
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2006; 00:1–7 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

Integrating Multiple Calendars
using τZAMAN

Bedirhan Urgun1, Curtis E. Dyreson1,∗, Richard T. Snodgrass2, Jessica K. Miller3,
Nick Kline4, Michael D. Soo5 and Christian S. Jensen6

1 School of EECS, Washington State University {burgun,cdyreson}@eecs.wsu.edu
2 Department of Computer Science, University of Arizona rts@cs.arizona.edu
3 Department of Computer Science, University of Washington jessica@cs.washington.edu
4 Microsoft Corporation, Redmond, WA, nkline@microsoft.com
5 Amazon.com, Seattle, WA, soo@amazon.com
6 Department of Computer Science, Aalborg University, csj@cs.auc.dk

SUMMARY

Programmers are increasingly interested in developing applications that can be used internationally.
Part of the internationalization effort is the ability to engineer applications to use dates and times that
conform to local calendars yet can inter-operate with dates and times in other calendars, for instance
between the Gregorian and Islamic calendars. τ ZAMAN is a system that provides a natural language- and
calendar-independent framework for integrating multiple calendars. τ ZAMAN performs “runtime-binding”
of calendars and language support. A running τ ZAMAN system dynamically loads calendars and language
support tables from XML-formatted files. Loading a calendar integrates it with other, already loaded
calendars, enabling users of τ ZAMAN to add, compare, and convert times between multiple calendars.
τ ZAMAN also provides a flexible, calendar-independent framework for parsing temporal literals. Literals
can be input and output in XML or plain text, using user-defined formats, and in different languages and
character sets. Finally, τ ZAMAN is a client/server system, enabling shared access to calendar servers spread
throughout the web. This paper describes the architecture of τ ZAMAN and experimentally quantifies the
cost of using a calendar server to translate and manipulate dates.

KEY WORDS: Time; multiple calendars; calendric systems; temporal data types; datetime representation

1. Introduction

There is a need for a system that can support multiple calendars. Temporal data is present in some form
in most applications. Einstein’s theory of relativity posits that an observer measures time relative to a
frame of reference. For most observers, especially those traveling at a (small!) fraction of the speed of

∗Correspondence to: School of EECS, Washington State University, Pullman, WA, 99164, USA, cdyreson@eecs.wsu.edu
Contract/grant sponsor: This research was supported in part by NSF grants IIS-0100436, IIS-0415101, and EIA-0080123, and
in part by a grant from Microsoft Corporation.

Copyright c© 2006 John Wiley & Sons, Ltd.

2 URGUN ET AL.

light, the frame of reference is influenced most by the observer’s cultural and linguistic background.
Diverse backgrounds have produced many different ways to measure time. According to Fraser, about
forty major calendars are in daily use [Fra87]. Even though time is measured, represented, and used in
many different ways, most applications impose a single interpretation for time and temporal operations.
For instance, the SQL-92 standard database query language requires dates to be represented solely in
the Gregorian calendar [MS93].

This paper presents τZAMAN, a system that provides temporal functionality for applications that
need to calculate, format, parse, and/or compare times within either a single calendar or across multiple
calendars. The project name is composed of the Turkish word for time, Zaman, (pronounced “Zah-
mon”), and the Greek letter, τ (pronounced tau), which denotes that it is part of the Temporal Access
for Users (tau) project started at the University of Arizona.†

The intended use of τZAMAN is as a calendar server for multiple calendars. τZAMAN takes
a “runtime-binding” approach to integrating multiple calendars. In runtime binding, calendars and
supporting tables are developed in isolation at different locations and are subsequently loaded as needed
into a running τZAMAN system. For instance, a developer in France could specify a Gregorian calendar,
another in Australia could write tables for month names in English, a third developer in Saudi Arabia
could build an Islamic calendar, and a fourth in Japan could write Islamic month names in Japanese.
Each developer works independently. When finished, a developer places a description of his or her
work on the web formatted in the Extensible Markup Language (XML) [W3C00]. Then a user in
Canada could specify a calendric system utilizing all of these resources though a simple specification
(again in XML). τZAMAN integrates the calendars only when the calendric system is loaded. Users
of the system can input and output times in different languages and calendars, perform inter-calendar
conversions, and compare and modify times as desired. τZAMAN also provides a range of arithmetic
and comparison operations on times; for example there is an operation to add an interval (e.g., “1
week”) to an instant (e.g., “January 1, 2006”).

τZAMAN is a calendar-independent framework that incorporates several novel features for enabling
the rapid integration of multiple calendars.

• τZAMAN is a client/server system. Calendars can be complicated and costly to develop, which is
one reason why applications usually have limited support for time. When a calendar is developed,
it is useful to share the calendar among many applications and users. A client/server system
enables the creation of “calendar servers” that can provide calendar-related services to multiple
clients. We anticipate that there will be τZAMAN servers, or more precisely τZAMAN web
services, running on well-known sites, especially for the major calendars.

• A key part of the design of τZAMAN is the ability to add calendars and input-output formats on
the fly, at run-time. New calendars and other user-defined information, such as natural languages
or input-output formats for temporal literals, can be integrated into a multi-calendar system
without recompiling τZAMAN or even stopping and restarting a τZAMAN server.

• τZAMAN makes extensive use of XML. XML is becoming increasingly popular in web
applications for exchanging data and describing services. In τZAMAN, all calendar-related
specifications are XML documents. Using XML also helps to improve the parsing of the

†http://www.cs.arizona.edu/tau

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 3

files for specifying τZAMAN components, making it easier to develop calendars. For instance,
a specification file in XML can be validated with an XML schema language, like XML
Schema [Fal01]. (XML schemas exist for all the τZAMAN specifications.) τZAMAN also
supports the construction and use of XML-sensitive formats to input and output temporal literals,
since we anticipate a future growth in the use of XML to represent times and dates.

This paper is organized as follows. The next section presents several example scenarios showing
how τZAMAN can be used. Section 3 introduces the major time-related concepts that are implemented
in τZAMAN. The architecture is described in Section 4, which consists of an overview of the major
packages and a detailed discussion of the roles of individual classes. We show how developers and users
create and use calendars in τZAMAN. We performed several experiments to measure the efficiency of
τZAMAN. The results are reported in Section 5. Section 6 presents a prototype end-user and calendar
developer tool, with a Graphical User Interface (GUI), that uses τZAMAN to translate and manipulate
dates. The last two sections discuss related research and list the contributions and future directions of
this research.

2. Usage Scenarios

This section presents several examples to motivate the utility and functionality of τZAMAN. Each
example is a separate scenario. The scenarios become increasingly more sophisticated.

In the first scenario a user, let’s call her Leslie, has a long list of banking records timestamped
with Gregorian calendar dates. The dates are formatted using a style common in the United States of
America (mm/dd/yyyy). Leslie is sending the records to Paris, so she would like to convert the dates
to a format used in Europe (dd/mm/yyyy). Figure 1 shows a concrete example of such a conversion.
This conversion is very simple. One could imagine writing a Perl script, or a program in another string
processing language, to perform the conversion. τZAMAN can also convert times between formats.
To do a format conversion, Leslie would first connect to a Gregorian calendar τZAMAN server,
push an Instant input property with the USA format, and push an Instant output property with the
European format. Next, for each date, Leslie would construct an instant (e.g., by calling the Instant
class constructor) and subsequently have that instant output itself. The instant would be constructed
using the Gregorian calendar and the USA format, but output in the European format.

The second scenario is similar to the first, but instead of an unstructured text document, Leslie has
an XML document. The dates in the document are encoded within <date> elements. She would
like to do the same kind of conversion, from USA to European format, as illustrated in Figure 2.
τZAMAN can also perform XML-sensitive conversions. The conversion uses the same processes as the
previous scenario; only the Instant input property and Instant output property would have to change
to use the XML-based formats (I/O formats can be specified by users). We anticipate that XML-based
conversions will become more common than unstructured text conversions in the future.

The third scenario concerns changing the language in which a calendar date is represented. Leslie
has a friend in India. She’d like to translate Gregorian calendar dates that include an English month
name into a date with the month name given in Hindi, without changing the format as illustrated in
Figure 3. τZAMAN supports using different languages and different character sets for fields in formats,

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

4 URGUN ET AL.

04/08/2003→ 08/04/2003

Figure 1. Converting a date from a USA to a European format

<date> <date>
<month value = "04" /> <day>08</day>
<day value = "08" /> → <month>04</month>
<year value = "2003" /> <year>2003</year>

</date> </date>

Figure 2. An XML-based conversion from USA to European date format

<date> <date>
<month value = "January" /> <month value = "Magha" />
<day value = "08" /> → <day value = "08" />
<year value = "2003" /> <year value = "2003" />

</date> </date>

Figure 3. A time value is translated from English to Hindi

such as the name of the month. New tables for language support, encoded as XML documents, can be
dynamically loaded as needed.

The fourth scenario concerns converting times between calendars. Leslie contacts a business in Cairo
to integrate her banking information with Egyptian purchase data. The business asks Leslie to translate
each Gregorian calendar date to the corresponding date in the Islamic calendar. Figure 4 illustrates the
desired conversion from the Gregorian to the Islamic calendar. The figure renders the Islamic date in
English for expository purposes; the language could be translated to Arabic, using that character set,
during the conversion in a manner similar to the third scenario.

The fifth scenario features a calendar server to convert a time from a Gregorian to an Islamic
calendar. A single τZAMAN system can load several calendars at once and apply inter-calendar
conversions. τZAMAN could also be deployed in a distributed system as illustrated in Figure 5. The
figure shows a “local” user (in this scenario, the local user is the business in Cairo) running τZAMAN
that has a reliable implementation of the Islamic calendar. Leslie runs a “remote” τZAMAN server for
the Gregorian calendar. The “client” API for τZAMAN is the same for local and remote servers, so
clients do not have to be specialized to manage local and remote services differently. From a client’s
perspective the only difference between local and remote servers, other than performance, is that the
servers have different names. The figure shows a client in contact with a single remote server, but in
general, a τZAMAN client can simultaneously communicate with multiple τZAMAN servers.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 5

<date> <date>
<month value = "January"/> <month value = "Safar"/>
<day value = "08"/> → <day value = "06"/>
<year value = "2003"/> <year value = "1424"/>

</date> </date>

Figure 4. A Gregorian calendar to Islamic calendar conversion

The sixth scenario examines a time granularity conversion. Suppose Leslie wants to know how much
she spends each month. In order to calculate the amount per month, she needs to convert the date of
each banking record from a granularity of Gregorian calendar days to a granularity of Gregorian
months, so that she knows which records are in each month. Figure 6(a) illustrates this simple
granularity conversion. A less straightforward conversion would be from days to a granularity of
Gregorian weeks (assuming Leslie would like to do a weekly analysis of her spending). An even
more complicated conversion would be converting a time at a granularity of months to one at a
granularity of days (or weeks). For example, suppose Leslie knows she bought an item in March
2003, but does not know the exact day when she bought the item. Generally, conversions from coarse
to fine granularities result in indeterminate times [DS98]. An indeterminate time is a time that is
not precisely specified, such as “sometime in March” or “last week”. Figure 6(b) shows an example
conversion. The date on the right half of the figure indicates that the time is some day in the range
of days between the first and last day in the month. τZAMAN supports both intra- and inter-calendar
granularity conversions. Additionally, τZAMAN provides classes that model indeterminate times, so
the indeterminacy can be accounted for (or discarded if desired) in the conversion.

The seventh scenario is about supporting arithmetic and comparison operations for time values.
Leslie wants to send her banking records to Sydney to be integrated with data from Australian
consumers. Leslie observes that Sydney is one day ahead of the USA. To properly integrate the data
she needs to convert the data to local conditions in Australia. For the temporal information in her
records, she basically needs to add one day to each date. Since her dates are represented in the USA
format (mm/dd/yyyy), it is more complicated that increasing the “day” number by one; for instance,
a day that ends a month would have to increase the month (and possibly the year) and set the day to 1.
Increasing a date by one day is just one example of the many arithmetic and comparison operations
that applications need to perform on times. An example comparison is illustrated in Figure 7(a)
and an example arithmetic operation is depicted in Figure 7(b). The figures show relatively simple
operations. In general, these operations can be complicated because the operands may be at different
granularities, from different calendars, in different languages, and involve different formats. The
times in an operation could also be indeterminate or might even involve special times, such as the
variable time called now that represents the ever-changing current time [CDI+97]. τZAMAN provides
a complete set of temporal comparison operations and a useful set of arithmetic operations. τZAMAN
also supports a semantics interface that permits users to impose special-purpose semantics for temporal
operations, such as converting operands in binary operations to the granularity of the left operand prior
to performing the operation.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

6 URGUN ET AL.

User

values
time

set 1

values
time

"Islamic Calendar"

resources
local

set 2

Client Side Server Side

"Gregorian Calendar"

resources
remote

same API

Figure 5. Converting between local and remote τ ZAMAN servers

April 13, 2003 → April 2003
(a) days to months

April 2003 → April 1, 2003 ∼ April 30, 2003
(b) months to days

Figure 6. Granularity conversions

In sum, many users and applications need temporal functionality. Unfortunately, applications are
often limited in their support for time because it is costly to develop the code needed to fully support
input and output in a wide range of formats, languages, and calendars, correctly perform granularity
conversions, and implement a complete set of temporal operations. What is needed is a flexible,
extensible system that supports the modular definition of calendars and granularities, can load new
calendars when needed, and can handle all the complexities of parsing and formatting a wide variety
of times. The remainder of this paper describes one such system.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 7

April 13, 2003 ≤ April 14, 2003 → true
(a) An “earlier than” predicate

April 13, 2003 + 5 days → April 18, 2003
(b) Adding an interval to an instant

Figure 7. Evaluating temporal operations

3. τZaman Concepts

This section introduces concepts that are of utility to users of τZAMAN, namely calendars, calendric
systems, and various temporal data types. A calendar is a human abstraction of time. Readers are likely
to be most familiar with the Gregorian calendar, but many other calendars are also in daily use. Related
calendars are grouped into larger structures called calendric systems. A calendric system facilitates
interaction among a group of calendars. τZAMAN supports temporal operations on three temporal data
types: instants, periods, and intervals [JC98]. An instant represents a point on an underlying time-line,
a period is the time between two instants, and an interval is an unanchored duration of time. In the
remainder of this section we explain each concept in more detail. Section 4 presents the τZAMAN
architecture to support the concepts.

3.1. Calendars

A calendar is a human abstraction of time [JC98]. Calendars define the time values of interest to a user,
usually over a specific segment of the physical time-line. A calendar familiar to many is the Gregorian
calendar, based on the rotation of the Earth on its axis and its revolution around the Sun. Some western
cultures have used the Gregorian calendar since the late 16th century to measure the passage of time.
As another example, the Islamic calendar is a lunar calendar, based on the amount of time required
for the Moon to revolve around the Earth. Years in the Islamic calendar are counted since the Hijra
(Mohammed’s flight to Medina), which corresponds to the Gregorian calendar year 622 C.E.

The Gregorian and lunar calendars are examples of daily and monthly calendars, but, in general,
a calendar can measure time using any well-defined time unit. For example, an employee time card
can be regarded as a calendar which measures time in eight-hour increments and is only defined for
five days of each week. We note that many different calendars exist, and that no calendar is inherently
“better” than another; the value of a particular calendar is wholly determined by the population that
uses it. Table I lists several prominently-used calendars.

It is important to also support “one-off” or special-purpose calendars. The usage of a calendar
depends on the cultural, legal, and even business orientation of the user. For example, businesses
generally perform accounting relative to some fiscal year. However, the definition of fiscal year varies
depending on the business. Universities may have their fiscal calendar coincide with the academic
year in order to simplify accounting. Other institutions use the more common half-yearly or quarterly
definitions of fiscal year.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

8 URGUN ET AL.

Calendar Description
UTC2 Revised universal coordinated time
Gregorian Common western solar with months
Lunar Common eastern lunar
Julian Western solar with years and days
Meso-american 260 day cycles
Academic Year consists of semesters
Common Fiscal Financial year begins at New Year
Academic Fiscal Financial year starts in Fall
Federal Fiscal Financial year starts in October
Time card 8 hour days and 5 day weeks
3-shift Work Day 24 hour day divided into three shifts of 8 hours
Carbon-14 Time based on radioactive decay
Geologic Time based on geologic processes

Table I. Common calendars

To enable calendars to be developed in isolation yet be rapidly integrated into a multi-calendar
application, a modular definition of a calendar is essential. We envision that a calendar developer will
develop a calendar by specifying the intrinsic characteristics of a calendar, which define the universal
qualities of the calendar, and its extrinsic characteristics, which define the user-dependent or varying
qualities of the calendar [SS92, Soo93].

The intrinsic characteristics of a calendar define the semantics of the calendar and of its components
that depend directly on such semantics. For example, the duration of time units (e.g., week, month) and
their interrelationships are intrinsic components of a calendar. Functions performing calendar-defined
computations are also intrinsic. An example of such a function would be, isLeapYear(year), for
the Gregorian calendar, which returns a Boolean value indicating whether the given year is a leap year.

The intrinsic characteristics of a calendar include a collection of temporal granularities. A
granularity is a system of measurement for a temporal datum [BDE+98, JC98]. For instance, in the
Gregorian calendar, birth dates are typically measured in the granularity of days and train schedules
are specified to that of minutes. Since measurements are discrete, a granularity creates a discrete
image of a time-line. More precisely, the underlying time-line can be thought of as being chopped into
segments called granules. Times are measured to a granule within a granularity.

It is important for calendar developers to define their own granularities; any fixed system of
granularities, such as those supported by SQL from the Gregorian calendar, will not meet the needs
of all users. In that sense, a calendar can be defined as a collection of related granularities [WBBJ97,
DELS00, BJW00, NWJ02]. Granularities are related in the sense that the granules in one granularity
may be further aggregated to form larger granules belonging to a coarser granularity [BDE+98]. For
example, as every Gregorian year is an aggregation of 365 or 366 days, it follows that years is a
coarser granularity than days. Similarly, days is a finer granularity than years.

We assume that the granularities and conversion between them can be expressed algorithmically.
As one very comprehensive example, Reingold and Dershowitz have intricately defined in Common

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 9

Lisp some 25 calendars and how they related to one another, including “the present civil calendar
(Gregorian); the recent ISO commercial calendar; the old civil calendar (Julian); the ancient Egyptian
calendar (and its Armenian equivalent); the Coptic and the (virtually identical) Ethiopic calendars; the
Islamic (Muslim) calendar (both the arithmetical version and one based on calculated observability);
...”, in their book [RD01], which is a modern classic. Since we use Java code to express the more
complex mappings between granularities, τZAMAN can support both gap granularities (which have
gap(s) within individual granules, an example being business-months, which will not include
weekend days within a month) and holes (which are time periods between contiguous granules, such
as the two-day hole between granules representing a Friday and a Monday in the business-days
granularity).

The extrinsic characteristics of a calendar capture the properties of a calendar that vary depending
on the orientation of the user. As an example of this type of characteristic, consider the same date
expressed in different languages, say English and Hindi. The Gregorian calendar date may be written
as “January/1/1999” in English, but in Hindi it would be “Magha/1/1999”. A single date may also be
expressed in several formats, e.g., it could be a string like “August 20 2003” or an XML-formatted
string such as “<date>August, 20 2003</date>”. Both of the formats are in English; however, they
are structurally very different. Yet another example is the difference between the mm/dd/yyyy format
preferred in the United States and the dd/mm/yyyy format used in many other countries. Often,
international standards and languages impose a single representation. For example, both the ISO 8601
international format [Int00] and the SQL92 standard format [MS93] represent dates only in the context
of the Gregorian calendar and has a rigid set of defined formats. In contrast, τZAMAN provides support
for user-defined extrinsic characteristics of calendars, and hence can support multiple languages and
different formats for dates.

We have identified a set of fourteen calendar properties applicable to many calendars. Table II
provides an illustrative list. Calendars for which a particular property does not apply can ignore the
value of the property, if it is defined. A complete description in XML of the properties in Table II can
be found at the project’s web site.‡

3.2. Calendric Systems

Calendric systems are collections of calendars where each calendar covers a contiguous and non-
overlapping portion of the time-line, called an epoch [JC98]. It is possible that there are times on the
time-line that are not covered by any epoch for a calendar in a calendric system. Figure 8 illustrates the
Russian calendric system. It captures the use of calendars over time in the area of the world called (in
English) “Russia”. In the figure, the time-line is not shown to scale. In prehistoric epochs, the Geologic
calendar and Carbon-14 dating (another form of a calendar) are used to measure time. During the
Roman empire the lunar calendar developed by the Roman republic was used. Pope Julius, in the first
Century B.C.E., introduced a solar calendar, known as the Julian calendar. This calendar was in use
until the 1917 Bolshevik revolution when the Gregorian calendar, first introduced by Pope Gregory
XIII in 1572, was adopted. In 1929, the Soviets introduced a continuous schedule work week based

‡Example XML documents are available at http://www.cs.arizona.edu/tau/tauZaman.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

10 URGUN ET AL.

Property Description
Locale Location for timezone displacement
Instant input format Input format string for instants; there are also formats

for now-relative and indeterminate instants.
Instant output format Output format string for instants; there are also

formats for now-relative and indeterminate instants.
Interval input format Input format string for interval; there is also a format

for indeterminate intervals
Interval output format Output format string for interval; there is also a format

for indeterminate intervals
Period input format Input format string for periods
Period output format Output format string for periods

Table II. Calendar properties

Roman
Calendar

Geologic
Calendar

Carbon-14
Calendar

Julian
Calendar

Gregorian
Calendar

Communist
Calendar

Gregorian
Calendar

600 B.C.E. 100 B.C.E. 1929 C.E. 1931 C.E.1917 C.E.70,000 B.C.E.

Figure 8. The Russian calendric system

on four days of work followed by one day of rest, in an attempt to break tradition with the seven-day
week. This new calendar, the Communist calendar, had the failing that only eighty percent of the work
force was active on any day, and was abandoned after only two years in favor of the Gregorian calendar,
which is still in use today in that country.

τZAMAN is the only system that we know of that supports multiple calendars within a single
calendric system. Most systems that support time have only a single, pre-defined calendar over a very
small epoch. For example, a DBMS that implements the SQL92 standard supports only the Gregorian
calendar and only over the epoch from 1 C. E. to 9999 C. E. [Dat88, MS93]. This is inadequate for
applications that manipulate time values that fall outside of this epoch, such as developing a historical
record of ancient Egypt. Also, applications that use time values that are within this epoch, but in a
different calendar, cannot be adequately supported. By allowing multiple calendric systems to exist
within an application, and supporting calendric systems with multiple calendars, we offer a general
notion of expressing time that is able to capture the entire history of an enterprise.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 11

Data Type Scenario
instant “When did Alice start the race?”
period “When was Alice running?”
interval “How long did Alice run?”

Table III. Examples of temporal data types

3.3. Temporal Data Types

τZAMAN has three temporal data types with rich semantics that capture the intuitive and familiar
concepts of time: instants, periods, and intervals. The data types are explained in detail in the rest of
this section; Table III gives an example usage for each type.

An instant models a single point in time [JC98]. On a continuous time-line, it is generally not
possible to precisely identify a single time point because our ability to measure time is inherently
imprecise [CR87]. For example, if a wristwatch reports that the current time is 3:45:23 P.M., the time
is actually sometime during that second, but it is unknown exactly when. The wristwatch can only
measure to the accuracy of the granularity of seconds. Usually, an instant is modeled by a single
granule. τZAMAN uses granules throughout; each granule is represented by an integral index. But
more generally, an instant is represented by a sequence of granules, called the support, together with
an optional probability distribution on the support [DS98]. The support indicates the possible granules
to which the time is known while the distribution records the probability that the instant is a particular
granule. The support extends from a lower support granule, l, to an upper support granule, u in a
granularity, G, and in this paper will be designated using the following notation,

l ∼ u ≡ {g ∈ G | l ≤ g ≤ u}.

It is possible that the lower and upper supports are the same, indicating that the instant is modeled
by a single granule. In this case, the instant is called a determinate instant. Otherwise, it is called an
indeterminate instant.

While it is important to recognize that instants are specified only to the precision of a particular
granularity, it is equally important to choose the correct granularity. Sometimes, for reasons of
linguistic convenience, humans under-specify a time, that is, they specify a time in a coarse granularity
when the time that it signifies is actually known or intended to be at a fine granularity. For example, if
a ship schedule states that a ship departs at 3 P.M., then the time of the ship departure is given in the
granularity of hours, but “3 P.M.” is (probably) accurate to a much finer granularity, specifically to
the granularity of minutes.

A period is a segment of the time-line [JC98]. A period can be represented with a pair of granules.
A period that extends from granule g1 to granule g2 is the set of granules in G between g1 and g2,
under the constraint that g1 ≤ g2. Period literals can be given as either open or closed; an open period
excludes the bounding granule from the period. For example, in the Gregorian calendar the closed
period “[1/1/1776 – 12/31/1776]” represents all the days in the year 1776. We will assume that both
the starting and terminating granules are in the same granularity. Instants and periods are related in the

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

12 URGUN ET AL.

Operand 1 Operator Operand 2 Yields
- interval interval

interval + interval interval
interval - interval interval
instant + interval instant
instant - interval instant
interval + instant instant
instant - instant interval
interval * numeric interval
numeric * interval interval
interval / numeric interval
interval / interval numeric
interval + period period
period + interval period
period - interval period
Table IV. Valid arithmetic expressions and results

sense that two instants can uniquely determine a period, and a period’s bounding instants can always
be determined.

An interval is an unanchored duration of time, that is, an amount of time with known length but no
specific starting or ending instants [JC98]. For example, the interval “one week” is known to have a
duration of seven days, but one week can refer to any duration of seven consecutive days. An interval
can be either positive, denoting forward motion in time, or negative, denoting backward motion in time.

It is important to note that intervals do not necessarily have a fixed duration. For example, the length
of the interval “one month” in the Gregorian calendar changes from month to month when observed at
the granularity of days. In February the duration of a month might be 28 days, but in June it becomes
31 days.

Finally, there are some instants that have special semantics. Beginning and forever are special instants
representing the earliest and latest possible times, respectively, that is, minimal and maximal instants.
The instant now represents the constantly changing current time. A now-relative instant includes a
displacement from the current time, e.g., now + 1 day [CDI+97]. The special instants can be used in
periods, and some special intervals also exist. For instance, the interval all of time is the duration from
beginning to forever.

τZAMAN supports a basic set of arithmetic operations involving instances of the instant, period,
and interval data types. For example, one may wish to determine the arrival time of a train given
its departure time and the duration of its trip by adding an interval to an instant, e.g., “March 28,
2003” + “1 day” gives the arrival instant, which is “March 29, 2003”. Table IV shows the supported
operations and operands. ‘/’, ‘*’, and ‘+’ are binary operators implementing the operations of division,
multiplication, and addition, respectively. ‘-’ implements binary subtraction in addition to interval
value negation, a unary operation.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 13

Operand 1 Operator Operand 2
interval equals interval
interval precedes interval
instant equals instant
instant precedes instant
instant precedes period
instant overlaps period
period precedes instant
period overlaps instant
period precedes period
period equals period
period meets period
period overlaps period
period contains period

Table V. A partial list of comparison operators

Note that not all combinations of operations are defined. For example, instant * instant is undefined
since no reasonable semantics for that expression exists. Note also that since τZAMAN employs integral
indexes to represent granules, the result of any operation must be integral, either a determinate value
or an indeterminate value.

τZAMAN has a complete set of temporal comparison operations. Determining a temporal ordering
relationship between a pair of objects is central to many applications. For example, one might be
interested in which employees were hired during a particular year, or given two employees, who
has more seniority. Allen defined a complete set of relationships between periods [All83]. τZAMAN
extends Allen’s operators with an analogous set of operators for the instant and interval data types.
Table V lists some of operations available in τZAMAN. The full set was shown to be complete
elsewhere [SJS95].

The arithmetic and comparison operations discussed above assume that the operands are in the same
granularity. In order to have a systematic way of handling operands at different granularities, τZAMAN
allows users to define their own semantics for operations on temporal data types. Usually this involves
converting one operand to the granularity of the other operand. For example, suppose that an interval,
say “1 day” known to Gregorian days is to be added to an instant, say “12:00, March 1, 2003” at
Gregorian hours. Below are four reasonable semantics for evaluating the operation.

Mismatch Give a mismatched granularity error [AQdO85].

Left-operand semantics Perform the operation at the granularity of the first operand. This is
reminiscent of the assignment operator in many strongly typed languages, which casts the value
of the right hand side to the type of the left hand side.

Right-operand semantics Perform the operation at the granularity of the second operand. This is
reminiscent of some expressions in C++, e.g., 7/2.0, which converts the value of the left hand

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

14 URGUN ET AL.

side of the division operator to the floating point type, because the right hand side is a floating
point number.

Finer semantics Perform the operation to the finer granularity [CR87, Sar93, WJL91]. If the two
granularities are incomparable (neither is finer than the other), then perform the operation to a
granularity finer than both arguments; if none exists, give an error.

Coarser semantics Perform the operation to the coarser granularity [BP85, MMCR92]. For
incomparable granularities, perform the operation to a granularity that is minimally coarser.

4. τZaman Architecture

In this section we present the architecture of τZAMAN, and outline how to use the system. The key
design features of the architecture are extensibility and service. τZAMAN provides extensibility in
two ways. First, it supports multiple calendars, multiple languages, and a wide range of formats for
time input and output. Second, τZAMAN can by dynamically reconfigured. Calendars and calendric
systems can be dynamically loaded or reloaded with new specifications. τZAMAN provides service by
implementing a client/server architecture. A calendar server can be accessed by many remote clients.

We implemented τZAMAN in Java. While the architecture is independent of a particular
programming language, the design was influenced by the availability in Java of certain language
features. Below we list the six reasons why we chose to implement using Java. First, portability is
a big concern. We’d like τZAMAN to operate on most hardware and operating system platforms, even
PDAs. The Java Virtual Machine (JVM) provides a stable, platform-independent environment in which
τZAMAN can be run. Second, Java is “network-friendly” in the sense that it has strong support for
network communication and building client/server systems. We made extensive use of Java’s Remote
Method Invocation (RMI) classes. τZAMAN can run as a calendar server, providing a network resource
for handling times in a specific calendar, such as the Gregorian or Julian calendar. Third, we anticipate
that calendar-related data, such as calendar specifications files in XML, will be made accessible on the
web. Java classes are available to fetch data using the Hypertext Transfer Protocol (HTTP). Fourth,
we anticipate that XML will become popular for representing dates and times. So most of the data
that is input and output in τZAMAN, such as temporal constants and calendar definition files, will be
formatted in XML. τZAMAN benefits from the widely-used and reliable XML parsing and processing
packages of Sun’s Java 2 platform, Standard Edition (J2SE) [Mic03]. Fifth, Java supports dynamic
class loading. Dynamic class loading can be used to extend a calendar server with new calendars at
run-time. Sixth and finally, Java provides support for Unicode. We anticipate that times and dates will
be given in a wide variety of character sets.

The remainder of this section presents the architecture for τZAMAN. We first give a broad overview
of the major Java packages and how they are related. Next, τZAMAN is described from a user’s
perspective. We illustrate how to create a server and client, and how to construct instances of instants,
intervals, and periods. Finally, each of the major architectural components is presented in greater detail.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 15

4.1. Overview

Figure 9 shows the major components of the architecture.§ In the figure, each box represents a group of
related packages, each comprised of a number of Java classes, 60 in total. Users are represented with
ovals. There are two distinct categories of users: administrators and end-users. An administrator loads
calendars, calendric systems, and language support tables, while an end-user interacts with τZAMAN
to manipulate temporal literals. A directed edge in the figure indicates that the Java code in the source
package makes use of the methods in some class in the target package. Since τZAMAN is an API
the end-user and administrator roles are assumed by an application program; in many cases the same
program will assume both roles. There are three main operational flows.

1. Configuration — This flow is for configuring τZAMAN, such as loading calendars and
properties, and setting up τZAMAN services. Configuration can be performed dynamically, so
a configuration flow could happen many times during execution. In Figure 9 the configuration
flow is represented by a dashed line.

2. Input/Output — The second flow of operation is related to granularity conversions and input and
output of temporal literals. Input calls a temporal data type constructor for an instant, interval,
or period. The input and output flow is denoted with a solid line in Figure 9.

3. Operations — The third and final flow is for temporal operations that involve no granularity
conversions. τZAMAN provides a set of operations that users can perform on instants, intervals,
and periods. The temporal operations flow is denoted with a dotted line in Figure 9.

There are five groups of packages: low-level, calendar-independent aspects (Temporal Data Type
and Time-stamp), calendar-related aspects (Calendar, Calendric System, Property and Field), the
bridge between the calendar-related and calendar-independent aspects (Input/Output), and the system
configuration interface (TauZamanSystem and Client/Server).

The Timestamp and Temporal Data Type packages encapsulate the components for the instant,
period, and interval data types. The packages are independent of the calendar, although the calendars
are used during input (construction) and output of times via the TauZamanSystem and Client/Server
packages. A user who wants to create a temporal data type from a string will interact with Temporal
Data Type package as shown in Figure 9. Note that τZAMAN does not actually measure time; rather, it
deals with representing, manipulating, and performing input and output with already measured times.
For example, an instant can be constructed by converting a string such as “March 20, 2003” to a granule
representing the appropriate day in some calendar; possibly it is day 736,004 in the days granularity.
Or it might get that date from the computer’s clock as an integral number of seconds or jiffies (with
60 jiffies per second) from a specified date (for Unix, that date is usually January 1, 1970. In any case,
τZAMAN can effect the conversion from that representation to (and from) day 736,004 in the days
granularity. On output, the instant is converted from a granule to a string by again using a particular
calendar and its services. But the temporal data types interact only with the TauZamanSystem and
Client/Server packages for input and output as shown in Figure 9.

The Calendric System, Calendar, Property, and Field packages manage access to calendar-related
services. The TauZamanSystem and Client/Server packages invoke methods in these packages when

§The class structure in JavaDoc can be viewed at http://www.cs.arizona.edu/tau/tauZaman.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

16 URGUN ET AL.

Administrator

Temporal Data Type
Package

Timestamp
Package

Input/Output
Package

TauZamanSystem and
Client/Server Packages

Calendar, Calendric System,
Property and Field Packages

End-user

Configuration

Input and output

Operations

Legend

Figure 9. An overview of the τ ZAMAN system architecture

users load calendars and calendric systems. Extensibility of calendric systems and calendars is
one of τZAMAN’s main design features. Calendars can be developed in isolation and then loaded,
dynamically, into a running system. Additionally, new formats for input and output of time values can
be created and dynamically loaded. The new formats are defined in property specification files. Each
new format could have a new language or a new name for a feature in a format (e.g., abbreviated month
names).

Figure 9 shows that the Input/Output package bridges the calendar-dependent and independent parts
of τZAMAN. When a temporal data type is parsed or formatted, related calendar services are called via
TauZamanSystem and Client/Service packages. Input is called when a new instance of a temporal data
type is constructed from a string. The string is parsed into individual fields using a format specified
by a calendar property. The fields are then passed to a calendar, which converts them into one or more
granules. The granule(s) forms the time in the new instance. For output, the process is reversed. First
the granule or granules are converted into individual fields by calling a calendar. Next the string is
constructed by using the format specified by an output property.

The TauZamanSystem and Client/Server packages make τZAMAN available to end users.
TauZamanSystem is used to perform input and output operations for the Temporal Data Type package.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 17

Additionally, a user can use TauZamanSystem to configure calendar-related components, for instance
by loading new calendric systems, properties, and calendars.

The Client/Server package lets τZAMAN be run as either a server, a client, or both, as described in
more detail in the next section.

4.2. Using τZaman

This section describes each of the flows in more detail, giving code examples of using τZAMAN.

4.2.1. Connecting to τZAMAN

τZAMAN can be run as a server, client, or a single system that is both a client and a server.

Server τZAMAN can be set as a (remote) server. The server provides calendar resources to clients on
a network. The server manages all the calendar-related information. Clients communicate with a
server using remote procedure call (RPC). A server can support multiple clients. Each client has
a separate information space, managed by the server. τZAMAN was designed to minimize the
information flow from clients to servers to improve the efficiency of RPC. Typically, each call
will pass either a URL, a single granule, or a short list of granules; so the amount of data shipped
is small.

Client A client connects to a τZAMAN server over a network. A client can connect to multiple servers.
Clients individually manage each server connection as a separate object. A client maintains
all instances of the temporal data types, so Instant, Interval, and Period objects reside on the
client rather than the server. This means that temporal arithmetic and comparison operations
can be performed at the client, without involving the server. The server is involved only in the
construction of a temporal data type object, input, output, and granularity conversions.

Local τZAMAN can also be run as a single system that is both a client and server. In this setup, the
client and server are on the same machine, and RPC is not used for communication. Only one
local service can be run within a process (but the system can still connect as a client to other
remote servers).

Finally, we should note that when τZAMAN runs as a server, it can connect as a client to yet other
τZAMAN servers, creating a network of τZAMAN servers.

4.2.2. Running a τZAMAN server

Running τZAMAN as a server is very easy. First, the user must create a TauZamanSystem object.

TauZamanSystem tzs = new TauZamanSystem();

Next, the object is set to be a server.

tzs.setRemoteService();

The server need do nothing else; it is now ready to process incoming requests from clients.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

18 URGUN ET AL.

4.2.3. Running a τZAMAN client

Making a connection as a client to a server is also straightforward. First a client creates a
TauZamanSystem object.

TauZamanSystem tzs = new TauZamanSystem();

Next the connection to the server is established. Below we show the calls to create both a local service
and a remote service. The remote service is identified by an IP number. During the creation, the service
is requested to load the “UofACalendricSystem” and use the properties (for formatting time values)
specified by the “properties.xml” file. Both specifications are XML documents.

TauZamanRemoteService tzrs = tzs.getRemoteService(
"186.24.12.1", // IP of the server
"TauZaman", // Name of service
null, // Use default RPC port
"UofA", // Server-side name of calendric system to load initially
new URL("http://www.cs.arizona.edu/tau/tauzaman/arizonaCalSys.xml"),
new URL("http://www.cs.arizona.edu/tau/tauzaman/properties.xml"));

TauZamanLocalService tzls = tzs.getLocalService(
"UofA", // Server-side name of calendric system to load initially
new URL("http://www.cs.arizona.edu/tau/tauzaman/arizonaCalSys.xml"),
new URL("http://www.cs.arizona.edu/tau/tauzaman/properties.xml"));

A problem in making a connection, e.g., a bad URL, will throw a TauZamanException. We
emphasize that a client will use exactly the same interface for all services provided by a local or remote
service; the only distinction is in creating the service. Also observe that the XML specifications need
not be local to a server, a server will load each XML document from the HTTP server named in the
URL.

4.2.4. Administrator activities

Once the connection to a local or remote server has been established, a client can ask the server to
load a calendric system and a default set of properties for that system. Below is an example of an
administrator requesting that a local server (tzls) load a calendric system.

tzls.loadCalendricSystem(
"UofA clone", // Server-side name of calendric system
new URL("http://www.cs.arizona.edu/tau/tauzaman/arizonaCalSys.xml"),
new URL("http://www.cs.arizona.edu/tau/tauzaman/properties.xml"));

Currently, τZAMAN does not implement levels of security on loading, i.e., anyone can load and name
calendric systems. We plan to add security in the future.

4.2.5. End-user activities

It is also easy for a client to create and manipulate instants, periods, and intervals. In the design
of τZAMAN, we chose to simplify the syntax for creating and manipulating data type instances
by adopting the notion of an active τZAMAN service and calendric system. Observe that a client

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 19

could have multiple connections, and each server could have loaded several calendric systems. We
let the client establish an implicitly active service and system, to avoid having to specify each in
every τZAMAN method. For example, suppose the client has opened a remote service (tzrs) and
a local service (tzls). Furthermore, suppose the local service has two calendric systems: “UofA”
and “UofA clone”. To make the local service and “UofA” calendric system active in the context of a
TauZamanSystem object (tzs), the user would do the following.

tzs.setActiveService(tzls);
tzls.setActiveCalendricSystem("UofA");

Once the active service and system have been established, a client can construct and manipulate
instances of τZAMAN temporal data types without having to pass τZAMAN specific information to
the constructors. Below is an example of calls to the Instant and Interval constructors.

Instant instnt = new Instant("<instant> <year value = "2003"/> </instant>");
Interval intrvl = new Interval("<interval> <year value = "3"/> </interval>");
// An instant is output according to the instant output property
System.out.println(instnt.toString());

The permissible format for the XML in each string is specified by the corresponding instant or interval
input property in the active service, if specified, or the default properties in the active calendric system.

Within a calendric system, the Instant object can be converted (cast or scaled: the first always
yields a determinate value while the latter may result in an indeterminate value) to a new granularity.
In the example below, the conversion is from Gregorian years to Gregorian days.

Instant dayInstnt = instnt.cast(days); // days is a Granularity object

The cast produces a new instant. A cast from years to days will produce the instant corresponding to
the first day in the year, i.e., “January 1, 2003”. Alternatively, the instant can be cast to a granularity in
a different calendar (but within the same calendric system). An example of an intra-calendric system
conversion is given below. Assume that the active calendric system has Gregorian and Astronomy
calendars.

// astronomyDays is a Granularity object in the Astronomy calendar
Instant astroDayInstnt = instnt.cast(astronomyDays);

Inter-service system conversions are also supported, indirectly. In the example below, the output of an
instant in one calendric system is piped into the Instant constructor for the new calendric system.

// Use the local service
tzs.setActiveService(tzls);
Instant instnt = new Instant("<instant> <year value = ’2003’/> </instant>");
// Switch to using the remote service, also changing the calendric system
tzs.setActiveService(tzrs);
Instant another = new Instant(instnt.toString());

Note that a conversion might throw an exception when the time does not exist in the target granularity.
For example a Gregorian calendar year of 200 B.C.E., cannot be converted to a UofA calendar day,
since the UofA calendar is defined only from when the university was founded.

Once an instant, interval, or period has been constructed, it can be compared, added, subtracted, etc.
in the context of a Semantics object. Left operand semantics casts operands in binary operations to
the granularity of the left operand, and then performs the desired operation.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

20 URGUN ET AL.

Semantics Ops = new LeftOperandSemantics();
// Add the interval to the instant
Instant result = Ops.add(instnt, intrvl);
// Is instnt earlier on the time-line than result?
if (Ops.precedes(instnt,result)) ...

We used a Semantics object to encapsulate temporal operations so that a user could easily switch
between different semantics, and define new semantics as desired. For instance, in an indeterminate
semantics, a precedes operation could produce a result in a three-valued logic (true, false, or maybe)
while the same operation in a determinate semantics would yield a boolean result (true or false).

The rest of this section provides a discussion of individual components in each group of related
packages. We first present the low-level building blocks in τZAMAN, such as components for
supporting operations on temporal data types. Next, the high-level components are described, in
particular, the TauZamanSystem and Client/Server packages. τZAMAN is implemented in Java;
however the design could be implemented using any language or system that supports remote procedure
calls, dynamic loading of classes (or functions), and XML parsing and processing.

4.3. Supporting Operations on Temporal Data Types

The classes for the Temporal Data Type and Timestamp packages form the calendar-independent part
of τZAMAN. These classes and interactions are shown in Figure 10. In the figure, a solid box represents
a class, while a dashed box represents a package. A directed edge indicates that the source class makes
use of the target. Dashed directed edges show the interaction between classes in the same package,
whereas solid directed edges represent the interaction between classes in different packages. The
temporal data type classes use services provided by the TauZamanSystem and Client/Server packages
as shown in Figure 9.

The TimeValue class is the foundation of the calendar-independent part of τZAMAN.
TimeValue encapsulates the semantics of the underlying time domain. Many semantics are possible.
Time can be modeled as discrete, dense, or continuous; and the domain could be bounded or
infinite [JS99]. The TimeValue class implements a specific time domain and provides methods for
arithmetic and comparison operations within that domain. Only one time domain can be implemented;
we chose to implement a discrete, bounded time domain. The bounds are the special values, beginning
and forever, representing the earliest and latest possible times, respectively. We used Java’s long data
type for a time (recall that we utilize integral indexes for granules, even in indeterminate values), so
264 different times can be represented. In sixty-four bits it is possible to represent current estimates of
the lifetime of the universe, approximately thirteen billion years, to the granularity of seconds.

Each granularity creates a discrete image of the time-line as a sequence of granules. The Granule
class associates a TimeValue object with a granularity to form a granule. For instance, the
TimeValue with a value of 3 is associated with the granularity of Gregorian days to represent the
third granule in that granularity. Granules are further classified as determinate, indeterminate, or now-
relative. The classification provides additional modeling capabilities. A determinate granule is a single
TimeValue indicating that the location of the time is known to a single granule in that granularity. An
indeterminate granule, however, is a time that is sometime between an lower and upper TimeValue,
i.e., a set of granules. A ProbabilityMassFunction object describes the probability of each
indeterminate alternative. Common mass functions, such as uniform and Poisson, can be provided.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 21

IndeterminateSemantics

Period IntervalInstant

DeterminateSemantics ExtendedBoolean

Semantics

Timevalue Granularity ProbabilityMassFunction

Timestamp
NowRelativeGranule Granule

TauZamanSystem and
Client/Server Package

Temporal Data Type

Figure 10. Classes in the Temporal Data Type and Timestamp packages

Finally, a NowRelativeGranule instance is a granule that moves with the current time. A now-
relative granule may include an interval that displaces the granule a fixed distance from now. Arithmetic
and comparison operations are supported for each type of granule.

Granules are part of the data structure in each of the three temporal data type classes: Instant,
Period, and Interval. Each of the classes can represent determinate, indeterminate, and now-
relative times. String constructors are also provided for each. For example the Instant string
constructor would create an instant with a determinate granule when given “March 28, 2003”, an
instant with an indeterminate granule from “March 28, 2003 ∼ March 29, 2003”, and an instant with a
now-relative granule from “now + 5 days”.

The arithmetic and comparison operations discussed in Section 3.3 are described by a Semantics
interface. For instance, a Semantics provides an operation to add an interval to an instant, but
not to add two Instants. Semantics is an interface rather than a class because there are several
reasonable semantics for performing an operation. For instance one semantics, called left operand
semantics, converts the right operand to the granularity of the left operand prior to performing the
operation. A designer would implement an interface with whatever semantics is desired by the user.
The Semantics interface is further subclassed into a DeterminateSemantics interface and

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

22 URGUN ET AL.

an IndeterminateSemantics interface. One difference between the two kinds of semantics is
that the determinate semantics returns boolean values for comparison operations, but the indeterminate
semantics returns an ExtendedBoolean value. ExtendedBoolean implements a three-valued
logic on the values true, false, and maybe. The indeterminate semantics also permits two
controls on the indeterminacy in an operation, called the plausibility and credibility. These controls
are presented in detail elsewhere [DS98].

4.4. Calendar Support

The Calendar, CalendricSystem, Property and Field packages implement the calendar-dependent
components of τZAMAN. Users can load, activate and de-activate calendric systems, calendars,
properties and field values, convert temporal constants to timestamps, and perform granularity
conversions. Figure 11 shows the individual components that comprise the calendar support. Classes
in calendar support do not use any other major component of τZAMAN as shown in Figure 9. Solid
directed edges represent intra-package interactions, whereas, dashed directed edges represent inter-
package interactions between classes.

4.4.1. Calendar

The Calendar package encapsulates a single calendar. We chose to represent an individual calendar
as a combination of two different information sets. The first information set consists of the XML
specification files for the calendar, granularities, and granularity mappings. Each file is created as part
of a calendar development process by a calendar developer. One of the key features of τZAMAN is
that it can dynamically load calendars. It does this by reading the XML specifications for a calendar.
So once a developer creates a calendar, it can be made available for loading into a calendar server by
simply making the specifications available on the web.

The second information set is the location of Java classes that provide the code to do irregular
intra-calendar granularity mappings. There are two mapping classes: RegularMapping and
IrregularMapping. Most granularity conversions are regular [BDE+98]. A regular mapping can
be described completely in the XML specification by a simple formula, equivalent to Ning et al.’s group
operation [NWJ02]. For example, the relationship between Gregorian days and Gregorian weeks is
regular since regular periods of seven days group into a week. Code for performing regular mappings
is built into τZAMAN. An irregular mapping is a special kind of conversion that is not reducible to
a simple formula. One example of an irregular mapping is the relationship between Gregorian days
and Gregorian months. The number of days in a month varies from month to month, and because of
leap days the same month may have a different number of days from year to year. Irregular mappings
need special code. A calendar developer has to provide a Java class, which is dynamically loaded, to
perform an irregular mapping.

With the two information sets, τZAMAN can load everything it needs about a new calendar, provided
the calendar specification file is valid. A validating parser can ensure that a specification file is a legal
instance that conforms to an XML Schema description of the calendar specification. An exception is
thrown if the specification is invalid or other problems are detected during loading.

τZAMAN uses a calendar repository to share calendars among multiple users, implemented by
the CalendarRepository class. To prevent duplicate loading of calendars and increase the

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 23

FVSupport
Repository

FVSupport

FVFunction FVTable

PropertyStack
ServiceProperty

Format FieldInfoImportFormat

Property
Repository

Calendar
Calendar

Repository

Granularity

CalendricSystem
Repository

GranularityLatticeCalendricSystem

CalendricSystem

Fields

Field

Field Property
PropertyManager

Calendar

Mapping

RegularMapping IrregularMapping

Figure 11. Classes for calendar-dependent components

performance of τZAMAN, when a calendar is loaded it is added to a calendar repository. User requests
to subsequently load the same calendar will fetch the already loaded calendar from the repository.
However, τZAMAN provides a calendar “refresh” operation to force reloading of a calendar when
desired, for instance, if the specification file has been updated. In response to a load request, the
calendar repository first determines if the calendar has already been loaded. If found, the repository
simply returns the found calendar object, otherwise, it starts to load the calendar from the location
identified by the calendar’s URL. The URL is used as a primary key in the calendar repository.

4.4.2. Calendric System

The CalendricSystem package implements a calendric system. A calendric system is a collection of
multiple calendars. Like calendars, calendric systems are also described by XML specification files.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

24 URGUN ET AL.

The calendric system specification provides definitions for epochs, calendars, a description of how
to integrate multiple calendars, default properties (see Section 4.4.3), the location of Java classes
to perform irregular inter-calendar mappings, and default regular expressions for date parsing. The
project’s web site includes an example calendric system specification file, which imports the Gregorian
and University of Arizona calendars.

The most important role of a calendric system is to integrate the calendars that it imports. In the
calendric system specification each calendar is identified by a URL, which locates the calendar’s
specification file. The calendars are loaded when the calendric system is loaded. To simplify the writing
and handling of calendric system specification files, imported calendars can be given local names,
valid within the context of that calendric system. The calendars are integrated by mappings between
granularities in different imported calendars. The inter-calendar granularity mappings can be regular,
in which case the formula for mapping is given in the specification file, or irregular, in which case the
specification file includes a URL to a compiled Java class that performs the mapping. The compiled
class is loaded during loading of the calendric system. The calendric system uses the mappings to
facilitate granularity conversions [DELS00].

Calendric systems are shared in a repository. To prevent duplicate loading of calendric systems,
τZAMAN has a calendric system repository. When a calendric system is initially loaded, it is added to
the repository. Subsequent attempts to load the same calendric system will fetch the already loaded
system from the repository. A refresh operation is available to force reloading. The URL of the
calendric system specification file is the primary key in the repository.

4.4.3. Property

The Property class implements the extrinsic characteristics of each calendar. We identified fourteen
kinds of properties, some of which are listed in Table II. These properties specify user-dependent
aspects of a calendar. There are properties that define the internal mechanisms of how a temporal
literal should be converted to an underlying timestamp. There are also properties that provide other
important information, such as a timezone specification, to be used in the input and output of temporal
literals.

Properties are defined in an XML specification file. A property specification file can contain
several properties. A property is identified by the URL of the specification file that defines it and
a property name. A property repository, similar in functionality to the calendar and calendric system
repositories, manages property loading and unloading. Having a repository helps to improve the sharing
of properties without duplication.

Property values, unlike calendars and calendric systems, are different for each individual application.
To support user-specific properties, τZAMAN allocates private property stacks to each user. Since the
properties have calendar-related components, the stacks are maintained on the server-side, rather than
by a τZAMAN client. When a new property is desired, the user asks a τZAMAN server to activate the
property. The property is parsed from a specification file (or retrieved from the repository) and pushed
onto the stack for that property. Subsequently, users can de-activate the property, causing the property
to be popped from the stack.

Properties provide formats for input and output of temporal literals. To illustrate this, assume
that a user first wants instants to be parsed according to a “mm/dd/yyyy” format. The user would
activate a new instant input property with that format. Later the user decides to change the format to

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 25

“dd/mm/yyyy”. The user would then activate a different instant input property with the new format.
The user could also change other formatting features.

Within τZAMAN the PropertyManager class handles the management of properties via the
PropertyStackService class.

4.4.4. Field

A field is an atomic date/time feature of a temporal literal. To illustrate fields, assume we want to
construct the instant for the temporal literal “3/20/2003”. The literal will be parsed into three fields
using the Input instant format property: the month field value is 3, the day field is 20, and the year
is 2003. A field generally represents a calendar granularity, but can include other features, such as
the name of a timezone. As another example, let’s assume we want to construct a period from the
literal “[March 20, 2003 - March 21, 2003)”. The following structure of fields is produced by the
parser using the Period input format property: {delimiter=“[”, {month= ‘3”, day=“20”, year=“2003”},
{month=“3”, day=“21”, year=“2003”}, delimiter=“)”}. This field structure contains two field lists, one
for each bounding instant, and two fields for delimiters, which are needed to identify whether the period
is closed or open, on either side.

Fields are also related to language support. When a temporal literal is parsed into fields, each field
can be further interpreted by language support tables, called field value tables or fv tables, that map
strings to field values. Consider the literal “Mar/20/2003”. After parsing, the month field would have
the value “Mar”. A field value table would be used to map the string to the value 3 representing the
month of March. During output the field value tables are used to replace field values (integers) with the
appropriate output string. We’ll show where these field values come from in the next section.

Field value tables are described in field value specification XML documents, which are loaded as
part of activating a property. A field value table could be implemented as a Java class. The tables are
cached in a repository to facilitate sharing and reuse.

4.5. Input and Output

Input refers to the parsing of a temporal literal during construction of an instance of a temporal
data type. Output converts the instance to a formatted string. Figure 12 shows the classes and their
interactions in the Input/Output package. In addition, it also shows inter-package interactions in parallel
with Figure 9. Since output is largely the reverse of input, we will present only the process for input in
detail.

Although input can be somewhat complicated due to the possible existence of multiple calendars,
languages and a variety of format properties, the input process can be summarized in the following five
major steps. The rest of this section explains these steps in detail.

1. Parse the format (an XML document) and build a Document Object Model (DOM).
2. Parse the literal and build a DOM.
3. Match the literal’s DOM with the format’s DOM.
4. Extract field values from the literal’s DOM using regular expressions.
5. Create a field list structure from the field values.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

26 URGUN ET AL.

Input Output

Calendar, CalendricSystem,
Property and Field Packages

FieldsBuilder

FormatParser

Figure 12. The architecture of the Input/Output package

The first step is to parse the appropriate input property and build a DOM for the format it contains. A
format specifies an acceptable skeleton or structure for a temporal literal. Figure 13 shows an example
instant input format property with the format enclosed in a <format> element. The example format
stipulates that only literals consisting of one <instant> element with three attributes, month, day,
and year, are acceptable. The format further identifies fields within the literal to extract for further
processing. The presence of a field is indicated by a field variable, which starts with a “$” character.
There are three variables in the example format: $month, $day and $year.

The second step is to apply the XML parser to the input temporal literal, building a DOM for the
literal. Assume that the literal to parse is given below.

<instant month="March" day="20" year="2003"/>

When parsed, the literal will create a DOM with one element node (<instant>) and three attribute
nodes (month, day, and year).

The third step matches the DOM for the literal against each DOM for a format. The DOMs must
match exactly, but variables must match at least partially to an attribute value or text value. So variables
can only appear where some text is expected. In the example given above, the DOM for the literal
matches the example format DOM, with the following variable assignments: $month="March",
$day="20", and $year="2003". A format can optionally specify whether whitespace in text nodes
or attribute values is to be ignored during matching.

The fourth step uses regular expressions to extract a value for each variable. The regular expression
is built as follows. Each field variable is described by a <fieldInfo> element. The field information
element identifies a field value table that has all of the possible legal field values. For example
the $month field uses the EnglishMonthName field value table, which is a list of legal month
names in English. The table also has a regular expression for recognizing values in the table. For
EnglishMonthName, the regular expression would specify a non-zero sequence of alphabetic
characters from the Western character set. The string “March” matches the third entry in this table
(see the project’s web site for a complete example of a field value specification), so the value of the
$month field is 3.

The fifth step puts the integers matched by each field variable into a field list structure (the Fields
class). The field list is a collection of information extracted from a temporal literal. A calendar will
convert the field list into a granule. For the Gregorian calendar, the field list structure with a $month

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 27

<property name = "InstantInputFormat">
<value>
<format>

<instant month="$month" day="$day" year="$year"/>
</format>
<fieldInfo variable="month" name="monthOfYear" using="englishMonthNames"/>
<fieldInfo variable="day" name="dayOfMonth" using="arabicNumeral"/>
<fieldInfo variable="year" name="year" using="arabicNumeral"/>

</value>
</property>

Figure 13. An example of an instant input format property

Input/Output
Packages Property and Field Packages

Calendar, CalendricSystem,

TauZamanService

TauZamanSystem

TauZamanLocal TauZamanRemote
ServiceHandlerService

TauZamanRemote
Service

Figure 14. The classes in the TauZamanSystem and Client/Server packages

of 3, a $day of 20, and a $year of 2003, the day granule 736004 will be returned (consistent with
the origin of the day granularity of January 1, 1 C.E., and utilizing the knowledge that day is the
“finest”—least coarse—field).

Indeterminate instants, now-relative instants, and determinate and indeterminate periods all have
“bounding” instants. The instant input and output format properties can be imported into the format
properties for other temporal data types.

4.6. The TauZamanSystem and Client/Server Package

The TauZamanSystem class is the manager for access to τZAMAN. Figure 14 shows the class
interactions within TauZamanSystem and Client/Server package. In the same figure, interactions with
Input/Output, Temporal Data Types, and Timestamp packages are also shown.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

28 URGUN ET AL.

TauZamanRemote
ServiceHandler

TauZamanRemote
Service

TauZamanLocal

TauZamanSystem

TauZamanSystem

Server SideClient Side

Service

Figure 15. The client/server architecture of τ ZAMAN

There were two main design criteria that guided the development of the server/client functionality
in τZAMAN.

1. From a client’s perspective, there should be no coding difference between using a remote and
local service, except identifying the service as local or remote, as shown in Section 4.2.3.
Our goal was to make the distinction between local and remote objects transparent to a client.
However, full transparency can be disconcerting in some distributed system applications since
there can be profound differences in performance between using local or remote objects.
Therefore, in τZAMAN, a user must simply identify the service as local or remote. Knowing
the service type will inform users of potential performance differences.

2. All instances of temporal data types are local. Our goal was to minimize the amount and
frequency of client/server communication. Ideally, a τZAMAN client will have all local
resources. Remote services will be invoked only when necessary, primarily for input, output,
and granularity conversions. Relatively few kinds of objects can be passed from client to server;
only the Granule class is serializable (and the classes it references, namely Granularity
and TimeValue).

Figure 15 depicts the client/server structure. In the figure a TauZamanSystem at the
client side creates a local TauZamanRemoteService object. The object connects to a
TauZamanRemoteServiceHandler residing on a server, which provides a connection to a
TauZamanSystem object on the server’s side. Note that the client can connect to multiple remote
TauZamanService objects through different TauZamanRemoteService objects. Client/server
communication in τZAMAN uses RPC in Java’s Remote Method Invocation (RMI) package.

A user, whether it is a client or a server, creates a single TauZamanSystem instance. When
τZAMAN is run as a server, the TauZamanSystem object is responsible for communicating with
clients and managing the four repositories. The repositories are populated over time as a client loads

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 29

calendric systems, calendars, properties, and field value tables. The choice of setting a system as a
client or a server is application-dependent.

A TauZamanSystem object also provides TauZamanService, which is the client’s API for
interacting with calendar-related components. A TauZamanService offers all of the calendar-
related methods to end users. This includes methods to load calendric systems, and calendars, to
activate and de-activate properties, and to input and output temporal literals. To increase the flexibility
of the system for the users, a user may have several services, connecting the client to a local system
and multiple remote servers. The TauZamanSystem object stores the currently active service; clients
switch among the many services by designating the desired service as active.

The TauZamanService class is subclassed into two services, TauZamanLocalService and
TauZamanRemoteService. A remote service is designed to be a remote object, that is, it should be
registered with the object registry and referenced by a client system. To set up a TauZamanSystem
as a server, the user should first register the name of the server and publicize the URL of the listener.
Any TauZamanSystem knowing the URL and registered name can connect to the server as a client.

Each service has an active state that stores the current set of active components. The state consists of
a calendric system and an operational semantics. A service may have loaded several calendric systems.
For example, a client may need the American calendric system, which includes the Astronomy and
Gregorian calendars, and in the same service also load the Russian calendric system, which manages
the Gregorian and Communist calendars. The active calendric system and properties are used only for
input and output. Operations of constructed time values use the granularity hierarchy, which τZAMAN
builds from all the calendric systems that have been loaded. Note that only one calendric system can
be active at any time. The client switches between the calendric systems within the service by setting
the active calendric system to the desired calendric system.

Maintaining a “per-application” active service and active state within that service reduces the
overhead on temporal data type operations. For instance, consider an Instant constructor. Instead of
having to pass the active service and active calendric system to the constructor, the active service and
state are retrieved within the constructor using class methods in the TauZamanSystem class. This
minimizes the length of parameter lists in methods. Furthermore, two of our design goals were to
support client/server services and be able to utilize multiple calendric systems. Temporal data type
operations in τZAMAN, even with the additional functionality, need only a reasonable number of
parameters, e.g., the operation to add an interval to an instant is invoked with only the interval and
the instant. In τZAMAN, the active service is cached in each created instance of a temporal data type,
along with the active state of the service so that the instance can be later output using the same service
and calendric system. If the remote service becomes unavailable, an exception will be thrown when
operations on those temporal data types are invoked.

5. Coding Statistics and Experimental Results

This section reports on the size and performance of τZAMAN. Statistics about the τZAMAN’s
implementation are given first, followed by results of several performance experiments. We measured
the performance of local and remote τZAMAN services in configuring a system and input and output
of temporal literals.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

30 URGUN ET AL.

5.1. Coding Statistics

The current version of τZAMAN consists of approximately 12,500 lines of Java code, not including the
code in system or third-party supplied classes. τZAMAN has 60 classes organized into 8 packages.
We developed τZAMAN using Sun’s j2sdk1.4.1 02 environment. We did not attempt to optimize
performance with a native-code Java compiler or by tuning the code with a Java profiler. τZAMAN
has several package dependencies. The dependencies are listed below along with the tasks for which
each is needed.

• java.rmi is used to implement RPC behavior.
• java.net.URLClassLoader is used for dynamic loading of methods and classes for

irregular mappings.
• javax.xml.parser and org.w3c.dom are used to parse and process the XML-formatted

specification files, and during input and output of temporal literals.
• java.util.regex is used for to match regular expressions for field values during parsing of

temporal literals.
• java.util.Hashtable is used extensively for implementing the repositories.

5.2. Experiment Environment

We conducted the experiments in a distributed system environment because τZAMAN is a client/server
system. Figure 16 shows the network architecture for the machines in the experiment. The two
primary machines in the environment are burgun and dyreson. burgun is a Windows box,
while dyreson runs Linux. We measured the round trip time between burgun and dyreson at
approximately eight milliseconds for a dummy Java RMI call. Both machines are served by a network
file server called zeus, so loading and unloading of properties involve fetching files from zeus. We
used Java 2 SDK, version 1.4.1.

5.3. Experiments on TauZamanService Initialization

A client accesses τZAMAN by constructing a TauZamanService object, which could be remote or
local. The service is started by providing the URL of a calendric system specification and a property
specification. The specification files are fetched from zeus via HTTP, parsed, and processed to form
the default components of the service. In processing the calendric system specification, further fetches
are done for each calendar managed by the calendric system. Starting a service also initializes the
repositories.

The first experiment measures the performance of creating a local service. We used the specification
files available from the project’s web site. We started a local service on burgun by providing the
URLs of a calendric system and property specification located on zeus. We subsequently recreated
the same local service to test the performance of reloading the system (with objects cached in the
repository). Table VI gives the measured times. All times are rounded up to the millisecond. All times
in this and subsequent figures represent a single round trip, unless noted otherwise. Since the service is
local, there is no network cost on the creation, or recreation of the service. The initial loading time is,

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 31

CISCO CATALYST
5000

256 RAM
Intel celeron 1.80GHz
Windows 2000

256 RAM
Intel Pentium III 730 MHz
Linux Red Hat 7.1

10 TX (CAT3)

100 FX FOUNDRY
BIG IRON 8000

100 FX

CISCO 2924

HP 4000 M

FT 20

CISCO 1924INTERNET

ZEUS NETFILER

(runs TauZaman)

(includes specification
files)

(runs TauZaman)

100 FX

100 TX

burgun

dyreson

100 FX

Figure 16. A diagram of the environment for the experiments

Total Calendric System Property Table
Initial loading 633 518 115
Subsequent loads 1 1 1

Table VI. Average loading times (in milliseconds) of a TauZamanLocalService

not surprisingly, much longer than subsequent loading times because τZAMAN provides repositories
to cache reused objects. Note that the initial loading time is a “one-time” cost.

The second experiment measures the performance of creating a remote service. In this experiment
the client is located at dyreson. The client creates a remote TauZamanRemoteService,
identifying burgun as the remote server. burgun loads the calendric system and property table
specification files from zeus via HTTP in response to the request. The results are given in Table VII.
We averaged the times over five tests to smooth the effects of network congestion, which lead to
variations of up to 40 milliseconds per round-trip. We separated the total time (client side) from the
load time (server side). As with the local service performance, the time of the initial load is longer
than subsequent loads due to caching in the repositories. Note also that the initial load time on the
client side time is longer than that for the local service. The reason is that there is overhead on

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

32 URGUN ET AL.

Client Side Server Side
Total Total Calendric System Property Table

Initial loading 720 686 499 187
Subsequent loads 30 1 1 1
Table VII. Average loading times (in milliseconds) of a TauZamanRemoteService

establishing communication between the client and the remote server that is only incurred with a
remote service. In addition to the overhead of network, round-trip time there is an additional cost
because a TauZamanRemoteService object is marshaled and unmarshaled during the call. As
stated previously, this is one of the reasons that we did not pursue a fully transparent distributed
architecture, since response times are longer with remote services.

The third experiment tests the performance of input and output of temporal literals. The operations
perform effectively the same amount of work, just in a different sequence. So we will measure the
total cost of performing an input followed immediately by an output. The experiment tests six different
kinds of temporal literal: determinate instant, now-relative instant, indeterminate instant, (determinate)
interval, determinate period, and indeterminate period. period, and interval, and their indeterminate
and now-relative formats. The format properties used in the experiments for each kind of temporal
literal are available from the project’s web site. These formats are of normal complexity rather than
worst-case complexity. More complex formats will incur a slightly higher cost. The literals tested are
available from the project’s web site.

We first experiment on a local service; the next experiment is for a remote service. As before, the
local test is performed on both burgun (a Windows box) and dyreson (a Linux box). burgun
has more memory and a faster CPU. A TauZamanLocalService is created on each machine,
with specification files fetched from zeus. Table VIII reports the results of the experiment. Like the
other experiments it is separated into two different measurements: an initial loading (for the first input
and output) and a consecutive loading time. The times are given in milliseconds. The initial cost is
higher than subsequent I/O because initially the format is parsed and the field value tables are fetched
from zeus; on subsequent conversions, the parsed format and field value tables are retrieved from a
repository.

The conversion times differ for the different kinds of literals. The indeterminate period is the slowest,
while the determinate interval is the fastest. The differences in the timings are because an indeterminate
period is composed of four instants, so we would expect it to take a bit longer than I/O of a single
instant. The determinate interval is the fastest because it has the simplest format. burgun performs
better than dyreson due to better hardware on burgun.

We next tested input and output in a remote service. We used exactly the same experiment as for the
local service, except that we used a remote service from a client on dyreson to a server on burgun.
This test includes the overhead on the network communication and marshaling of parameters, so the
overall cost should be greater than that of the local service.

Table IX shows the results of this experiment. The cost of the initial loading includes the time
spent fetching field value tables. Consecutive I/O costs are much lower. When compared to the local
service test, we can observe the overhead in the remote communication. The times in Table VIII are

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 33

dyreson burgun
Initial I/O Subsequent I/O Initial I/O Subsequent I/O

Instant 199 8 130 7
Now-relative Instant 226 12 150 8
Indeterminate Instant 249 17 155 13
Period 278 14 175 10
Indeterminate Period 330 19 220 14
Interval 159 6 100 5

Table VIII. Average input and output times (in milliseconds) for different kinds of temporal literals
using a local service

dyreson
Initial Subsequent

I/O I/O
Instant 287 29
Now-relative Instant 383 41
Indeterminate Instant 390 53
Period 365 35
Indeterminate Period 402 37
Interval 258 28

Table IX. Average input and output times (in milliseconds) for different kinds of temporal literals
using a remote service

lower than those in Table IX. The last observation to make about the results is that now-relative
and indeterminate instants are even more expensive. The reason is that there is a single Instant
constructor, rather than separate constructors for determinate, now-relative, and indeterminate instants.
During construction of an instant, the (determinate) InstantInputFormat property is used to parse
the instant. If the parse fails then the the NowRelativeInstantIntputFormat is tried, followed by the
IndeterminateInstantInputFormat.Each parse failure results in another round of RPC between the client
and the server until the appropriate kind of instant is finally constructed. (We could have had the server
try each kind of property in succession. This would improve the times slightly, since it saves on one
or two network round-trips. But overall the cost is dominated by the parsing, so such a refinement
wouldn’t have a large impact on the performance. Caching of parsed values, on either the client or the
server sides, or both, could also improve performance.)

6. The TAUZAMANTESTER- A Graphical User Interface (GUI) for I/O

τZAMAN provides both an Application Programming Interface (API) for programmers and a
(prototype) GUI-based testing tool called the TAUZAMANTESTER. The TAUZAMANTESTER is a user-

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

34 URGUN ET AL.

friendly tool for two user groups: application developers who want to see τZAMAN in action before
writing code, and specification developers who want to test and debug their specifications. More
specifically, the tool was designed to meet the following goals.

• To provide a nice interface for demonstrating τZAMAN.
• To create a platform for testing the input and output of temporal literals. Rapid testing can

decrease the time needed to develop format properties and other XML specifications. The testing
includes checking the specifications for syntactic correctness and completeness.

• To simplify τZAMAN’s configuration and setup for a naive user. Users can activate a service by
selecting it from a combo-box instead of by writing code. Different service configurations can
be loaded using the tool.

• To facilitate the testing of temporal operations. Users can compare or perform arithmetic on
created time values.

• To provide performance measures. The tool reports the processing time of each operation.

When the TAUZAMANTESTER is started, a main window is opened. A screen shot of the main
window is shown in Figure 17. The window includes a top row of four ’tab’ buttons. Choosing a button
puts the TAUZAMANTESTER into one of the following four modes.

1. Service Configuration - A user would select this tab to test and load new configurations for a local
or remote service. Successfully loaded configurations become available in the other modes.

2. Property Management - Allows a user to test property specifications and load new properties (for
testing in the other modes).

3. Input/Output - Converts a time literal, as described in more detail below.
4. Temporal Operations - Provides an interface for performing arithmetic and comparison of

temporal literals.

When the ’Input/Output’ mode is selected, the TAUZAMANTESTER creates an instance
of TauZamanLocalService and TauZamanRemoteService. All of the configuration
information, such as the URLs of the calendric system, property table, and calendar specification files,
as well as the URL of the remote τZAMAN server are specified in an XML-formatted initialization file
for the tool. After initializing the services, the TAUZAMANTESTER opens the main window and waits
for user instructions. In ‘Input/Output’ mode, there are three panels.

1. An input panel has a scrollable text area in which user can input a temporal literal. The input
panel is the left-most area in the screen shot in Figure 17.

2. A configuration panel provides a set of GUI components that allow the user to configure the
TauZamanSystem object. The configuration panel is the list of buttons and combo-boxes in
the middle of the screen in Figure 17. For example, a user can activate the remote or local
τZAMAN service by selecting the appropriate one from a combo-box. Or a user could choose
from among several properties to active one for input and output formatting. The user must select
one of the temporal data types to parse and output the time literal entered in the input panel.

3. An output panel has a scrollable text area that displays the output of the temporal literal. Note
that the input and output use different formats. The output panel is the right-most area in the
screen shot in Figure 17.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 35

Figure 17. A snapshot of the TAUZAMANTESTER processing an indeterminate instant

Generally a user will enter a temporal literal into the input panel, configure the settings as desired, press
the “PROCESS” button in the configuration panel, and the output will appear in the output panel. If
any exceptions occurs during processing, for instance the input did not parse correctly, an error dialog
box will pop up. The GUI also displays the processing time of the entire operation.

Two snapshots of the TAUZAMANTESTER in action are shown in Figure 17 and Figure 18. In
Figure 17, an indeterminate instant is entered in the input sub-panel, TauZamanSystem is configured
using the components in the configuration sub-panel, and the instant is output. In Figure 18, a
determinate period is processed.

7. Related Work

While work on temporal data types (including by that of the authors of the present paper) goes back
two decades, in the last five years there has been a flurry of activity. Related research can be broadly
classified into two categories: modeling and implementation. The modeling category covers research
in temporal data models, and in particular, it establishes desirable operations on temporal data and
calendars. The second category is research into implementations of the first category. Although this
paper concerns implementation, in this section we trace the influences on this research from both
categories.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

36 URGUN ET AL.

Figure 18. A snapshot of TAUZAMANTESTER processing a determinate period

Allen motivated the interval (which we call a period) as a fundamental temporal entity [All83]. He
formalized the set of possible relationships which could hold between two intervals and developed an
inference algorithm to maintain the set of temporal relationships between entities.

Anderson described a formal framework to support conceptual time spaces using inheritance
hierarchies [And82, And83]. Her model also supports multiple conceptual times. τZAMAN can be
considered as a practical realization and extension of some of the concepts developed by Anderson.

Clifford and Rao developed a framework for describing temporal domains using naive set theory and
algebra [CR87]. Their framework allows a hierarchy of calendar independent domains to be built and
temporal operators to be defined between objects of a single domain and between objects of different
domains. The framework is powerful but lacks the ability to describe time domains that are not integral
multiples of finer granularity time domains. For example, months are not an integral number of
weeks since a whole number of weeks do not ordinarily correspond to a single month. Our work
removes this limitation by making the semantics of any conceptual time unit user-definable. The user
is not tied to any predefined notion of time or time domain.

Navrat and Bielikova argued for declarative, rather than algorithmic, calendar definitions [NB95].
Algorithmic definitions sometimes lead to oversimplification of predictions for future times and
unnecessary approximations of past times. For example, in the Islamic calendar, the first day of the
month of Ramadan cannot be predicted by an algorithm, although an approximation exists and is
used by some cultures. Navrat and Bielikova addressed this problem by using factual past knowledge
combined with Prolog to better define the start of Ramadan. Their framework also provides some

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 37

support for multiple calendars, and inter-calendar calculations. But accounting for the semantics of
granularity in operation is missing.

Bettini, Wang, and Jajodia developed a formal foundation for reasoning about temporal
granularities [BJW00]. Ning, Wang and Jajodia extended this work with an algebraic approach to
define granularities and calendars [NWJ02]. They argued that irregular granularity conversions can be
done in a declarative way without the need of a specialized piece of code, although the declarative
specification can be complicated. In contrast, τZAMAN uses specialized code. We are investigating
using their approach to support irregular mappings by compiling (automatically, behind the scenes, in
τZAMAN) declarative irregular mappings provided by calendar designers expressed in XML into code
snippets, which can then be loaded into a running τZAMAN server. As such, τZAMAN can be viewed
as the underlying infrastructure eventually supporting several different calendric formalisms.

Kraus, Sagiv and Subrahmanian proposed a formal definition of calendars and temporal data types
in terms of constraints, as opposed to our representation, which are granules (as integers) at different
granularities [KSS96]. They also showed how to support multiple calendars and argued that specifying
a time point as integers or real numbers is cumbersome for human beings. We agree: τZAMAN uses
familiar string representations for temporal literals.

Kakoudakis and Theodoulidis implemented a single calendar system that supports operations in only
the Gregorian calendar, with a limited number of granularities [KT96].

Chandra, Segev and Stonebraker [CSS94] presented a design for set-based specification of calendars.
They gave an algorithm for parsing the specifications and described how to extend the temporal support
in the Postgres database management system with new calendars. Chandra et al. compared their project
to MULTICAL [SSD+92], which is a precursor project to τZAMAN (as described in more detail below).

In the second category, implemented systems, there exist several systems that support temporal data
types, temporal operations, datetime calculations and conversions. Most of the systems that perform
datetime calculations and conversions, including APIs for conventional programming languages, e.g.,
Date, Time, Calendar classes in Java, are limited in scope, having static calendar support, with at
most four or five different calendars, and limited kinds of formats. On the other hand, there are also
applications that support multiple calendars and temporal data type operations.

τZAMAN is an enhancement of two earlier systems: MULTICAL [SSD+92] and TIMEADT [KLS99].
MULTICAL adds support for time and multiple calendars to relational database management systems.
MULTICAL has a core system of calendar-independent temporal operations, but allows users to
modularly define calendars for formatting times in different calendars and languages. MULTICAL
does not have a predefined set of calendars; rather new calendars can be defined and compiled into
the system. TIMEADT is a successor to MULTICAL. It refines the temporal operations in MULTICAL
by adding support for granularity and temporal indeterminacy and support for C++. τZAMAN inherits
many design features from both MULTICAL and TIMEADT, but is different because it can dynamically
load calendars, can parse temporal literals formatted in XML, provides a client/server system, supports
calendars, etc., as XML documents accessible on the Internet, and is implemented in Java.

Boost [Sof02] is a date-time library in C++, which supports three basic temporal data types: point,
duration and interval. One of its design main goals is to support ISO 8601 compliant input and output
representation. It provides arithmetic and comparison operations for each type, although not with
different semantics for granularity conversions. It also has iterators on time and date ranges, which
helps a user iterate over the days of a week, for example. Boost supports multiple calendars, but not
the dynamic loading of calendars. It also lacks inter-calendar conversions and calculations.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

38 URGUN ET AL.

International Components for Unicode (ICU) [Cor02] is a set of libraries developed by the Unicode
group in IBM Globalization Center of Competency. The main goal of these libraries is to hide the
cultural and geographical differences in international software development. One of the problems that
ICU addresses is the multi-cultural aspect of representing time by supporting multiple calendars and
timezones. Currently ICU only supports the Gregorian calendar but with its abstract calendar structure
it is claimed to handle multiple calendars, again in a static context as in Boost. Additionally it supports
only a limited number of granularities, and does not handle inter-calendar conversions.

The Joda project includes a re-implementation of Sun Java’s built-in date and calendar
classes [Col02]. Its main aim is to provide date and time implementation to the Java community. Joda
supports multiple calendars, but not dynamic loading of calendars. It provides ISO 8601 compatible
input and output. Additionally it provides an API that includes methods to create input and output
formats. The format can be checking for correctness before it is tried in input or output. In our project
formats can be produced in XML documents and thus can be shared and examined easily. In Joda, to
relate an instance of a temporal data type, like an instant, to a calendar, a user has to pass the calendar
object to the instant constructor. τZAMAN globally caches the active TauZamanService and calendric
system to keep the parameter lists short. Joda supports period and interval temporal data types under
the name of TimePeriod, which we believe confuses this distinction. Joda argues the immutability of
temporal data types for being safe in thread environments; τZAMAN also has immutable temporal data
types. And lastly Joda does not include temporal conversions between different temporal data types.

WebCal [Ohl03b], a calendar server produced by OhlBach, is a client/server architecture for
providing temporal support. WebCal is a part of the WebTNSS [Ohl03a] project, which is a support
system for temporal notions. WebCal provides calendar-independent time representations and temporal
operational support in WebTNSS. Although τZAMAN and WebCal are similar in that they are both
client/server systems, there are also several differences.

• τZAMAN’s specification files simplify the production, understanding and publishing of
calendars, calendric systems, properties, and field value tables. An application that uses WebCal
must code these features into the application.

• In WebCal the smallest granularity is seconds. τZAMAN can support much finer granularities.
• In WebCal, all temporal operations are built on top of an interval data type. τZAMAN

differentiates between instant, interval, and period data types. τZAMAN also supports
indeterminacy and now-relative values.

• For performance reasons, τZAMAN can be setup to run in a single process with a local service,
but WebCal is only a server.

• WebCal does have language support, partly because it is designed to provide calendar-
independent time representation for the WebTNSS project. On the other hand, τZAMAN supports
language-dependent formats in time values.

GSTP [Bet03] is a client/server system that provides granularity conversions and multi-granularity
constraint satisfaction. τZAMAN provides the former (as well as many other services) but not the latter.
GSTP only runs as a server; τZAMAN can be set up as a server, a client, or both.

There are several papers devoted strictly to the parsing of dates.
Karttunen et al. [KCGS96] proposed a regular expression calculus for natural language applications.

And as one of its illustrations, they described a finite state grammar for dates. For a completely new
date input, a new grammar should be employed. On the other hand, in our approach users can create a

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 39

format by writing an XML fragment and dynamically add it into the system to handle a new date input.
But obviously this context is application-specific and the extent of Kartunnen et al.’s proposal is very
broad.

Sperberg-McQueen [SM99] argued that recognition of dates is possible by regular expressions and
gave lex code that recognizes and validates ISO 8601 complaint dates.

Cameron [Cam99] provided a set of shallow parsing regular expressions, which can be used to
parse an XML document into individual items, such as attribute and text values. He argued that this
style of parsing is relatively faster than off-the-shelf XML parsing and processing tools. We chose to
implement a different approach in τZAMAN. τZAMAN uses an off-the-shelf XML parser to match the
XML skeleton in a format against that of a literal, and located the text and attribute values. Parsing
in τZAMAN then isolates the fields within text nodes or attribute values with regular expressions. One
problem with using regular expressions for an entire XML fragment is that they can be very complex
and hard to understand when combined with the regular expressions fetched from the field value tables
for individual fields. We chose to make our format properties easy to specify.

Finally, Kolko has demonstrated that technology that uses non-local infrastructure can be a major
hurdle to adopting technology [Kol02]. Our work in τZAMAN provides an infrastructure that allows
designers to bridge this gap without designing out of their own context.

8. Conclusions and Future Work

τZAMAN is a system written in Java for formatting and manipulating times and dates in multiple
calendars and languages. τZAMAN has a dynamic and extensible architecture that separates calendar-
dependent from calendar-independent aspects of processing time values. From a design perspective,
τZAMAN redesigns and extends all of the basic mechanisms previously employed. From an
implementation perspective, τZAMAN achieves full dynamic support for calendars and related
components in a client/server system, and brings a new, XML-based information representation and
processing style. The primary contributions include the following.

• τZAMAN supports dynamic and distributed handling of calendars and other services. We
take advantage of Java’s dynamic class loaders to provide dynamic support for extending
servers on the fly with new calendars and calendar-related components. τZAMAN implements a
client/server model that makes calendar-related services available on a network.

• XML technology is used to represent and process critical data. τZAMAN improves the
representation and processing of the system specification files by formatting the files in the XML.
This also improves the processing of the specification files and allows them to be shared on the
web. Finally, τZAMAN integrates XML into the parsing and output of temporal literals, to meet
the future growth of times formatted in XML.

• Repositories allow effective sharing of components. τZAMAN uses repositories to enable
sharing of critical data, such as calendars, calendric systems, granularity mappings, formats (as
properties) and languages (as field values) for parsing temporal literals. Repositories reduce the
response time for users, especially when parsing temporal literals and performing granularity
conversions, by caching components that are reused.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

40 URGUN ET AL.

In the future we plan to extend this research in several directions. The first direction is improving
the speed of τZAMAN. There are several optimization techniques that could be implemented. One
optimization is to batch input, output, and granularity conversion requests to remote servers to amortize
turnaround time. A second optimization is to cache granularity mappings on the client side, to avoid
an RPC call to cast or scale an instance of a temporal data type, or to cache on the server side. A third
optimization is to skip the expensive, useless step of parsing a non-XML temporal literal with an XML
parser. We’d also like to optimize the performance of τZAMAN by using a native-code Java compiler
and tuning the code with a Java profiler.

Another direction of future work is studying how to craft user interfaces to ease the task of calendar
specification and reduce the possibility of mistakes by calendar developers. As mentioned in Section 7,
we are working to also incorporate an algebraic specification of calendars into τZAMAN. While the
specification of granularities as irregular mappings associated with Java code is highly expressive, an
algebraic specification language would for some be easier to use. We are developing an algebraic
compiler that translates algebraic expressions in an XML document into the calendric specification
described in this paper (a lower-level XML document) and Java source code. We also want to extend
the TAUZAMANTESTER with support for calendar and calendric system debugging and configuration.
The tool could also be extended to visualize granularities enabling developers to graphically construct
granularity mappings, to create and use probability mass functions for indeterminate temporal data
types, and to have a point-and-click interface for creating input and output formats. All of these tools
would work seamlessly with the architecture described here.

A third direction for future work is to refine and extend the class of regular mappings between
granularities to include granularities with “holes,” e.g., there are some days that are missing between
granules in holidays. In this context, detailed experiments on temporal operations and conversions
between different granularities will be performed.

A fourth direction is to integrate τZAMAN with Xalan [Pro03]. Xalan is an XPath evaluation engine.
The idea is to engineer Xalan to coordinate with a calendar server to provide “temporal views” of XML
fragments that correspond to time literals in an XML document. So, given an XML document that has
time literals in ISO format, a user could query the document using a view of those times in any desired
calendar and format, for instance, in the Islamic calendar. We would also like to define abstract data
types for extensible databases (e.g., Oracle data cartridges, DB2 extenders, and MySQL ADTs) with
τZAMAN as the underlying infrastructure.

A fifth direction is to describe the client API as a web service. This would allow web bots and
shopping agents to make direct use of τZAMAN’s functionality. The idea is to implement for time
a service like Microsoft Money for currency. A TauZaman web service could then be used in other
applications such as GMail or Outlook. For instance, a user could search for email from a partner sent
sometime in the “previous quarter”. A sixth direction is to add “pull” technology for calendar, property,
language support, and calendric system specifications. Currently, when a specification changes, the
specification has to be manually reloaded into a running τZAMAN server. By automatically reloading
such files when they are modified, calendars and other components can be kept up-to-date. Finally,
we’d like to re-implement Java’s current calendar support in τZAMAN. This will help to demonstrate
the extensibility of τZAMAN.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

INTEGRATING MULTIPLE CALENDARS USING τ ZAMAN 41

Acknowledgments

We thank the reviewers for their comments, and William Evans, Chris Jermaine, Jie Li, Wei Li,
Yuhong Liu, Carsten O. Madsen, Sandra Miller, Leo Waichung So, and Joey Whelan for their help
in implementing and testing this system and its precursors.

REFERENCES

[All83] . J .F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the Association of Computing
Machinery, 26(11):832–843, November 1983.

[And82] . T. L. Anderson. Modeling Time at the Conceptual Level. In P. Scheuermann, editor, Proceedings of the
International Conference on Databases: Improving Usability and Responsiveness, pages 273–297, Jerusalem,
Israel, June 1982. Academic Press.

[And83] . T. L. Anderson. Modeling Events and Processes at the Conceptual Level. In S.M. Deen and P. Hammersley,
editors, Proceedings of the Second International Conference on Databases, Cambridge, Great Britain, 1983. The
British Computer Society, Wiley Heyden Ltd.

[AQdO85] . M. Adiba, N. B. Quang, and J. P. de Oliveira. Time Concept in Generalized Data Bases. In Proceedings of the
ACM Annual Conference, pages 214–223. Association for Computing Machinery, October 1985.

[BDE+98] . C. Bettini, C. E. Dyreson, W. S. Evans, R. T. Snodgrass, and X. S. Wang. A Glossary of Time Granularity
Concepts. In Temporal Databases: Research and Practice, Lecture Notes in Computer Science 1399, pages 406–
411. Springer-Verlag, 1998.

[Bet03] . C. Bettini. Web services for time granularity reasoning. In Proceedings of the International Symposium on
Temporal Representation and Reasoning. IEEE, 2003.

[BJW00] . C. Bettini, S. Jajodia, and X. S. Wang. Time Granularities in Databases, Data Mining, and Temporal Reasoning.
Springer-Verlag, San Mateo, CA, 2000.

[BP85] . F. Barbic and B. Pernici. Time Modeling in Office Information Systems. In S. Navathe, editor, Proceedings of ACM
SIGMOD International Conference on Management of Data, pages 51–62, Austin, TX, May 1985. Association for
Computing Machinery.

[Cam99] . R. D. Cameron. REX: XML Shallow Parsing with Regular Expressions. Markup Languages, 1(3):61–88, 1999.
[CDI+97] . J. Clifford, C. E. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass. On the Semantics of “Now” in

Databases. ACM Transactions on Database Systems, 22(2):171–214, 1997.
[Col02] . S. Colebourne. Joda home page. http://joda.sourceforge.net, current as of November, 2002.
[Cor02] . IBM Corporation. International Components for Unicode (ICU). http://oss.soft-ware.ibm.com/icu,

current as of May, 2002.
[CR87] . J. Clifford and A. Rao. A Simple, General Structure for Temporal Domains. In Proceedings of the Conference on

Temporal Aspects in Information Systems, pages 23–30, France, May 1987. AFCET.
[CSS94] . R. Chandra, A. Segev, and M. Stonebraker. Implementing Calendars and Temporal Rules in Next Generation

Databases. In Proceedings of the International Conference on Data Engineering, pages 264–276, February 1994.
[Dat88] . C.J. Date. A Proposal for Adding Date and Time Support to SQL. SIGMOD Record, 17(2):53–76, June 1988.
[DELS00] . C. E. Dyreson, W. S. Evans, H. Lin, and R. T. Snodgrass. Efficiently Supporting Temporal Granularities. IEEE

Transactions on Knowledge and Data Engineering, 12(4):568–587, 2000.
[DS98] . C. E. Dyreson and R. T. Snodgrass. Supporting Valid-Time Indeterminacy. ACM Transactions on Database

Systems, 23(1):1–57, 1998.
[Fal01] . D. C. Fallside (editor). XML Schema Part 0: Primer. http://www.w3c.org/TR-/xmlschema-0, current

as of May, 2001.
[Fra87] . J. Fraser. Time the Familiar Stranger. Tempus Books, Redmond, WA, 1987.
[Int00] . International Organization for Standardization. Data elements and interchange formats – Information interchange

– Representation of dates and times. Technical Report ISO8601:2000(E), ISO, December 2000.
[JC98] . C. S. Jensen and C. E. Dyreson (editors). A Consensus Glossary of Temporal Database Concepts - February

1998 Version. In Temporal Databases: Research and Practice, Lecture Notes in Computer Science 1399, pages
367–405. Springer-Verlag, 1998.

[JS99] . C. S. Jensen and R. T. Snodgrass. Temporal Data Management. IEEE Transactions on Knowledge and Data
Engineering, 11(1):36–44, January/February 1999.

[KCGS96] . L. Karttunen, J. Chanod, G. Grefenstette, and A. Schiller. Regular Expressions for Language Engineering. Natural
Language Engineering, 2(4):305–238, 1996.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

42 URGUN ET AL.

[KLS99] . N. Kline, J. Li, and R. T. Snodgrass. Specifying Multiple Calendars, Calendric Systems, and Field Tables and
Functions in TimeADT. Technical Report 41, TimeCenter, Aalborg, Denmark, May 1999.

[Kol02] . B. Kolko. International IT Implementation Projects: Policy and Cultural Considerations. In Proceedings from the
annual IEEE IPCC Conference, pages 352–359. IEEE, 2002.

[KSS96] . S. Kraus, Y. Sagiv, and V. S. Subrahmanian. Representing and integrating multiple calendars. Technical Report
CS-TR-3751, Univ. of Arizona, Dept. of Comp. Science, 1996.

[KT96] . I. Kakoudakis and B. Theodoulidis. The TAU Temporal Object Model. Technical Report TR-96-4, TimeLab,
University of Manchester (UMIST), 1996.

[Mic03] . Sun Microsystems. Java 2 Platform, Standard Edition (J2SE) v. 1.4.1. http://java.sun.com/
j2se/1.4.1/, current as of May, 2003.

[MMCR92]. A. Montanari, E. Maim, E. Ciapessoni, and E. Ratto. Dealing with Time Granularity in the Event calculus. In
Proceedings of the International Conference on Fifth Generation Computer Systems 1992, volume 2, pages 702–
712, Tokyo, Japan, June 1992. ICOT.

[MS93] . J. Melton and A. R. Simon. Understanding the New SQL: A Complete Guide. Morgan Kaufmann Publishers, Inc.,
San Mateo, CA, 1993.

[NB95] . P. Navrat and M. Bielikova. Representing Calendrical Algorithms and Data in Prolog and Prolog III. SIGPLAN
Notices, 30(7):45–51, 1995.

[NWJ02] . P. Ning, X. S. Wang, and S. Jajodia. An Algebraic Representation of Calendars. Annals of Mathematics and
Artificial Intelligence, 36(1-2):5–38, 2002.

[Ohl03a] . H. J. Ohlbach. Project WebTNSS. http://www.pms.informatik.uni-muenchen.de/mitarbeiter/-
ohlbach/WebTNSS/motivation.html, current as of May 2003.

[Ohl03b] . H. J. Ohlbach. WebCal, an Advanced Calendar Server. http://www.pms.informatik.uni-muenchen.
de/mitarbeiter/ohlbach/WebTNSS/WebCal-WWW.pdf, current as of May 2003.

[Pro03] . Apache XML Project. Xalan-Java version 2.5.D1. http://xml.apache.org/xalan-j, current as of May,
2003.

[RD01] . E. M. Reingold and N. Dershowitz. Calendrical Calculations: The Millennium Edition. Cambridge University
Press, Cambridge, England, 2nd edition edition, 2001.

[Sar93] . N. Sarda. HSQL: A Historical Query Language. In Temporal Databases: Theory, Design, and Implementation,
pages 110–140. Benjamin/Cummings, 1993.

[SJS95] . M. D. Soo, C. S. Jensen, and R. T. Snodgrass. An Algebra for TSQL2, chapter 27, pages 505–546. Kluwer
Academic Press, September 1995.

[SM99] . C. M. Sperberg-McQueen. Regular Expressions for Dates. Markup Languages, 1(4):20–26, 1999.
[Sof02] . CrystalClear Software. Boost Date-Time Library. http://www.boost.org/libs, current as of December,

2002.
[Soo93] . M. D. Soo. Multiple Calendar Support for Conventional Database Management Systems. In R. T. Snodgrass,

editor, Proceedings of the Workshop on an Infrastructure for Temporal Databases, pages FF1–FF17, June 1993.
[SS92] . M. D. Soo and R. Snodgrass. Multiple Calendar Support for Conventional Database Management Systems.

Technical Report 92-7, Computer Science Department, University of Arizona, February 1992.
[SSD+92] . M. D. Soo, R. Snodgrass, C. Dyreson, C. S. Jensen, and N. Kline. Architectural Extensions to Support Multiple

Calendars. TempIS Technical Report 32, Computer Science Department, University of Arizona, Revised May
1992.

[W3C00] . W3C. Extensible Markup Language (XML) 1.0. http://www.w3c.org/TR/REC-xml, current as of
October, 2000.

[WBBJ97] . X. S. Wang, C. Bettini, A. Brodsky, and S. Jajodia. Logical Design for Temporal Databases with Multiple
Granularities. ACM Transactions on Database Systesms, 22(2):115–170, 1997.

[WJL91] . G. Wiederhold, S. Jajodia, and W. Litwin. Dealing with Granularity of Time in Temporal Databases. In Proc. 3rd
Nordic Conf. on Advanced Information Systems Engineering, Trondheim, Norway, May 1991.

Copyright c© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1–7
Prepared using speauth.cls

