
Adding Temporal Constraints to XML Schema
Faiz A. Currim, Sabah A. Currim, Member, IEEE, Curtis E. Dyreson,

Richard T. Snodgrass, Senior Member, IEEE,

Stephen W. Thomas, Member, IEEE, and Rui Zhang

Abstract—If past versions of XML documents are retained, what of the various integrity constraints defined in XML Schema on those

documents? This paper describes how to interpret such constraints as sequenced constraints, applicable at each point in time. We

also consider how to add new variants that apply across time, so-called nonsequenced constraints. Our approach supports temporal

documents that vary over both valid and transaction time, whose schema can vary over transaction time. We do this by replacing the

schema with a (possibly time-varying) temporal schema and replacing the document with a temporal document, both of which are

upward compatible with conventional XML and with conventional tools like XMLLINT, which we have extended to support the temporal

constraints introduced here.

Index Terms—Cardinality constraint, key constraint, referential integrity, temporal data, XML validation, XML Schema constraint.

Ç

1 INTRODUCTION

AS with prose documents, spreadsheets, presentations,
and data in a database, XML documents also are

changed over time. Also, as with these other kinds of
documents and as with data in a database, users often
would like to retain past versions of XML documents, for
several reasons. One, those past versions may contain
useful historical information. Second, various laws such as
the Sarbanes-Oxley Act [1] require that for data that appear
in financial reports drawn from prior versions, that those
versions be retained for a stated period of time. Third,
retaining past versions allows previously written reports
using that data to remain consistent, even if new versions
are subsequently added. With XML becoming more
prevalent as both a transmission encoding and a document
encoding format, it thus becomes important to retain prior
versions of an XML document. And indeed, a rich literature
on this subject has emerged [2].

Given the existence of such prior versions, one then can
ask, what of the various integrity constraints defined on that
document? How can such constraints be generalized to
apply not just to the current version, but across the entire

history of the XML document? And how can new, explicitly
temporal constraints be defined? Finally, how can all this be
managed effectively over schema changes, which are a fact
of life in complex enterprises?

As a motivating example, consider a simple scenario in
which a user specifies a conventional schema (Listing 1).
The root of this schema is the <company> entity. Under
that, there are <emps>, <products> and <suppliers>.
The <emp> element has the subelements <name> and
<SSN>, and attributes ID and email. An <order> is a
subelement of <supplier>. Note that the schema includes
cardinality constraints (e.g., <minOccurs>, <maxOc-

curs>), a uniqueness constraint (<unique>), and a
referential integrity constraint, linking an <order> product
number to a <product> element.

The user creates an initial XML document conforming
to the schema (Listing 2) on 2010-01-01. Together, these
documents form a conventional system which can be
validated with conventional validation tools (e.g.,
XMLLINT [3]).

So far, the extensive infrastructure around XML applies.
The user has defined a schema and a document, and has
validated that document against the schema, and all is right
in the world.

On 2010-03-17, the user corrects the email attribute in
the conventional document to produce a new version stored
in a new file (Listing 3). Subsequently, on 2010-10-01, a
change in email formats leads to another change in the
email (Listing 4). The user can validate these documents
against the schema. In particular, it is reasonable to assume
that the user intends the constraints specified in the schema
to apply at each point in time, i.e., data.xml, da-

ta.2.xml, and data.3.xml must independently satisfy
the stated integrity constraints.

We note a couple of difficulties that now arise. First, the
user must manually keep track of the relationships between
the versions of the document. Nowhere does it say
explicitly that data.2.xml is in any way related to
document data.xml. Second, we have to now rely on the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012 1

. F.A. Currim is with the Department of Management Information Systems,
University of Arizona, 430 McClelland Hall, 1130 E Helen St., Tucson,
AZ 85721. E-mail: currim@email.arizona.edu.

. S.A. Currim is with the Institutional IT Applications, University of
Arizona, UITS, 1077 N. Highland, Tucson, AZ 85721.
E-mail: scurrim@email.arizona.edu.

. C.E. Dyreson is with the Department of Computer Science, Utah State
University, 4205 Old Main Hill, Logan, Utah 84322.
E-mail: curtis.Dyreson@usu.edu.

. R.T. Snodgrass and R. Zhang are with the Department of Computer
Science, University of Arizona, 711 Gould Simpson, PO Box 210077,
Tucson, AZ 85721-0077. E-mail: {rts, ruizhang}@cs.arizona.edu.

. S.W. Thomas is with the School of Computing, Queen’s University, 156
Barrie Street, Kingston, ON K7L 3N6, Canada.
E-mail: sthomas@cs.queensu.ca.

Manuscript received 21 Dec. 2009; revised 14 June 2010; accepted 11 Feb.
2011; published online 18 Mar. 2011.
Recommended for acceptance by B. Cui.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2009-12-0856.
Digital Object Identifier no. 10.1109/TKDE.2011.74.

1041-4347/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

underlying file system to keep track of the dates. If we copy
data.xml to a new directory, that date will be lost. Third,
while we can validate each version separately against
company.xsd, there is no way in conventional XML
Schema to express constraints across multiple versions. As
one example we will return to later, we cannot state that a
product number should never be reused later with a
different product. Finally, if the schema is also time varying,
that is, if there are multiple versions of company.xsd, our
job of maintaining the integrity of the document becomes
even more challenging.

Our design of an upward-compatible extension of XML
Schema, �XSchema [4] addresses the first two concerns
emphasized in the previous paragraph. �XSchema supports
temporal documents that vary over both valid and transac-
tion time [5], [6], [7], whose schema can vary over transaction
time [8], and for which validation is a simple process (to the
user) of checking a time-varying document over a schema,
which itself is a time-varying document [9], [10]. Related
work has formalized language primitives required for
managing schema versioning with �XSchema [11].

Listing 1. company.xsd
The challenge addressed by the present paper is how to

accommodate both conventional XML integrity constraints,
including the identity, referential, cardinality, and data type
constraints illustrated in Listing 1, as well as new temporal

constraints, across such time-varying schema and data
documents. (This schema is very simple, but is sufficient for
illustrating both how conventional constraints are applied
to time-varying documents and how new temporal con-
straints can be usefully defined.)

After examining related work briefly, we give a quick
overview of the goals of �XSchema and outline its approach
in Section 3. In short, a single temporal document (with time
stamps at various locations specified by the user) replaces
an entire sequence of versions and a single temporal schema
replaces a sequence of versions of conventional schemas.
Section 4 summarizes the syntax and semantics of those
constraints that can be defined within conventional XML
Schema, while Section 5 provides the necessary background
to understanding their temporal extensions. Section 6
provides the core contribution of this paper: a detailed
examination of how each kind of constraint in turn can be
supported and extended to apply to time-varying data. We
then examine the implications of schema versioning
(including changing the constraints themselves!) and the
expressiveness of �XSchema. We end with implementation
details and an evaluation of our approach (Section 9).

Listing 2. data.xml

Listing 3. data.2.xml

Listing 4. data.3.xml

2 RELATED WORK

Capturing the time-varying nature of web-resident data has
been actively researched over the last few years. This area of
research has covered a wide range of issues that include
architectures to represent changes [12] and collect docu-
ment versions [13], strategies for storing versions [14], and
strategies to retrieve temporal data that are stored as XML
[12], [15], [16]. However, enforcing temporal constraints in
XML has not been researched previously.

We focus on effectively validating a document while
enforcing temporal constraints. Within a document, one
may specify a variety of constraints. At the schema level, we
want to specify which parts can vary with time and

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012

consider how schema changes impact our ability to capture

time and validate the document. On the instance level, we

want to constrain how the parts vary, which requires new

variants of uniqueness, referential integrity, cardinality, and

data type constraints.
Most of the topics discussed in this paper have been

previously considered in the context of temporal relational

databases [17], [18], [19]. For example, Chomicki has done

extensive work in formalizing temporal constraints using

first order logic and applying it to databases [17], [20], [21].

Schema versioning has also been researched in the context

of temporal databases [22], [23]. Unlike a relational database

schema, an XML schema is a grammar specification so new

techniques are required.
Prior work in conceptual modeling for temporal data-

bases has considered extensions to identity [24] and

cardinality [25] constraints. Also in the area of conceptual

modeling grammars, description logics have been proposed

to represent and reason about a variety of temporal

constraints [26]. While there are some parallels between

conceptual modeling grammars (e.g., ER or UML) and XML

Schema, constraint definitions for conceptual grammars

naturally focus on constructs such as entity classes, attributes,

and relationships. Thus, a distinct set of semantics and syntax

is required to handle temporal constraints for XML Schema.
Although various XML schema languages have been

proposed in the literature and in the commercial arena, none

of the approaches provide a systematic approach to encoding

time-varying data in XML across schema changes nor to

expressing and enforcing integrity constraints over such

data. This is where our research makes its contribution.

3 LANGUAGE DESIGN

We first summarize briefly the design of �XSchema. We

start with some relevant terminology.

. Conventional Document: An XML document that has
no temporal aspects.

. Temporal Document: An XML document that repre-
sents a sequence of conventional documents (i.e.,
slices). It has the root element <temporalRoot>.

. Conventional Schema: An XML Schema document
that describes the structure of the conventional
document(s). The root element is <schema>.

. Slice: A version of a temporal document at a given
point in time. For example, if a temporal document
is comprised of two conventional documents d1 and
d2, which occur at times t1 and t2, respectively, then
the slice at time t2 is d2.

In augmenting XML Schema to accommodate time-
varying data, we had several goals in mind. At a minimum,
we desired that our approach exhibit the following benefits.

. Simplify the representation of time for the user.

. Support a three-level architecture to provide data
independence, so that changes in the logical and
physical level are isolated.

. Retain full upward compatibly with existing stan-
dards and not require any changes to these
standards.

. Augment existing tools such as validating parsers
for XML in such a way that those tools are also
upward compatible. Ideally, any off-the-shelf vali-
dating parser (for XML Schema) can be used for
(partial) validation.

. Support both valid time and transaction time at a
logical level; each dimension is treated orthogonally.

. Support instance versioning.

. Support schema versioning. Different versions of a
document may conform to different versions of a
schema, as both a document and schema are
modified over time. Support for schema versioning
will ensure that the schema’s history can be kept and
correctly utilized.

The interaction between the temporal schema and its
constituent conventional schemas and related tools is
depicted in Fig. 1. We note that although the architecture
has many components, only those components shaded in the

CURRIM ET AL.: ADDING TEMPORAL CONSTRAINTS TO XML SCHEMA 3

Fig. 1. Overall Architecture of �XSchema.

figure are specific to an individual time-varying document
and need to be supplied by a user. New time-varying
schemas can be quickly and easily developed and deployed.

We now continue the motivating example given at the
beginning. We have shown how a conventional document
recording information about a company is edited over time,
creating a sequence of conventional documents. Each
conventional document is intended to conform to a
conventional schema.

We start with a conventional schema (Listing 1, box 3 in
the figure) and three documents, the original (Listing 2) and
two subsequent versions (Listings 3 and 4, identified in the
figure as “Conventional XML Data,” box 7). These numerous
files give us a hint at the complexities that arise as the
versions mount and as the schema changes as well (note that
there may even be multiple versions of the base schema).

To more easily manipulate these many versions, the user
would like to define a “Temporal Schema” (box 4) with the
base schema as a component. The two other components are
“Logical Annotations” (box 5) and “Physical Annotations”
(box 6). The logical annotations specify a variety of
characteristics such as whether an element or attribute
varies over valid time or transaction time, whether its
lifetime is described as a continuous state or a single event,
whether the item itself may appear at certain times (and not
at others), and whether its content changes. Most relevant
for our purposes are temporal constraints, which can be
inferred from the constraints in the base schema or which
are explicitly specified as logical annotations. We’ll get into
the means of specifying such annotations in Section 6.

Physical annotations specify the time stamp representa-
tion options chosen by the user. These annotations define
where the physical time stamps will be placed (versioning
level). The location of the time stamps is independent of
which components vary over time (as specified by the
logical annotations). Two documents with the same logical
information will look very different if the location of the
physical time stamp is changed.

Since the logical and physical annotations are orthogonal
and serve two separate goals, we choose to maintain them
independently. A user can change where the time stamps
are located, independently of specifying the temporal
characteristics of that particular element. The physical
annotations also provide a user the means to specify
temporal granularity, the resolution level at which each
time stamp is maintained.

The temporal schema (box 4) ties the schema, logical
annotations and physical annotations together. This docu-
ment contains subelements that associate a series of conven-
tional schema with logical and physical annotations, along
with the time span during which the association was in effect.

The figure shows a tool called SQUASH that can render a
temporal document (box 8) consistent with the logical and
physical annotations. Hence, the time stamps are spread out
across the document, associated with versions of the
elements. This removes a great deal of redundancy found
in the nontemporal data, which represents each slice as a
separate document. The versions of the temporal document
are described with a “Representational Schema” (box 9),
generated automatically from the temporal schema by
another tool called SCHEMAMAPPER. This schema, instead

of being the only schema in an ad hoc approach, is merely
an artifact in our approach, with the conventional schema,
logical annotations, and physical annotations being the
crucial specifications to be created by the designer.

Recall that the base schema (Listing 1) includes cardin-
ality constraints, a uniqueness constraint, and a referential
integrity constraint. As noted in Section 1, these constraints
apply at each point in time within the temporal document.

Further, the user may wish to specify additional
restrictions that guarantee uniqueness of an email across

conventional documents (for example, that the address
dana@txschema.com is not reused by another employee
to avoid confusion or problems redirecting emails after the
second change). Using XML Schema alone, we cannot
specify nor validate such constraints.

Instead, the designer can utilize �XSchema to augment
the conventional schema with additional logical annota-
tions, as we will illustrate with examples shortly, thus
forming a more expressive temporal schema. As we’ll
discuss further in Section 7, the schema may be a time-
varying document as well, and may even reference other
time-varying schemas.

When we had one conventional schema (Listing 1) and
one conventional (non-time-varying) document (Listing 2),
we could use a tool such as XMLLINT to validate this
document against its schema. We now have a similar,
though much more flexible situation: a single document
and a single schema (being upward compatible, Listing 1 is
perfectly adequate). �XMLLINT is a tool we developed as
the temporal counterpart to XMLLINT; see Fig. 2. XMLLINT

takes as input a conventional document (slice at time t)
referencing a conventional schema and reports if it is valid.
Analogously, �XMLLINT takes as input a single temporal
document referencing a temporal schema. �XMLLINT

validates the temporal document and reports either success
or the errors encountered.

The validation using �XMLLINT is related to that of
XMLLINT as follows: if a slice of a temporal document at
time t is validated using XMLLINT and results in an error,
then the validation of the temporal document using
�XMLLINT should also report an error at time t.

With this high-level overview of �XSchema (details are
available elsewhere [4], [8], [10]), we can now turn to the
challenge at hand: supporting existing conventional and
novel temporal constraints concerning a time-varying docu-
ment. We first examine the constraints that XML Schema

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012

Fig. 2. Using �XMLLINT.

provides, and then apply and extend them for temporal

documents.

4 XML SCHEMA CONSTRAINTS

XML Schema provides four types of constraints, namely

data type, cardinality, identity, and referential integrity

constraints. These are conventional constraints and restrict a

specific XML document. In this paper, we extend these

constraints in turn with temporal semantics.
Data type constraints restrict the content of the correspond-

ing element or attribute. A data type restriction by itself

applies fully in the temporal context. For example, the fact
that the name attribute is a string (XML Schema type

xs:string) applies equally in the static and temporal

context (assuming no schema versioning). The content of the

name attribute may change, and we consider in Section 6.4

some restrictions on what kinds of changes are permitted.
The cardinality of elements in XML documents is

restricted by the use of minOccurs and maxOccurs in

the XML Schema document. The default for both minOc-

curs and maxOccurs is 1. In the example in Listing 1,

while there can be multiple <emp> subelements within

<emps>, there can be a maximum of one <SSN> per <emp>,

and there is always at most a single value for each attribute
(for example, ID). Cardinality for attributes is therefore

restricted in use to “optional” or “required.”
Identity constraints restrict uniqueness of elements and

attributes in a given document. As with the relational

model, XML Schema allows users to define both key and

unique constraints. The distinction between these two is

that the key constraint does not allow a null value in any of

the component fields, while missing (null) values do not

lead to a violation of the unique constraint.
Identity constraints are defined in the schema document

using a combination of a <selector> and one or more

<field> elements. These are subelements within a <key>

or <unique> container element. Both <selector> and

<field> contain an XPath expression (the evaluation of
which in an XML document yields the value of the

constrained element or attribute). The <selector> is used

to define a contextual node in the XML document (e.g.,

<emp> in Listing 1), relative to which the (combination of)

<field> values is unique (e.g., @ID). An identity con-

straint may be named, and this name can then be used

when defining a referential integrity constraint.
Note that the attributes of type ID (IDREF) are a special

case of the <key> (<keyref>) constraints in XML Schema.

In this paper, we address the general case. Further discussion

on the design choice of only addressing temporal semantics

for <key> (<keyref>) is available in prior work [4].
Referential integrity constraints (defined using <keyref>)

are similar to the corresponding constraints in the relational
model. Each referential integrity constraint refers to a valid

key or unique constraint and ensures that the correspond-

ing key value exists in the document. For example, the

<keyref> in Listing 1 ensures that only valid product

numbers (i.e., those that exist for a <product>) are entered

for an order.

5 MOVING TOWARD TIME

Before considering how to adapt the XML Schema
constraints we just summarized to be used in time-varying
XML documents, we first introduce an orthogonal classifi-
cation of three flavors of temporal constraints and introduce
the concept of a time-varying item.

5.1 Three Classes of Semantics

An important concept is the distinction between three
orthogonal classes of semantics: sequenced, nonsequenced,
and current [27]. All combinations are appropriate and useful.
One could contemplate, for example, a sequenced cardinality
constraint or a nonsequenced referential integrity constraint.

A temporal constraint is sequenced with respect to a
similar conventional constraint in the schema document, if
the semantics of the temporal constraint can be expressed
as the semantics of the conventional constraint applied at
each point in time. As discussed earlier, given a conven-
tional XML Schema constraint, the corresponding seman-
tics in �XSchema for a temporal document implies a
sequenced constraint. For example, a conventional (cardin-
ality) constraint, “There should be between 0 and 4 URLs
for each supplier” (Listing 1), has a sequenced equivalent
of: “There should be between 0 and 4 URLs for each
supplier at each point in time.”

For convenience, we also allow the user to add a new
sequenced constraint in the logical annotations. Such logical
annotations can include an applicability bound, B � T ,
enabling the user to restrict the consideration of that
sequenced constraint from the lifetime of the document to
some desired subset they are interested in. For example, a
constraint may only be valid between 1999 and 2005; it
would not apply outside of that time period.

A special kind of sequenced constraint is a current
constraint. A current constraint is applicable (and evalu-
ated) at the current point in time, or now [28]. We support
current constraints by allowing the user to set the
applicability bound of the sequenced constraint to now.

A nonsequenced constraint is evaluated over some part (or
the whole) of the applicability bound rather than at each
point in time separately. For such constraints, we include an
evaluation window, w, which is a time interval (e.g., a day, or
a Gregorian month) as well as a slide size, ss, and an
applicability bound, B [29]. The default length for ss is a
single granule interval. The default for B is the lifetime of
the temporal document. The following relationship must
hold among the components of a nonsequenced constraint:
ss � w. When durationðBÞ is the same size as w, we term it a
“fixed-window” constraint (analogously, when both ss and
w are a single granule of time, we have a sequenced
constraint). Nonsequenced constraints are included in the
logical annotations.

For example, suppose the constraint requires “there are
between 0 and 4 supplier URLs in the temporal document
over a period of any calendar month.” (This is a temporal
variant of the cardinality constraint on <URL> in
Listing 1.) Let’s say this constraint is applicable from
2010-03-01 to 2010-03-31. Here, w and B have the same
duration. If instead the applicability were 2010-03-01 to
2010-06-31, then we see a case of a “sliding-window”

CURRIM ET AL.: ADDING TEMPORAL CONSTRAINTS TO XML SCHEMA 5

constraint, as the evaluation would take place during each
month from March through June. Here, we see the size of
the slide is implicitly a calendar month. If instead the
constraint evaluation window were a period of 30 days,
then the user may wish to restrict how this evaluation
window would slide. For example, one may choose to
evaluate it from March 1-30, then from March 2-31, and so
on. In such a case, the size of the slide (ss) is a single day.

5.2 Temporal Data Model

An XML document is usually modeled as a labeled tree.
Few additional modeling components are needed in a
temporal XML model to capture time. A temporal XML
document can be modeled as a time stamped set of XML
documents. For simplicity, we discuss a data model with
only one time dimension.

Definition (Temporal XML Model). A temporal XML model
is a tuple, ðX;T; S;AÞ, where

. X ¼ fX1; . . . ; Xng is a set of XML data model
instances, where an instance Xi ¼ ðVi; EiÞ has a set of
nodes Vi (with each node being an element or an
attribute) and a set of edges Ei (with each edge being
between an element and an attribute or an element and
its child element),

. T is a set of times,

. S : X ! 2T is a time stamp function that maps an
XML data model instance to a time stamp (a set of
times) for which it is current in the time dimension, and

. A : V ! V is a temporal association relation that
associates a node in some XML data model instance to
a node in some other XML data model instance (as
described in Section 5.3). The relation captures a
node’s identity over time across instances.

The slice function extracts a slice (an XML data model
instance) from a temporal XML document.

Definition (Slice). Let D ¼ ðX;T; S;AÞ be an instance of a
temporal XML model. Then for t 2 T , sliceðt;DÞ ¼ Xi,
where Xi 2 X and t 2 SðXiÞ.

Though this model is simple, it is sufficient for the
purposes of this paper and its simplicity makes clear that
existing XPath, XQuery, and XML Schema constructs can be
natively evaluated for any XML data model instance in a
temporal XML data model. (Note that we are not proposing
to store or represent a temporal XML document using the
model, rather we use this model to formalize the semantics
of temporal constraints, specifically, in the Eval function to
be introduced shortly.)

5.3 Items

In order to validate nonsequenced constraints, it is
important to identify which elements persist across various
transformations of the document. This will allow us, for
example, in the case of a nonsequenced identity constraint,
to verify whether an email address is being repeated for the
same employee, or for a different one. (Items are not
relevant for sequenced nor current constraints.) This section
discusses how to find and associate elements in different
slices of a temporal document.

When elements are temporally associated, an item is
created. An item is a collection of XML elements that
represent the same real-world entity. An item is a logical
entity that evolves over time through various versions.

In a temporal relational database, a pair of value-
equivalent tuples can be coalesced, or replaced by a single
tuple that has a lifespan equivalent to the union of the pair’s
lifespans. Coalescing is an important process in reducing the
size of a data collection (since the two tuples can be
replaced by a single tuple) and in computing the maximal
temporal extent of value-equivalent tuples [30], [31]. In a
similar manner, elements in two slices of a temporal
document can be temporally associated. A temporal associa-
tion between the elements is possible when the element has
the same item identifier in both slices. We will sometimes
refer to the process of associating a pair of elements as
gluing the elements. When two or more elements are glued,
an item is created.

Only elements of types that have temporal annotations
are candidates for gluing. Determining which pairs should
be glued depends on two factors: the type of the element,
and the item identifier for the element’s type. The type of an
element is the element’s definition in the schema. Only
elements of the same type can be glued. An item identifier
serves to semantically identify elements of a particular type.
The identifier is defined using a list of XPath expressions
(much like a key in XML Schema) so we first define what it
means to evaluate an XPath expression.

Definition (XPath evaluation). Let Evalðn;E;XÞ denote the
result of evaluating an XPath expression E from a context
node n in an XML data model instance X. Given a list of
XPath expressions, L ¼ ½E1; . . . ; Ek�, then Evalðn; L;XÞ ¼
½Evalðn;E1; XÞ; . . . ; Evalðn;Ek;XÞ�.

Since an XPath expression evaluates to a list of nodes,
Evalðn; LÞ evaluates to a list of lists.

Definition (Item identifier). An item identifier for a type, T , is
a list of XPath expressions, L, such that the evaluation of L
partitions the set of type T elements in a (temporal) document.
Each partition is an item.

An item identifier has a target and at least one of a field,
an itemref, or a keyref. A target is an XPath expression that
specifies an element’s location in the slices (relative to the
item under which it is defined). A field, itemref, and a
keyref can each specify part of an item identifier. A field
contains an XPath expression that specifies an element or
attribute that is part of the item identifier. A keyref
references a slice key and an itemref references an item
identifier. This way an item may be specified in terms of an
existing item or schema key. An itemref and keyref use the
name of an item/key and are not XPath expressions.

A schema designer specifies the item identifiers for the
time-varying elements. As an example, a designer might
specify that the time-varying element <emp> has as its item
identifier, the attribute @ID employee (syntax example in
Listing 5). An item identifier is similar to a (temporal) key
in that it is used for identification. Unlike a key however, an
item identifier is not a constraint; rather it is a helpful tool in
the complex process of computing versions of an element
over time [4].

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012

Listing 5. Item Identifier for <emp>
Over time, many elements in a temporal document may

belong to the same item as the item evolves. The association
of these elements in an item is defined below.

Definition (Temporal association). Let x be an element of
type T in the ith slice of a temporal document D. Let y be an
element of type T in the jth slice of the document. Finally let L
be the item identifier for elements of type T . Then, x is
temporally associated to y if and only if Evalðx;L;
sliceði;DÞÞ ¼ Evalðy; L; sliceðj;DÞÞ and it is not the case
that there exists an element z of type T in a slice k between
the ith and jth slices such that Evalðz; L; sliceðk;DÞÞ ¼
Evalðx; L; sliceði;DÞÞ.

A temporal association relates elements that are adjacent
in time and that belong to the same item. For instance, the
<emp> element in Listing 2 is temporally associated with
the <emp> element in Listing 3 but not the <emp> element
in Listing 4 (though the <emp> element in Listing 3 is
temporally related to the one in Listing 4).

5.4 Content and Existence Constraints

Over time, elements in a conventional document can change,
e.g., as edits are made. A schema designer may wish to
control or constrain what kinds of changes are permitted. In
this section, we review two constraints, which we proposed
in previous research [8], to constrain the ways that an
element can vary over time in its existence or content.

Let’s first consider the specification of an item’s
existence. First an item could be “varying with gaps,”
which means that it may be present in some slices and
absent in others. A second, more restrictive form is “varying
without gaps.” If such an item is present, then it cannot
have gaps in its existence, i.e., it must exist through
consecutive slices only. The third existence alternative is
“constant.” Then, the item is either always present (in every
slice of the document) or never present.

The content of an item may also be constrainted to be
constant (no changes are allowed) or varying (the default,
changes allowed). A detailed explanation of the restrictions
can be found elsewhere [4], [8].

The content and existence constraints are orthogonal. For
instance, an item can be constrained to have constant
content (i.e., the content does not change) and varying
existence (i.e., it’s lifetime may have gaps).

6 TEMPORAL AUGMENTATIONS TO XML SCHEMA

CONSTRAINTS

We now show how to augment, with support for time, XML’s
cardinality, identity, referential integrity, and data type
constraints, in turn. We discussed in Section 5.1 how to
interpret any particular XML constraint in a sequenced
semantics, as well as how to revise that constraint to be
interpreted in the current semantics. In this section,
we discuss the specifics of the sequenced semantics for each
type of constraint.

We then show how each kind of constraint can be
extended in various ways to effect a nonsequenced
semantics, that is, evaluated over an item as a whole. Note
that the evaluation window and slide size can be specified
for such constraints. These nonsequenced constraints are
specified in the temporal schema as logical annotations.

6.1 Identity Constraints

Recall from Section 4 that identity constraints restrict
uniqueness of elements and attributes in a given document,
through <key> and <unique> constraints. We formally
define a sequenced key constraint as follows:

Definition (Sequenced <key>). For element type E in the
conventional schema, let sel be the selector (an XPath
expression) of an identity constraint and let F ¼ ½f1; f2; . . . ;
fm� be the field XPath expressions. Then, for a temporal
document D ¼ ðX;T; S;AÞ the identity constraint is se-
quenced if and only if for all times t 2 T , if c is a node of type
E in Xt ¼ sliceðt; DÞ

8ei; ej 2 Evalðc; sel;XtÞ :

Evalðei; F ;XtÞ ¼ Evalðej; F ;XtÞ) i ¼ j:

This proposition asserts that two elements can evaluate to the
same key value only if they are in fact the same element.

The definition of a sequenced unique constraint is
similar, but allows null values.

A nonsequenced <unique> or <key> constraint is
specified in the logical annotations through one of the
following elements: <nonSeqUnique>, <nonSeqKey> or
<uniqueNullRestricted> (all constraints, including
identity, are subelements within an <item> annotation).
We adopt the usual distinction between key and unique
constraints. The subelements and attributes of these
nonsequenced constraints are provided in Tables 1 (those
attributes and subelement common to all temporal
constraints) and 2 (those components found only in
<nonSeqUnique>, <nonSeqKey> or <uniqueNullRes-
tricted>). Within these tables, and subsequent ones,
subelements are denoted by enclosing < >; the rest are
attributes.

If the conventionalIdentifier is included within
these constraints the <selector> and <field> are drawn
from the referenced (conventional) constraint; otherwise,
those two elements are required. The rest of the attributes
and elements are as described, though we elaborate on a
few, and provide examples of most of the others, below.

A nonsequenced <unique> (or <key>) constraint re-
quires that the field value combination of the constrained
element (or attribute) is unique between items across time (not
just at a point in time). For example, if an employee’s SSN
were unique, i.e., no two employees had the same SSN in a
single conventional document as well as the temporal
document, we would use a nonsequenced constraint. We
envision nonsequenced constraints being used in three ways.

1. Between—Consider the conventional unique con-
straint defined in Listing 1. Suppose a nonsequenced
unique constraint is placed on the email address of
an employee, with an evaluation window of a year

CURRIM ET AL.: ADDING TEMPORAL CONSTRAINTS TO XML SCHEMA 7

(Listing 6). Then, no two employee items can have
the same email address dana@txschema.com (for
example) in any year, but the same employee (e.g.,
Dana) can switch from dana@txschema.com to
ddoe@txschema.com and back in a year.

2. Within—To specify a uniqueness constraint within
each item, i.e., if we wished to say that an employee
(e.g., Dana Doe) cannot switch from dana@txsche-

ma.com to ddoe@txschema.com and back in a
single year, we would need to define a nonsequenced
within unique constraint on an employee’s email
address. An example is given in Listing 7, where the
scope=“within” enables within semantics.

3. Between and within—To specify that each employee
email is unique and also that employees cannot
reuse an email, both constraints (Listing 6 and 7)
are specified.

Listing 6. Non-seq. constraint “between” employees

Listing 7. Non-seq. constraint “within” each employee
A conventional identity constraint does not imply

nonsequenced uniqueness (it only implies that there are

no duplicates in a slice). Thus, the same productNo

(a conventional key) can be reused for another product or
changed between slices (for the same product, as long as it

remains unique). To place nonsequenced restrictions on
elements or attributes, we use nonsequenced unique and
nonsequenced key constraints. These allow us to designate an
element or attribute value (e.g., productNo) as unique to
an item across a temporal document (with slices coalesced
across the evaluation window).

A time-invariant restriction specifies that the value of the
given conventional <unique> or <key> constraint should
not change over time. Without this restriction, conven-
tional unique and key constraints simply say that the
values must not have duplicates in any associated XML
document. However, this does not preclude the values
from changing as long as the new value does not appear
elsewhere in the conventional XML document. To desig-
nate a time-invariant key, in addition to specifying a
conventional key constraint, we restrict the components of
the key as time-invariant (content=“constant”) in the
logical annotation of an <item>.

We define a <nonSeqKey> between constraint as follows:

Definition (<nonSeqKey>, Between Semantics). Let c be
the item containing the <nonSeqKey> definition, let F be
the list of XPath expressions ½f1; f2; . . . ; fm� where fi is a
field expression, let sel be the selector, and let D ¼
ðX;T; S;AÞ be a temporal document. Then, for each window
(a time period) w � T , define Uðc; wÞ ¼

S
t2wðEvalðc; sel;

sliceðt;DÞÞ � tÞ to be the union of the Cartesian product of
the evaluation of the selector for each slice in the window and
the time of the slice. The union yields the list of elements,
ðe1; t1Þ; . . . ; ðek; tkÞ. Finally, let itemðeiÞ be the item, v, that is
the closest ancestor to ei, i.e., ei is an element in some slice of v.
Then, the <nonSeqKey> constraint is

8ðei; tiÞ; ðej; tjÞ 2 Uðc; wÞ : ½
Evalðei; F ; sliceðti; DÞÞ ¼ Evalðej; F ; sliceðtj;DÞÞ)

itemðeiÞ ¼ itemðejÞ�:

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012

TABLE 2
Attributes for Temporal Unique Constraints <nonSeqUnique>, <nonSeqKey> and <uniqueNullRestricted>

TABLE 1
Common Attributes and Subelements for Temporal Constraints

In other words, if two elements have the same value for their

key, then they are elements in the same item, though they may

be in different versions of that item. The effect of the slide size

is to determine the start point for each successive w.

A within constraint is similar.

Definition (<nonSeqKey>, Within Semantics). To define a

<nonSeqKey> within constraint, we replace the constraint

given above with the following:

8ðei; tiÞ; ðej; tjÞ 2 Uðc; wÞ : ½
ðEvalðei; F ;XiÞ ¼ Evalðej; F ;XjÞ ^
itemðeiÞ ¼ itemðejÞÞ)
:9ðek; tkÞ 2 Uðc; wÞ : ½ti < tk < tj ^
Evalðei; F ;XiÞ 6¼ Evalðek; F ;XkÞ�Þ�;

where Xi ¼ sliceðti; DÞ, Xj ¼ sliceðtj;DÞ, and Xk ¼
sliceðtk;DÞ. The extension adds the constraint that the same

field values must be in consecutive slices within any item.

We next discuss the <uniqueNullRestricted> con-

straint. Since the XML Schema definition of unique allows a

null value at each point in time, the default semantics for

<nonSeqUnique> allows for multiple null values across

time (one in each conventional document). A nonsequenced

<uniqueNullRestricted> constraint, in addition to

specifying uniqueness, also restricts the appearance of the

number of null values by allowing the user to specify a

finite number (one or more) across time; the default number

being one. Setting the number of nulls allowed across time

to 0 is equivalent to specifying a nonsequenced key

constraint. We defer a formal specification of the null

counting semantics to Section 6.3 as it is similar to that of a

cardinality constraint.
We now present an identity constraint example.

1. The combination of supplier name and city serves as a
key. However, at a later point in time we may have a
different supplier with a name and city combination that
was seen previously. To avoid any problem, we require
that reuse should not occur for at least one year after
discontinuation. Product numbers on the other hand may
not be reused at any later time. These constraints are
applicable between 2005 and 2010.

6.2 Referential Integrity Constraints

Each referential integrity (<keyref>) constraint for a
conventional document leads to a sequenced counterpart
in a temporal document. Thus, each conventional <key-
ref> obeys referential integrity.

Formally, we can define the sequenced <keyref>

constraint as follows:

Definition (Sequenced <keyref>). For each possible referring
element selr, let Evalðselr; Fr; sliceðt;DÞÞ denote the result of
evaluating the list Fr of <keyref>XPath field expressions
relative to the selector element selr in a slice of temporal
documentD at time t. Similarly, letEvalðselk; Fk; sliceðt;DÞÞ
denote the result of evaluating the referenced key (or unique)
constraint at time t. Finally, letB be the applicability bound The
<keyref> constraint is satisfied when

8t 2 B ð9ek 2 Evalðselk; Fk; sliceðt;DÞÞ
ð9er 2 Evalðselr; Fr; sliceðt;DÞÞ : er ¼ ekÞÞ:

A nonsequenced referential integrity constraint is useful
to specify a reference to some past state of the XML
document. Suppose we added a <largestOrder> subele-
ment within suppliers to represent the “largest order” (in
dollar terms) placed with that supplier (with a <keyref> to
orderNo). We represent a nonsequenced referential integ-
rity constraint using a <nonSeqKeyref> element in the
logical annotations in the example below. Table 3 provides
the different attributes and subelements for the <non-

SeqKeyref>, along with the components listed in Table 1.

1. For each transaction-time slice, for each supplier, the
actual order referenced (through orderNoKey) by the
largestOrderNo attribute of the supplier must exist
at some valid time, perhaps different from the valid time of
that largestOrderNo attribute. The referential integ-
rity constraint is applicable from 2008 to 2012, and no
corresponding conventional constraint exists.

2. There exists a conventional referential integrity constraint
orderProductKeyref (cf. Listing 1), which refer-
ences a valid product number. This is interpreted as a
sequenced constraint, in both valid and transaction time,
over the temporal document. A related nonsequenced
constraint: for each transaction-time slice, for each order,
the product referenced (specified by the orderProduc-
tRI constraint) must exist at some valid time, perhaps
different from the valid time of that order. The constraint
applicability bounds span all valid time (i.e., the default).

CURRIM ET AL.: ADDING TEMPORAL CONSTRAINTS TO XML SCHEMA 9

6.3 Cardinality Constraints

The cardinality of elements in conventional documents is
restricted by minOccurs and maxOccurs, and that of
attributes by setting use to “optional” or “re-

quired.” These induce sequenced constraints in the
temporal document.

Augmented sequenced cardinality constraints use a new
element, <seqCardinality>, whose syntax is summar-
ized in Table 4 (along with the syntax in Table 1), except for
newOnly, which doesn’t apply to sequenced cardinality
constraints. The minOccurs and maxOccurs attributes are
analogous to those in XML Schema.

1. At every point in time there should be a maximum of 250
orders for the company. The constraint is to be enforced during
2010-11.

It could be the case that a specific <order> may
be placed with several <supplier>s, in which case the
repetitious <order> elements are considered as a single
<order>. To count the shared <order>s distinctly, we
allow the user to refine the count by grouping <suppli-

er>s. The conventional cardinality constraints are not
designed to handle this. This is our motivation behind
introducing the group option for a cardinality constraint.

2. At every point in time there should be a maximum of
250 orders for the company across suppliers (constraint applic-
ability is 2010-11.

Nonsequenced cardinality constraints can be used to
restrict the cardinality over time. Consider the example of
an <order> element in Listing 13. We see that the

<deliveredOn> element may not be present in a specific
document slice. Let us further say, that while it may be empty
at the time the order was placed, we require it to appear at
some point (say within a month of the order being placed). So,
even though a sequencedminOccurs=“0” is satisfactory for
a conventional document, we may desire the analogous
nonsequenced minOccurs=“1” for a temporal document.
For attributes, a similar requirement may be specified (i.e., a
conventional “optional” attribute, may be “required”

over some evaluation window). The syntax for <nonSeq-
Cardinality> constraints is given in Table 4.

Listing 8. Orders with an optional <deliveredOn>
3. There should be a deliveredOn element at some time for

each order.

Another refinement that may be desired for a cardinality
constraint is to constrain the cardinality of a descendant that
is not a child, which is not possible in XML Schema.
Consider the schema in Listing 1. This says that at any point
in time, each company has at least one supplier, for which
there may or may not be an order. A nonsequenced
cardinality constraint can be used to place a limit of less
than or equal to 1,500 <order>s for the company in any
calendar month. A third refinement that may be desired is
to distinguish “new” values, which are values that have not
previously been seen in the evaluation window. For
example, suppose an order status attribute can have
one of the five following values: “placed,” “underRe-

view,” “beingProcessed,” “shipped,” and “re-

turned.” It is possible that changes to the order can have
it swap back and forth between “underReview” and
“beingProcessed.” Over a period of a month, it might
have, say, seven total changes to the value of which only

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012

TABLE 4
Attributes and Subelements for <seqCardinality> and <nonSeqCardinality>

TABLE 3
Attributes and Subelements for nonSeqKeyref

four are distinct. To count each change, the user would set
changes=“newOnly,” otherwise all changes are counted.

We represent a nonsequenced cardinality constraint in
logical annotations using a <nonSeqCardinality> ele-
ment; a <seqCardinality> element is used for se-
quenced cardinality constraints. The syntax for both
elements is summarized in Table 4. In the following
examples, each constraint is specified within the scope of
some item. Relative to that scope, the <selector> locates
items that are to be constrained. (Hence, the scope, the
target of the enclosing item, is just a prefix for the
selector.) Combinations of <field>s are counted for each
<group>, and the counts are summed over a group to
determine the cardinality of each item located by the
<selector>. The computed cardinality must fall between
the min and max to satisfy the constraint.

4. No supplier should be given more than 100 orders in a calendar
month. Furthermore, across all of the suppliers at most 500 products
could be ordered in total (a product that is in two different orders is
counted as two different products, hence the <group>).

5. A product could change names (hence, newOnly) up to
three times a month, but can have at most four distinct names in a
year. This is in force from 2008 to 2011.

Definition (Cardinality Constraint). Formally, we define a
cardinality constraint as follows: Let

. D be a temporal document,

. c be the context item for the constraint (item being
annotated),

. itemðeÞ be the item, v, that is the closest ancestor to e,
i.e., e is an element in some version of v,

. S be the <selector> XPath expression relative to c,

. G be the <group> expression relative to S (by default
it is “.”), and

. F be a list of <field> expressions.

Both S and G must locate items, that is, they must locate
elements that correspond to the target expression for some
item in the logical annotations. Then, for each window (a time
period), w, in the constraint define

Aðc; wÞ ¼ fðt; itemðxÞ; itemðyÞ; Evalðy; F ; sliceðt;DÞÞÞj
t 2 w
^ x 2 Evalðc; S; sliceðt;DÞÞ
^ y 2 Evalðx;GÞg:

Aðc; wÞ is a set of tuples, fðt1; s1; g1; v1Þ; fðt2; s2; g2; v2Þ; . . . ;
ðtk; sk; gk; vkÞg. From this set we can extract tuples that
represent a change as follows:

ChangesðAðc; wÞÞ
¼ fðt; s; g; vÞjðt; s; g; vÞ 2 Aðc; wÞ
^ :9k½k ¼ t� 1 ^ ðk; s; g; vÞ 2 Aðc; wÞ�g:

While ChangesðAðc; wÞÞ extracts all changes, we are some-
times interested in only changes to “new” values, hence we
modify the above definition to capture changes that represent
only changes that have not previously occurred in the window

NewChangesðAðc; wÞÞ
¼ fðt; s; g; vÞjðt; s; g; vÞ 2 Aðc; wÞ
^ :9k½k < t ^ ðk; s; g; vÞ 2 Aðc; wÞ�g:

We are now in a position to count the changes. Let

CountðAðc; wÞÞ
¼ fðs; cardðfðt; s; g; uÞgÞÞj
ðt; s; g; uÞ 2 ChangesðAðc; wÞÞg;

count the number of changes for each item, s, located by the
<selector>. To count the number of “new” changes, we
would use NewChanges in place of Changes in the above
definition.

A cardinality constraint for a context c and a window w
tests the following predicate:

:9s½9x : ðs; xÞ 2 CountðAðc; wÞÞ ^ ðx < min _max < xÞ�:

A nonsequenced cardinality constraint differs from a se-
quenced cardinality constraint only in the size of the window;
for the former the window can be any size, but for a sequenced
constraint the window is a single instant.

The formal definition of a <uniqueNullRestricted>

constraint, which restricts the number of null values, is
similar to that of a nonsequenced cardinality constraint,
but changes resulting in null values are counted rather
than all changes.

6.4 Data Type Restrictions (Constraints)

The XML Schema <simpleType> element is used to specify
a value range and induces a sequenced constraint that
ensures conventional document values conform to this range.

We now consider nonsequenced augmentations of such
simple types. A nonsequenced equivalent of this type of
constraint can be considered either at the schema level (i.e.,
evolution of the data type within schema evolution) or at the
instance level (i.e., evolution of the value within instances,

CURRIM ET AL.: ADDING TEMPORAL CONSTRAINTS TO XML SCHEMA 11

C2

that is, transition constraints). Schema-level constraints
restrict the kinds of changes possible to the data type of
an item. However, we do not see much need for this type of
a constraint.

At the instance level (i.e., conforming to a particular type
specification), a nonsequenced constraint could restrict
discrete and continuous changes. Discrete changes are
handled by defining a set of value transitions for the data.
For example, it could be specified that while supplier ratings
can change over time, the changes can only occur in single-
step increments (e.g., a rating changing from value “B” to
either “A” or “C”). In this scheme, to allow for successive
values being the same, the <old> and <new> entries will
have the same content. Continuous changes are handled by
defining a restriction on the direction of the change. For a
transition constraint to be applicable, a corresponding data
type should be defined at the conventional schema level. The
details of these logical annotations are given in Table 5, along
with the components listed in Table 1.

1. Supplier ratings can move up or down a single step at a
time in valid time; no restrictions are placed in
transaction time, since a data entry error might be made.
This is applicable between 2008 and 2011.

2. Employee salaries should not go down, but may increase
(i.e., each salary value is >¼ the previous one) between
2008 and 2010. However, a salary freeze is in place
between January and June 2010 due to economic factors.

7 IMPLICATIONS OF SCHEMA VERSIONING

Schemas designers often edit their schemas, refining and
adding element and attribute types. One challenge with
schema versioning is that, in this potential quicksand,
anything can change, and thus must be versioned: the
conventional documents, the base schema, the annotations,
the schema documents included by these documents, even
the schemas of these schema components. And, because the
physical annotations can change, the concrete representa-
tion within a temporal XML document can vary. Thus, it
becomes even more difficult to even define validation in
such a fluid environment.

Elsewhere [10] we delve into the specifics of how to
accommodate schema versioning within �XSchema. Our
approach exploits the concept of schema-constant periods [32].
It is possible, even with versioned schemas having
themselves versioned schemas, to identify contiguous
periods of time when there are no schema changes,
anywhere. Now, during such schema-constant periods the
data may be (and probably is) versioned, but at least one
has a fixed base schema and fixed logical annotations, each
of which has a fixed schema. And since the physical
annotations are fixed, the representation is also fixed, it is
possible to read and interpret the temporal document
during that schema-constant period, and even to validate
that portion of the document. So a general temporal
document can be viewed as a sequence of data-varying
documents, each over a single schema-constant period.
Since one can validate within each schema-constant period,
given the approaches elaborated on earlier, all that is
necessary now is to validate across schema changes.

As a concrete example, Listing 1 includes the key
constraint for the ID attribute of <emp>. In the temporal
document, this is interpreted as a sequenced constraint.
Suppose that employees at some point are divided into
permanent and contract, identified by the elements
<permanent> and <contract>, respectively. Each em-
ployee may end up in either of the two new elements; we
wish to retain the unique constraint semantics.

One approach would use object-oriented methodology
to “specialize” the class “emp” into “permanent” and
“contract” subclasses. Then, the constraint specification
on “emp” would be inherited by both subclasses. XML
Schema does not however support such modeling. While
XML Schema supports inheritance for type definitions
(through extension and restriction), type definitions do
not have constraints (only element definitions do). So in
XML Schema, constraint inheritance is not supported. To
specify that ID is unique across permanent and contract
elements a new constraint should be defined with a

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012

TABLE 5
Attributes and Subelements of <transitionConstraint>

selector that selects both kinds of elements, e.g.,
<selector path="permanent | employee"/>.

With that background let us consider how this change
would be modeled in �XSchema. When the schema evolves
so that every (or only some) employee becomes a
permanent or contract employee, the designer would then
also specify key constraints within the two new elements to
require that permanent and contract employees have
unique IDs. The data in the document from that point
forward would have to correspond to this new schema.

The one remaining issue that concerns temporal con-
straints is how to check nonsequenced constraints across
schema changes. Note that schemas vary only over
transaction time. Hence, nonsequenced constraint valida-
tion is easier in valid time, as schema changes cannot occur.
And sequenced constraints over transaction time are
effectively checked at each point in transaction time.

We considered two alternatives for the applicability of a
nonsequenced constraint across schema changes:

1. The constraint is applicable only within the schema-
constant period in which it is defined.

2. The constraint once defined becomes applicable to
the entire document.

In the first approach, any violation of a constraint during
previous schema-constant-periods is ignored, while in the
second, the constraint may be violated even when first
defined.

We decided on a modified version of the first alternative:
to apply a nonsequenced constraint only within the schema-
constant period in which it is defined, if there were a
schema change to any of the items involved in the
constraint. The nonsequenced constraints are “restarted”
on any such schema change. In effect the schema change
deletes all the old constraints and then adds them back as
new constraints. For example, consider the first example in
Section 6.3: there should be no more than fifty active suppliers in
any calendar year. If the schema changed on July 1
concerning <supplier>, this nonsequenced constraint
would be checked twice, for the first half of the year and
for the second half.

8 EXPRESSIVE POWER

As mentioned in Section 2, there has been very little done in
the area of temporal constraints for XML. But for the work
that has been done, we can evaluate the expressiveness of
our approach to these other approaches.

Rizzolo and Vaisman’s temporal extension to XML [33]
specifies (in Definition 3 on page 1184) six conditions for a
valid temporal document in their model. While the first
four of these conditions are specific to their encoding (recall
that our approach supports multiple encodings, including
that proposed by Rizzolo and Vaisman), the last two of their
conditions are relevant to temporal constraints.

The fifth condition states, “For any containment edge
ecðni; nj; TecÞ, if nj is an attribute of type REF, such that there
exists a reference edge erðnj; nk; TerÞ, then Tec ¼ Ter holds.”
As discussed in Section 5.1, in our model a nontemporal
referential integrity constraint is mapped in a temporal
document to one that applies in each slice. Here, we differ

with Rizzolo and Vaisman, as what they require in their
model is what in our design is a nonsequenced referential
integrity constraint (also discussed in Section 5.1). Our
design is more uniform in that we utilize a per-slice
semantics for all nontemporal constraints when applied to a
temporal document, permitting the user to specify addi-
tional nonsequenced variants of such nontemporal con-
straints. As we argue there, a per-slice (that is, sequenced)
semantics is very natural to the user.

The last of their conditions states, “Let erðni; nj; TerÞ be a
reference edge. Then, Ter � lifespanðnjÞ holds.” This states
that a reference edge applies in a subset of the slices in
which the destination node exists, which is a quite specific
kind of nonsequenced referential-integrity constraint.
Again, we prefer a per-slice semantics for referential
integrity, as with all other explicit nontemporal integrity
constraints, while allowing the user to specify additionally
nonsequenced variants.

Finally, we note that our approach provides all the
benefits listed in Section 3. We provide a more in-depth
look in previous work [34].

9 CHECKING TEMPORAL CONSTRAINTS

�XSchema provides tools to construct and validate temporal
documents, including an extension of XMLLINT [3]. As
discussed in Section 3, to validate a temporal document,
�XMLLINT first converts a temporal schema into a
representational schema, which is a conventional XML
Schema document that describes how the temporal infor-
mation is represented in the temporal document. XMLLINT

is then used to validate the temporal document against the
representational schema. Finally, the temporal document is
validated against the temporal schema by the temporal
constraint validator. Fig. 2 depicts this process.

9.1 Where to Enforce Constraints?

Given the architecture in Fig. 2, there are two places where
temporal constraint functionality could be enforced.

1. Express the constraint within the representational
schema, and hence when the conventional validator
validates the temporal document against the repre-
sentational schema it also validates the temporal
constraint.

2. Enforce the temporal constraint directly within the
temporal constraint validator code.

The representational schema serves at least two im-
portant functions. First it ensures that every slice of the
temporal document is syntactically valid with respect to
the corresponding conventional schema. Second, the
representational schema is important in constructing,
evaluating, and optimizing temporal queries. Can the
representational schema also help in the validation of
nonsequenced constraints?

At first glance, this seems attractive: we could use an
existing conventional validator to validate our temporal
documents in a simple and straightforward manner.
However, expressing constraints in this way could result
in a large and complex representational schema, making the
conventional validation process inefficient. Further, some

CURRIM ET AL.: ADDING TEMPORAL CONSTRAINTS TO XML SCHEMA 13

temporal constraints cannot be expressed in the representa-
tional schema at all [34].

Consider, for example, the (sequenced) employeeID-
Key constraint in Listing 1: an <emp> element has an ID

attribute and we require the attribute to be globally unique.
As shown in the example in Fig. 3, this constraint is initially
valid at time t1, but is violated by the change at t3.

The temporal document shown in Fig. 4 encodes the
change history of the documents, but no representational
schema can be constructed to match the intention of the
sequenced identity constraint. If, for instance, the repre-
sentational schema were to place an identity constraint
globally on the ID attribute, the conventional validator
would detect a conflict at the Tandy elements at times t1
and t8, but this is incorrect behavior (Tandy should be
allowed to have the same ID at different times). However,
not having an identity constraint at all would also cause
incorrect behavior, because the conventional validator must
be able to detect that the ID of Tandy and Dana are the
same at times t3-t7.

The problem we are seeing is not in the individual value
of any attribute, but rather in a complex interaction between
values and times. Referential integrity constraints are
similar: the interaction between values and time cannot be
modeled in XML Schema, and thus it is easy to conceive
scenarios that are logically invalid but undetectable within
XML Schema and vice versa. Considering cardinality
constraints, versions of elements can have arbitrary start
and ending times, and there is no way in XML Schema to
determine how many versions exist at any given slice of
time. In contrast, data type constraints can be expressed in
the representational schema since, by the definition of
sequenced constraints, the type must be constant through-
out all times and thus the complex interaction doesn’t
occur. The transformation from the conventional schemas to
the representational schema is trivial in all cases.

We conclude that XML Schema lacks the expressive
power to directly state some flavors of temporal constraints.
Such constraints must be enforced instead by procedural
code within the temporal constraint validator, �XMLLINT.

9.2 �XMLLINT Implementation

We have implemented �XMLLINT in Java and DOM. Our
tool supports the entire constraint language presented here,
including sequenced and nonsequenced constraints and all
of the constructs summarized in Tables 1, 2, 3, 4, and 5. In
this section, we summarize our approach; the online
Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2011.74, provides the detailed algorithms.
�XMLLINT first reads the temporal document, creating a

DOM tree. It then reads the temporal schema, including the

logical and physical annotations. All the DOM nodes that are
irrelevant to the constraints are removed. The removal is
performed only once and the consequent validation steps are
carried out based on a quite smaller DOM tree, significantly
improving the performance of constraint checking.

For sequenced constraints, �XMLLINT performs conven-
tional validation with the help of the validate() method
provided by the Validator class in the Java Platform.
Specifically, �XMLLINT invokes a slicing routine to extract
each slice from the temporal document. For each slice (which
is represented as a DOM object), the validate()method is
called to evaluate that slice against its conventional schema.
�XMLLINT indicates that the temporal document is valid
only if validate() returns true for every slice.

For nonsequenced constraints, �XMLLINT provides its
own validation algorithm for each of the type of constraint.
As described in Section 3, the logical annotations provide
the constraint definitions. �XMLLINT extracts all the
defined constraints from the annotation file and checks
them individually.

Although the validation of the constraint types vary,
there are several common steps. These include the evalua-
tion window, slide size, and their interaction with applic-
ability (see Table 1). For identity constraints, �XMLLINT

collects all the unique values valid within the specified
applicability window into a list and then iterates through
this list to look for offending duplicates. For cardinality
constraints (e.g., Example 2 in Section 6.3), the validation is
more complicated. �XMLLINT first collects for each target
(designated by the target XPath expression) the items
(designated by the field XPath expression) within the
stated applicability window, and then groups these items
by different group identifiers (designated by the group

XPath expression). Each such collection will have a
cardinality that must be checked. (If group is not specified,
the field XPath expression is sufficient.) Finally, for data
type constraints, the focus is instead on each individual
data type, to ensure that it respects the requirements
imposed by the constraint.

9.3 Empirical Evaluation

We now study the performance of �XMLLINT, focusing on
how the validation time of a temporal document with
�XMLLINT compares with validation time of multiple
slices, each a conventional XML document, with XMLLINT.
To do so, we use a benchmark data set defined in �Bench,

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012

Fig. 3. Three <company> slices.

Fig. 4. The three <company> slices squashed.

which is a benchmark for temporal data [35]. �Bench is
based on XBench, which is a family of nontemporal
benchmarks with XML documents, XML Schemas, and
associated XQuery queries [36]. One of the benchmarks in
XBench, called the document-centric/single document bench-
mark, defines a book store catalog with a series of books
(<item>s), their authors and publishers, and related books.
�Bench runs a temporal simulation that randomly changes
<item> elements at each point in time, based on user-
supplied parameters, such as how many elements to change
and how often to change them.

We used Data set 4 from �Bench, which consists of a
temporal document and the slices at each point in time. We
varied the number of slices from 50 to 800, to examine the
scaling characteristics of the tools. Since the temporal
simulation in �Bench adds and deletes elements with equal
frequency, the size of each slice remains roughly constant
over time, at 6.5 MB, for a total size of 325 MB (50 slices) to
5.2 GB (800 slices). The temporal document ranged in size
from 13 (50 slices) to 31 MB (800 slices). This document
exhibited primarily linear growth (though at a rate much
less than the conventional slices), with a small quadratic
component arising from time stamps at different levels.
The compression ratio increases from 25 for 50 slices to 167
for 800 slices.

We conducted two studies: a performance comparison
between �XMLLINT and XMLLINT in validating sequenced
constraints, and a performance evaluation of validating
nonsequenced constraints with �XMLLINT. The second
study was to examine the behavior of nonsequenced checks
(�XMLLINT being the first such validator to implement
constraints). We performed both studies on a machine
running Ubuntu 9.10 with a 2.8 GHz 16-core CPU and
64 GB of memory. We evaluated each type of constraint; the
online Appendix, available in the online supplemental
material, gives the actual constraint definitions used.

In the study of the sequenced constraints, we measured
the total execution time of the tools, which is the wall-clock
time taken from process invocation to process termination,
including I/O and constraint validation. Since XMLLINT

can only operate on a single slice at a time, we iteratively
applied XMLLINT on every slice and report the aggregated

total execution time. We applied �XMLLINT just to the
temporal documents and report the total execution time.

Fig. 5 shows that for all four types of sequenced
constraints, �XMLLINT is more efficient (has a lower total
execution time) than XMLLINT. Moreover, as the number
of slices increases, the performance benefits of applying
�XMLLINT becomes even more significant. This is
primarily due to the fact that the space requirement for
storing all the slices grows faster than storing the single
temporal document, thus the I/O overhead is inherently
higher for XMLLINT to operate. The CPU overhead is also
reduced because �XMLLINT removes irrelevant DOM
nodes prior to slicing.

To study the performance of checking nonsequenced
constraints, we applied �XMLLINT to the temporal docu-
ments and report both the total execution time and the
constraint validation time, which is only the time required to
validate the given constraint (i.e., I/O is omitted). For such
constraints, Fig. 6a suggests that the running time is
dominated by I/O for nonsequenced constraints as well.
Fig. 6b emphasizes that cardinality constraints require
greater CPU time. This is due to the fact that for the other
nonsequenced constraints, the evaluation window was set at
all time, whereas for the cardinality constraint it was set at
one year. This implies that the number of evaluation
windows increased from 1 (for 50 slices) to 16 (for 800 slices),
effecting a quadratic growth in terms of number of slices.

10 CONCLUSION AND FUTURE WORK

We have shown here how to smoothly include both
conventional XML integrity constraints as well as new
temporal constraints to XML documents whose content
varies across time and even whose schema varies across
time. This is done by replacing the schema with a (possibly
time-varying) temporal schema and replacing the document
with a temporal document, both of which are upward
compatible with conventional XML and with conventional
tools such as XMLLINT. Our approach accommodates all
three kinds of temporal constraints, that is, current,
sequenced, and nonsequenced, and reinterprets existing
nontemporal constraints as sequenced in the presence of
time-varying data. We have developed an implementation
that utilizes a separate temporal validator component to
evaluate most of the temporal constraints, those that cannot
be expressed in the representational schema; this imple-
mentation is more efficient than evaluating the sequenced
constraints independently for each slice with XMLLINT.

CURRIM ET AL.: ADDING TEMPORAL CONSTRAINTS TO XML SCHEMA 15

Fig. 5. Total execution time of sequenced constraints.

Fig. 6. Execution time of nonsequenced constraints.

One area of future work concerns optimization and
efficiency. It would be useful to consider the impact of time
stamp placement (physical annotation) and impact of
parameters (logical annotation) such as evaluation window
size on efficiency (document size, I/O time, and CPU time
for validation). New representations can be evaluated to
improve the space efficiency of temporal documents and
the time taken to validate constraints. In particular, it is well
known that DOM-based implementations suffer from a
memory bottleneck for huge documents. We would like to
explore SAX-based temporal constraint validation techni-
ques to avoid loading a complete document history into
memory. Any DOM application can be converted to a SAX
implementation by having the latter cache any information
that is needed that is not directly within the node currently
being handled. So, for example, a SAX implementation of
our temporal constraint checker, �XMLLINT, could cache
the list of nodes computed (incrementally) by the Eval()
function defined in Section 6.1.

We would also like to consider specific extensions to the
temporal constraint annotations described in this paper. A
more powerful version of the <nonSeqUnique> (or
<nonSeqKey>) constraint would permit the user to specify
exactly how many times any key (or unique) value other
than null can appear across time. The default is 1, in which
case it is identical to a nonsequenced unique or key
constraint. We term this constraint as a value cardinality
constraint, but leave it for future work as it has no XML
Schema equivalent. Similarly, we leave for later considera-
tion transition constraints on nonadjacent states [37], other
varieties of cardinality constraints [25] with no XML
Schema equivalent, and incorporating temporal indetermi-
nacy [38] into constraint representation and evaluation.

In this paper, we consider only the case where at most
one <item> annotates each element type definition. It
would be interesting to relax this restriction to permit
several <item>s for an element type definition. Recall that
an item represents the gluing of elements across slices; it is a
logical rather than a physical construct, and logically,
elements could be glued in more than one way. The
relaxation would potentially allow us to combine “within”
and “between” constraints into a single kind of constraint.

Finally, many optimizations could be applied to the
validator. For example, checking constraints of the same
type, such as nonSeqUnique can be scheduled together.
Also, checking constraints with higher violation probability
can be scheduled earlier. The order of the violation
likelihood of the constraints can be inferred by the temporal
document. For instance, the transitionConstraint is
more likely to be violated if the temporal document
contains many state change records.

REFERENCES

[1] “An Act to Protect Investors by Improving the Accuracy and
Reliability of Corporate Disclosures Made Pursuant to the
Securities Laws, and for Other Purposes (Brief Title: Sarbanes-
Oxley Act of 2002),” July 2002.

[2] F. Grandi, “Introducing an Annotated Bibliography on Temporal
and Evolution Aspects in the World Wild Web,” SIGMOD Record,
vol. 33, pp. 84-86, June 2004.

[3] Libxml, “The XML C Parser and Toolkit of Gnome,
Version 2.7.2,”http://xmlsoft.org/, Viewed Feb. 5, 2009, 2008.

[4] F. Currim, S. Currim, C. Dyreson, S. Joshi, R.T. Snodgrass, S.W.
Thomas, and E. Roeder, “�XSchema: Support for Data- and
Schema-Versioned XML Documents,” Technical Report TR-91,
TimeCenter, 2009.

[5] C. Dyreson, R.T. Snodgrass, F. Currim, and S. Currim, “Schema-
Mediated Exchange of Temporal XML Data,” Proc. 25th Int’l Conf.
Conceptual Modeling (ER ’06), pp. 212-227, 2006.

[6] C. Dyreson, R.T. Snodgrass, F. Currim, S. Currim, and S. Joshi,
“Weaving Temporal and Reliability Aspects Into a Schema
Tapestry,” Data and Knowledge Eng., vol. 63, no. 3, pp. 752-773,
2007.

[7] R.T. Snodgrass and I. Ahn, “Temporal Databases,” Computer,
vol. C-19, no. 9, pp. 35-42, Sept. 1986.

[8] F. Currim, S. Currim, C.E. Dyreson, and R.T. Snodgrass, “A Tale
of Two Schemas: Creating a Temporal XML Schema from a
Snapshot Schema with �XSchema,” Proc. Ninth Int’l Conf.
Extending Database Technology, pp. 559-560, 2004.

[9] S. Joshi, “�XSchema - Support for Data- and Schema-Versioned
Xml Documents,” master’s thesis, Computer Science Dept., Univ.
of Arizona, Aug. 2007.

[10] R.T. Snodgrass, C. Dyreson, F. Currim, S. Currim, and S. Joshi,
“Validating Quicksand: Temporal Schema Versioning in
�XSchema,” Data Knowledge Eng., vol. 65, no. 2, pp. 223-242, 2008.

[11] Z. Brahmia, R. Bouaziz, F. Grandi, and B. Oliboni, “Schema
Versioning in �XSchema-Based Multitemporal XML Reposi-
tories,” Technical Report TR-93, TimeCenter, Dec. 2010.

[12] S.S. Chawathe, S. Abiteboul, and J. Widom, “Managing Historical
Semistructured Data,” Theory and Practice of Object Systems, vol. 5,
pp. 143-162, Aug. 1999.

[13] C.E. Dyreson, H. Lin, and Y. Wang, “Managing Versions of Web
Documents in a Transaction-Time Web Server,” Proc. 13th Int’l
Conf. World Wide Web (WWW ’04), pp. 422-432, 2004.

[14] S.Y. Chien, V.J. Tsotras, and C. Zaniolo, “Efficient Schemes for
Managing Multiversionxml Documents,” The VLDB J., vol. 11,
no. 4, pp. 332-353, 2002.

[15] D. Gao and R.T. Snodgrass, “Syntax, Semantics, and Evaluation in
the �xquery Temporal XML Query Language,” Technical Report
TR-72, TimeCenter, 2003.

[16] K. Nørvåg, “Algorithms for Temporal Query Operators in XML
Databases,” Proc. Extending Database Technology (EDBT) Workshops,
pp. 169-183, 2002.

[17] J. Chomicki, “Efficient Checking of Temporal Integrity Constraints
Using Bounded History Encoding,” ACM Trans. Database Systems,
vol. 20, no. 2, pp. 149-186, 1995.

[18] E. Bertino, C. Bettini, E. Ferrari, and P. Samarati, “An Access
Control Model Supporting Periodicity Constraints and Temporal
Reasoning,” ACM Trans. Database Systems, vol. 23, pp. 231-285,
1998.

[19] A.U. Tansel, “Temporal Data Modeling and Integrity Constraints
in Relational Databases,” Proc. Int’l Symp. Computer and Information
Sciences (ISCIS ’04), pp. 459-469, 2004.

[20] J. Chomicki and D. Niwinski, “On the Feasibility of Checking
Temporal Integrity Constraints,” J. Computer and System Sciences,
vol. 51, no. 3, pp. 523-535, 1995.

[21] J. Chomicki and D. Toman, “Implementing Temporal Integrity
Constraints Using an Active Dbms,” IEEE Trans. Knowledge and
Data Eng., vol. 7, no. 4, pp. 566-582, Aug. 1995.

[22] J.F. Roddick, “Schema Evolution in Database Systems: An
Annotated Bibliography,” SIGMOD Record, vol. 21, no. 4, pp. 35-
40, 1992.

[23] C.A. Curino, H.J. Moon, and C. Zaniolo, “Graceful Database
Schema Evolution: The Prism Workbench,” Proc. VLDB Endow-
ment, vol. 1, pp. 761-772, 2008.

[24] C. Combi, S. Degani, and C.S. Jensen, “Capturing Temporal
Constraints in Temporal Er Models,” Proc. 27th Int’l Conf.
Conceptual Modeling (ER ’08), pp. 397-411, 2008.

[25] F. Currim and S. Ram, “Modeling Spatial and Temporal Set-Based
Constraints during Conceptual Database Design,” Information
Systems Research, vol. 23, no. 1, pp. 109-128, 2012.

[26] A. Artale, C. Parent, and S. Spaccapietra, “Evolving Objects in
Temporal Information Systems,” Annals of Math. and Artificial
Intelligence, vol. 50, nos. 1/2, pp. 5-38, 2007.

[27] R.T. Snodgrass, Developing Time-Oriented Database Applications in
SQL. Morgan Kaufmann Publishers, Inc., 2000.

[28] J. Clifford, C. Dyreson, T. Isakowitz, C.S. Jensen, and R.T.
Snodgrass, “On the Semantics of ‘Now’ in Databases,” ACM
Trans. Database Systems, vol. 22, no. 2, pp. 171-214, 1997.

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. X, XXXXXXX 2012

[29] F. Currim and S. Ram, “Conceptually Modeling Windows and
Bounds for Space and Time in Database Constraints,” Comm.
ACM, vol. 51, no. 11, pp. 125-129, 2008.

[30] R. Snodgrass, “The Temporal Query Language TQuel,” ACM
Trans. Database Systems, vol. 12, no. 2, pp. 247-298, 1987.

[31] M.H. Böhlen, R.T. Snodgrass, and M.D. Soo, “Coalescing in
Temporal Databases,” Proc. Int’l Conf. Very Large Data Bases,
pp. 180-191, Sept. 1996.

[32] R.T. Snodgrass, S. Gomez, and E. McKenzie, “Aggregates in the
Temporal Query Language Tquel,” IEEE Trans. Knowledge and
Data Eng., vol. 5, no. 5, pp. 826-842, Oct. 1993.

[33] F. Rizzolo and A.A. Vaisman, “Temporal XML: Modeling,
Indexing, and Query Processing,” The VLDB J., vol. 17, no. 5,
pp. 1179-1212, 2008.

[34] S.W. Thomas, “The Implementation and Evaluation of Temporal
Representations in XML,” master’s thesis, Computer Science
Dept., Univ. of Arizona, Mar. 2009.

[35] S.W. Thomas, R.T. Snodgrass, and R. Zhang, “�Bench: Extending
XBench with Time,” Technical Report TR-93, TimeCenter, Dec.
2010.

[36] B.B. Yao, M.T. Ozsu, and J. Keenleyside, “XBench - A Family of
Benchmarks for XML DBMSs.” Technical Report CS-TR-2002-39,
School of Computer Science, Univ. of Waterloo, Dec. 2002.

[37] E. Rose and A. Segev, “Toodm - A Temporal Object-Oriented Data
Model with Temporal Constraints,” Proc. 10th Int’l Conf. Entity-
Relationship Approach, pp. 205-229, 1991.

[38] C.E. Dyreson and R.T. Snodgrass, “Supporting Valid-Time
Indeterminacy,” ACM Trans. Database Systems, vol. 23, no. 1,
pp. 1-57, 1998.

Faiz A. Currim received the PhD degree from
the University of Arizona, and was a professor at
the University of Iowa prior to returning to
Arizona. He is with the Department of Manage-
ment Information Systems at the University of
Arizona. His research interests include applica-
tions in the areas of database design and
management, conceptual data modeling, data-
base constraints, spatial and temporal data, and
XML Schema management.

Sabah A. Currim received the PhD degree from
the University of Arizona. She is a senior data
warehouse analyst in the Mosaic Project at the
University of Arizona. Her research interests
include conceptual data modeling, learning,
database design and management, data ware-
house, XML Schema management and IT
Governance. She is a member of the IEEE.

Curtis E. Dyreson is an assistant professor in
the Department of Computer Science at Utah
State University. He serves as the ACM SIG-
MOD DiSC editor, the ACM SIGMOD Anthology
editor, and the information director for ACM
Transactions on Database Systems. His inter-
ests include temporal databases, native XML
databases, data cubes, and providing support
for proscriptive metadata. Prior to coming to
Utah State University, he was a professor at

Washington State University, James Cook University, Aalborg Uni-
versity, and Bond University.

Richard T. Snodgrass received the BA degree
in physics from Carleton College and the MS
and PhD degrees in computer science from
Carnegie Mellon University. He joined the
University of Arizona in 1989, where he is a
professor of computer science. He was editor-in-
chief of the ACM Transactions on Database
Systems, was ACM SIGMOD chair from 1997 to
2001, and has chaired the ACM Publications
Board, the ACM History Committee, and the

ACM SIG Governing Board Portal Committee. He served on the editorial
boards of the International Journal on Very Large Databases and the
IEEE Transactions on Knowledge and Data Engineering. He chaired the
Americas program committee for the 2001 International Conference on
Very Large Databases and the program committee for the 1994 ACM
SIGMOD Conference. He received the 2004 Outstanding Contribution to
ACM Award and the 2002 ACM SIGMOD Contributions Award.
He currently is a member of the Advisory Board of ACM SIGMOD,
and the Outstanding Contribution to ACM Award Committee. He chaired
the TSQL2 Language Design Committee, edited the book, the TSQL2
Temporal Query Language (Kluwer Academic Press), and has worked
with the ISO SQL3 committee to add temporal support to that language.
He authored Developing Time-Oriented Database Applications in SQL
(Morgan Kaufmann), was a coauthor of Advanced Database Systems
(Morgan Kaufmann), and was a coeditor of Temporal Databases:
Theory, Design, and Implementation (Benjamin/Cummings). He codir-
ects TimeCenter, an international center for the support of temporal
database applications on traditional and emerging DBMS technologies.
His research interests include ergalics (the science of computation),
temporal databases, query language design, query optimization and
evaluation, storage structures, and database design. He is an ACM
fellow. He is a senior member of the IEEE and the IEEE Computer
Society.

Stephen W. Thomas received the BS degree in
computer science from New Mexico State
University in 2006 and the MS degree in
computer science from the University of Arizona
in 2009. He is currently working toward the PhD
degree in computer science from Queen’s
University in Canada. His research interests
include temporal databases, text mining, and
empirical software engineering. He is a member
of the IEEE.

Rui Zhang received the BEng degree in
computer science from the Nanjing University
of Technology in 2004, and the MSc degree
in computer science from the University of
Nebraska at Omaha in 2006. He is currently
working toward the PhD degree in the Depart-
ment of Computer Science at the University of
Arizona. His interests include database tech-
nologies and XML processing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CURRIM ET AL.: ADDING TEMPORAL CONSTRAINTS TO XML SCHEMA 17

