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Abstract—This paper introduces the concept of an integrated in-
strumentation environment (IIE) for multiprocessors. The primary
objective of such an environment is to assist the user in the process of
experimentation. The emphasis in an IIE is on experiment management
(including stimulus generation, monitoring, data collection and anal-
ysis), rather than on techniques for program development as in con-
ventional programming environments. We believe the functionality of
the two environments should eventually be provided in one compre-
hensive environment.

An experiment schema is introduced as an appropriate structuring
concept for experiment management purposes. Schema instances
capture the results of an experiment for later analysis. An example is
developed in some detail to demonstrate the potential benefits of such
an approach. The three primary components of the IIE, namely, the
schema manager, the stimulus generator, and the monitor, are briefly
described. A preliminary implementation of the design on the Cm*
multiprocessor is briefly discussed.

Index Terms—Automated testing, experimentation, experiment
management, instrumentation, monitoring, multiprocessor perfor-
mance evaluation, programming environment, stimulus generation,
workload generation.

I. INTRODUCTION

M ULTIPROCESSOR designs have long been proposed

to meet the need for powerful, cost-effective com-
puters. Several multiprocessors have been built to study the
various tradeoffs inherent in this approach [1]-[9]. An im-
portant objective of experimentation in performance evaluation
and reliability is to provide evidence to validate the design
decisions of these systems. Due to the increased number of
independent components in multiprocessors, the space of
possible experiments for such machines is orders of magnitude
larger than for conventional uniprocessors. There is, therefore,
a need to approach the problem of experimentation on mul-
tiprocessors in a structured manner.
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Instrumentation of the machine is the first important step.
Typical instruments discussed in the literature include soft-
ware, hardware, hybrid, and computer network monitors,
natural and synthetic workload generators, data compaction
tools, and data analysis packages [10]-[18]. Most systems
possess multiple instruments which have been built indepen-
dently over a period of time with little effort toward integra-
tion. This unstructured approach has several disadvantages.
First, an experimenter has to communicate with each instru-
ment through its unique user interface, requiring familiarity
with several sets of conflicting conventions in syntax and data
formats. Second, data from one tool have to be converted
manually to the format requirements of any subsequent tools.
Furthermore, to make correlations across experiments, the
experimenter has to manually keep track of experiment dates,
input parameters, monitored results, system configuration, and
so forth. Finally, getting the tools to interact during the course
of the experiment is usually impossible.

Work in the direction of integrating instruments is found
primarily in the area of computer network monitors [16]. Nutt
[19] observes that the techniques for gathering measurement
data have not been effectively used. Although the raw power
of existing tools is quite adequate, the use of these tools is often
so complex that experiments cannot fully utilize their func-
tionality.

This paper recognizes the need for better human-engineered
environments for experimentation with multiprocessors. It
introduces the concept of an integrated instrumentation en-
vironment (11E) as a structured approach to facilitate the
process of experimentation. The design presented emphasizes
the integration of several instrumentation tools, including
stimulus generation and monitoring, into a unified experiment
management environment. An experiment script (a schema)
is introduced as an appropriate structuring concept for ex-
periment-management purposes. Schema instances are in-
troduced to capture the results of an experiment for later
analysis. A preliminary implementation of the design on the
Cm* multiprocessor [1] under both the StarOS [20] and
Medusa [21] operating systems is briefly discussed.

Although some program management concepts have been
borrowed from conventional programming environments
(PE’s) [22]-[24], the thrust in the IIE is substantially different
from what is typically discussed in conjunction with pro-
gramming environments. The emphasis in an IIE is on ex-
periment management, from stimulus generation to moni-
toring data collection and analysis, rather than on techniques
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for program development. We believe the functionality of the
two should eventually be provided in one comprehensive en-

vironment. The IIE draws on the functions provided by PE’s

such as program specification and translation, version control,
multiple programmer support, and module management. This
paper assumes the existence of a PE and will therefore not
discuss such functionality in the IIE.

Section I-A presents the functions to be performed by the
11E. The basic components of the design of the IIE are pre-
sented in Section II. Stimulus specification and representation
is discussed in Section II-A. Section 11-B discusses the tech-
niques used to collect and process monitoring information. The
run-time environment, presented in Sections II-C and I1-D,
is a system-specific component permitting remote monitoring
and stimulus control. Section II-E discusses the schema
manager as the central control component supporting the ex-
ecution of experiments. A preliminary implementation of the
IIE on Cm#* is discussed in Section III. Relevant portions of
an example are discussed throughout the paper to illustrate
some of the concepts

A. Functionality of the IIE

An integrated instrumentation environment (I1E) consists
of a set of tools which cooperate closely and present the user
with a single uniform interface in order to assist and partially
automate the process of experimentation. The general objective
of an experiment is to inquire about performance, reliability,
or any of a number of interesting properties of a computation.
In the context of a computer system an experiment is the ex-
ecution of an instrumented program in a controlled environ-
ment allowing measurement, collection, and analysis. An ex-
periment may involve multiple executions of the instrumented
program with different input parameters or within different
environments.

The IIE supports the notion of an experiment schema as the
high level unit of experimentation management. Each schema
specifies a related collection of runs, that is, executions of an
instrumented program. Intuitively, a schema can be seen as

a parameterized experiment script, describing the experi-

mentation process. A schema specifies the instrumented pro-
gram, the monitoring directives, the specifications of the
run-time environment, and the input parameters for each
run.

The result of an execution of a schema is captured in a
schema instance, containing measurements, values of schema
parameters and environmental information. This is a data
structure representing the unit of management for the exper-
iment results. Schema instances are archived in a database for
later analysis.

By using the generic notions of schema and schema instance
the experimentation process can be expressed as in Fig. 1. Each
phase of the experimentation process will be discussed in detail
in the following sections.

‘An IIE requires software to support the several phases of
experimentation, including

« translation of collections of user-defined modules and
predefined synthetic actions into instrumented parallel pro-
grams;

Schema = DESIGN(Experiment)
WHILE (Not End of Experiment) DO
BEGIN
EXECUTE(Schema)
CREATE(Schema Instances)
END
ANALYZE(Schema Instances)

Fig. 1. Experimentation process in the IIE.

e creation of the schema by merging the instrumented
parallel stimulus, the monitoring directives and the environ-
ment information;

e schema interpretation and run-time control;

e creation of schema instances; and

« analysis of schema instances.

In order to further illustrate the experimentation process
described above, we will follow an example through in some
detail. This example shows how the IIE, at each stage, interacts
with the user, performs the required actions, and generates its
outputs. The example stimulus, called, simply, “a multipro-
cessor experiment” or MPX, involves a single initiator and
multiple servers communicating through a shared buffer or
mailbox. The initiator repeatedly sends requests through the
buffer to one or more servers, which operate on those requests
concurrently. When the buffer is empty, the servers wait for
further requests; when the buffer is full, the initiator waits for
a request to be removed by a server.

‘The servers perform identical functions, so a request can be
satisfied by any server. Additionally, the servers communicate
with each other via shared memory. The goals of the proposed
experiment are to investigate

o the interaction between the request rate (expressed as the
average number of requests per unit time) and the number of
servers, and

o the effect of the request rate and the number of servers
on the average buffer queue length, and the average waiting
time in the buffer. :

There are two interesting steady-state behaviors that have
different average queue length and service rate. In the first
case, the request rate exceeds the aggregate processing rate
of the servers, and hence, the buffer will always be full. In the
other case, the buffer will always contain at most one request..
The aggregate service rate will be approximately constant, yet
radically different, in both cases. This analysis assumes a
constant individual service rate by independent servers.
However, in Cm*, accessing shared data perturbs the perfor-
mance of both the servers and the buffer insert/remove oper-
ations in nonobvious ways, greatly complicating analytical
modeling at the queue length and waiting time. As was shown
above, the boundary between the two cases is quite distinct if
contention is ignored. The experiment will investigate the
boundary in the presence of contention.

To summarize our approach, experiments are described as
schemata, and the result of executing a schema is a schema
instance. The primary functions of the IIE are the creation of
schemata, schema management execution, and control of
schemata, along with the creation, management and analysis
of schema instances. The next section presents the design of
an I1E supporting these functions.



II. DESIGN OF THE IIE

The IIE contains several components: a schema manager,
a run-time environment, an instrumented stimulus and oper-
ating system, a database, and a monitor (see Fig. 2). The
monitor consists of a resident monitor, which gathers the data
from the system under test, and a relational monitor, which
aggregates and correlates the data into a high-level form. The
user interacts directly with the schema manager, which com-
municates with the run-time environment and the monitor,
which in turn interacts with the instrumented program (the
stimulus) and the database. The IIE interacts with the PE
through the database.

The schema manager is responsible for supporting the
schema and schema-instance abstractions. The monitor ini-
tializes the schema instance with information specifying this
environment, including details on the hardware configuration,
the version of the operating system, support software and
stimulus, and the values of the parameters to remain constant
for this execution of the schema. The schema manager then
cycles through the runs as indicated in the schema, initializing
parameters that vary on a per-run basis, starting the stimulus,
and collecting the monitoring data. Finally, data concerning
the runs as a whole is collected or computed, and stored in the
schema instance for later study. Note that not all the IIE
components should necessarily reside and execute in the same
machine. In fact the Cm* IIE implementation spans several
computer systems. The run-time system and the stimulus are
resident in Cm*, whereas the schema manager, the database
and the relational monitor are remotely located in a VAX
11/780. The two computer systems are connected by an Eth-
ernet link.

One motivation for partitioning the components of the IIE
into a run-time environment and a remote environment is that
only the run-time environment is constrained to any particular
hardware or software configuration. Care has been taken to
make the remote components as system independent as pos-
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sible. Currently, two preliminary implementations exist for
the run-time environment for two different operating systems,
while only one implementation of the remote components was
necessary (see Section III).

The stimulus controller component provides a well-defined
interface to the instrumented stimulus. The functions it sup-
ports include modifying parameters within the stimulus both
before and during the run, generating initial control events for
the stimulus, reporting errors back to the schema manager, and
controlling the clock. Similarly the resident monitor provides
a uniform interface for the relational monitor. The resident
monitor is responsible for enabling and disabling sensors and
for sending the information back to the relational monitor in
a format convenient for further processing. The sensors are
embedded in the stimulus, in the stimulus controller, in the
operating system, and in the resident monitor itself. The re-
lational monitor controls the resident monitor and computes
derived information which is then stored in a schema instance
in the database.

The database serves an important role in the IIE because
the information contained in the database is the end result of
the entire experimentation process. Additionally, the inter-
action between the I1E and the PE occurs via the database by
having one environment create objects in the database for the
other-environment to use. For instance, schemata are initially
created in the PE, to be interpreted by the schema manager.
Schema instances, created by the IIE, are managed using the
version-control facilities of the PE. By using a common data-
base, it is possible to make use of the functionality provided
by the PE. This approach allows the designers of an IIE to
concentrate on those operations unique to experiment man-
agement.

A. The Instrumented Stimulus: Representation and

Specification .
The stimulus is an arbitrary set of processes executing in

parallel. The stimulus itself may incorporate sensors; in ad-



SEGALL et al.: INTEGRATED INSTRUMENTATION ENVIRONMENT FOR MULTIPROCESSORS 7

dition, sensors reside in the operating system and in the resident
monitor. We have developed tools to aid in the rapid develop-
ment of a stimulus. One of them is a workload generator. A
user specifies the behavior of his parallel program in a special

high-level behavior-description language, the B-language. This .

behavior is specified as a directed data flow graph, similar to
a complex bigraph [25], [26]. The nodes of the graph represent
subtasks, or processes, that execute in parallel with other
subtasks. Each subtask is composed of actions, parametrized
program fragments that may be predefined or user-defined,
repeated at certain rates. Associated with each arc is a buffer
which may hold data variables or control tokens flowing from
one subtask to another. Each subtask has an associated control
tuple (i, o) where i corresponds to the in-firing rule for the
subtask and o corresponds to the out-firing rule. This set of
firing rules characterizes the precedence relationship between
the subtasks of the graph. A B-language program is compiled
into an executable version as illustrated in Fig. 3. This section
gives a brief overview of the B-language; a more detailed dis-
cussion can be found in [27]. ;

The B-language thus represents the interaction of parallel
processes via the graph model of computation. A typical ex-
ample is shown in Fig. 4. Subtask A1 is fired by the arrival of
a token in buffer B1 which corresponds to the entry arc of the
graph. Upon completion, subtask A1 fires either of subtasks
A2 or A3 by placing control tokens in either buffers B2 or B3,
respectively. There is a certain probability associated with the
OR-output logic of subtask 41 (designated by the “+°). Fi-
nally, subtask A4 fires if it receives a token either from A2 or
A3. Upon completion, it places a token in buffer B6, which
corresponds to the exit arc of the graph and represents the end
of a single execution of the parallel synthetic program. The
B-language subtask declarations for this example are as fol-
lows.

SUBTASK A1 {INLOGIC: B1; OUTLOGIC: %40(B2)

- OR %60(B3)}

SUBTASK A2 {INLOGIC: B2; OUTLOGIC: B4}
SUBTASK 43 {INLOGIC: B3; OUTLOGIC: BS}

SUBTASK A44 {INLOGIC: B4 OR B5; OUTLOGIC: B6}

Notice that the buffers B|-Bg correspond to the arcs of the
parallel synthetic program. The delimiter “%” is used to specify
the branching probabilities for the arcs of an OR output.

The specification of parallel synthetic programs in the B-
language is based on the object model supported by both op-
erating systems on Cm* [20], [21]. The objects represented
directly in the B-language include the following.

o The task force object: The task force abstraction, a col-
lection of processes that cooperate to achieve a single logical
task, is represented by a set of subtasks.

o The subtask object: This is the sequential computation
unit that cooperates with similar user-defined objects to
compute the overall stipulated multiprocess task.

o The buffer object: The buffer object is a conventional
queue of messages and is used by the subtasks to communicate
with each other.

o The semaphore object: Semaphores synchronize requests
for shared resources.

» The file object: Files represent a sequence of bytes.

o The shared data object: Variables specified in the shared
data object are globally shared by all the subtasks of the task
force. This allows communication of data and control through
shared memory.

o The table object: Tables implement functions varying
with time.

Within a subtask, the basic building block is an action. To
capture the cyclic nature of synthetic workloads, an action a;
itself is described by an action-repetition tuple (specified as
{a;, r;)). This tuple specifies that the action a; is repeated
sequentially r; times, constituting action a;. An action may be
arbitrarily complex, and may be further composed of action-
repetition tuples. Also, both the a and the r can be parame-
trized. Other control constructs within a subtask include
composition and conditional and probabilistic branching.

The library of actions consists of a collection of predefined
and user-defined program fragments, programmed in the
systems programming language and stored as part of the sys-
tem database. Examples of predefined actions include sending
or receiving messages via a buffer, inputting or outputting to
a file, referencing local memory, blocking on a semaphore, and
accessing a shared resource. The user gains flexibility by being
able to include his own special program fragment among the
actions in the library. An example of a user-programmed ac-
tion is the code for a disk process in a database application
running on a specific multiprocessor. Hence, the library of
actions is specific for a particular multiprocessor system. The
B-language should be viewed as a portable framework into
which system specific actions are inserted from a library of
actions.

Special control constructs are included in the B-language
so that the schema manager may control the user’s workload
at run-time as specified in the schema. The control commands
initiated by the schema manager are executed by the stimulus
controller component of the run-time system. The VARY
construct in the language permits the stimulus controller to
vary parameters on a per-run basis. The language also allows
one to specify that the parameters are to vary in real time. This
is accomplished by binding a real-time function to a run-time
variable on a per-run basis. The real-time function is defined
by a table object and an associated interval of time. The
stimulus controller forces the run-time variable to take on
successive values from the table during successive time inter-
vals.

Using the MSGEVENT construct, the language permits the
stimulus controller to initiate variable time-driven events in

‘the stimulus on a per-run basis. This construct requests the

stimulus controller to deliver messages to a buffer with inter-
message time periods as specified by successive entries of a
table. The stimulus controller can associate a different table
object, or a constant time-period, with the MSGEVENT variable
on a per-run basis.
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Fig. 4. A parallel synthetic program—graph representation.

To allow measurement of the generated workload, a special
SENSOR construct permits a user to embed sensors into his
program. Sensors allow specified information as well as a ti-
mestamp to be sent to the monitor as event records. In addition
to user-defined sensors, the B-language program has some
built-in sensors. For example, the start time and end time for
each execution of a subtask are automatically recorded in the
event record. Furthermore, instrumentation available in the
operating system and the IIE run-time system allows the
schema manager to access information not explicitly specified
in the B-language program. An example is information re-
garding the interaction of the stimulus and the operating
system.

The B-language translator constructs special data structures
allowing the stimulus controller to exercise external control
over the experiment as specified in the B-language program.

TASKFORCE MPXperiment ;
BUFFER

RequestBuffer{ SIZE: 512 } ;
SEMAPHORE

GDSemaphore{ INITIAL: 1 } ;
SHARED

GlobalData[512] ;
ARY

RequestPeriod;
MSGEVENT

RequestService =
SENSOR

StartGlobalPhase ;

RequestBuffer @ RequestPeriod ;

SUBTASK Servers[1..8]
{ INLOGIC : RequestBuffer }

VARY

SharedDataAccess ;
BEGIN

<{$DolocalWork : 10>,

StartGlobalPhase,
¢ D(SAccessSharedData(GDSemaphoré,G'Ioba'lnata): SharedDataAccess>
N

Fig. 5. B-language program for the MPX.

The translator also generates sensor descriptions (see Section
I1-D) for all programmed and predefined sensors in the B-
language program. These descriptions are used by the rela-
tional monitor to sort out event records flowing from the res-
ident monitor.

As an example, consider the B-language program (Fig. 5)
for the single-requester, multiple-server experiment discussed
in Section I1. The task force consists of an array of five iden-
tical server subtasks that wait on the RequestBuffer for queued
service requests. The RequestBuffer is associated with the
message-event generator via the MSGEVENT construct. This
allows an experimenter to vary the request rate by changing
the time (RequestPeriod) between successive firing of servers
on a per-run basis. The BEGIN and END constructs mark the
service loop of each subtask which is executed each time-its
in-firing rule is satisfied. In this example, each server does ten
units worth of work local to its processor, and then does some
variable number of accesses to global data, which is arbitrated
by a semaphore. A sensor, StartGlobalPhase, is embedded in
each subtask and sends an event record to demarcate the
transition from local work to global work. Built-in sensors
record the begin and end of each subtask and the firing of re-
quest tokens by the message-event generator. The variable
parameters of the experiment are the number of active servers,
the request rate, and the amount of global work done by each
server. This program will be specified in the schema as the
stimulus for the MPX.
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B. Relational Monitor

In the IIE, each time the experiment schema is interpreted,
and the stimulus executed one or more times, various moni-
toring information is collected and stored in the database in
a schema instance.

The model of the monitoring data adopted in the IIE is a
variant of the relational model used in conventional relational
databases [28]. Information is recorded as a collection of
two-dimensional tables, called relations. Each row, called a
tuple, records a particular relationship between entities named
in the columns, called domains, of the tuple. For example, the
relation Running (Process, Processor), with two domains, may
contain the tuple (MyProcess, ProcessorA), indicating that
the process called MyProcess is running on the processor called
ProcessorA. Relations used in monitoring are temporal in that
each tuple records relationships that are true at an instance
of time or over some interval of time. A relation involving in-
stances of time is called an event relation; each tuple records
the occurrence of a particular event. A period relation, on the
other hand, records a relationship that exists for an interval
of time. Periods are delimited by events; each tuple (period)
in the Running relation is associated whith two other event
tuples, one in the Start relation and one in the Stop relation.
Time is included in an implicit domain manipulated by the
monitor.

The Running relation is an example of a primitive relation
because the information contained in the relation is a direct
translation of a set of recorded events. Primitive relations may
be divided into three categories: operating system, stimulus
control, and user-defined. The first category is concerned with
information involving the operations and data structures
supported by the operating system. The Running relation is
in this category. The second category involves the actions
performed by the run-time portion of the IIE. Examples of
event relations from the MPX include

o RequestService(TokenID): the sending of a MsgEvent
token to RequestBuffer; the TokenID identifies the token;

o ServersStart(Index, TokenID): the in-firing of a sensor’s
subtask; the Index identifies the Server; the TokenID identifies
the token causing the firing;

o ServersEnd(Index, TokenID): the out-firing of a sensor’s
subtask.

The one user-defined primitive relation specified in the
MPX, StartGlobalPhase, is also an event relation and contains
only the implicit time domain. This relation was declared as
a sensor in the B-language program for the MPX (see Fig. 5),
and records the time at which the Server subtask finished its
local work and started the shared data access.

Given a collection of primitive relations, new relations can
be defined as a result of operations performed on existing
relations. These derived relations are specified using a rela-
tional query language. The query language used in the 1IE is
a version of Quel [29] augmented with additional temporal
constructs and is discussed elsewhere [30]. Fig. 6 illustrates
the definition of the derived relations AverageQLength and
ServiceRate used in the MPX. The former relation has one
domain, AvQL, with the tuples specifying this value for the

various time intervals. Similarly, the ServiceRate relation will
have one domain, SRate, containing values varying over time.
These queries will be referred to by the schema for the MPX,
and will specify both the primitive relations to be monitored
and the calculations to be performed on the data in the event
records.

C. Stimulus Controller

The stimulus controller component of the run-time system
is a set of utilities that permit control of the stimulus as spec-
ified in the schema. While the schema manager provides ex-
periment management through the management of the schema
abstraction, the stimulus controller provides low-level exper-
iment control through the management of a single run. The
motivation was to separate the low-level control functions from
the experiment-management functions so that different
management strategies could be carried out using common
control primitives. The functions exported by the stimulus
controller are therefore geared towards the initialization and
execution of a single run.

One responsibility of stimulus controller is to ensure the
repeatable behavior of a run by eliminating side effects from
one run that might perturb the next run. An example of a
side effect is the presence of tokens left over in the edges
(buffers) as a result of the previous run. The stimulus controller
ensures that all data structures are in a well defined state at
the beginning of a run. For example, buffers are emptied and
all semaphores are initialized as specified in the B-language
program.

The stimulus controller is also responsible for the variation
of parameters on a per-run basis and in real time during a run.
The variation of parameters on a per-run basis involves the
VARY parameters of the B-language program (see Section
II-A), and the variation of the graph-structure representation
of the program. A typical modification of the graph structure
involves changing the number of active subtasks for a partic-
ular run. This is particularly useful in real-time experimen-
tation, where one wants to determine the number of subtasks
necessary to meet real-time constraints. The variation of pa-
rameters in real time during a run involves the variation of the
run-time variables of the B-language program according to
some function of time expressed as a table object and an as-
sociated interval of time.

The stimulus controller must provide a well defined mech-
anism to start the run. In the graphical representation of the

- program this corresponds to firing the entry node, that is,

placing a token on the entry arc of the graph. To start a run,
the stimulus controller delivers a specified number of control
tokens into a system-defined buffer, called the IgnitionBuffer,
which corresponds to the entry arc of the data-flow graph. The
user may now use this source of tokens to start any desired
subtask, by specifying the IgnitionBuffer appropriately in the
in-firing rule of that subtask. Similarly, to detect the end of
a run, the stimulus component watches a system-defined
TerminationBuffer for a specified number of tokens.

The stimulus controller has four major subcomponents. The
first subcomponent executes basic control functions, including
initialize, to initialize the instrumented program before each
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: references to R will indicate the

; ReguestService relation

range of S is StartServers
-range of Sp is StopServers
define WaitingInQueue (R.TokenID)

where R.TokenID = S.Tokenl

start R
stop S

; the wait
; is made,

; one domain, the request's

; TokenID

; the request is being serviced

by a server

ing begins when the request
and ends when the server

D

;s starts

range of W is WaitingInQueue
define QlLength (L = Count(W))

; count the number of outstanding

; requests in the buffer

range of Q is QLength
define AverageQLength (AvQL

Aver

define TotalWaiting (W.TokenID)
where Sp.TokenID = W.Token
start W
stop SP

age(Q)) : instantaneous average

10

; total waiting time begins when the
; request was made, and ends when the

; server stops

range of TW is TotalWaiting

define ServiceRate (SRate = 1 / Average(Duration(TW)}))

Fig. 6. Que

run; fire, to fire a specified number of tokens into the Igni-
tionBuffer; vary, to permit the variation of VARY-parameters
on a per-run basis; display, to display the value of a vary-
parameter; enable/disable, to enable or disable subtasks on
a per-run basis; and status, to return the status of the program.
Observe that functions such as display and status are inter-
active in nature and can be used during the interactive creation
of a schema (see Section 11-D).

“With the second, a message-event generator delivers token
messages to prespecified buffers according to prespecified
functions of time. Control functions performed by this sub-
component include start generator, to start the message-event
generator for a particular run; stop generator; and set message
event, to allow the association of either a table object or a
constant with a buffer.

With the third, a run-time variable driver ensures that all
run-time variables vary in real time as specified by its associ-
ated table object and time interval. The main control function
of this module is to allow the association of different table
objects and time intervals with a run-time variable on a per-run
basis.

Finally, with the fourth, a clock module permits access to
a set of clocks distributed over the system. This module is used
by the message-event generator, the sensors, and the run-time
variable driver.

Additional functionality in the instrumented program may
be added by augmenting the stimulus controller. For example,
a set of components used for experimentation related to reli-
ability has been designed and partially implemented. This
includes software-implemented voters, and accelerated
fault-insertion and configuration-control modules.

D. The Resident Monitor

The monitoring information is collected as event records,
generated by sensors in the instrumented stimulus, the run-
time system, the operating system, or the hardware. Each event
record contains an indication of the operation being monitored,
the name of the component performing the operation, and the
name of the object the operation is being performed on. The
event record may-optionally contain a timestamp and other
information germane to the event. For instance, a sensor lo-
cated in a file-system process might generate event records for

ries for the MPX.

file reads. In this case, the event record would include the name
of this process, the name of the file being read, an indication
that this is a file-read event, the timestamp, and perhaps the
block number being read.

Highly selective filtering of the event records is necessary
to constrain the flow of event records into the monitor. En-
abling and filtering directives are encapsulated in data struc-
tures called receptacles, associated with either active com-
ponents, such as a file-system process, or passive objects, such
as a file. Receptacles contain event-enable switches as well as
a buffer for temporarily storing event records. The resident
monitor (and thus, indirectly, the relational monitor) has the
ability to enable switches in each receptacle. The flexibility
in associating receptacles with either processes or objects
provides a mechanism for filtering the event records. For ex-
ample, if the receptacle was associated with the file, and the
file-read event was enabled, event records for all file reads
performed on the file would be written into the receptacle. On
the other hand, if the receptacle was associated with a file-
system process, event records for all file reads performed by
the process on any file would be written into the receptacle.

A task force is instrumented by specifying the sensors,
events, and object types in a file, called a sensor description.
The operating system and stimulus controller, being task forces
themselves, are also associated with sensor descriptions. A
sensor description is generated automatically when a B-lan-
guage program is processed. Users may also write their own
sensor descriptions if they so desire. Fig. 7 illustrates the sensor
description generated from the B-language program for the
MPX given in Fig. 5. This description includes a sensor-process
definition for each subtask and for the stimulus controller, and
events for the start and end of execution of each subtask and
the start of each run. Another program takes the sensor de-
scription and produces optimized code for each software-
implemented sensor, based on the specifications in the sensor
description. Sensor descriptions thus allow users to specify their
own sensors which will utilize the same mechanisms for event
record and generation as the sensors embedded in the run-time
and operating systems.

It is important to note that the user never needs to be con-
cerned about receptacles or event records. Instead, the IIE
(through the monitor component) presents to the user the view
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(Taskforce (name lMPExperiment) ; Standard prelude

(SensorProcess (Name StimulusControl)

(Event (Name PerRun)
(Domains (Domain (Name RunNumber)
(Type Integer))
(Domain (Name RequestPeriod)
{Type Integer))
(Domain (Name ServerCount)
(Type Integer)))
(Timestamp yes)

(Event (Name RequestService) ; MsgEvents
{Location StimulusControl)
(Domains (Domain (Name TokenID)
(Type Integer)))
(Timestamp yes)
(SensorProcess (Name Servers) ; SubTasks

(Event (Name ServersStart)
{(Location Servers)
{Domains (Domain (Name Index)
(Type Integer))
(Domain (Name TokenID)
(Type Integer)))
(Timestamp yes)
(Event (Name ServersEnd)

(Event (Name StartGlobalPhase) ; User-defined sensors

Fig. 7. Sensor description for the MPX.

of a database composed of temporal relations. New relations
can be derived using the query language (identified in Section
1I-B). As a result of executing a query, the appropriate oper-
ations (locating and enabling receptacles, processing event
records, and generating the schema instances) are performed
automatically.

The use of receptacles and sensors may extend from sensors
implemented in hardware to sensors embedded in the operating
system to sensors placed in the user’s program. It is the resident
monitor’s responsibility to extract the event records from the
receptacle and send them to the relational monitor. By the time
the relational monitor receives the event records, they are in
an identical format regardless of how they were generated.

E. Schema Management

The central management and control of the schema and the
schema instances is performed by the schema manager.
Functions of the schema manager fall into two broad catego-
ries: the creation, manipulation, and execution of the schema
and the creation, archiving, and cross analysis of schema in-
stances. The schema manager is organized in three main
functional parts, as follows.

1) A user interface provides a uniform view of the various
components of the IIE. Schemata can be created using con-
ventional text editors, or incrementally, by directing the I1E
to perform a series of runs. In the latter case, the corresponding
schema and schema instance are automatically generated and
archived. This incremental mode is particularly helpful in the
tuning of experiments. The user interface also directly supports
monitoring queries and database queries thereby allowing a
user to manipulate and analyze schema instances.

2) A schema interpreter scans the schema and sends control
directives to the run-time system, including global initialization
commands for the entire experiment along with commands to
set up, start, and terminate each run.

3) A schema-instance generator interacts with the rela-
tional monitor to ensure that an instance is created and placed

SCHEMA (<invocation parameters))
{system configuration>
<stimulus>
<monitoring directives>
<initial conditions>
<experiment directives>

END SCHEMA

Fig. 8. High level organization of a schema.

SCHEMA MPX (RequestPeriod, SDA)

SYSTEMCONFIGURATION <configuration datad;

TASKFORCE <B-language program>;

MONITORQUERIES <relational queries>;
RESULTRELATIONS AverageQLength, ServiceRate;

VARY SharedDataAccess[I] = SDA WHERE I FROM 1 7O 5;

VARY NoOfServers FROM 1 TO 5
DO
BEGINEXPERIMENT
ENABLE Server[I] WHERE I FROM 1 TO NoOfServers;
TERMINATE AFTER 30 seconds
ENDEXPERIMENT
oD
-ENDSCHEMA

Fig.9. The schema for the MPX.

in the database. Both predefined and user-defined relations
are created and stored in the schema instance as a result of
interpreting the schema.

The schema contains all the necessary information to per-
form a complete experiment. It consists of five major compo-
nents: the system configuration, the stimulus, monitoring di-
rectives, initial experiment conditions, and experiment direc-
tives (see Fig. 8). The system configuration completely defines
the environment the experiment is to be performed in. The
stimulus is in the form of a translated B-language program
containing controlling parameters and data-collection sensors
as described in Section II-A. The monitoring directives are in
the form of a collection of queries as described in Section 11-B.
The initial experiment conditions consist of a set of invocation
parameters and the required resources (i.e., hardware and
operating system configuration and instrumentation, stimulus
version, etc.). Invocation parameters can be used to initialize
parameter values for experiments and are typically specified
at schema interpretation time. The experiment directives are
interpreted by the schema manager and specify how the
stimulus should be executed. Specifications are provided for
the iteration of the stimulus over the experiment runs along
with the variation of parameters for each run.

During schema execution, the relational monitor creates a
schema instance to hold the results of the experiment. The
monitor collects all the resulting event records together with
the schema identification and environment information and
creates an object to be managed by the PE. By using standard
relational database queries, the user can then perform analyses
across schema instances. The data in the instance which are
collected automatically provide the user with enough infor-
mation to replicate any particular execution of the schema to
verify the results.

In order to illustrate the use of schema and schema instance,
consider the schema describing the MPX, shown in Fig. 9. The
schema has two invocation parameters, RequestPeriod and
SDA. The configuration data specify the resources requested
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Fig. 10. Service rate versus time for a variable number of servers.

by this experiment, including the versions of the operating
system and I1E components, the hardware components, data
files to be read by the stimulus, and initial tests to be used later
to calibrate the results.

The experiment directives are in the form of a loop which
generates the execution of five runs. Each run will have its own
value for the NoOfServers parameter. The execution of this
schema will terminate when 30 s have passed for each run.
During execution, the sensors implanted in the B-language
program will generate data which are collected according to
the monitor queries.

Each time this schema is interpreted, a schema instance will
be automatically created in the database by the IIE. Each in-
stance will have the following components

o the date, time, and user identification;

o the values of the invocation parameters;

» exact version numbers of all software used in the experi-
ment; v

¢ adetailed description of the hardware configuration;

« results of the initial tests as specified in the system con-
figuration; and ‘

« the system- and user-defined relations (in this case, the
PerRun, AverageQLength, and ServiceRate relations).

Once the instances have been created, additional analysis
can be performed on the instances individually or as a group.
Fig. 10 shows the relationship between average service rate and
time for a RequestPeriod of 200 ms and a value of Shared

DataAccess of 400 accesses per request. Initially the service
rate is high, since the buffer is empty. For five servers, the
buffer never contains many requests, so the average service rate
remains high. However, for less than three servers, the buffer
fills up quickly, causing the average service rate to plummet.
The behavior with three or four servers is more involved, and
further analysis is necessary using different values for the re-
quest period and the SDA.

III. IMPLEMENTATION

A. Background

Our research vehicle is the Cm* multiprocessor. Cm* is a
50 processor multiprocessor developed and implemented at
Carnegie-Mellon University. Two operating systems, ME-
DUSA and STAROS, have been developed for Cm*. In addi-
tion, substantial utility software built for Cm* runs on other
general-purpose computers.

B. Status

An initial version of the IIE has been partially implemented
for Cm*. Two versions of the run-time system have been de-

‘veloped, one for each operating system [30], [27]. A sub-

stantial library of actions has accumulated for both operating
systems, and work is proceeding on implementing the B-lan-
guage translator. An initial version of the relational monitor
has been developed, including the sensor-description of the
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processor, although substantial effort is still needed before
general queries and multiple schema-instance analysis can be
executed [30]. The schema manager is in the final design
stages. It is expected that a full implementation of the I1E will
be completed by the end of 1982.

IV. CONCLUSION

The IIE constitutes a systematic approach to the task of
experimentation on multiprocessors. This approach empha-
sizes the integration of the tools used for such experimentation
and the development of techniques for experiment manage-
ment. The tools incorporated into the initial design of the IIE
have been oriented primarily toward performance measure-
ment. Work is proceeding in the area of reliability experi-
mentation, specifically to enhance the monitor so that it can
function across system failures and to implement fault insertion
into the stimulus in a controlled fashion. Another interesting
use of the I1E is in automated testing of revised modules in the
framework of version control. Future research areas include
the integration of the IIE with a multiprocessor PE, the in-
corporation of hardware monitors and other tools into the IIE,
and the development of an IIE supporting experimentation of
real-time systems.
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