A Sophisticated Microcomputer
User Interface

Richard Snodgrass

Carnegie-Mellon University
Department of Computer Science
Pittsburgh, PA 15213

Abstract

The design and implementation of a menu-oriented
interface for personal computers is discussed.
Factors pertaining to the cognitive limitations of
users are examined and their impact on the design
of the system is described. The major attributes of
the system are (1) all communication between the
operator .and the computer is through menus or
forms (which are analogous to hard copy
documents); (2) extensive help is available at all
times; (3) the interface can adapt to the
experience of the user; (4) the display processing
time is short; and (5) an external data format
exists that completely defines the interface. The
various components of the interface are discussed
in detail, followed by a discussion of the
implementation.

1. Introduction

Aithough some research has been done on
developing intelligent user interfaces for large
systems [2, 12, 14, 16, 20, 22], very little
investigation has focused on the adaption of these
interfaces to a personal computer (also referred to
in this paper as a microcomputer syétem). One
reason is that microcomputers impose a stringent
set of restrictions on the resources available when
implementing or executing a program. These
restrictions concern the lack of a virtual address
space, the slowness and small capacity of the disk,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/ or specific permission.

© 1080 ACM 0-89791-024-9/80/0900-0097 $00.75

and the low processing rate. They impose
secondary restrictions, such as a small symbol table
in the compiler (due to an excessive swapping
overhead) which are often more limiting than the
obvious deficiencies. Dealing with these
constraints severely complicates the design of
sophisticated user interfaces and makes research
in this area difficult. Another reason for the lack of
research concerning microcomputer user interfaces
is that personal computers have only recently
advanced to the point where effective Interfaces
are possible.

In spite of the many restrictions that are present
in microcomputer systems, personal computers also
have some attractive properties not shared by
large systems. A personal computer usually has a
dedicated video display which can contend with
very high data transfer rates (1000 characters per
second is typical). Also, although the processing
power is not overwhelming, it /s uniform, whereas
users of large multiprocessing systems get the use
of a faster CPU only for short periods of time at
irregular intervals,, which sometimes results in
annoying behavior [3]. A third advantage is the
availability of low-level primitives of the operaling
system and of facilities provided by the bare
machine. Personal computers require less complex
operating systems than conventional computers,
since multiprogramming issues (protection, resource
sharing, synchronization) are not present. Thus,
microcomputer operating systems offer lower
overheads and direct access to the resources of
the system [11].

This paper 'describes a user interface which
exploits the positive features of a personal
computer while dealing effectively with its

limitations.
with
substantial amount of interaction with the user, due

The system is designed to be employed

any application program which requires a
to an extensive set of available commands, a large
amount of data entry and or bhoth. In
particular, packages currently marketled for small

businesses that

display,

handie accounting, data base,
and/or management funclions are prime candidates
for the approach examined here. As hardware
becomes less expensive, the increased facilities
available in a personal computer will allow the
general system to be extended to incorporate more
knowledge concerning the user and the enhvironment
provided by the application program. Thus, it is
appropriate to atltempt to provide user interfaces
for present microcomputers, even

though more

powerful systems will be available in the future.

2. Design Criteria

There are a number of design criteria which must
be met by a user interface [1, 10], whether on a
personal computer or on a large system. A
particularly important aspect is the nature of the
constraints of the processing.

People are heavily constrained by the amount of

user's cognitive

“information that they can consider at one time and
the length of time that that information can he held
in short term memory (STM). Hence, the information
available from the systiem should be simple enough
to be quickly and easily assimilated.
should also

The system
so that the user's

thinking processes will not be impaired by the loss

be fast enough

of information in STM due to delays caused by slow
response times. An additional constraint is that the
retrieval process from long term memory (LTM) is
also subject to decay over time. Therefore, the
user should be able to get help from the system at
any time. This information should be available at the
place the help is needed, and shouid refer to the
specific context ﬂ\e user was in when help was
requested [8]. The system should also exhibit

uniformity: similar commands at different times
should invoke similar actions, in order 1o reduce the
state-dependency of commands. The actions
invoked by a particular command should be explicit
and unambiguous, resulting in a transparent system,
Such a system is closely matched to the user's
perception of the ‘system, requiring less mental

work [21].

98

“here

A second consideration which is important in the
design of interactive systems is the experience of
the user. Typical users of these systems vary
widely in both the degree of familiarity and the
motivation to learn about the system. Many jobs

which involve using a microcomputer have large

turnover rates, so it is important for the system to
cater to novice users, It is important, however, not
to ignore the expert user, The interface should he
user's

able to adapt its characteristics to the

experience. How to imbed this ability in the

[7.17]; at the
very least the system should be able to tailor the

interface is itself a hard problem

amount of explanatory text to the desires of the
user. Thus the novice would be given a significant
amount of guidance by the system, whereas the
expert would be with

presented a very fast

interface that specified a minimum amount of detail.

The remainder of the design criteria for a user

interface stem from the character of the

communication as perceived by the user. The

in that it

effectively and unambiguously to any input, allows

interface should be robust, responds

the wuser to recover from simple errors, and

discourages illegal input. The user should have a
simple means of giving commands to the system, to
both reduce errors and increase the command input
rate. And finally, control over all aspects of the

system must appear to belong to the user.

Although it may scem reasonable to expect all

user interfaces to adhere to the crileria given

above, very few exisling systems meet even a
substantial subset of them. The system described

meets all of the listed criteria and can be
implemented and run efficiently on a microcomputer

system.

3. Basic Design

The design is based on the ZOG system [15, 18],
which in PROMIS
system [Q, 23]. In the ZOG system communication

turn was based on the
selection on display torminals with
A ZOG menu (or

with

is via
special touch-sensilive screens.

menu

commands

frame) is simply ‘a list of

explanations; each command is associated wilth an

area on the screen which the user touches: to

select that command. The result of the selection is

another menu with further secleclions. The network

of menus is very large (on the order of 35,000

frames .in the PROMIS frame library) so that all

communication is by this means. Thus,

communication from user to computer is by the
discrete Selection. of semantically meaningful
options, and from compuler to user by the

presentat_'ion of information contained in frames.
The distinguishing characteristics of ZOG are that
the
essentially instantaneous (ZOG is targeted for 0.05

response time for the next display is
seconds 70% of the time) and that the total set of

frames is very large. This coupling of rapid

response and a large network produces a
qualitatively different user-computer communication
philosophy from a standard menu selection scheme,
of which there are many [13, 16]. Unfortunately
such a system requires very expensive hardware,
in the form of touch sensitive terminals, fast disks,
and powerful processors. The approach taken in
the system described here was to severely limit
the knowledge domain (thus lowering by two to
three orders of magnitude the number of frames
necessary to cover the (!omain)‘ {o relax the
stringent time constraints, lo introduce verbosily
levels in the menus, and to propose an additional
object, analogous to a hard copy document, called a
form, which is more appropriate for performing large
amounts of data entry and display. Thus, the
system only approximates ZOG in its operation, but
the advantages of being able to implement it on a
make it a viable direction in

personal computer

which to pursue user interfaces.

There are five major attributes that characterize
the First, all
between the operator and the computer is through

user interface. communication
menus if a simple command is adequate, or through
forms if a more extensive data entry and display
capability is needed. Second, extensive help is

available at all times. This help ranges from a
single message concerning a particular item in a
form to an entire subnetl providing information on a
an aspect of the system. Third, the interface can
adapt to the experience of the operator by limiting
or expanding the amount of information presented
by a menu. Fourth, the display processing time is
short.

that compietely defines the interface (except for

And lastly, an external data format exists

the connections between the frames, either menus
or forms, in the network, since arbitrary processing

99

by the application program is possible any time a
selection is made or data entered into a form).

These attributes preserve the advantages

inherent in menu seleclion schemes. It is possible
for users who are totally unfamiliar with the program
or the interface to use the system. Menu selection

allows’ the user to parlay basic knowiedge about

how menu-selection works into detailed knowledge

of the system. Also, by locating the relevant
knowledge at the site of action, menu selection
eliminates the search for this information. However,

menu selection has two disadvantages. First, in
typical implementations, it is slow. Second, the user
to be

explanatory text, which is annoying to the expert

is forced shown a large amount of
user who already knows the information the menu
Z0G

disadvantages with its rapid response time, since

contains. removes both of these

the expert user can simply ignore the explanation.

The system presented in this paper avoids the

disadvantages
time

by exhibiting a
reponse (the
support) and by providing each menu with several

moderalely fast
fastest the hardware can

versions, each containing more or less detail

(ranging from one line to several hundred lines of
text).
taken as a whole,

Thus, the attributes described above, when

result in a powerful user

interface.

The top-level view of the system is illustrated in

Figure 1. The entire user interface is implemented

by the /Interface Module, and all manipulations of
the data base are handied by the Database Module.

Information is transfered belween the database

and interface modutes, and commands are

transfered between the interface module and the
application program. In the sections that follow, a
more precise charactierization of menus and forms

will be g¢given, followed by a discussion of the

implementation on a personal computer and a

comparison of the actual performance of- the
interface with the design criteria specified in the

previous section.

4. Menus

A menu is a list of commands with explanations.
A selection is made by typing the command, thus

avoiding the need for touch-sensitive terminals.

There are three levels of information associated

with each menu. The abbreviated version is a sma.
number of lines long, of which only one is displayed
at any time.

details) is shown in Figure 2a. This version is used

An example (see the appendix for

by experienced users who want the maximum

speed (iess than 1 second per menu in the

implementation described below) and are familiar
with the commands in a particular region of the
frame network. The standard version occupies the

entire screen. The top line is constructed by the

Terminal Menus Application
Display Program
\ Interface /
___—"7| Module S~
Keykoard 7 Data Base
Module
Forms
Data
Base

Figure 1: The Top Level Design

system, and consists of the menu name, the system
name, and the date. The remainder of the screen
contains a listing of the commands along with
explanatory text. The same menu might have the

standard version shown in Figure 2b.

The third version, the detailed version, consists of
one or more complete screens of text going into
more detail about the subject the menu pertains to

and the use of the commands in the menu.

There are two types of commands associated

with each menu. The generic commands apply

uniformly to all menus. The help command causes
the next version to he displayed (i.e., the standard
version when viewing the abbreviated version and

the detailed version when viewing the standard

version). When the user indicates to the system
that she has seen enrough of the detailed version,
A7

command is equivalent to the help command. When

the system returns to the standard menu.

viewing the standard version, the Jess-detail

100

command causes the abbreviated version to be
displayed. The quit command also is allowed within

any menu.

Specific commands can be different for every
menu, and are specified along wilh the text of the
menus. In the menu described above, the append,
edit,

commands;

remove, and search commands are specific

the rest are generic. Unique

abbreviations of all commands are allowed (one
character is usually sufficient to uniauely identify a

command).

5. Forms

While menus are appropriate for communicating
information which resides in the frame network, and
giving the
selections, they are not appropriate for the entry or

for system simple commands via

display of large amounts of data. Instead, the
system employs forms, which consist of a set of
A field
refers to consecutive character locations on the
The

picture attribute describes the synlactic form of

fields embedded in uninterpreted text.

screen and is described by four atlributes.

the information that resides in the field and is used
during both data entry and display. The explanation
attribute is a charactar string used when the user
The default
attribute is used when entering data into the form.

requests help from the system.
.

Finally, the ficld namc atltribute is used in the
interface between the form handler and the
database control system.

Forms were designed to exploit the user's

intuition regarding data entry and display. Menus
could have been used instcead for these funclions,
with one field per menu. lowever, the context
provided by the other information in the form is
important, and this context is lost if the fields are
spread across several menus. For example, if there
is a record in the data base for each employee of a
company, then one menu might be used to select
the particular employee, anolher menu would give
his skills, and a Uhird menu would give his formal
training. If all of this information was displayed at
the same time, the user could get a much better
idea of, say, whether the employee was qualified
for a promotion.

data

Also, forms are appropriate for

network bases (see section 7). other

Customer List: Alppend) Eldit) Rlemove) Slearch) Hielp) Qluit) ->

(a)

Customer List Example System April 13, 13988

A (ppend) lT_hiS command allows you to add new customers to the Customer

ist.

E(dit) This coanmand ...

H(elp), ? This command tells you more about the use of the Customer
List and the commands that allow you to modify or examine
this list.

Q(uit) This command returns you to the main menu for the system.

Command ->

(b)

Figure 2: Sample Abbreviated and Standard Versions

approaches might be more suitable for relational and if the characters 1234567' were typed, the
data bases [4]. field would look like *(123) 456-7--- Ext. --=-=', with

the system expecting seven more digits. When a

The use of a form for data entry is as follows. value is displayed in a field, the successive

First, the text in the form is displayed (in characters of the value replace the edit characlers

half-intensity if possible). Then the cursor is in the picture attribute.

positioned at the beginning of the desired field and
a mask is displayed (either in full intensity, or, if the
terminal does not support hall-intensily, then . in 6. Evaluation

inverse video or in some other form of highlighting). It is appropriate to review bricfly the original

The mask is identical to the picture, except that a design criteria to illustrate the extent to which
istinquished haracte such as '-') appear . . .
distinguishe char r (such a) appears they have been met. The system is friendly, and the

erywhere that a user supplied character can go. . .
everywher) P character can go user can obtain help from the system at any lime.

. . ith caref :sign, the i ati i
It the ENTER key is typed, then the default is With careful menu design, the information can be

. . . . kept simple enough to | asi ers . >
entered into the field. Any time a '?' is typed, the P ' gh to be easily underslood. The

. various levels of menus allow the system to cater
explanation string is displayed on the bollom line of v ys

. to the user's preference of amount of detail. The
the terminal. The onicture, which is essentially a

COBOL PICTURE [5] with an altered semantics 1o system WII|| ignore erroneous input, giving an error

. . . . message in the case of an illegal menu sclection or
aliow for interactive input, is used to control the 9 ¢ g selection

. . refusing to accept an illegal character duri ¢
characters which will be accepted from the user. g * ! ga ¢ ing data

Each character position in the field is controlled by entry. The system exhibits uniformily in that the
a character in the piclure. The cdit characters generic commands always apply and a 7' causes
determine which inpul characters are acceptable; the system to respond with an explanatory
the edit characlers are A (alphabelic), B (boolean, message. The system is fast since it requires at
e.g., 't’ for true and "I’ for false), X (alphanumeric), most one disk access to display a menu (sce
and 9 (humeric). All other characters are noise, and section 7) and since the display can proceed at the

i ; i ate ¢ le b > terminal. 1ser
are automatically printed when they are maximum rate allowable by the 1 al. The

. i 2 a of giving commands to the
encountered and backed over when processing has a simple means giving !

rubouts. The mask consists of the piclure with the system by selection from the set offcred by the

L s . .] 2 N, ini » user fecls that she is
distinguished character reptacing all the edit current menu. And finally, the user fecls that she is

characters The picture '(999) 999-0909 Ext always in control of the system (although the

0999 results in a mask '(~==) —---=n-- Ext. ----+ 101 system may constrain lhe range of optlions available

’

at any point) since the system is always wailing for
a command (or data) from the user.

7. Ilmplementation

The severe limitations imposed by implementing
the system on a microcomputer necessitate a
careful partitioning of the information which resides

in memory and the information which resides on

secondary storage. Putling all the information in

main memory is infeasible due lo the large number
of menus and forms in the frame network; putting all
of the information on disk results in unacceptable

response times., In addilion, it is necessary to

design the interface module so that the complexity

of handling help requests and of dealing wilh

erroneous input is embedded within the module,

where it can be dealt with, rather than forcing the
application prbgram to handle these conditions. In
view of these considerations, the implemenlation
was partitioned into three components: a descriplor
file, a preprocessor, and the interface modile. The

interactions between these three components is

illustrated in Figure 8 and examples of the various

files are given in the appendix. Although this

particular implementlation was done using the UCSD
Pascal system [19] on a Z-80 microcomputer, the
design presented in this paper can be usefully
applied on most microcomputer operating systems

and languages.

The descriptor file completely defines each

frame used by the system. Included in the

descriptor file is the text. for each frame, the

commands associated ‘with each menu (and their
Pascal names, which are used by the application

program to refer to the command), and the

attributes for cach field in each form., There are no

a priori limitations on the numbe. of commands,

menus, forms, or fields that can Le declared in a

descriptor file. Although the descriplor file is in a

simple human-readabie format that is

self-documenting, the formal is designed to be

efficiently processed by the interface module.
Each menu is represented by a command list, the
abbreviated version, the standard version, and the
detailed version. Cach form is represented by a
backdrop containing the text of the form, with
consecutive '@'s wherever a field belongs, and a
All but

the command list are read by the interface module

list of attribute tuples, one for each field.

102

Descriptor _| Pre-
File processor
)
Include User
File Program

Compiler
Linker/ Interface
Lnader Module
Object
Code

Figure 3: Using the Preprocessor

when processing a particular frame.

The preprocessor has two tasks: to verify the
format of the descriplor file and to gencrate an
Include file which is compiled with the application
program. By using the preprocessor to check the

descriptor file for conformity with format

expected by the interface module, the module does

the
not have to do any error checking. This reduces
botlh the time it takes lo display a frame and the
size of the

module’s code, and

preprocessor to do extensive checks

allows the
which are
infeasibie for the interface module to perform. The
second task of the

preprocessor is to extract

information from

the descriptor file which is too
time-consuming for the interface module to process
and to put this information in an include file. The
include list of CONSTant
one for each for each

command defined in the descriptor file (lhe same

file is a Pascal

declarations, frame and

command can be used in different menus). Note

that if the descriptor file is changed, a new include
file must be gencrated by the preprocessor, and
the application program must be reconﬁpiled. The
identifiers declared in the include file allow the
application program to refer to the frames and
commands in the description file symbolically. Each
command is equated to a unique integer value by

the preprocessor. Commands which are not

n Menu Text

Bescriptor (Form Backdrop

File Field Attributes \
W\
Keyboard Input —— N Interface | User Display
Command File //;’; Module \\> Log File
Menu identifier \
Menu characteristics N Menu Selection
From Form or Field identifier U =¥ SGtatus Information To
b Associative
rogram Ficid-value Pairs : Array > Field-value Pairs Program
Comraands Status Information
Data Base Schema —— 5] DBCS
Data
Base

Figure 4: The User Interface During Execution

themselves valid Pascal identifiers must have an
associated identifier specified in the description
file. Each menu name is equated with a string
(called the menu descriptor) that contains (in a
packed formal) the charactar position (i.e., the
byte offset) of the start of the abbreviated and
standard version of the menu in the doscriplor ﬁl(«:1‘
the unique portion of each command that can be
selected in this menu, and the inteqger value of this
command (since the value is assigned by the
preprocessor and does not appear in the descriptor
file). The menu descriptor does nol contain the
character position of the detailed version since this
version occurs immediately after the standard
version, and can only be displayed by qiving the
help command while in the standard version. For the
Customer List example given earlicr, the menu
descriptbr would contlain eight characters for the
position of the menu (four each for the abbrevialed
and standard versions), twelve characters for the
commands (four commands, with a one character
name, a - one character value, and a delimiting
character) plus a final space (lo signal the end of

1Each byte offset roquires 4 characters, enabling the desariptor file
to grow as large as the UCSD file system allows. 103

the command list) for a tolal of 21 characlers.
Each form name is equated with a string (called the
form descriptor) which contains the character

posilions of the start of the backdrop and the start

of the field altribules (eight characters total).

Thus, the amount of main memory space occupied
by the menu and form descriptors is minimal.

The organization of the program during execution
is shown in Figure 4. An associative array (an array
of strings indexed by strings) is uscd o pass data
between the intcrface module and the data base
control system (DBCS). After the user has entered
data into a field of a form, the interface module
staores the wvalue of the field (without the neoise
characters and trailing blanks) in the associative
array, indexed by the ficld name, which is one of
the attributes of the ficld. To display a field, the
value is retrieved from the associative array and
displayed using the picture attribute. Thus the
noise characters wiways appear in the field, vuy aiv
not stored in the data base,

The data base management system is based on
the CODASYL 1978 proposal [6]. The schaema
associated with the data base usad by the

applicatlion program describes the records in the

data base and the fields that make up each record.

To store a record in the dala base, the DBCS
retrieves the appropriate fields from the
associative array, constructs the record, and

places it in the data base. The reverse sequence

of operations occurs when a record is relrieved
from the data base. Al conversions between data
types are done by the DBCS, since the values of
the fields are stored as strings in the associative
array.

strings.

In particular, numeric values are stored as

For variable length strings, the piclure
determines the maximum length and the string that
is returned to the DBCS from the associalive array
is of the actual length (since trailing blanks have
been removed). This aspect of the design makes
the interface module as general as possible, and
gives the DBCS complele control over all data
representation issues. It is interesting to note that
this design
with a

management system.

could also be successfully employed

relational or hierarchical data base

The interface module supports a small number of
The
INITIALIZE operation is used to specify the descriptor

operations that can be applicd to a frame.

file, the initial verbosily (abBreviated or standard),
and to prepare the module for the other operations.
INITIALIZE sets the input device to the user's
keyboard, and the log file to no file (indicating no
logging). The CHANGUINPUT and CHANGPLOG operations
allow these two files to be set by the application
program. Since the input device is not constrained
to be the keyboard, it is possible to run the system
from a command file, with the rest of the system
behaving as if the input was coming directly from
the user. By specifying a log file, a script of the
user's input may be recorded. If the database
becomes corrupted, it can be restored by using this
backup

file as a command file operating on a

version of the data bhase. The DISPLAYMENU
operation is passed a menu descriplor and retlurns
the selected command as an integer. DISPLAYMENU
handles all the details concerning the various menu
levels and the generic commands. The returned
command is guaranteed to be one of the commands
that The

DISPLAYFORM operation is passed a form descriptor

appears in the menu descriptor.
and displays the corresponding form on the screen.
pispLAYronrm also creates a field descriptor record
whenever a field is encountered; this record, which

contains the length and screen position of the field,

104

is completely internal to the module?. The
INPUTFIELD. operation is passed a field designator (an
integer), and returns a boolean status indicator (the
entered data is placed in the associative array, as
The

pertains to

earlier). attribute line in the
file that this

retrieved, and the data entry proceeds. Analogous

discussed
descriptor field is
OUTPUTFIELD and MODIFYFIELD operaliohs also exist,
as do operations which, among other things, can

input or output entire forms.

All the routines in the interface module are
designed 1o optimize disk accesses, which are the
bottleneck in floppy-hased systems. A maximum of
one disk read is required to initiate a frame display.
When performing dala entry on an entire form,

several disk reads may be necessary, but these

are not noticable since they occur between fields.
Enough state information is retained between calis
to the interface module to eliminate unnecessary
reads from the disk. With the advent of Winchester
technology disks, accesses to secondary slorage is
less of a problem. Using this new technology, an
abbreviated menu would take less than 0.2 seconds
standard less than 2

to display, and a

seconds. At

menu

this point, the processing rale
. vl ’ .
becomes a significant factor, especially when

displaying forms containing many fields.

8. Acknowledgements

| would like to thank Norman Brucks for making
this
environment in which to build the system described

research possible by providing a suitable
in this paper, Merrie Brucks for helpful discussions
on the psychological basis of user interface design,
anrt several colleagues for comments on previous

drafts.

Zsince DISPLAYFORM deducns the sereon position of the fields
directly from tho backdiop, there is no need Tor the implementor to
explicitly include these postions in the descriptor file. Also, there are
constructs that make the picture attribute independent of the length of
the ficld (sce the appendix), thus altowing the backdrop and the fie
attributos to bo changed relatively independently of each other,

References

1. S.d. Boise. "User behavior on an interactive
computer system." I8BM System Journal 13, 1
(1974), 2-18.

2. R.F.Brunl and D.L. Tuffs. "A User-Oriented
Approach to Conlrol | anquagaes."
Softwarc--Practice and Experience 6 (1976),
93-108.

3. J.R. Carbonell, J.l. Elkind and R.S. Nickerson.
the psychological importance of time in a

" time-sharing system." Human Factors 10 (1968),
135-142:

"Cn

4. R.G.G. Cattell. An [ntity-Based Database
Interface. Tech. Rept. CSL-79-0, Xerox PARC,
August, 1979,

5. CODASYL COBOL Committee. Journal of
Development. Secretariat of the Canadian
Government, CDP Standards Commitlaee, 1078,

6. CODASYL Datla Description Language Comnittee.
Journal of Development. Secretariat of the Canadian
Government, EDP Standards Committee, 1978,

7. M. Genesereth. An Automated Uscr Consultant
for MACSYMA. Ph.D. Th., Harvard University, 19786.

8. Godden, D.R. and A.D. Baddeley. "Context
Dependency for Recall Context-Dependent Menmory
in Two Natural Environments: On Land and
Underwater." British Journal of Psychology 66
(1975), 325-332.

9. J. Hurst and K. Walker (eds). The
Problem-Oriented System. MCDCOM Press, New
York, 1972.

10. T.G.S. Kennedy. "The Design of Interactive
Procedures for Man~-Machine Communication."
International Journal of Man-Machine Studies 6
(1974), 309-334.

11. B.W. Lampson and R.F. Sproull. An open
operating system for a single-user machine.
Proceedings of the Seventh Symposium on
Operating System Principles, ACM, December, 1979,
pp. 98-105.

12. K. Lantz and R. Rashid. VTMS: A Virtual
Terminal Management System for RIG. Proceedings
of the Seventh Symposium ot Operating Systems
Principles, ACM, Dccember, 1979, pp. 66-97.

13. J. Martin. Design of Man-Computer Dialogues.
Prentice-Hall, New Jersey, 1973,

105

14. J.M. McCrossin, R.P. O'llara and L.R. Koster. "A
time-sharing display terminal session manager."
1BM System Journal 17,3 (1978), 260-275.

15. A. Newell. Notes for a Model of lluman
Performance in ZOG. Carnegie-Mellon University
Computer Science Department, August, 1077,

16. J. Palme. "A human-computer interface for
noncomputer specialists." Softwarc--Practice and
Experience 9, 8 (September 1979), 741-748.

17. E.Rich. Building and Exploiting Uscr Models.
Ph.D. Th., Carnegie-Meclion University, Aprit 1970,

18. G. Robertson, D. McCracken and A. Newell, The
ZOG Approach to Man-Machine Communication.
Tech. Rept. CS-TR-79-148, Carnegic-Mellon
University Computer Science Department, Octlober,
1979.

19. K.A. Shillington and G.M. Ackland (eds). UCSD
PASCAL Version 1.6, Institute for Information
Systems, University of California, San Diego, 1978.

20. R.T. Snodgrass. An Object-Orienled Command
Language. Carnegie-Mellon University Computer
Science Department, 1880.

'

21. S. Treu.
Design Based on Required Mental Work."
International Journal of Man-Machine Studies 7
(1975), 135-149.

"Interactive Command | anguage

22. IFIP. Procecardings of the IFIP Working
Confercnce on Command Lanquages, Lund, Sweden,
August, 1974, Published as Command Lanquaqes,
American Elsevier Publishing Company, New York,
1975.

23. P.L. Walton, R.R. Holland and l_.I._Wolf. "Medical
Guidance and PROMIS." Computer 12, 11
(November 1979), 19-27.

Appendix

This example illustrates the various components of a typical system. Comments concerning
the components are in italics. A description of the format and use of these files may be found in
section 7.

Descriptor File:

Exanple Systenm system name
?menu the first frame in this example is a menu
Customer List menu name
CustlList menu identifier
append commands
edit

search

remnove

? line separator, abbreviated menu follows

Customer List: Alppend) E(dit) R{emove) Slearch) Hielp) Qluit) ->
? standard menu follows
A (ppend) This command allous you to add neu customers to the Customer

List.
Qluit) This command returns you to the main menu for the system.
?

? detailed menu follows
This menu deals with the Custower List, uhich is ...

? next complete screen of .information
?form . aformis next
CustFarm form identifier, followed by backdrop
Customer Name (First): g ; g

Customer Name f(Last):
Address: @0
City [Palo Altol: FPEREEEEE ARG R
State [CA)l: eow Zip Code [943086): eascwe
Telephone Number [(415) 858-1234 Ext. 5678]:

PR oG o

EEREERTEEE

DL T G R4 U Gy B G L 1 G

? attributes follow3
"Ale)", " ", CustFirstName, If not knoun, press ENTER

"A{s)",,CustlLastNanme,

"X{vw)",,CustAddress,

"Xis)","Palo Alto",CustCity,

"XX", "CA",CustState,

"99993", "94386" ,CustZip,

" (999) 999-9999 Ext. 9999","41535812345678",CustTelephone,

?menu next menu

3The attributes are in the order of picture, default, ficld name, and explanatory message. “"A(*)" expands to "AAAA..", with a
length equal to the length of the associated field. This construct allows the picture attribute 1o be independent of the field size as
indicated in the backdrop. An empty default will allow the value 1o be the emply slring; a nonexistent default will not. Defaults can
be provided by the main program by specifying a field name for the default rather than a string, causing the interface module to
retrieve the default from the associative array. 106 ’

Include File:

CUSTLIST="=;\1=; j1A 1E 2R 45 3 °
CUSTFORM=" =3 D=3 ep’;

QUIT=8;

APPEND=1

EDIT=2;

SEARCH=3;

REMOVE=4;

.
1

Application Program:

PROGRAM Example;
USES Interfacellndule;

CONST
INCLUDE 'include file name’
VAR
BEGIN
Inithenu(Cdescriptor file name', Standard);
CASE DisplayMenu{Custlist) OF
Append: L.
Edit: BEGIN
DiasplagForn (CustForm) ;
END;
Search: ...
Remove: .43
Quit: ...
END;
END.

107

the menu descriptor
the form descriptor

other forms and menus

other commands

declares procedures

the include file

