
Displaying IDL Instances

Richard Snodgra s

Department of Computer Science

University of North Carolina

Chapel Hill, NC 27514

.Abstract

Debug&ring a complex system can be aided by displaying the internal data structure~ manipulated by the system.
Vle ex~unine one generic Unix tool and four EDL.epeci~c too/s, ffocuss/ng on their functionality and ability to h~ndle
large data structures Er~cefufly.

One o~en cited advantage of using [DE in the implementation of complex systems is that it can aid in debugging

[Lamb 1983]. The soRware system is partitioned into • collection of IDL processes, each of which may be debugged
individually. Each process is tested be examining the output(s) produced from given input(s). It is no longer necessary to
debug the system//near/y, where a process is debugged only after the processes producing the data structures needed by
the one process are debugged. Instead, debugging can proceed concurrently, since input test cases for each IDL process
can be generated by hand.

This paper examines one aspect of the debugzing task, that of viewing instances of IDL structures. The problems
encountered involve functionality and scale. The obvious solutions are difficult to use of instances of medium size, ~nd are
impractical on large instances, which unfortunately are common. We will examine a range of approaches. Two examples
will be used. Example A, from [Warren et aL 1986], is quite short, containing three nodes and 18 a~tribute-value pairs.
Example B is somewhat larger, containing 103 nodes and 309 attributes.

1 The ASCII External Representation
Instances of IDL structures can be written to external storage in a variety of formats. Every hnplementation is required to
support the A S C I I Ez~er=~i Rep,~e,~ta~ioa La.gu~ge, in which an arbitrarily graph-structured instance may be encoded
as a linear cha r~ te r sequence in a restricted character set. This representation allows users to create IDL instances
via a conventional text editor, and supports viewing via conventional text outputing commands. Example A in this
representation is shown below.

-- file billing/customers . i n .

LI: cus~omer_llst [llst <L2" L3" L4">]
L2: commerclal_cus~omer [
name "Innovation. L : m . " ;

address "Freedom Trall";
active "rRUE;

customer_mmber 1 ;
balance 9 5 4 6 7 7 8 2 . 0 0 ;

indus~rT_code 12
]

i3: state_customer [
name "Department of Obfuscation";
adchress "Bureau~acy Boulevazd" ;
active FALSE;
cu~l:oaer_number 2 ;

b a l a n c e - 1 0 0 0 0 0 0 0 0 0 . 8 5 ;

state_code 50
]

L4: federal_cus~omer [
name "Office o f the D i r e c ' t ; o r , OMB";

10

~ddrm~s ~Wonderl~d ~ ;
active FALSE;
cull;erect_number 3;
bal~uce - iO00000000000.13 ;
agencF~cod~ i348903
]

In ~h~ representation, nodes axe denoted by their types (e.g., acus tomer_ l i s t ") , followed by attribute-value pairs
separated by a semicolon and delimited by square bra~:kets. Attributes with nodes as values are denoted either ~nl~ne or
by a nose reference (e.g., ~L2~). Sequences and sets are delimited by ~<>~ and ~()~, respectively.

At least four problems arise when using this format. First, the ASCII external representation does not enforce any
line break or ~.udentation conventions, hence a tool may produce output that is difficult to read. Example B, generated
directly by the LDLC tool[Shannon 1985], exhibits this problem:

compila~ionUm.i~ [lex_i~o 0;
syn_bod F <StructureEutit 7 [sy~_name "customers" ;
s em_dupllca~e FALSE;
lex_namgpos 31 ;

lex_endpos 1109;
lex_beElnpos 21 ;
sen_definit ions (};
sem_user~ionJl 0 ;
sT._root N~edT~eRe~ [syn_name "cus~omer_lis~" ;
lex_namepos 48 ;
sem_en~i~ 7 L33~516:CI~ss [sem.31ame "customer_ilia" ;
sem_copiedfrom void;
s em_ds~in.1.~ i onF'o I n ~ 133;
sem_~ep ClassRep[sea_Id <>;

It can be quite tedious matching the initial and final delimiters for nodes, sets, and sequences.
The second problem is that of scale. Example B is 311 lines long; we gave less than 5% above. Scanning that

many lines looking for a particular subtree is not easy, especially when some arcs are indicated ;,]ine and others ~re
represented as references. In fact, Example B is shorter than most IDL instances, as it is the internal representation
of a 22 line specification (the customers structure given in the tutorial). Several hundred to several thousand line
programs are the norm, resulting in intermediate representations containing l0 s to 106 nodes. As a concrete example,
the internal representation of a 2584 program contains 7141 nodes; its ASCII representation is 40,000 lines (almost a
million characters) long. In such situations, some editors cannot even read the long files, and printouts of these files could
be many feet thick.

A third problem is that the graphical nature of IDL instances is hidden in the ASCII representation. Even gross
characteristics such as the overall shape of the instance are difficult to determine.

A final problem is that these instances may be viewed only after the tool completes. While IDL aids debugging
by partitioning a tool such as a compiler into many IDL processes, it is still possible to view instances only at process
boundaries.

In the next four sections, we will examone appro~hes that address each of these problems individually. We will
conclude with a tool that ~ t empts to solve all four problems simultaneously.

2 ID L F 0 RMAT

The first problem identified with the ASCII external representation was deterwlnlug node, set, and sequence boundaries
in the absence of lexical clues. A tool in the UNC IDL toolkit, IDLFOltMAT, inserts line breaks and spaces at appropria:e
places to achieve readability:

c ompila~ionUn~t
[lex_l=.~ o O;
syn_body
<StructnAreEnti~y

[syn_name "customers u ;
sem_dupllca~e FALSE;
lex_namepos 3 1 ;

11

le:c_endpos 1 1 0 9 ;

lex_beginpos 21 ;
sere_definitions
0

S em_asse11~tions

0

syn./oo~ NamedTypeRef
[syn_name "cus1;omer_llsl;" ;

We can now see which attributes are associated with each node using indentation as a guide. IDLFOR/vfAT does not
address the other problems, including that of scale. In fact, it exacerbates the scalability problem, by making the file
longer (Example B was increased in length by 73~0, from 311 lines to 539 lines; the number of characters increased by
40% due to the added spaces).

3 TREEWALK

The TR.EEWALK tool allows the user to interactively examine an IDL instance. It starts by displaying the root, then
accepts commands to traverse the graph. Attributes are numbered, allowing easy identi/ic~ion. ASter each command,
indicated by ~+>", the current node is displayed. TRFA~WALK retains the path of nodes encountered; the "up" command
returns to the previous node. Through the appropriate "up ~' ~nd "down" commands, it is possible to view the entire
instance, albeit one node at a time. This process is illustrated on Example A below, where all the nodes are eventually
visited:

LZ : cus~omer_L1.sl; Dep th : 0
1 l t s '~ Sequence Of

1 1,2: commerc:La l_cual ;om~
2 L3: s~al;e_cus'~omer
3 L4 : f e d e ~ a l _ c u s l ; o m e r

+>dl 1

L2 : commerclal_cus~omer Dep1:h: 1

I r~.me -> "I~ovatlon0 I~lc."

2 address -> "Freedom Trs_il M

3 a c t i v e -> TRUE
4 customer_number -> I

5 b a l a n c e -> 9546782 .00
6 indus~z '7_code -> 12

+> u

L1 : cus~omer_llsC Depth: 0
1 lis~ Sequence Of

1 L2: c ommerc ia l_cust omer
2 L3: sl;a~e_cusl;omer
3 L4 : f e d e r a l _ c u s t o m e r

+ > d 1 2
L3 : state_customer Depl;h: I

1 n.m~ -> "Depaz'Cment of Obfuscat:Lon"
2 address -> " B u r e a u c r a c y B o u l e v a r d "
3 active -> FALSE

4 cusl;omer_number -> 2

5 b a l a n c e -> - 1000000000.8,6
6 s~at :e_code -> 50

+> 11
Ll:cus~omer_lisC Depth: 0

I llst; Sequence Of

1 L2 : cormerclal_cus~omer
2 L3: e~a~e_cusl;oraer
3 L4 : federal_customer

+ > d 1 3
L4:federal_customer Depth: 1

I name -> "Office of the Dlrec~or, OMB"

12

2 ~ddress -> "Wonderrlanct"

3 active -> FALSE

4 customer_number -> 3

5 balance -> - 1000000O00000.13

6 ~ e . : t c y ~ c o d . e -> 1348903
+> q

Goodbye

One advantage of TREEWALK is its interactive nature---the user can focus on a subtree rather quickly (finding any
paxticular node in Example B takes less than a dozen commands). Scale is not a major problem if the user is concerned
with a small part of the graph and knows approximately where it is. Finally, note that in TREEWALK there is no distinction
between inllne ~nd referenced nodes.

4 TREEPi~

Neither IDLFORMAT nor TREEWALK display the IDL instance as a graph, with nodes and edges. Viewing the instance as
a graph can be quite informative. Gross aspects of the instance, such as shape, depth, degree of sharing, and proximity to
a tree, can often be determined visually. Finding particular nodes is also much easier. The TREEPR tool allows instances
to be displayed grapldcally on a character or laser printer. The following is the output generated for Example A for a
character printer:

I c u s t o ~ e r . l . t ~ t (L1) I

I t~.e~ I

I

I

< co=~ 'c . t .a l_<~usrc~er (I,2)
< . . - - . . .

< name: "~nnova~ion. Inc."

< -da~-~: "~reedom Trail"

< acT~Lve: ~RUE
<-..-.

< customer_number: 1

< b a l a n c e : 954.6782.C0
< .

< lnch, ulrCry'_code : 12
<

I

• ~ , : e _ o . L ~ o , , , , - Co,a)

name: ~D~parlm~m~ of Obfuscation"

add3"e~ss: " ~ I r e ~ ~11evard"

a~Ive: ~AL~E

cusr~m~mr.j~umber: 2

balance: - 10C<XXXXX30.85

state_code: 50

I

~eder~l_¢u~,zt:omer (L4) >

name: " O f f i c e off r.he D l r e c l : o r , C(,t5" >

address: ~Wonder land" >

active: ~ALS~ •
....__...>

c~si=o~rr_nu~er : 3 >

balance: - 10C<XXXXXXXX)O. 13 >

agency_code: 1348903 •

and for a laser printer.

I cus~r_11m=: (L11 1

r ~ 4 i i ~ I , , ~4 - r~ ,~ , - ' _ - : ~ a j

nat: "~I=:L~, InG. ~

~:~L1ar~: 9.~6V82. CO
indus1:ry_r~:x~: 12

~ s m s : " ~ ~ : o~ C b f u ~ . . a t i c ~ "
: "B , .u -~ucz '~y " Bou.l.ev'arcP'

~ . . i v e :EALSE
c:u.m'~,--~r_j'~, -,¢~-,": 2

h t l . a n c m : - I C C / _ ~ O X ~ . 85

suaOa._code: 50

~ , , d , , - , a . . . o ~ ' - - - - : ~ . 4)

n , m m : " O f f £ c e o f ~ DJ.rec',.or'. CZ,~,"'
• ,* 'dress : "Wcmder-lan:l,"
mct.t.ye: FALSE
cu, s~ ,-,,w-_num=,m-: 3

: - l C C O 2 ~ e ~ (~ O . 13

It is impor tan t to note tha t TREEPR technically displayes trees. It reads in ~n IDL instance, embeds a tree in the
graph, outputs the arcs of the embedded tree as arcs, and outputs the remaining arcs as node references (e.g., ~L2""). Sets
and sequences axe displayed left to right, with distinguished delimiters (~C and "}= for sets, "<" ~ud ~>= for sequences).
T1LEEPR is able to divide the ou tpu t into pages, to be later taped together.

13

TREEPR ~ tempts to minimize the size of the output while producing attractive trees. It first ~signs a height and a
width to each node. The virtual x~coordlna~e of each node is assmged ~n a single left-~r~gh~ pos~order traversal of the
tree. Nodes are assigned a tentative posi~ion~ then shifted to the right as needed. Paxent nodes axe centered over theLv
children. Sets and seque~uces axe handled as ff they were sons of the parent node. The y~coordbaa~e ~s computed during
printing. This algorlthm~is a variant of that presented by Vaucher [Vaucher 1980]. A stand~z:d clipping procedure is used
to compute the portion to be printed on each page [Newman & Sprou~l 1979].

Such a display can be quire large ever for moderate insgances: example B is 7 square feet in she. One L~terestmg
insight gained from using TI~EEPR is that most parse tress are not really ~rees ~ a~ a~l--~hey shoed be cal]ed ~parse
bushes D or ~parse weeds~! The reason is that parse trees are usual]y very wide and ~hh~. gxa~aple B~ an augmented
syntax tree of a 22 line specifica~ion~ is 12 feeg long and 7 inches deep when output by TREEP1L There are two reasons
for this phenomenon: TREEP~ displays sets and sequences lef~-~o~righ~, and most programs are composed on many ~m~s
(procedures, statements) each with limited internal nesting.

There are ~wo ways available for dealing with such a~u awkward printout. The first is to compress i~, using the ~-c ~
option to TP.EEPI~. Of course, in compressed mode, mucJ~ less in.formation is displayed. One can alto use the ~-p~ option
to get a pa~iaa$ed output (a portion from Example B is shown below)thh.t can be placed in a notebook rather than OR
a walL

4:~7.3

| um.~apU.c~ac,: fALSZ
| ~'~-.-~'~:~": ~-~
| ~,.op~,'~:an:vol~l

syn_ns~: "Boolean"
l~x.nmms~s: ~

/
L~36~4"

4:~.4
m,a..~pu.~:~ /

rep_of.~,~::-~ |

syn.~a~: "L~g~ n
lag..rl-,,T~s: 388

/
L~358"76"

I

4:~.5

I A~t:r~lm~.e: (L34a468) i
mm_d~pl±~ata: fALSE

~i~fr~m:vold
r.eg..o f f.u,~: -1
• Yn-Wp- msa.a.~lo~-,c~f--

syrL.nama: "ga~onal ~
leg.naampos: 42.2

, m _ , m J . ~ ,

t

4in I clan,snap: 0
a~..Wl:~am: "fa~'aL.~ar, m~-"
maa.~.cp~ fr~:m:vot~:l ~.js~ 0

• ~ . . t d I ~ a . ~ , ~ , . a q ~

i /
• > (}

5 DBX

The three tools just described, IDLFORMAT, TR.EEWALK, and TR.EEPIL, all display IDL instances that have been manually
written or output by an IDL process. While such representations are extremely helpful in debugging, they are often less
usefuI than a view of the instance in memory as it is being manipulated by the process. The symbolic debugger DBX
distributed with Unix allows the memory-resident instances to be viewed, although in a quite awkwaxd fashion. We will
illustrate with a session with OBX. We first enter DBX and view the main algorithm of the IDL process, which simply

14

re~dsinaahustaace. DBX prompts w~h ~(dbx) " ; the user's inputfoHows.

dbx v~rslon 3 o~ 3/2/85 10:17 (thoriu).
Type ~he!p ~ for h~Ipo
reading symbolic i~o~ation ...
(dbx) list 4,10

~ 0
<

cu~om~r_li~ Acustomer_lls~;

5

6

7

8
g

10

Acustomsr_list ~ InCustomerList(stdin):

}

After stopping dir~tly ~ftex the re~clex, we examine the root of the instance.

(dbx) ~top at 8
[I] s~op a~ 8
(dbx) run < customers, in

Ill stopped in main ~ lime 8
8 Acus~omer_list ~ LuCus~omerLis~(std_tu) ;

(~Ibx) step
stopped in main a~ line iO

1o }
(dbx) print *Acuetomer_list

(iDLhiddsn ~ (TypalD ~ 4, Touchsd ~ 0. Shared = 0), lls~ s 0xcld4)
(dbx) print ~Acus~omer_list->list

(next ~ Oxcle4, w.lue = [union])

The value of the list attribute is a pointer to a linked list cell, whose ~rst entry is a C union, since it is a sequence
of a class type. We determine that its type is 2, which we decode to be the commercial_customer node type by scxnn{ng
the include 61e produced by the IDL translator. Knowing its type, we can then examine the node's attributes.

(dbx) print Acustomer_lis~->list->value.IDLclRssCommon. IDLhiddeu.TypeID
2

(dbx) print *Acus~omer_list->list->value.Vcommercial_customer
(IDLhldden = (TypeID ~ 2. Touched ~ O, Shared = 0), name = "Izmova~ion, Inc.",
a d d r e s s - "Freedom Tra.il", customer_number = i , balance ~ 9.54678e+0~,

active = ''A', i~ktu~ry_code - 1 2)

This process continues until we have examined the entire structure.

(dbx) print *Acus~omer_lls~->list->noxl;
(heft = Oxci~4, value = [u n A o n])

(dbx) print Acus~omer_lis~->lis~->nex~->value. IDLclaseCommon. IDLhldden. TypeID

8

(dbx) print *Acus~omer_lis~->lis~->nsr~->value.Vstate_customer
(IDLhldden - (TypeID ~ 8, Touched - O, Shared = 0).

name ~ "Department of O1~fusca~lon", address ~ "Bureaumrac 7 Boulevaz~",

cus tomer_number - 2, b a l a n c e - - l e + 0 9 . 0 , a c t i v e = ' \ 0 " , s t a t e _ c o d e ~ 50)

(dbx) print ~Acustomer_lls=->list->nex~->nex~

(next = (nil), value- [unAon])
(dbx) print Acustomer_llst->lis~->nex~->ner~->value. IDLcla~eCommon. IDLhldden. Type~D

6

(dbx) print *Acus~omer_llst->llst->ner~->ner~->value.Vfederml_customer

(IDLhldden = (TypeID = S, Touched - O, Shared - 0),
name = "Office of the Director, OMB", address = "Wonderland",

customer_nttmber = 3, balance = -~e+12.0, active = '\0', a~cy_code = 1348903)

(dbx) q~=

This example illustrates severe/dif~culties in using DBX. First, a/l print commands must start at a named variable in
the program, making paths of more than a few nodes hnpractical Secondly, the user is forced to contend with the speci~c
C implementation, including vaxious ~elds that should not be seen 5y the user (e.g., Touched and Shared in IDLhidden).
The C interface supports multiple representations for some IDL constructs, sad hides the representation through the use
of macros sad functions. For example, sequences may be represented as linked lists or as arrays [Shannon &; Snodgrass

15

1986A]. In either case, the programmer employs identical macros, so he need not be aware of which internal representation
is used. The tools discussed previously will display the sequence identically independent of the representation. However,
DBX displays the linked l i t cells in a format different from that of arrays, emphasizing She representation. Finally, we note
that a prototype extension to DBX has been constructed that displays data structures graphically []; a shnflar facility is
also available in the Cedar environment [Myers 1980]. While these tools effectively utilize a workstation's high resolution
display, they still exhibit the scalability and representation hiding difficulties discussed above.

6 IDLVIEW

The IDLVIEW tool was designed to solve all the problems discussed in this paper:

R e a d a b i l i t y Each node is displayed graphically in a window on a high resolution screeen (currently a Sun workstation).
Arcs between nodes illustrate connectivity. The display looks similar to that produced by TREEPR, although
displaying subgraphs quickly is more important than producing aesthetically pleasing output or minimizing display
space.

Sea lab i l i ty IDLVIEW is incremental. When an IDL instance is to be displayed, a window is created on the workstation,
and only enough nodes are displayed as will fit into the window. The user can move the window around the instance,
and again, only the nodes needed to fill the window are processed. A small subwindow shows the position of the
portion actually displayed in the main window relative to the portion of the instance processed so far.

G r a p h i c a l n a t u r e Nodes and arcs are displayed. By moving the window, the entire instance can be viewed eventually.

I n - m e m o r y in s t ances IDLVIEW is linked with the IDL process, dlowing it to display instances residing in main memory
(instances residing on secondary storage are simply a special case). However, the display portion resides in another
process (termed the display) process, communicating with the IDL process (termed the primary) process through
Unix sockets. Such an arrangement allows the display process to execute on a different machine from the primary
process.

IDLVIEW will also offer other capabilities:

Mul t ip l e w i n d o w s Each window is associated with a particular root node. A node might be displayed in several
windows simultaneously; a command identifies such nodes.

Disp lay t a i lo r ing LDLVIEW by default displays all the attributes of a node. Certain attributes can be eliminated from
the display, either for an individual node or for all nodes. Various levels of detail are supported, from no detail
(similar to the compressed mode of TIlEEPR) through high level (a/a the ASCII external representation and the
expanded mode of TREEPR) to low level (a/a DBX). Automatic sizing also allows fewer or more nodes to be displayed.

Symbol i c i n f o r m a t i o n IDLVIEW makes use of the Candle [Shannon & Snodgraes 1986B] description of the structure
of the instance being displayed. In particular, IDLVIEW can display the IDL specification of an indicated attribute,
node, or class on demand.

7 S t a t u s

IDLFORMAT, TP,.EEWALK, and TREEPR have been implemented and are d~tributed with the current release of the UNC
IDL toolkit[Snodgrass 1985]. IDLVIEW has been designed and is currently being implemented on a Sun workstation using
Sunview. DBX is distributed with Unix.

8 Acknowledgements

IDLFORMAT was implemented by Karen $h~.nnon; TREEWALK, by Dean Throop; TREEPR by Nancy Butler, Joan Curry,
Steven Konstant, and Dore Rosenblum; and IDLVlEW, by Lawrence Ross.

16

9 Bibliography

[Lamb 1983] Lamb, D.A° Slza~ng I~terrned~a~e Repreaentat~on.s: Tke Interface Description Langsage. PhD. Diss. Com-
puter Science Department, Carnegie-Mellon University, May 1983.

{Myers 1980] Myers, B.A. Diaplay~ng Data 5trz~etz~res for Interactive Debsggin#. Stanford, June 1980. also published as
Xerox PARC Technical Report CSL-80-7.

[Newman & Sproull 1979] Newman, W.M. and R.F. SprouU. Principles of l"nteractive Compt~ter Graphics. McGraw-Hill,
1979.

[Shannon 1985] Shannon, K. idle User8 Manual {Version B.O). SoftLab Document No. 8. Computer Science Department,
University of North Carolina at Chapel HilL Dec. 1985.

[Shannon & Snodgrass 1986A] Shannon, K. and R. Snodgrass. Mapping the Interface Deser{ption Language Type Model
into U. SoftLab Document No. 24. Computer Science Department, University o£ North Carolina at Chapel Hill.
Mar. 1986.

[Shannon & Snodgrass 1986B] Shannon, K. and R. Snodgrass. Candle: Common Attributed Notation for Interface
Description. SoftLab Document No. 26. Computer Science Department, University of North Carolina at Chapel
[qqll, Jan. 1986.

[Snodgrass 1985] Snodgrass, R., editor IDL Man,oN Entries {'Version 2.0). SoftLab Document No. 15. Computer Science
Department, University of North Carolina at Chapel Will. Dec. 1985.

[Vancher 1980] Vancher, J.G. Pretty-Pr~ntin# of Trees. Software-Practice ann Ezperlence, 10 (1980), pp. 553-561.

[Warren et aL 1986] Warren, W.B., J. Kickennon and R. Snodgrann. A Tutorial Introd~ctior~ to Using IDL. SIGPIan
NotYces, (1986).

17

