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1 Introduction

The Interface Description Language (IDL} is a notation for describing the characteristics of mu?. n.....:na_.:au
passed among a collection of cooperating processes. A tool, the IDL tranialator, maps ihese descriptions wuoo
code fragments in one of several targel programming languages. These code fragments contain declarations
of data structures in the target programming language thati sre functionally equivalent to those described in
the 1DL specification. The code fragments also define atilities for in-core msnipulation and input and o:.._.z:
of instances of the data structures, The IDL user writes his programs in terms of the target programming
language data declarations and utilities produced by the IDL translator. These programs process instances of
the 1DL-specified data structures residing on external storage that are cast in terms of an auxiliary language,
the ASCII External Representation Language.

This document is a tutorial introduction to using IDL. First, s step-by-step metbod for using the elementary
capabilities of DL will be given. As each step is examined, the relevant components of the IDL system will To
introduced apd explained. A complete example of the application of the IDL system will be presented. cﬁu:a
IDL supports several target programming languages, the examples in this document use the C programming
language. Finally, a brief introduction will be given to the more advanced features of IDL.

Experience with the C programming language and with designing small to medium programs is assumed. It
is intended that readers will gain a sufficient understanding of IDL to begin using the IDL system to solve
elementary problems.

1.1 History of IDL

The concept of a visible external representation was present in some early compilers designed to be vonou.d_n
across target machines. This concept was refined starting in early 1977 in connection with nJo muu.omann.os
Quality Compiler-Compiler project of the Computer Science Department of Carnegie-Mellon University ==.ma_.
the direction of William Wulf and Joseph Newcomer [Leverett et al. 1980]. At this time, this representation,
termed lincar graph notation, or LG, was defined by Joseph Newcomer and Paul Hilinger and support software
was implemented by Steven Hobbs [Cattell et al. 1980]. The software included 2 program called REQUIR that
accepted & definition of nodes {is LG) and produced & set of data structure mnmamzmsu in BLISS [Wull n.o al.
1971] as well 28 initialization tables for the LG reader and writer. A family of intermediste languages collectively
culled TCOL were expressed in LG. One member, for the preliminary Ada language, was TCOL 44, |Brosgol et
al. 1980},

A second intermediate representation for Ada programs, AID A, was developed independently at the University
of Karlsruhe [Persch et. al. 1980]. In an effort to merge the best attributes of TCOL 4 w:m. >=u>..~ra
developers of these two representations met in December 1980 and January 1981 to design a new intermediate
representation, with DIANA bs the result [Goos & Walf 1981].

Roughly concurrent with the design of DIANA, a successor to LG was being designed by John Nestor ar:l
William Wull, later joined by David Lamb, Lo address somne of the problems that had been identified in 1.G.
This successor, based on the concept of represcntation- and language- independent data definition, evolved
into IDL. This language was further refined at the joint mecting {one major change being the syntactic form
suggested by Gerhard Goos) and was used to express DIANA. The original IDL system consisted of the
definition of the Interface Definition Language for describing data structures, processcs, and assertions, and the
definition of another language, called the ASCII External Kepresentation Langusage, for representing instances
of IDL-specified dala structures on external atorage. Later that year, rcsearchers at Carnegie-Mellon University
had implemented a minimal translator for IDL. Within another year, a formal definition of the IDL language,
the external representation language, and the assertion language had been completed [Nestor, et al. 1982].

In May of 1083, David Lamb published his Ph.D, dissertation [Lamb 1983 in which he presented the results of
his investigations into the practicality of using IDL as a tool for connecting the components of large soflware
systems. His work focused on developing a design for a translator of the full IDL language, including the
assertion language. He demonstrated that a translator for the base language was feasible nnd could be made
acceptably efficient. He also formulated the design of an assertion checker, and investigated efficicncy issues in
that context.

DIANA has been used in compilers implemenied at Bell Labs, Burroughs, University of California, Berkeley
[Zorn 1985}, Intermetrics, University of Karlsruhe, Rolm, and SofTech [Butler 1983]. Tartan Labs has used IDL
s the basis for most of its tools. These efforts have gencrally involved proprietary translators and runtime
libraries. Most recently, in 1985 membera of the SoftLab Project at the University of North Carolina at Chapel
Hill completed an implementation of an IDL translator and of & set of IDL development support tools running
on Unix [Snodgrass 1985). The first version supported C as a target programming language; work continues on
supporting mappings of IDL specifications to other target programming languages and on developing additional
support tools.

1.2 Purpose of IDL

IDL is particularly useful for describing graph-structured data that is passed between a collection of cooperating
processes. Examples of graph-structured data are stacks, queues, lists, trees, graphs, ctc. A good example of
the type of system to which IDL is best applied is a compiler such as that shown in block form in Figure 1. In

this disgram, the ovals represent phases of the compiler’s process and the boxes represent data; both ovals and
boxes contain labels to suggest their roles.

Each phase of the compiler except for the first and last receives a rather complex data structure from the
previous phase, alters that data structure in some way, end passes the transformed data structure to the next
phase. IDL is an ideal tool for describing the data structures passed from one phase to the next.

1.3 Model of & Process

IDL assumes a particular model of a process {phase, tool) of & softwarc system. In this model, shown in Figure
2, each process reads one or more input dats structures, termed inslances, into main memory, using the IDL
veader, stored in language-specific runtime data structures. Utilities (e.g., macros, functions) are provided to
manipulate this structure. The user-supplied algorithm uses information from the input instance(s) to create
new instance(s), which are written out using the IDL writer. In Figure I, there are four processes, each taking
one inpul instance and generating one output instance. The process is described in an IDL specification: precise
descriptions are given of the structure of each of the instances read or written. From this specification, s tool,
the IDL translalor, generates type dcclarations, as well as readers and writers, in the target language. The
algorithm iteell must be supplied by the user. While the algotithm may read and write other data or text, such
behavior is not modeled by IDL.
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Figure 2 Model of a Process

1.4 Denefits of IDL

Using IDL simplifies the development of complex software systems. Designing the system is easier because
IDL permits a higher level of data sbstraction than that provided by most programming languages. Abstract
data types such as sets and sequences for any type, complete with all necessary data declarations and data
manipulation routines, are supported by IDL. Consequently, the user has the opportunity to more naturally
express his algorithm in terms of these absiractions without becoming mired in implementation detail.

Building the system is faster because there is less code to write and debug. Since a large portion of the data
manipulation utility routines are provided bug-free by the IDL system, the user must write and debug only the
code for his algorithm. This in turn makes for fast prototyping of the system which permits an iterative design
approach.

Finally, the software aystem that has been developed using the 1DL system is better documented and thus easier
to maintain, Datla structures specified with [DL are documented by their specifications. The IDL-supplied data
manipulation routinés are documented in the IDL systern documentation.

1.5 IDL Varlants

Implicit in any implementation of IDL are assumptions sbout how the instances of IDL structures are used.
These assumptions may restrict the operations slightly in order to achieve reasonable efficiency. Hence, each
implementation unavoidably definea a variant of the specification language that may differ from that supported
by another implementalion. The language described in this document is the one supported by the SoftLab tools
implemented at the University of North Carolina at Chapel 1ill.

1.6 Conventlons Uged in This Document

Words or phrases that denote important concepts will be printed in italice on first sppearance. . In the
programming language and IDL specification examples appearing in the running text, all IDL, C, and Pascal
reserved words as well as required punctuation appear in olanted typewriter font. In addition, user input
appears in bold Roman font (such uses will be infrequent). User-defined identifiers and file namea are shown
in typseriter font. Comments appear in italics. A SMALL CAPITALIZED font ia used for program names {eg:,
TREEPR). In all IDL specifications, class names start with an upper case letter and node and attribite names
are start with a lower case letter. ;

All syntactic definilions are given in an -extended version of the Backus-Naur Form (BNF). Angle brackets
{*()") surround the name of a pon-terminal. Braces (*{}*) sre used to group elements of a production;-a
trailing ssterisk (*)* *) indicates sero or more occurrences; a trailing plus (*}* ") indicates-one or more
occurrences; a trailing question mark (*}' ™) indicates an optional item. Special characters that are terminals
such as a semicolon are identified by prefixing them with a single quote mark {e.g., “ *;").

2 The Steps in Using IDL

Figure 3 presents the flow of using the IDL system. Oncs again, the ovals represent processes and the boxes
represent data. A line from a box to an oval indicates that the data is read by the process; a line from an oval
to a box indicates that the data was produced by the process.
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Figure 3 Steps in Using the IDL System
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The user of the IDL syatem first writes specifications for his data etructures in the Interface Description
Language. In the next slep, the user translates those specifications with the IDL translator into a set of data
declarations in the targe! programming language that expresses the same functionality, The IDL translator also
produces & set of run-time aupport routines tailored for manipulating the target-languags versions of his data
structures. The user then proceeds to program his algorithm in the selected target programming langusge in
terms of the dats declarations produced by the IDL translator, While programming, he makes use of the tailored
set of run-time support routines to allocate new instances of dsta structures, to maintain sets and sequences
composed of them, and to read and write them {rom external storage. The user then compiles and links the
code for his algorithm along with the IDL-produced data declarations and run-time support routines to produce
an executable program. Finally, the user exocutes this program to process instances of data structures that are
represented externally in the ASCII External Representation Language.

This chapter considers each of these steps separately. As s phasc is discussed, the relevant parts of the IDL
system are explained. The next chapter examines each step once again in the context of a second example.

2.1 The IDL Speclfication

Writing a specification of the collection of cooperating proceases that compose the system being developed and
of the data structures those processes share is the first step in using the IDL system. Figure 4 identifies this
portion of the whole procesa of using the IDL aystem. The specification is written in the Interface Description
Language. The specifications for one or more data structures and one or more processes constitute a complete
specification,
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Figure 4 The Specification Step

2.1.1 Specifying Data Structures

The fundamental data structure building blocks of IDL, are nodes and classes. Nodes and classes are organized
into named collections called structures.

Nodes A node is & named collection of zero or more named values called attributes that the user wishes
to treat as a unit. Attributes sctually hold the data values; nodes are a grouping device. Nodes are analogous
to records found in many programming langusges; their attributes are analogous to the fields of a record. It
is important Lo note that nodes necd not actually be recorda—they just act like they are. In particular, the
values for attributes may be stored outside the node, or may not be stored at all, instead being recomputed
whenever the attribute is acceased. IDL is an adstract specification capable of being mapped onto a myriad of
representations.

A declaration for a node consists of the name of the node followed by a node production operator, a “=>", and
then a list of zero or more comma-separated attribute-type pairs terminated with a semicolon. The syntax for
declaring a node is given below.

(node name) ‘=> {{attribute name} : (type) {*. (attribute name) *: (type)}*

A node may have any number of attributes limited only by the implementation of the IDL transiator. The
ordering of the attributes within s node is not significant. Names for nodes and attributes and for any other
named IDL objects are contiguous sequences of letters, digits, and the underscore character “”. The fiest
character must be a letter or an underscore; case is significant. The length of & name is limited only by the
implementation of the IDL translator. All characters in & name are considered significant. All IDL keywords
(introduced below) are reserved and must be spelled and capitalized exactly as they appear. The various parts

of a declaration may be separated by any amount of white space, i.c., blanks, tabs, and newlines.

An attribute's type specifies the domain of values that the attribute can hold. IDL provides four basic lypes
and two kinds of atructured types. The IDL keywords Boolean, Integer, Rational, and String name the basic
types. Booleans can have values True and False. Integers are theoretically unbounded; all implementations
have s practical limit. Rationals are technically fractions with integral numerator and denominator; this
definition encompasses conventional floating poiut representations such as Pascal’s real and C's float, as well
as the fixed point types of PL/1 and Ada. A String is a bounded sequence of characters. Some languages
such as C support them directly; in the others, such as Pascal, they are often represented as records. The
following node declaration specifies six attributes: a name attribute of type String, » state_code attribute of
type Integer, an address attribute of type String, an active attribute of type Boolean, a customer_number
attribute of type Integer, and a balance attribute of type Rational.

state_customer => name : String,
sddress : BString,
customer_number : Integer,
active 1 Boolean,
balance : Rational,
state_code :  Integer;

Figure 5§ A Node Type Declaration

IDL provides two kinds of structured types, named by the keywords Set Of (type) and Seq Of (type). A Set.0f
{type) is an unordered collection (set) of objects of (Lype). Here, (type) stands for any valid attribute type, other
than sets or sequences. Duplication of objecta is not permitted within a set. A Seq 0f (type) is an ordered
collection (sequence) of objects of (type). Duplication of objects is allowed in a sequence. The IDL system
automatically supplies a collection of run-time support routines to the user to manipulate scts and sequences in
accordance with their expected behavior.
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The bi11_list node contains one attribute; a sequence of nodes of type bill:
bill_liet => list : Feq of bill;

The IDL translator generates over a dozen support routines seq of bills, including the predicate inSEQb111,
which determines whether a particular bill is in a sequence, appendfrontSEQb111, and retrievetirstSEQbi1l.
As with the basic types and nodes, there are many possible representations for sequences, from the mundane
ones such as arrays and linked lists to the more interesting ones like threaded sequence, where an attribute in
the node is used as s pointer (perhaps abstractly, say through a hash table) to the next node of the sequence.
Whatever the representation, the support routines are provided for that representation.

Nodes may be declared without any attributes. The following definition of local_sales_tax is an example of
such & node.

local _sgeles_tax «> ;
We will sce the usefulness of such nodes later.

in addition to the four basic and two structured types supplied by IDL, an attribute may have as a type a node
or class (defined below) that the user has declared in the same structure. As example of a declaration of & node
with an attribute whose type is anothe node:

bill ~> billee : atate_customer,
amount : Rational;

In this example, the billee attribute of the b1l1 node has typs state_customer which is a node.
An attribute with a type that iz the name of a node is a reference to that node. Nodez may be self-referential
through their attributes, such as in the node binary_tree declared below.

binary_tree => name : 8tring,
left_branch binary_tree,
right_branch : binary_tree;

F«Eu oxram_a. ..rovgnnglnnoo=omor=u?<o.v$1v:«8.3;uonnlvngnrosmorouuwrnlvn;nworrng?q
to nodes of the same type, i.e., binary_tree.

Attributes within the same node must have different names. Attributes in different nodes may share identical
names without conflict. Identically-named attributes in different nodes may even have different types.

Classes A class cun hold a reference to one of a set of nodes or other classes. The elements of the set of
nodes or other classes that a class can refer to are called its members. A class is used to state some common
aspect of its members, such as the fact that all contain a particular attribute. As with nodes, there are a great
many ways o represent classea. Possible implementations of IDL classes are Pascal variant records, C unions,
and Simula and Smalltalk classes.

A declaration of a class consists of the name of the new class followed by a class production operator, s *::=",
and then a list of one or more node or other class names separated by alteration signs, *|”, and terminated
with a semicolon.

{class name) ‘::= {{class name) | (node name)} {*1 {{class name) | (node name)} }* *;

There is no significance to the ordering of the nodes and classes on the right hand side of a declaration.
Restrictions on ciasses will be discussed later.

In Figure 5 a class named Customer is declared to have two members, s commercial_customer node
and & Government_customer class. The Government_customer class is declared to have two members, a
stats_customer node, and a federal_customer node.

Customer ri= commercial_customer| GQovernment_customer;
comnercial_customer => name : String,
industry_code : Integer,
address ¢ String,
customer_number i Integer;

= state_customer | feder

Government_customexr 1_customer;

stats_custoaer name :  String,
state_code : - Integer,
addrens : String,
customer_pumber ¢ Integer;

fedaral _customer =>  name : String,
agency_code : Integer,
sddress : String,
customer_ number :  Integer;

Figure 5 Class Type Declarations

The members of a class that are listed in its declaration are said to be direct class membere. In the example
above, the commercial_customer node and the Government_Custoaer class are the direct class members of the
Customer class. These are not the only members of ths Custoaer class, however. Through a process called class
membership inkeritance, the members of the Government_Custoner class are also considered to be members of
the Customer class. This process of membership inheritance repeats indefinitely. The members of a class that
are inherited through other classes in this manner are said to be indirect class members of the class.

The following figure portrays the class membership forest for the example in Figure 6.

Customer

T T

commarcisl_customer Covernment_customar

N

state_customer federal _customer

The interior branches are the Customer and Govermment_customer classes and the lcaves are the
comaercial_customer, state_customer, and federal _customer nodes. The Government_customer class in
this figure has the state_custoner and federal_customer nodes as its only members,

There are two rules that restrict the members of a class. First, every class must have at least one member.
Second, no class may be a direct or indirect class member of itselfl. These rules taken together imply some
properties of classes. Spccifically, class graphs are arbitrary niwultiple-rooted directed acyclic graphs with 1DL
node types as leaves.

The class concept in IDL is similar to that of the same name in Simula-67 [Birtwistle, ¢t al. 1973}, Smalitalk
{Goldberg & Robson 1983), or C++ [Stroustrup 1986]. They are similar in that these languages all support the
definition of a hierarchical collection of classes (IDL and Smalltalk allow multiple hierarchies) and that subclosses
in these languages inherit attributes defined in superclasses. They differ in that IDL deals only with data and
not with computations, whereas the other languages allow procedures to be attached to classes. A second
difference is that IDL empbasizes the sutomatic construction of readers and writers of structure instances; the
other languages require the uscr to implement the readers und writers.
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Node and Class Declaration Writing Details

As stated above, an atiribute of a node may have a type that is a class declared elsewhere. An example of this
iz shown below.

iist_of customers => llet: JSeq Of Customer;
The 11s¢% sttribule of the node 1ist_of_custorers has type Seq Of Customer where Cuatoner is & class.

When all of the direct or indirect class member nodes of a particular class share one or more attributes, the user
should assign the shared attributes to all of the direct or indirect class member nodes simultaneously through
the class rather than making assignments of the common attributes to each of those nodes individually. This
allows the user to make a clear statement of the similarities among the member nodes of a class and helps him
te aveid unintentional differences.

The syntax for assigning attributes to all direct and indirect class member nodes through a class is given below.

{attribute name) *;  (type) m.. (attribute mame) ‘1 (type) v. Y

.

The ayntax is identical to that for a node declaration with the (node name) replaced by the name of the class,
For example, the declarations in Figure 6 could have been written as in Figure 7.

Customer 11~ commercial_customer | Government_customer;
Custonmex => name :  String,
addrees s Btring,
customar_pumber : Integer;

copmercial_customer => induetry_code :  Integer;

Jovernment_customer ::~ state_customer | federal customer;
state _custemer =» ptate_code : Integer;
federsl_customex ~» agency_code 1 Integer;

Figure 7 Defining Attributes in Classes

In the second declaration of this figure, the naze, addrees, and customer_number attributes are assigned
to commercial _customer, state_customer, and federz)_cuetomer nodes through the Customer class.
Note that these atiributes propagated through the Government_customer class to the state_customer and
federal_customer nodes. In this form, it is easy to see how the commercial_customer, state_customer, and

federal_customer nodes are alike and how they differ. This second form is also six lines shorter than that of
Figure 8,

Two subtle sernantic differences exist between the specifications in Figures 6 and 7. If another node is added
to the Customer class, it will automatically inherit the nane, address, and customer_number attributes in the
latter specification, but not in the former. More importantly, the assertion language and some target language
implementations of IDL, including the C interface to be discussed shortly, will not allow attributes of variables
of a ciass type to be accessed or shared unless the attribute is especially associated with that class, or with a
class of which it is a member.

IDL permits the user to declare a node or class all at once or to split ita declaration into several parts. The
effect of & multi-part declaration is cumulative. The state_cuatomer node declared in Figure B, for example,
could have heen declared in two diflerent places as in the following example.

state_customer => nanme : Btring,
state_code :  Integer,
addrees : String;

-~ Zero or more snlervening node or class type declarations.

state_customer => active : Boolean,
customer_nunber : Integer,
balance : Ratlonal;

declaration of the state_customer node is the union of both declaration “pieces”. This permits the user to
group the parta of a node or class declarstion however he wishes for the sake of clarity.

Structures declarations in an IDL specification are grouped into named collections called structures. A
declaration of a structure starts with the keyword Structure followed by the structure’s name, then by the
designation of a node or class as its root introduced by the keyword Root, and then by a list of the one or more
node and class declarations that comprise the structure between the keywords Is and End.

Structure (structure name) Root {(class name) | (node name)} Is

{{node or clase declaration) } *
End

Within a structure, the ordering of the node and class declarations is not significant; node and class declarations
may be listed without regard to forward references. Every structure must contain at least one declaration.
Furthermore, as a consequence of the rules for clusaes, every structure must contain at least one node declaration.

An example of a structure specification is shown in Figure 8.

-~ Specification for the transactions slructure.
Structure tyansactione Root transaction_list Is

transaction_list => 1list : Seq Of Transaction;
Txansaction 1:e credit | debit;
Transaction => customer_number : Integer,

date : Integer,

amount : Rational,

tax_status Set Of Tax_code;

credit > 3
debit -
Tex_code 11

federal_eales_tex;
local_sales_tax =>
state_sales_tax =>
federal sales_tax =>
End

.o oo wo w——

Figure 8 A Structure Declaration

A structure named transactions is declared in this example consisting of two classes, Transaction end
Tax_code, and six nodes, transaction_list, credit, debit, local_sales_tax, state_sales_tax, and
federal_salea_tax. The credit and debit nodes have the same attributes, customer_number, date, and
amount, which have been inherited through the Transaction class. The local_sales_tax, state_sales tax,
and federal_sales_tax nodes are examples of unattributed nodes. The transaction_list node has been
designated as the root of the structure.

Siructure Writing Details  Just as the node defines a scope for the names of its altributes, the structure
defines a scope for the names of its nodes and classes. The names of different nodes and classes within the same
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structure must be different. Only those nodes and classes that have been declared within a structure may be
referenced as attribute types within that structure.

Al nodes and classes must be reachable from the root node or class of the structure. It must be possible to
trace 8 path of any number of steps from the root node or class to all other nodes and classes declared in the
structure. A path is traced through & nods to other nodes and clagses via the attributes of that node that have
a type that is another node or class. A path ia traced through a class to other nodes and classes via its direct
class member nodes or classes. For example, in Figure 8, the Transaction class is reachable directly from the
transaction_list through the type of its 11et attribute. The credit and debit nodes are then indirectly
reachable from the transaction_liast node through the Transaction class.

Nole how the concept of a path in this context differs from that discussed in the section on classes with vegards
to class membership. In determining class membership, only those paths that we can trace through direct and
indirect class membership are of interest. For deciding reachability, however, one may consider paths traced
through either attribute types or class membership or through a combination of both.

The reachsbility requirement guards against spelling mistakes, missing class membership declarations, and
missing attribute declarations. Without this check, some of these errors lead Lo structures that make no sense.

At run-time, the root of a structure serves much like the root of & tree. Actual instances of the DL -specified
data structures, whether internal to a program or on external storage, consist of an instance of the root node
or class with instances of one or more of the other nodes or classes attached. The attachments of the other
nodes or classes to the root are made through attribute types and/or class membership. For example, an
actunl instance of the transactions structure specified in Figure 8 would consist of a single instance of the
transaction_list node with an attached list of zero or more members of the Transaction class, either credits
or debits. Generally, as in this case, the node or class that is named as the root is one that the user views as a
backbone of the data structure.

At this point, it may appear to the reader to be a difficult task to determine from a specification which objects
within 2 structure are nodes and which are classes if a specification has been written making use of atiribute
assignments through classes and multi-part node and class declarations. This determination can be made quite
simply, howeyer. The classes within a structure are those objects that appear to the left of at least one class
production operator no matter how many times they may appear to the left of node production operators. The
nodea within) a structure are those objects that sppear to the left of one or more node production operators
only. Appearancee of classes to the left of node production operators, if there are any, are attribute assignments
1o its member nodes. As an aid Lo the reader, the class names in all of the IDL specifications throughout this
document are capitslized and the node and attribute names appear in lower case,

2.1.2 Specifying Processes

A process is the IDL model for a computation. An instance of a process resds and writes instances of
IDL-specified dsta structures to and from external storage through a collection of ports. Each process has
a master data structure called the invariant that is the union of all data structures used in that process.

FPorts A post is an association between an IDL-specified dats structure and a name for the IDL-supplied
implementation of the routines for reading or writing that structure to and from a process. There are two kinds
of ports; Pre ports for input of instances of the associated data structure, and Post ports for output. The
declaration of a port consists of the type of port, Pre or Poat, followed by a comma separated list of port name,
structure name pairs separated by colons. The list is terminated with a semicolon.

‘.

Pra {port name} {structure name} A.. {port name} °: {structure E::n:o “

Post. (port name) ‘:  {structure name) {', (port name) ‘: (structure =w:.n:. ‘s

Processes Processes are analogous to C progruma.. An instance of a process reads zero or more instances
of IDL-specified data structures from external storsge or another process, performs some computation on its
inputs, and writes out instances of zero or-more new-or- transformed -IDL-specified data structures-to external
storage or another procesa. Figure 2 illustrated. this model of s process. The declaration specifies the.name of
the procesa and the names of the collection of IDL-specified data structures read and written by an instance of
the process. The IDL declaration does not describe the manipulation of the data structures made during the
computation.

A declaration of & process starts with the IDL keyword Process followed by the process’ name, then by a list of
the declarations of the porta used by the process that begins with the IDL keyword Is and ends with:the IDL
keyword End.

Process (process name) TIs

{process statement) }*
End

An example of a process specification is shown in Figure 9.

-- Specification for the billing process.
Procass billing Is

Pre customere_in : customers;
Pre transactions_in : transsctione;
Post cuetomers_out : customers;
Post bills_out : bille;

End

Figure 9 A Process Doclaration

In this example, a process named billing is declared. The billing process has two Pre ports nared
customers_in and trunsactions_in that read instances of the customers and transactions data structures,
tespectively, and two Post ports named customers_out and bills_out that write instances of the customers
and bille data structures, respectively.

Within a process declaration, each port name must differ from all other port names and structure names refecred
to within that process. There may be any number of Pre or Poat port declaration sequences within the same
process declaration as in Figure 8. The order of port declarations within a process is not significant.

The user should note that an instance of an IDL-specified process may do I/O other than that specified in the
process specification. The process specification only captures the I/O behavior of the process concerning reading
and writing instances of IDL-specified data structures.

2.1.3 A Complete Specification

A complete IDL specification is shown in Figure 10. This apecification describes a single proces, billing
that reads in instances of two data structures, customers and transactions through the custouers_in and
transactions_in ports respectively, creates & set of bills for the customers deacribed in an instance of the bills
data structure, modifies the instance of the custousrs data structure, and writes out instances of the new bills
data structure and the modified customers data structure through the bills_ocut and customers_out ports
respectively.
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-- Specification for the custamere struclure,
gtructure customers Root customer_list Ie

customer_list => 1ist s Baq Of Customex;
Customer :1= commexcial_customer 1 Government _customer;
1 8tring
Custonmer => pame Y
addrese + S8tring,
active 1 Boolean,
customer_vumber : Integer,
balance : 8ational;
commercial_customer ~> industry_code : Integer;
n0<an=ao=~...n=onos: 11 gtete_customer | federal_custoner;
atate customer e> patate_code :  Integer;
»ananﬂwln:uneaon > agency_code :  Integer:

End

-~ Specification for the transactions struclure.

Structure transactions Root transaction_list Is

transsction liot ~> list
Transaction credit | debit;
Trensaction > customer_pumber
date
amount
tax_etatuo
credit ~> 3
debit >
Tax_code 1:= local_sales tax

| atate_sales_tax
| federal sales tax;

local_eales_tax -> 3
astate_sales tax ->
federal_salea_tax ~> |

End

-~ Specification for the bills structure.
Structure bills Root bill_list Ie

Seq Of Trensaction;

Integer,

Integer,
Bational,

Set 0f Tax_code;

bill_1ist => list :  Beq 0f bil1;
bill => billee : Cuptomer,
amount : Rational:
Customer 1:% commexcial_customer | Government customex;
Customer «> pame : String,
addrens :+ String,
customex_pumber ! Integer;
commercial_customer => industry_code : Integer;

Government_customer ::% state_custonerx { federal _custonmer;

state_customeT =-> atate_code
federal_customer => agency _code
End

-~ Specification for the billing process.
Process billing Is

Pre customers_in :  customers;
Pre customers_in :  customsrs;

Integer;
Integer;

Pre transactions_in
Post customers out
Poat bille_out

transactions;
customers;
bille;

End

Figure 10 A Complete Specification

Note that this process uses several different data structures. 3t reads in two data structures, creates a new data
structure, and writes out the new data structure and a modified version of one of the data structures it read
in. The other data structure that was read in is discarded after being processed. Many other combinations of
input and output behavior of structures is possible. In the next chapter we will see an example of a process
that reads in a single data structure, modifies it, and writes out the modified data structure.

Also note how the elements of this specification are laid out on the page. In the structure declarations, the lines
beginning with the keywords Structure and End bracket the indented lists of the nodes and classes that make
up each structure. Within the lists of node and class declarations, the node and class production operators
are aligned vertically followed by the lists of the constituent node attributes and class members also aligned
vertically. The process declarstions and their lists of port declarationa are laid out in a similar fashion. While
the IDL translator ignores all white space, consistent indenting will aid in making a clear specification.

2.1.4 Specifying Assertions

The IDL Assertion Language is a sublanguage of IDL. It permits the user of IDL to make assertions about the
IDL structures he has written and the values of attributes within those structures. A program called IDLOCHECK
can then automatically check the validity of these assertions on particular structure instances.

This section is & tutorial introduction to using the assertion language and IDLCHECK. Basic features of the

assertion Janguage will be described, along with examples of their use. The process by which the assertions were
composed will be explained.

Purpose of Assertions The assertion language is meant to provide both specification and verification
facilities to IDL.
As a specification language, the assertions provide a means for the programmer to precisely apecify what it is he
wants to be true in his data structures. Using the assertion language facilitates communication between members
of a programming team or between future and present programmers. Maintenance of large programs is eased,
since the maintainer may look at the assertions to ascertain exactly what is supposed to be accomplished, rather
than attempting to figure this out by directly reading code or comments (which are often sparse, incomplete,
and imprecise). In addition, writing essertions serves to hone the programmer's thinking about a particular
ptoblem, since to write meaningful assertions requires a thorough understanding of the problem. Finally, the
assertions provide a guide to the writing of the actual code. Assertions are given in terms of the IDL structures.
Programming in the IDL system involves manipulating these structures. Thus, well written assertions state
precisely what modifications of the IDL structures must be accomplished by the code.

As a verification language, assertions provide a debugging aid. Once the sssertions are written, instances of
data structures can be checked automatically. No longer does the programmer have to manually scan through
pages of output to ensure that there were no errors. Errors will be found and reported.

Figure 11 illustrates where the sssertion checker tool fits in with the other IDL system tools. Rectangles denote
data, ellipses denote executable code, and arrows denote input and output of IDL instances.
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Figure 11 Assertion Checker Tool

In the above figure, assertions are placed in the IDL specifications (IDL spec). The user writes some of the code
(in particular, the implementation of the algorithm). Everything else is generated automatically. The translator
1DLO produces much of the code and the analyzed specification. IDLOHEOK generates the Error Log, a report
of any user asaertions found to be false.

The example specification in Figure 10 will be used to illustrate use of the assertion language.

Basic Assertions With Quantifiers Assertions always begin with the keyword Assert. The simplest
assertions to make concern the values of specified attributes within a structure, These aasertions may appear
anywhere within the structure to which they refer, although it is often clearer to group all assertions together.
Aassertions can be made concerning & property about a eingle object or a property that should hold for many
objects. For example, to assert in the customers structure that the customer list is not empty, we would write:

Azgert Sixze A_uoo?:-ov "= 0;

Root refers to the root of the structure in which the assertion appesrs. In this case, the root of the custoners
structure is of type custoner_1ist. Thus, Root.11ist is & sequence of Customer. The assertion states that the
size of this sequence is not gero.

Usually one wishes to make an aesertion about all objects of a certain type. This is done using guantifiers.
There are two quantifiers in the language. The ForAll variant asserts that the body ie true for all objects of
the specified type. For example, we might wish to make some assertions about the customers structure. First,
all customer numbers should be greater than or equal to one. A negative customer number would signify an
input error. We would assert this as:

Asgert ForAll € In Customer Do C.customer_number >= 1 0d;

The name € is an iterator which will take on successive values of the specified object type, which here is
Custoner. The body of the quantifier states that the customer_number attribute of C (C is of type Custoner) is
greater than or equal to one. The period (*.”) indicates the extraction of an attribute. (This parallels the *=>"
symbol in the IDL specification.) Since the Fordll variant is used, we are asserting that the custorer_number
attribute of all objects of type Customer have the described property.

The Exiate variant asserts that the body is true for at least one object of the specified type. For example, to
sasert that at least one customer is active, we would write:

Assert Exists C In Customer Do C.active = True od;

The body of a quantifier, whether Ford11 or Exists, is & boolean expression. Despite the use of the Do...0d
form, nothing is done. We are asserting what tust be true. Note also that the type of the iterator, specified
immediately after the keyword In, must be » velid type in the IDL specification. A valid type is any nodo or
class name (but not attribute names) or s basic type (Integer, Rational, String, Seq Of {type), or Set Of
{type)).

Boolean operators such as 4nd, Or, and Not may be used. For example, we wish to nssert thut the state_code
of every state_customer is between 1 and 50, inclusive. We could write:

Assort Fordll sc In state_customer Do sc.state_code >= 1 Andec.state_code <~ 50 0d;

Nesting of quantifiers is ullowed. For example, we wish to assert that no two distinct customers have the same
customer number, to avoid confusing bills and credits. We would assert as follows:
-- No duplicat ¢ numbers
Assert Fordll et In Customer Do
ForAll <2 In Customer Do
It ¢ "= ¢2 Then
cl.customer_nusber "= c2.customer_number
Else True Fi

0d 0d;

The symbol “~=" means “not equal to”. The two itarator names must be distinct when using nested quantifiers.

Here the names used are c1 and c2. 04 appears twice at the end. Each occurrence of a quantifier muat be ended
by its own 0d.

Similas assertions on attribute values might be made in the transactions struclure and the bills structure.
For instance, we could assert in the transactions structure:

Assert ForAll t In Transaction Do t.customer number >~ | 0d;

In the bills structure, we might wish to be certain that the amount of all bills is positive. We could then assert,
in the bills structure:

Assert ForAll b In bill Do b.amount > 0 0d;

The assertion language supplies a few built-in functions which are useful. The function Size was used above. It
returns the number of objects in a set, sequence or collection (described below) or the number of charactersin
a string. Other functions will be introduced below. String constants are characters enclosed within quotea. For
example, we wish to be certain that a very important customer named IBN is in our customer list.' We would
then assert:

Assert Exfsts C In Customer Do C.name = "IBN* 0d;

Assertions within Processes The above assertions concern particular structures, They are thus placed
inside the atructure to which they refer. It is also possible to make assertions within process specifications. In
this way, one can make assertions about the relation of output structures to input structures.

For example, in the process b1l1ing defined in séction 2.1.2, there is an instance of the cnstomers structure
read in and an instance of the custoners structure written out. The information within these instances should
remain unaltered, except perbaps for the balance attribute of Customer. We could assert this as follows {within
the process specification):
== Customers output match customers input.
Assert ForAll c¢_in In customers_in:Customer Do
ForAll ¢_out In customers_out:Customer Do
If c_in.cuetomsr_nusmber ~ ¢_out.customer_ uumber Then
<_in.name = ¢_out.name 4And
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£_in.address = ©_out.sddress And
c_in.zctive = c_sut.ective
Elze Irue Fi
ad 04;

The specified iteraior types in the above quantifiers are prefixed «.inr a port name n.o__oisa nni ® nﬂ_haw .mo.”a
prefix specifies the pame of the port sssociated with ihe structure instance the assertion is vel erring ... H._._ .:o_
above example, the frat quentifier is zeferring o0 all objects .c.. type nanmonon in the structure .Paﬁ,n;na e...\p_:.a
the port naned customer_in. The second quantifier is referring to all objects of S—.x CGustorer In t! aM ruc o
iated with the port mamed Customer_out. These structures must both contein 2.5 ..«.mvo nvmn.aa (in this
M“Mnmwwnogw.v The use of these pord prefizes is allowed only within & process specification, since etructure

specifications do not have ports. Clessly, a port with the name specified in the prefix should exiat if the assertion

ia to make sense.

In the last example the cuptomsx_nusber and balance wﬁ.&ﬂ:g were not mentioned. This is va.....o_._Mo....ro It
condition already gusrantees that the customss_number 92..556& are equal, and the balance attn =ga Buw
be logitimately altered due to transactions being processed. In &.&.tou. the induatry_code, u«aao..loﬂo nw.y vns
agency_code atiributes were not mentioned. These should remain unsitered also, but they are not attribu Mn
of the entire class Customex. They are attributes of particular node members of that class. Thus statements
about them cannot be made within the context of the entire class. For example, to assert:

-~ Bad Assertionl ]
Assert Fordll c¢ In Customex Do 2.custonox_pumber > 0 And ¢.industry_code > 0 Dd;

would result in a compile-time Lyping error, because ¢ is of type Customer, which mo«« not necessarily —:..<o an
industry_code sttribute. H one wishes to make an sssertion concerning such an sttribute, one must write an
assertion Mvon._mn&:. targeted toward that class of node containing the attribute. For example, we could assert:

issert Fordll ¢c_in In customers_in:commexrcial_customex Do
Fordll cc_out Im customexs_out:commercial customexr Do
mlh cc_in.customer_numbex = cc_out .customer_number Then
N cc_in.industry_code = cc_out. industry_code
Else True Fi
0d 0d;

Since commercial_customer is a member of the Custoner class, we can refer to the customer_number attribute
of cc_in andi cc_out which are of type Customer. Since we have epecified aa.l».u and 2425 as M«Ma
noagua..n»au. customer, we cen pow also refer to an industry_code attribute. Similar E.aai.:.ia could be
made vvoanlsz state code for objects of type state_customer and the agency_code for objects of type
faderal_custorser.

As another example, we can assert that every transaction refers to an actual customer.

v« Each transaction refers to an actual customer >
ForAll t In transactions_in:Transectien Do
Araert Exists ¢ In cuvatomers_in:Customer Do t.customer_number = ¢.customer_number Od

ad;

Assertions can get more complicated than the examples sbove. In order to eimplify »ro. mo—.Sw:cu of .prnuo
assertions, the assertion language allows one to create definiticns, and then use these definitions in assertions.
L}

Value Returning Definitions  The si plest kind of definition returns a value. For example, we wish to Ewua_.p

that the balance of a customer on output from our billing process is equal oc n.ra balance or.o customer had on

input plus any credit received through sransactions. Essentially, we are specifying the vor.mwﬁ_. of ocw.. vnowvwm”.a.
i ives f all credit transactions for that customer. suggesta cr

The total credit a customer receivesis the sum of : | gests creating
iti § i ist of transactions and return the total amount ol cre

definition which will take s customer and the lis ] . >

”rwm nn:upo:..o_.. Such a definition would then be used in the assertion we wish to make about the customer’s

balance. The definition could take the following form:

Define Totel Credit{c:Cuntomer, TList:Beq Of Transaction) =
If Bize(TList) = O Yhen O
OrIt Head(TList).customer_number = c.customer number And
Type (Head (TList)) Same transactions_in:credit Then
Heod (TList) .avount + Total Credit(c,Tail(TList))
Else Total_Credit{c,Tail(TList))
Fi;

The keyword Define introduces s definition. The definition takes two arguments. The first is of type Custonor
and the second is & sequence of Transaction. If the size of the transaction sequence is 0, then there sre no
traneactions. The definition then returns 0. Otherwise, if the transsction at the head of the sequence has
the same customer number as the customer, moaning that this transaction deals with this customer, and the
traneaction is of type credit (the Type function returns the actual type of a class object) we add the amount
of this transaction to the total credit of the remaining transactions (the Yail function returns the sequence
which is the argument without its head). I the transaction does not concern this particular customer or the
transaction is not a credit, then we return the total credit of the remaining transactions only.

The definition of Total_Credit is recursive. It is guaranteed to terminate since the definition is applied to a
smaller collection each time it is called (the Yail of a sequence is always smaller than the sequence itself, if the
sequence is non-empty), and the definition does not call itself when an empty scquence {of size 0) is encountered.
The operstor Same was used in the Total_Credit definition. When comparing two values, the operator “=" is
used. When comparing two collections, the operator Same is used. The function Type returns the cellection of
all objects in the structure instance which are of the same type as the function argument. A class or node name
returns the collection of all objects in the structure instance which are of the same type as the class or node.

Thus in the definition of Total_Credit, Type(Head (TList)) and credit both return collections of objects and
must be compared with Same rather than *=",

With this definition in hand, we can now make the assertion that the balance of a customer at output is the
balance the customer had at input plus any credit it received.

-~ All customers are properly credited.
Azsert ForAll c_out In customars_out:Customer Do
ForAll ¢_in In customers_in:Customer Do
If c¢_in.customer_puxbexr = ¢_out.customer_nuxber Then

c_out.balance = ¢_in.balence + Total Crodit(c_in, transactions_in:Root.list)
Elne Irue Fi
od 0Od;

The meaning of the above assertion should be clear except for two points. First, note the Else True. Every
If clause must have an Else clause attuched. In this case, if the customer numbers are not equal, then the
program is fine. So we assert True in the Else clause. There may be situations where it makes sense to assert
False. Second, the reserved word Root was used. Root refers to the root object of the specified structure.
If no structure is specified, it refers to the root object of the structure in which the assertion or definition
appears. In this case, the port prefix transactiona_in specifies we mean the root of the structure associated
with the port transactions_in, which is the transactions structure. The root of this structure is of type
transaction_list. This type has an attribute of type Seq Of Transaction. That is why the Root.1ist is
specified ns an argument. This dotted expression has type Seq Of Transuction since the specified root has an
attribute called 11st which has this type.

In the Total_Credit definition, OrIf was used. The OrIf form is a shorthand which is recommended. Every
use of If must be ended with a Fi. Use of OrIf does not require a F1. Thus OrIf is preferable to Else If.

As another example of the use of definitions, we can use a definition to help us sasert that the number of bills



generated equals the number of debit trensactions. We can creste o definition which will return the number of
debit transactions.
Define Hum_debite(TList: B8eq 0f Transaction) =

If 81%e(Tlist) = O Then O

OrIf Type(Hoad(TLiot)) Same transactione in:debit Then 1 + Num_debitea(Tell{TList))

Elee Num_debita(Teil(TLiet)) F4;

With this definition, we can now assert:
Assert Size(bills_out:Boot.list} = Num_debite(transections_in:Root.liet);

Assertions may often be written in several ways. For instance, the above assertion could have been written
without using the Num_debits definition:
Asgert Sixe(bille_out:Root list) = §ire(transactions_in:debit);

Collection-returning Definitions  Definitions may also return collectione of objects. A collection is similar
to an IDL set, differing in three important ways. First, an attribute may have an IDL set as & value, but may
not have a collection as a value. Secondly, an IDL set is declared explicitly using “Set 0£; a collection is
determined implicitly by the IDL transiator. Finally, collections exist only within assertions.

One may define a collection of objects and then make some assertion about the objects in the collection. For
example, we wisk to assert that & bill is generated for each deabit transaction. First we can define s definition
which returns the collection of all objects which are debit transactions. Then we can assert that there exists »
b1l for each of these transactions.
Define Debits{TLiet: Seq 0f Transection) =

If Sixe(TList) = O Then Eepty

OrIf Type(Head(TList)) Same transactions in:debit Then

Head (TList) Unjon Dobite(Tail(TList))
Else Debits{Tsil{TList)) Fi.

The usunl sef operations (including Union, used above} are available to use with collections of objects which exist
explicitly in'the IDL structure specification or which are defined in the sasertion language. If the transaction
sequence is empty, the definition returns Espty. This denotes the empty collection, or the collection of no
c@.n.n"n. Refurning 0 would not make sense in this context, since the definition is returning s collection of
objects.

In {sct, there is a cleaner, non-recursive way of stating this (Nembexrs applied to sequences is & UNC extension):
Define Debits(Tlist: Saq Of Transaction) = Members(TLiet) Intersect debii;

We may now make our assertion:

-~ A bill is generated for avery debit transaction.
Assert ForAll deb In Debits{tiransactione_in:Root.list) Do
Exists b In Members(bille_out:Root.list) Do
b.billee.custoner_number = deb.customer_number And b.amount = deb.amount
0d od;

The above assertion makes use of the collection returning definition, and the two level deep dotted expression.
b.billee is of type Customer. Thus, b.billee has an attribute called custoner_number, and the reference to
b.billee.customer_nusber is permitted. Nembexs is e supplied function which takes o set or sequence (as in
this case} end produces the collection containing all objects in that set or sequence. Use Mesbers whenever you
are interested in the objects contained in a sef or sequence, rather than the set or sequence as a single object.

With the Debits definition above, thers is yet another way to sssert that that the number of bills equals the
number of debit transactions:
hasert Bize{bills_out:Boot.list) = Size (Debits{transactions_in:Root.l1ist));

2.2 Translating the Specification

The second step in using the IDL system is to tranalate the collection of data and process specifications with
the IDL transiator into s set of dats type déclarations in the target vaoumaa.smzm language that expresscs the
same functionality and to generate a set of run-time support routines tailored for manipulaling target-language
versions of the user’s data structures. Figure 12 shows this portion of the whole process of using the IDL system.

[Boerwries 1DL Specibeation |

_ Urer-Writtes Algorithas _

IDL Teanslator
Dats Readei/ Support
Declarations Writery Routines
— —

Compile and Lisk

DL Dats lastance
DL Process Execution

1DL Data fastasce

Figure 12 The Specification Translation Step

2.2.5 Using the IDL Translator

To use the IDL translator, the user enters a command line of the following form.
1dlc {options] files [file? ...)

The options portion of the command specifies xero or more options to change the defsult flow of the translator.

The ._mu.. A.vn one or more files contains the IDL specification (described below) of data structire and process
specifications to be processed as a unit.

By default, the IDL translator parses the inpnt file or files making up the IDL specification for syntactic and
semantic correctness. For each process specification encountered, the IDL translator (with 'C as the default
target programming language) creates two fles; a “(process name).h" file containing the declarations of the
data types and & *(process name).c” file containing the definitions of process-specific code for the run-time
support routines. At the end of the generation of the *.h* and *.c* files, the IDL translator compiles each

".c” file with the O compiler into a *.0” file and deletes the “.c” files. Soveral options exist for changing the
default behavior.

As an example, to process the specification shown in Figure 10, the user enters the command shown below
(characters typed by the user are shown in bold).

idle -v billlag.id}
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In response to this command, the IDL translator crestes the billing.h and billing.c filea and then compile
the billing.c into s billings.o file. After the compliation, the billing.c is deleted. The billing.h file
contains declarations for all date types and constants. The billing.o fle contains the code for the ports for
the billing process. The -v option requests measages indicating what the IDL translator is doing.

An IDL specification is a collection of structure and process specifications that the user processca as a unit with
the IDL translator. The specification resides in one or more files. The user should process all of the files making
up the IDL specification as one group.

The collection may contain the specifications for many different structures and processes at the same time. These
structures and processes may make up a complete system of cooperating processes or only a subset of such a
system. Alternatively, the collection may contain only structure specifications. In this case the only action
that the IDL translator will perform is to check the syntactic and semantic correctness of the specifications.
Similarly, if additional structures are included in the collection that are not referred to by any process, they
will be checked by the IDL translator for syntactic and semantic correctness. Of course, the declarations for all
structures mentioned in any of the process declarations must be included in the IDL specification being processed
and the names of all distinct structures and processes within the collection must differ from one another,

2.2.6 Declarations Produced by the IDL Translator

The user programs his algorithm in terms of the data type declarations produced by the IDL translator. While
programming, he makes use of the tailored set of run-time support routines to allocate new instances of data
structures, to maintain sets and sequences composed of them, and to read and write them from external storage.
This section examines the declarations for the C language {Kernighan & Ritchie 1978] produced by the IDL
translator from the specification shown in Figure 10, and provides an overview of the runtime support routines.
‘The declarations are extracted from the file billing.h. The organization will follow that of Section 2.2. A
reference manual for the C interface to IDL discusses these aspects in greater detail {Shannon, et al. 1985},
Other target languages are also available; each is described in an associated reference manual.

The “(process).h” file produced by the IDL translator is usually quite long and repetitious. However, with a
little experience the user need not look at the contents of the file to use the declarations contained in it. Each
IDL construct is mapped into a C declaration in a consistent fashion: all names follow the convention of a

capital letter followed by the identifier. An appendix in the reference manual lists the meaning of all the single
letter prefixes.

IDL constructs are mapped to 8 combination of C declarations and macro and constant declarations. Nodes are
mapped to C structs, and their attributes are mapped to members of the struct. The basic types of Integer
and Rational are mapped to the C types of int and float. Boolean is mapped to int, taking on the values 0
(False) and 1 (True). String is mapped to String, which is a new type effectivaly encapsulating a pointer to
» null-terminated character string. Finally, an initialization macro and a manifest constant specifying the type
are defined. The following is generated for the node state_custoner (c.f. Figure 5).

typedef struct Retate_customer ¢ state_customer;
# defino Ketate_cuetoner 16
struct Retate_customer {IDLnodeHeader IDLhidden;
8tring name;
String address;
int customer_number;
Boolesn sctive;
fleat balance;
int state_code;

# define Nstate_customer ...

Node references {state_customer) are represented as pointers to the appropriate struct (Retate_customer).
A second representation of unatiributed nodes, as integers, is beyond the scope of this tutorial.

An instance of a structure may form a graph by having nodes reference other nodes through attribute valucs.
The structures defined in Figure 10 are rather simple, in that the only node references are in lists. However,
sharing is still possible. For instance, a Customor referenced in the billee attribute of a 111 may be one of
the Custoners found on the list referenced by the 1ist attribute of a customer_Iist (in fact, the algorithm
discussed in Section 2.4 ensures that Customer nodes are shared in this way.) It is sven possible in the gencral
case to have cycles, where one node indirectly references itaelf through one or more nttributes (note however
that instances of the structures in Figure 10 cannot have cycles). The values of the basic types are always
shared; conceptually there is only one instance of each value.

For attributed nodes, four identifiers are declared: the struct Rstate_customer, the pointer atate_customer,
the manifest constant Ketate_cuatoner, and ths initializalion macro Natate_customer. The IDLhidden field
in the struct ia used by the runtime routines, and should be ignored by the user. The manifest constant is
returned by the typeot function, when given a particular node of that type. The initialization macro returns
& reference to the node. The names of these constants, structs, pointers, and macros follow the convention
described earlier. ‘

Sets and sequences are represented as linked lists or arrays; only the linked list representation will be discussed
here. The type Beq 0f bill is mapped into
typedef struct IDLtagé(
struct IDLtagd snext;
bi1l value;
} Cbill, eLbill;
# define BE(bLi11 Lbill
# define 1nSEQbill(billeeq,billvalue) ...
# define init1alizeSEQLil)(billseq) ...
# define appecdfrontSEQbX1(billaeq.billvelrie)
# define sppendrearSEQbI11(billeeq,billvalue) ...
# define ordexadineertSEQbill(billaeq,billvalue, billconptn)

Over a dozen racros specific to the sequence are defined for each sequence; sets zre accompanicd by similar
macros. Each macro name is structured as a verb followed by the characters “SEQ” followed by the IDL identifier,
in this case *bi11*. The initializeSEQbill macro must be called before an attribute or variable of type Seq
0f bill is accessed. The attribute or variable is the one argument of the macro. The appendrearSEQbill
macro takes two arguments: an attribute or variable of type Seq 0f bill, and an expression of type bill. The
bill is added Lo the end of the sequence. Finally, the foreachinSEQbi1l macro is an iterator in the fashion
of a for statement. It takes three arguments: a Seq Of bill to iterate over, a variable of type Seq 0f bill
used to keep track of the iteration, and a variable of type bill, which will be successively assigned a bill in
the sequence. It is used in this way:

SEQbill  tempSEQbLill;

bill abill;

foreachinSEQbill(abil)_1ist->1ist, tempSEQbill, abill) {
/% do something with abill ¢/

}

If the sequence abill_list->list contained five nodes, then *do something® would be executed five times,
each with a different node referenced by abill.

Classcs are mapped into G unions. The class Custonmer in Figure 6 is mapped into the following by the IDL



translator:

typedet struct HCustomer ¢ HCustomer;

typedef union {
int IDLintermal;
HCustoner IDLcleseCommon;
commercial _customer Vcommercial customer;
Governnent_custoner VCovernzent customer;
otate_customer Vetate customer;
federzl_customer Vfederal cuotomer;

} Custoner;

struct HCuetomer {
IDLunodeKeader IDLhidden;
8tring nane;
String addrese;
int customer_number;
Boolean sctive;
float belance;
)

The IDLinternel member and IDLhidden field should be ignored by the user. The IDLclassCommon member
contains those sttributes common to the class, allowing the following:

Customer thisCustomer;
thieCustonex.IDLclaseComnon->2ctive = True;

Note that in Figure 10, five attributes were associated with Custoner; those are the attributes available through
IDLclassCommon. Had Custorer inherited any attributes from other classes, these too would have been available
through IDLclassCozzon. The five attributes are available for variables of type Government_custorer for this
reasan, even though they aren’t associsted with Government_custoner directly.

Attributes associated with subclasses ate not directly available to variables of a class. Hence, the attribute
state_code cannot be directly accessed through thisCustomer. The remaining members of the union are used
when scceasing attributes not common to the class or when passing a class as a parameter to a function. To
access the n\n—«oinono attribute, use

if (typeof (thisCustomer) ==Kstate_custoner){
thieQustomer.Vstate_customer->etete_code ...
¥

The if statement uses the typeof function to determine that the Customer referenced by the variable
thisCustomer was indeed & state_customer node. Such a test is neceasary because no type-checking is done
when the Vstate_customer member is selected. Omitting the test may result in incorrect code.

The union members are also useful when calling routines expecting subclasses or superclasses of a given class. 1f
a subclass (e.g., state_customer) is expected, & type check is required. If & superclass is expected (an example
is calling a routine expecting a Governuent_customer, passing a federal_custoner ss a parameter), the type
check is not required.

To pass the variable thisCustozer to the routine

ProcessBtateCustomer (alustomer)

stats_customer alustomer;

use

1f {typeof (thisCustomer)==Kstate_customex}

ProceszeStateCuetomer (tbisCustomer Vetate_customer);

To call the routine

ProcessGovernnent _custorer(alC)
Government_customer aGC;

with a variable of Lype federal_custoner, only a cast is needed:

federal_customer afc;

ProcessGovernment_cuetoner({(Government_cvetomsr)afc);

The user must keep the class membership tree {c.f., Figure 6) in mind when doing these type conversions. This
is a somewhat tedious but not troublesome task.

Each IDL process is mapped to & C program. The structures used by the process are mapped to struct
and union declarations for that program. Ports are mapped to O functions. Input ports (Pre) are mapped to
Tunctions taking a file pointer and returning a node of the root type for the structure. Output ports (Post)
are mapped to functions taking a file pointer and a nods for the root fo the structure instance. The four ports
declared in Figure 9 would be mapped to these declarations:

void bills_out():

void customers_out();

transaction_list tramssctions_in(};

customer_list customers_in();

2.3 Writing the Algorithm

Writing the algorithm for the process in the target programming language ia the next step. Figure 13 illustrates
this portion of the process of using the IDL system. The flow of the billing program is illustrated in Figure 14.
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Figure 13 The Algorithm Writing Step

The algorithm in this example is a simple one. It reads in a customer list and a scquence of transactious,
through the customers_in and transactions_in ports, respectively. Then it steps through the transactions,
either crediting the custorner or generating a bill, according to the type of the transaction. Finally, it writes out
the updated customer list and the list of bills, through the custoners_out and bills_out porls, respectively.
The algorithm as coded in C is given in Figure 15.
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Figure 14 Conceptual View of the Billing Process

/e file Billing/algorithm.c o/
#include <ptdie.h>
#include "billing.b"

wein ()
{
customer_list thiasCL;
transaction list thiall;
bill _iist thisBL;
Customer thieCustoner;
Transaction thisTransaction;
bild thisbill;
$2QCustomer remeiningCustonmers;
BEQTransaction remainingTransactions;

PILE #=c_in, s¢_in, ®c_out, *b_out;

/% input the ihstial customer list ¢/
¢_in = fopen{"customers.in”, "r");
thisCL = customere_in{c_in);

/o daput the “Nnasn:.e:. list ¢/
$_in = fopen{®txansacticns.in”, wrv);
thisThy = transactions_in(t_in);

Z¢ dndtialize bills »/
thieBL = ¥bill_list;
initializeSEQb111{thieBL~>14st);

/+ process the fransactions 3/
foreachinSEQTrensaction{thisTL->1ist, renainingTransactions,
thisTrensection) {
/e find the Customer mentioned in the transaction of
foreachinSEQCustomer (thisCL->1ist, remainingCustomers, thisCustoner)
11 {thisCustomer.IDLclarsCommon->customex nunber
e «r»anngnnnnwou.ucrnwnnnnonuonlvozaoonoﬂlm:-n;.aﬂv breek;

switch (typeof{ihisTransactien}) {
case Kcredit: /2 eredit the Customer ¢/
thisCustomex, IDLclapsConmon->balance
4+« ghisTranesction,IJDLclaezConmon~->amount ;
break;
case Kdebit: [+ generate o bill o/
thisbill = Nbill;
thighbili->billea = thieCustomer;
thisbill~->amount = thisTransaction. IDLclsssCommon->anount;
sppendresrSEQb111{thisBL->1ist, thisbill);

breek;
/+ can't be anything elsc o/
}
}

I+ write oul the updated customer Kot ¢/
c_out = fopen(“cuetomera.out®, “e*);
customers_out(c_out, thisCL);

/¢ write oul the list of bills o/
b_out = fopen("bille.out”, “e");
bills_out(b_out, thieBL);
exit(0);

Figure 15 The C Algorithm for the Billing Process

The comments explain what is going on, so wa will only make a few observations here. Since a bill_lisat is
being created, it must be allocated (Nb111_1ist) and the sequence attribute initialized (initin1izeSEQbil1).
The outer foreachinSEQTransaction successively assigns transactions to thisTransaction; the inner fore-
achinSEQCustomex successively assings customers to thisCustomer, attempting to find the customer with the
correct customer_nusber (it is assumed to exist). To generate a bill, one is first allocated, then its attributes
are filled in, then it is appended to the list of bills. Finally, both output ports are called. The declarations,
constants, and macro definitions produced by the IDL translator are used extensively. Because of the consistent

naming, & programmer experienced with the IDL system would need only the IDL specification to code the
algorithm.

2.4 Complling the Process

Compiling and linking the the code for his algorithm along with the IDL-produced data declarations and run-time
support routines to produce an executable program is the fourth step.

furer-writes o1 m.x:_m:.t._ _ User-Writtea Algorithe _

Reader/

Support
Routines

L
Library

Sb——
Compile sad Link

IDL Daty festance DL Dats fustaece

IDL Procers Execution

10U Data Tndtance IDL Dats astance

Figure 16 The Process Compilation Step

In the compilation stage, the user compiles his code and links it with the code produced by the IDL translator
and with a library of generic IDL system routines. For example, a command to compile and link an application
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built on the specification of Figure 10 would be.the following:

c¢ algorithm.c billlag.o fusr/eoftlablib/iibidLe -0 billing

In this exampls, the code for the user's algorithm is assumed to reside in & file named algorithm.c, the
iDL-generated routines reside in the file named billing.o, and the library of generic IDL system routines

resides in the 13bidl.a fle. The outpul of this command will be an executable command in the file nemed
billing. The pathname for the library file will vary from system to system.

2.5 Running the Process

The fifth and last step in using the IDL system is to run the program to process instances of the data structures
represented externally in the ASCII External Representation Language.

m User-Writtes |DL Specifcation u ~ User-Writtes Algorithm ~
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Figure 17 The Process Execution Step

Before this step can be performed, instances of the input structures must be available. The billing process
referenced two input structures: customers snd transactions. Normally, instances of input structures are
written by other processcs. In $his example, they have been manually constructed.

The IDL ASCII External Representation Language is the standard representation scheme for external instances
of IDL data structures. Instances are actusl data values whose structure corresponds to the specified dats
structure. The external representation of an instance of a data structure consists of 2 list of each node in the
structure, Each of the nodes in the list are given a unique temporary label. The first node in the list must be a
reference o the root node. The order of subsequent nodes in the list iz not significant. The *#” sign in the firat
column of a line signals the end of nodes forming the structure. Hence, more than one instance of one or more
atructures may reside io the same fle. In a valid structure inatance, all nodes referred to must have a definition.

A node i2 represented as a name followed by a list of attribute-reference pairs. The name of a node is the
type name of that node. Each atiribute is explicitly named and the name is followed by a reference to the
corresponding attribute value. The name of an attribute is the name specified in the structure declaration.

The value of an atiribute of IDL basic type is the external representation of that value. Special care was taken
to ensure that the representation of Rational and String values are machine independent. The value of an

attribute of node type is an indircct reference to that node. ‘A reference to a node consiste of the label.of that
node followed by a “*" character. Forward references are permitted. A list of types or nodes:bracketed with
braces *{}" represents » set-valued attribute. A list of types bracketed with angle brackets “<>" represents a
sequence-valued attribute. Cc ts are preceded with “-- .

An example of an instance of the customers structure cast in the ASCII External Representation Languago'is
shown below

L1: customer_list {list < L2°L3°L4">]
12: commercial _customer [

name *Innovation, Isc.”;

2ddress "Freedom Trail®;

active TRUE;

customer mumber 1;

balance 9546782.00;

wﬂhc.nnt!noao 12

L3: etate_customer [

name "Department of Obfuscetion”;
tddrese "Bereaucracy Boulevard®;
active PALSE

customer_number 2;

balance -1000000000.856;
state_code £O

1

L4: federal_customer [

name "0ffice of the Director, ONB";
sddress "Yonderland®;

active FALSE

custorer_number 3;

balance -1000000000000.13;
sgency_code 1348003

]

]

In this example a list of three customers is shown. The name of the frst customer is “Innovation, Inc.”, the
second, “Department of Obfuscation”, and the last, “Office of the Director, OMB”. Note that only the nodes
in this instance are represented externally, Classes for the internal represcntation can be reconstructed by the
reader generated by the IDL translator solely from its knowledge of the structure specification.

We also need an instance of the transactions structure:

L1: traneection_list [list <L2°L3">)
L2: credit [
customer_nusber 2;

date 31285;

amount 22364.44;

tax_statue {}

]

L3: debit [

cuptomer _number 1;

date 31486;

amount 332.12;

tex_status {otate_sales_tax}
]

8

This instance contains two Lransactions, a credit to customer number 2 and & debit from customer number 1.

After we exccute the billing process
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billing

we note that two files have been created: customers.out and b11l.out. The first contains
custoner_iist{list <commercial_customer{name ®Innovation, Inc.¥;
address “Freedom Trail";
cuetomex number 1%
active TRUE;
balance  B.54678R+08;
industry_code 12}
soa:snsaaonaﬂnnuuo "Depaxtiment of Obfuacation®;
address  "Buresucracy Boulevard®;
customer_numbex 2;
active FALSE
balance §.18410;
state_code 50]
t»s&:nw(n:swo!on?nbo :02f1ce of the Dixector, OMB™;
addxess *Yondexrland®;
customer_number 3
active FALSE
balance 1.1E+iS;
agency_code 1348003]
S|
#

and the second

bill liet[liet <bill{billee commexcial_customer(name”Innovation, Inc.™;
addrees  "Freedom Trail®;

customer_nunber i

industry_code 12]

H

amount 332.12]
>}

#

That this output is correct is left as an exercise to the reader.

3 Advanced Features of IDL

IDL has several sdvanced facilities that have not yet been introduced. Four of those facilities will be _:..mom<
described in this chapter: one for extending the standard set of attribute types with user-implemented private
types, enother for deriving and refining new data structures from one or more previously momhwom data structures,
s third for creating user-supplied process invariant structures, and s fourth for naming assertions. As was -roi.u
in the last chapter, the IDL user need not employ these facilities in solving problems with IDL; however, their
use can lead to more precise and powerful specifications.

3.1 Private Types

The private type facility allows the user to extend the standard set of attribute types provided by IDL. The
standard set of sttribute types provided by IDL are the basic types (Boolesn, Integer, a-omew-u. and String)
and the structured types (Set Of and Seq 0f). With private types, the user may augment this standard set to
includs more specialized types.

The user first declares & name to identify the private typs. He then specifies an external representation for the
private type in terms of both the standard set of attribute types provided VN IDL end in ...2.:5 of node and
class types expressed wholly in terms of the standard set of sttribute types. m::._m«. he specifies the name o—a_ 2
file containing the target programming language data declarations that define the internal representation of his

type and provides appropriately-named routines to map the external representation for the private type to and
from the internsl representation.

An example of the use of a private type is shown in Figure 18. In this example, the declaration of the customers
data structure of Figure 10 is modified to make use of a date internal representation for the date attribute, The
external representation of the date in kept as an integer.

Structure transactions Root traneaction_lint I
Type date_type;
Transaction => customer_number : Integer,
dats : date_type,
For date_type Use External Integer;
For date_type Use Package DatePackage;
For date_type Use Type peckeddate;

Figure 18 A Private Type Declaration

In this example, the declaration of the private type, date_type, is introduced by the IDL keyword Type.
The next statement declares that the date_type private type will be represented externally 2s the IDL type
Integer. The third statement declares that the target programming language data type declarations for the
internal representation of the date_type private type will be found in a file named DatePackage.h {the *. 1"
file extension is generated by the translator). The user would be responsible for linking the appropriately named 3
routines for mapping the Integer external representation to and from the packeddata internal representation
for input and output of instances of the data etructure [Shannon, et al. 1985].

3.2 Derlvation and Refinement of Structures

The derivation and refinement facilities allow tho user to declare a new data structure in terms of one or more
previously declared data structures, This makes the rolationships between different data structures clearer. It
also allows the user to avoid multiple copies of the same information and the attendant problems in keeping all
copies consistent with one another. The user can record a set of declarations in just one place and use derivation
and refinement to make the declarations of related data structures.

Derivation allows the user to copy the node snd class declarations from several structures and then add or
delete attributes to node types, members to cless types, whole node types, or whole closs types. An example of
the usefulness of derivation would be deriving the bills data structure of Figure 10 from the customers data

structure. The declaration for the derivation of the bills structure from the customers structure is shown in
Figure 19,

In this example, the derivation of the bills data structure from the customers data structure is signaled by
the IDL keyword From. The three statements beginning with the IDL keyword Without delete parts of the
customere data structure. The first Without statement deletes the customer_list node from the new data
structure entirely. The next two delete the active and balance attributes of the node members of the Customer
class. The two node productions add the bi1l_1ist and bill nodes to the new data structure. The result of
this declaration of the bills data structure is exactly the same as that in Figure 10. Note though how much

more clearly the relationship between the customers and bills data structures is shown by this decleration
than that originally given in Figure 10.
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-~ Specification for the bills structure,
Structure bills Root bill liet Froa customers Is
¥ithout custonmer_list;

¥ithout Customer => active;
¥ithout Customer ~> balance;

bill_list => list : 8eq Of bill;
bill => billee : Customer,
smount : Rational;

Figure 18 An Example of Structure Derivation

Refinement allows the user to copy the node and class type declarations of several structures and add (but not
delete) new attributes to node types, new members to class types, or entirely new node or class types. An
example of the usefulneas of refinement ia given below.

3.3 User-supplied Process Invarlant Structures

The invariant dats structure of a process is » union of the declarations of all structures referred to in that
process. The invariant is a union in the sense that for every node and class type declared in any of the other
structures referred o in the process, s declaration for that node or clasa type exists in the invariant data
structure. Furthermore, the set of attributes declared for & node type in the invariant data structure is at least
the union of the attributes declared for that node type in all of the other other structures referred to in the
process. Likewise, the set of direct class members for a class type in the invariant data structure is st least the
union of the direct class members declared for that clase type in all of the other structures referzed to in the
process.

The purpose of the invariant data structure is to simplify the automatic generation of routines to manipulate
instances of th€ node and class types for use within an instance of an IDL process and to simplify the user’s access
to the dats values within instances of the node and class types. Within an IDL process, only one implementation
of & node or class type exists. The declaration of the node or class type that is actually implemented is that
appearing in the invariant data structure no matter how many different declarations are given in the port data
structures referred to by the process.

When writing the target programming language code for an instance of a process, the user logically views his
data as being organized into instances of the one or more data structures referred to within the process, In this
view, an instance of a particular node or class type name that forms part of an instance of a particular data
structure has only those attributes or members that are declared within the specification for that data structure.

This has seversl advantages. First, the user need not qualify his node and class types with the particular
structure that he wishes to view them in. Second, IDL need only provide one set of run-time support routines
for manipulating s node of & certain type. Third, the user may detach an instance of a node of a certain type
from an instancs of one structure type and reattach it to an instance of another structure type.

A disadvantage is that the space required for the invariant’s version of a node or class type may be much
larger than the minimum that would be required for the version of the node or class type given in & particular
non-invariant data structuze.

IDL enforces the logical view of the data structures in the input and output of instances of the data structures.
In the example of Figure 10, instances of the state_customer node would be read in as part of an instance

of the bills data structure with the expectation that they contained values ouly for the name, sddress,
customer_number, and state_code attributes because the bills data structure declares that the Customer
node only has these atiributes.

The user need not worry about generating the invariant atructure for a process.: Unless he takes special actiona
s described below, the IDL translator will automatically generate the invariant. '

A user may supply his own process invariant structures rather than using the invariant automatically generated
by the IDL translator. This facility allows the user to define new nodes and classes that do not-appear in any of
the other structures referred to by the process or to add attributes and members to nodes and classes already
defined in those structures. These new nodes and clusses or attributes and members nﬂh&a used for intermediate
calculations within the process without cluttering the extornal definition of the structures read and written by
the process. ©

The user may derive the invariant data structure from the set of data structures referred to.by the process
according to the following sequence of stepa:

1. The user gives the new invariant data structure a unique name.

2. For every node or class type for which there is a declaration in only one of the structures used by this
process, the user copiea that declaration into the specification for the new invariant structure.

3. For every node for which thers is a declaration in more than one of the structures used by this process,
the user writes a declaration for the node type in the new invariant dats structure such that the new
declaration has all of the attributes found in any one or more of the declarations in the different structures.
If two structures have a declaration for the same-named node type and if both declarations have attributes
of the same name but these same-named attributes of the same-named node types have different types,
then there is an irresolvable conflict. The user must either adjust the types of all same-named aitribules
in same-named nodes in all structures used by the process to be of the same type, or elze change the
names of the offending attributes or of the offending nodes such that this is no longer true.

4. The user adds attributes Lo the existing nodes and or members to the existing classcs or adds new nodes

and classes consistent with the rules given for structures above. The properties and usefulness of these
added attributes and bers will be explai

d below under the discussion on the purpose of the invariant.

5

The user designates a node or class type as the root of the invariant data structure. As for any other
structure, all node and class types must be reachable from the root node or class type. It may be necessary
for the user to create & apecial node or class type to serve as the root.

6. The user checks that the class memberships for the new invariant structure form a forest of non-intersecting
trees just as for any other structure. If this is not true, then the user must either change the class structures
in the individual port structures and in the invariant structure or change the names of the offending classes
in the individual port structures and in the invariant structure in such a way that this will be true.

Alternatively, if any data structure referred to in a process meets all of the criteria given above for the invariant
data structure, then that structure may be designated by the user as the invariant data structure for the process.

An example of an invariant data structure for the billing process of Figute 10 is shown in Figure 20. This
invariant has been formed from the customers, transactions, and bills data structures. Note the creation of
the master_node node type to serve as the root of the invariant. Also note the addition of the partial totsl
attribute to the Customer node type. This attribute is not declared in any of the non-invariant data structuree
referred to by the process.

In this example, the refinement of the b111ing_inv data structure {rom the bills, customers, and transac-
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-~ Specification for the bifling snvariant structure.
Structurs billing isy Boof master_nede Refimes customers irsnsactions bills Ie
naster_pede > customers

9wnﬁwwnﬂwnum“
bille :

customer_list,
txenpaction_list,
2131 _liet;

Custorer => partial_total : Rationmak;

End

Maonzuav:wwﬁmHm<v»;wbm|»u<Ma

End
Figurs 20 A User-Supplied Invariant for the billing Process

tions data structures is signaled by the IDL keyword Bsfinae. The first node declaration statement adds the
sastar_nods node to the new data structure. The second node declaration statement adds the partial_total
attribute to all node type members of the Custoner class.

3.4 Naming Assertions

Jt is possible to name assertions, For example:
Renge_check Aspert ForAll CF In fedexsl customer Do CF.agency_code <= 100 0d;

Range_chock iz the name of the assertion. The naming of assertions ia necessary if one wants o make use of the
without statement in an IDL specification. For instance, if the output of & process has the same structure as
the input, but certain assertione should o longer hold in the output, one could state in the output specification:
¥ithout Renge_check;

This assertion would then not be checked in the output structure, though all other assertions would be. In
addition, naming assertions sleo facilitates communication between people.

3.5 Surmary

The above has been a brief introduction o a few of the more sdvanced facilities of IDL. For a complete description
of thess and other IDL facilities, see “The IDL Formal Definition” [Nestcr, et al. 1982]. In addition to these
target programming languege independent facilities, thers are several target programming language-specific
advanced facilities that the experienced user will find useful in constructing his applications.
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