j<q

= | I | [suffix(Suffix.(;A,»[j)])]i])]  the suffix and union operations commute

0<i<q 0<j<q

= | [Suffix(Suffix, (.4, 2i]))]

0<i<q

= U [SUfﬁ)&_i_l(lAy,Z [Z])]

0<i<q’

Fig. 10. The inductive step of Theorem 2.

appear after those with a ‘0’ at the same positiom the first half. This is the reason why; A, ;. will
Depending upon its position, each digit encodemmprise the suffixes starting at position 1, of the
the numbers in the rang&~! to 2 — 1 wherei elements in the first half (i.e(1/2) - [,C,2| = q)

(1 <4 <) is the position of the digit numberingof the numbers in the arrayl, .

the §tring from right to Ieft..So by removing the case (i) Assume thap = 1 (this corresponds
leading ‘0" from y results in a stringt which 5 the example, given in Section VI, of deriving
c?nnot encode any numbers in the rarije' to 340102 from 4Ai010). In this case the situation is
2" — 1. Thus the candidate array ofiA;, Will simpler since all the elements jn,;, can only start
have the same elements as the candidate array,@h 3 ‘1. Since the number of zeros inremains
Ayr = 1Ay2 except for the numbers encode@inaitered {(p) = 0 = 2(y) = z(¢)), this implies

by t_h_e extra I_eadlng digit. But we know thgt eacfhat li-1Cix| = |:C, |- Thus removing the leftmost
additional *0" introduced doubles (the position cagigit from all the elements ofi A, will yield

be filled by a ‘0" or a ‘1’) the count of numbers thajirectly the desired elements of the new candidate
can be encoded which implies removing a ‘0’ wilket since each of the truncated elements will have
halve the count of numbers encczdaejp) — 1 = the same numerical value as their binary number
f(t) = z2(y) = 1 = [11C| = 220 = 2271 = oo nterparts of length with a ‘0" at the leftmost
311Cy k|- Thus the two groups of elements mentiongghsition. Again the new candidate array A, ; will

in the beginning will be equinumerous: the elemen&%mprise the suffixes starting at position 1, of the

in the second half have essentially the same hit (1 /50y . li_1Cy.x|) first elements (in this case all
pattern as the elements in the first half but with them) of Ay .

a ‘1’ at the leftmost position instead of a ‘O : .
By removing the leftmost digit from each of the Inductive step: Prove thaf(z) — _P(‘T +1)
elements inA, ;, the first half will have a leading We assume that ; A, = U<, [Suffix 1Ay 2[i])],
‘0’ removed, something which will not change theiwhere ¢ = (1/2*®) . |,C,,|, and y=pet
numerical value, while the second half which wil= {0,1}*¢ is true and seek to use this
have a leading ‘1’ removed will produce identicainductive hypothesis to prove_ nAv, =
numbers of lengthl — 1 to the truncated numbers o<, [Suffix_ (A, [i])] where {0,1}t' = ¢t =

y = {0,1}°t = {0,1}*{0,1}¢ = {0,1}*F¢,



18

and ¢ = (1/2*@+{01)) . |,C,,|. The inductive positions asa; does, in order to mask any ‘1l
step is shown in Figure 10. By the first principldas at those positiongl; should also have a ‘1’
of mathematical induction the initial proposition isvherevera; does, so that the ‘1’is preserved after
true. [1 the AND operation. Note that if;; has a ‘1’ at a
certain position we are guaranteed to have a ‘1’ at
the same position in; because will have a ‘1’ at
that position (as discussed previously). All the rest
Candidate sets also exhibit the following fungf the i — 2 binary numbers can be created fr@lsn
damental property: they are related (specificallnd there are enough of themr®) — 1 (the ‘—1’
through set intersection) to the candidate sets of tRethere because we are excludiagitself) where
constituent binary numbers that combine (througfs,) is the number of zeros in;. We are given
logical OR) to form the target. that & < 2°® and sincew + z(a;) = = + 2(t) = I
Theorem 3:LetCyy,t € B, anday, az,...,am € andz > w thenz(t) < z(a;). Thus,k — 2 < k <
B s.t.\/]_ a; =t for somem < 2 and let also 2: < 2:(@) = k —2 < 2:(@) — 1. This implies

E. Proof of Theorem 3

2 < k< 2*® Then: that each of thé; is an element of each of thg, .
m and therefore an element of their intersection. Thus,
Ct,k = C(\/'":1 ajk — m Caj,k C\/m:1 aj,k < m;ﬁ:l_c‘l]”{“'

! =1 Backward = direction <: Conversely, let

Proof: b € (2 Con Then (b € Cop) A (b €
Forward direction—: Cayk) N ... (b € Cy, x). This implies thatb has
Let ANDy((by,bs,...,b,)) = t. This implies a ‘1’ at the same positions ag, b has a ‘1’ at
bi,be,....brp € Cix. We need to show thatthe same positions as and so on untik,,. Thus

bi,by, ... b € ﬂ;”zl Cy; - By definition we know the fact thatb belongs to all the candidate sets of
thatb Aba A. . .Ab, = t. However, we are also giventhe a;s, fixes the positions of the ‘1’'s while the
that \/7"  a; = t. Thus,\/]" a; =t = AL, b remaining positions could be ‘0’ or ‘1. Thus
Therefore, we must prove that for eveby (1 < captures a certain set of numbers. Now, consider
1 < k) there exists a series @f— 1 distinct binary \/;7“:1 a; = t. We know thatt, as a result of alOR
numbers (and different fromd;), di,ds,...,d,_; operation, will have a ‘1’ wherever at least ong
such thatb; A dy Ads A ... Ndy_y = a; = has a 'l at that position, and a ‘0" wherever all
bi,di,dy, ... ,dr_1 € Cq,, for eacha;,1 <j <m. a;s have a ‘0’ at that position. The candidate set of
In other words, each one of thigs must appear in targett comprises all the numbers which have a ‘1’
the pre-image of each one of thes. at the same position asand at least as many ‘1's
We proceed to show how to produce all thast, i.e., wherevert has a ‘0’ the pre-images can
requisiteb;, di, ..., dx—1 given a specifid; anda; have a ‘0’ or a ‘1’. But this is exactly the same set
pair. Let x be the number of ‘1’s in the binaryof numbers captured by sob € C, . Therefore,
numbert, y be the number of ‘1's in a specificCym 4, 1 2 2, Ca, k- O
b;, andw the number of ‘1’'s in a specifia;. Then This lemma provides a pleasing symmetry be-
y > x sinceb; must have at least the same number bffeen the logicalAND in the definition of the
‘1's, and at the same positions, as the target numleandidate set and the logidaR used above to form
t. This is true for allb; since for a ‘1’ to appear at athe target.
specific position irt thenall the binary numbers;,
which whenANDed produce, must have a ‘1’ at F- Proofs of Correctness
the same position. Likewise; > w sincea; must In this section we provide proofs of correctness
have at most the same number of ‘1’s as the tardet the various algorithms proposed. To make this
numbert. Again, this is true for allu; since for a easier, Figure 11 shows the dependency graph be-
‘1’ to be preserved at a specific positiontiat least tween the functions implementing the Tiled Bitmap
one of thea; must have a ‘1’ at that same positionAlgorithm. A directed edge from nodé to nodeB
Using the observation above we begin with some interpreted as “functiotd (may) call(s) function
b, and pickd; to be a;. This works because weB.” We will provide the proofs by considering the
want a numberd; which has a zero at the saméunctions in a bottom-up fashion.



19

Tiled_Bitmap

tlp] = 1 and for all digits to the left ot[p]: if the
digit of ¢ is 1 it stays as 1 in the enumeration, and if
the digitis O itis either O or 1 in the enumerationl

candidateSet candidateSetCache{d

Lemma 5:The funkySort function (Figure 6),
given Cy;, resulting from the generate function,
\ \ returns the array sorted in ascending order.
createRightmos* ‘ generate‘ ‘funkySort‘ ‘ candidateSetSuffi% Proof: The sort is “funky” because it is
linear and is based on the particular way generate()
Fig. 11. The dependency graph of the functions implemeritieg enumerates t.he element§ 61’]‘3' As discussed in
Tiled Bitmap Algorithm. Section VI this function first computes an array of
indices (lines 8-13), which requires linear time, and
then simply scans the indices array to arrive at the

Lemma 3:The createRightmost function (Fig-sortedC', also requiring linear time. O
ure 4), given a binary target of length [ creates

an array namedghtmostof size/ + 1. An element : . :
Y J - ure 8), given a candidate s€t,; and the index

rightmos < < 1) is the index of the . , 4

rightmosEpLe(g) int Zt)o ?he)left of indexp (in £), tstart ‘at which the suffixt starts iny, computes the

non-inclusive. If such an index does not exist or I%andldate.seCt,k. : , , :

not defined, themightmosty] = —1. _ Proof: T_he candldateSetS_ufflx algorlthm is a
Proof: At position p we need to know the direct tra_nslatlon of Theorem 2 into code. Line 8 of

position O'f the rightmost zero to the left of the function corresponds to case (1) of the theorem.

Hence, we scan the target from left to right an ine 9 corresponpls to case (2), line 10 to cases

mark in rightmostp] (where p — [ — i — 1) the ) and (5), and finally, I_mes 11-13 correspond t(’)

index ;7 at which we observed the latest zero. The oo (4). The mathematical proof of the theorem's

use of theflag variable is required because Wgorrectness can be found in Appendix D. =

need to remember in the next iteration what digit | emma 7:The candidateSet function (Figure 3),
we saw in the current iteration (lines 8-9). If Wgjiven a target numbet computes”, , in ascending
saw a zero (line 7) the value gfis updated and g ger. ’
stored inrightmosfp]; otherwise the previous value  proof: The first part of the function is a direct
is used (line 10). Note that on line 8 during thgansiation of Theorem 1 into code. Line 8 of the
iteration for which: = —1, the left shift amount in code is correct by definition of the Cartesian product
the conditional becomes negative (i.e., the valuejigsection V. Line 9 of the code corresponds to case
shifted to the right). This does not affect correctneg$) of the theorem. Lines 10—11 correspond to cases
since this is the last iteration. L) (2) and (4), and lines 12—15 correspond to case (3).
, , The mathematical proof of the theorem’s correctness
.Lemma.4:The generate funct|.o.n (Figure 5)can be found in Appendix B.
given a binary target and a position of one of e correctness of createRightmost is established
the Os int, enumerates’; s, that is, all2* binary i, | emma 3. The correctness of generate is guaran-
numbers derived from. . teed by calling the function witlightmos{i] and by
Proof: For an arbitraryp and¢ the function | emma 4, The function funkySort guarantees that
creates two subsets df,. The first subset is ¢, is sorted by Lemma 5. Given the correctness of
created by the recursive call on line 4 and comprisg algorithms this function depends on, calling the
all the elements which havélp] = 0 and for all fynctions createRightmost, generate, and funkySort

digits to the left oft[p]: if the digit of ¢ is 1 it stays (lines 13, 14, 15), in that sequence, candidateSet
as 1 in the enumeration, and if the digit is 0 it igie|ds the desired result. O

either 0 or 1 in the enumeration. These two cases

correspond to lines 4 and 5 in the recursive call. Lemma 8:The candidateSetCached function
The second subset is created by the recursive déligure 7), given a target numbeérand acache

on line 5 and comprises all the elements which hatleat was previously computed on line 16 of the

Lemma 6: The candidateSetSuffix function (Fig-



20

Tiled_Bitmap
t=1010

y candidateSet

iterate

createRightmost generate funkySort
—a —101 iterate
iterate p=3 )t—/1010\\ — =
! ) . indicess [ 02| 1|3
t=]1]0f[1]0] P=1! 1010 1011
1 3 I

pe _1} 10:; II].O 10,1/1 \Illl sorted = ’ Ct,.[0] | Ctz[é] | Cio[1] | Ctz?‘?’] ‘

Cio= [10]14 11 18 sorted=| 10 | 11 | 14 | 15|
o 1 2 3

rightmost= E

- --
B
N
® |
~lw

Fig. 12. Example of generation of the non-trivial candidsé for targett = 1010 with no cache available.

candidateSet function (Section VII), returns theandidate set({...,) is correctly computed, the
candidate sef’; , either computed anew or derivedyranules are renumbered to reflect their global po-
from C, . sition (line 11). O

Proof: In this function we assume that the
start of the suffix can be computed correctly bg. Example of Candidate Set Generation
findSuffix(not given). If the suffix exists thefu.w  This section describes the creation of the candi-
will be greater or equal to 0 so the only task leffate set for the specific target= 1010, illustrated
is to decide (depending on the associated with j, Figyre 12. We assume here the candidate set

the cachg whether to call the candidateSetSuffix Ofaeds to be created from scratch. i.e.. we are not
the candidateSet function. Given that the two fU”EreaIing with a trivial case and a cache does not

tions are correct by Lemmata 6 and 7, respectivelyisi The rectangles in the figure denote functions
candidateSetCached yields the desired resultl] whose name appears above the box. The solid-

_ _ _ ~ tipped arrows in the figure denote function calls
Theorem 4:The TiledBitmap function (Fig- while the open-tipped arrows denote a correspon-
ure 2), given a time of first validation failure, returgence between numbers or the direction of iteration.
the set of possible corrupted granules. Initially, the targett = 1010 is constructed by
Proof: The function iterates through all tilesthe TiledBitmap function and then is passed to
(line 4) and checks each tile ending at timef it candidateSet. Within candidateSet thearray is
is corrupted or not (line 5). If it is, TileBitmap created (lines 5—7 of Figure 3) by inspecting the bits
either calls candidateSet (line 9, Figure 2) or cam the target from left to right and marking at each
didateSetCached (replacement line 9, Section Vpsition in Z how many 0Os have been encountered
so that the candidate set is generated. Once thas far. At index O the value i¥ is O because at



21

the same index O in the bit is not O but 1. On the sorted order.

other hand, at index 1 the value inis 1 because For this reason, candidateSet calls the function

at index 1 int the bit is 0. For this reason, the lastunkySort. The funkySort function first creates an

element inZ is equal to the number of zeros in array {ndice9 by staring from 0 and adding succes-

and this count (in this case, 2) is stored in variable sively decreasing powers of 2 (starting fratfr ')
The value inz is used throughout the generatioto the results of the addition just produced (see

of the candidate set (as witnessed in the pselso Section VI). The elements of tiedicesarray

docode). However, thg array itself is only used in when used to index int@; » produce in thesorted

the candidate set generation algorithm employimgray the sorted elements of the candidate set. In

a cache and therefore will not be discussed froour example, theandices array is constructed by

here on. starting with 0 then addin@=~! = 2! = 21t0 0
The createRightmost function is called by candie get 2. Then addin@’ to 0 and 2 in order to

dateSet in order to construct thightmostarray. The create the indices 1 and 3. Then iterating through

function iterates from right to left checking again fomdicesfrom left to right and using the values 0, 2,

zeros and remembering at the current iteration/indéx 3 to index intoC; , accomplishes the sorting in

i the bit value in the previous indéx- 1 (during the sorted= {10, 11, 14, 15}. This works because of the

previous iteration). The index of the most recentlyarticular way the generate function enumerates the

encountered zero is stored in the curraghtmost candidate set elements.

index. This is becauseightmost:] gives the index

of the rightmost zero to the left of index non-

inclusive. The value -1 is stored if such an index

is not defined. Thus, in our examplightmos{0] =

—1 because at[0] there aren’t any bits to the left

of it and hence the index of the rightmost O is not

defined. Similarlyrightmos{l] = —1 because at the

same index/bit position 1 im the only number to

the left of ¢[1] is the 1 att[0]; hence no rightmost

zero is defined. On the other hand, at index 2 in

a rightmost zero to the left of2] is defined, viz.,

it is the zero at index 14[1] = 0. Hence the index

1 at which the zero appears in is stored at index 2

in the rightmostarray. Note that in order to avoid

failing to register the index of the last zero (i.e., 3)

the iteration has to go one step beyond the last bit

of t.
Using therightmost array and the target the

candidateSet function calls the recursive function

generate. In Figure 12 the rectangular box of the

generate function shows the results of the recursive

calls in the form of a binary tree. At each level in

the tree the indey of the zero under consideration

is given to the left of the tree and at the same time

marked over the position of the binary number with

a solid black dot. Recall that at each recursive call

the new index’ is the value stored atghtmos{p).

The terminating condition is satisfied when the

index p is not defined, i.e.p = —1. The leaves

of the binary tree are the elements of the candidate

set which are shown in decimal form in tit -

array. Clearly the elements are not enumerated in



