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1 Introduction 

Temporal data.bases has been an active a.rea of research for 
the last fifteen years, with a corpus nearing 700 papers 
[Kline93]. Most d&abase conferences include at least one 
paper on temporal databases (TDB). Temporal databases 
are now discussed in several undergraduate database text- 
books. There are perhaps one hundred researchers actively 
studying temporal databases. 

During that time an astonishing diversity of temporal 
data models and query languages has a.risen. Most applica- 
tions, whether business, engineering, medical, or scientific, 
need to store time-varying data. 

Surprisingly, in spite of both this substantial activity and 
this pressing requirements from the user community, thete 
are no widely used commercial temporal database manage- 
ment systems (TDBMS). One view is that there is an em- 
barrassment of riches in the TDB literature: with so many 
alternative approaches from which to choose, it is safer for 
a DBMS vendor not to choose than to choose an a.pproach 

that ultimately yields to a competing alternative. The same 
phenomenon may be occurring in TDB research. In contrast 
to the flurry of activity in query languages and data mod- 
els, there is a dearth of results in t,emporal database design 

and temporal query optimization, in part because there is 
no commonly accepted consensus data model or query lan- 
guage upon which to base research and development. At a 
more fundamental level, even the terminology is highly non- 
standard. As an example, the terms intrinsic time, logical 
time, real-world time, and valid time have all been used for 
the core concept of the time at which something happened. 

It was decided in early 1992 that a meeting should be held 
with the objective of identifying a common infrastructure to 
provide a foundation for implementation and standardiza- 
tion as well as for further resea.rch into temporal databases. 
Subsequently, on June 14-16, 1993, the International Work- 
shop on an Infrastructure for Temporal Databases was held 
in Arlington, Texas. 

The workshop consisted of plenary sessions (invited talks 
one day and discussions the other two days) as well as group 
sessions where four working groups addressed specific issues 
amenable to infrastructure. 

There was a.lso substantial effort both before the meet- 
ing, to prepare infrastructure proposa.ls for debate, a.nd af- 
ter the meeting, to build on the insights that emerged from 

the discussion. Specifically, an initial glossary of tempo- 
ral database concepts and a. test suite of temporal queries 
were distributed before the workshop. Both of these doc- 
ument*s were amended based on the analysis and critique 
of the workshop. A language design committee was consti- 
tuted after the workshop to develop a consensus temporal 
query la,nguage extension to SQL-92; this design also bene- 
fited from the discussion at the workshop. 

This report documents the discussions and consensus 
reached at the workshop. The report. reflects the conclu- 
sions rea.ched at the workshop in June, 1993 and further dis- 
cussions amongst the group participants through electronic 

mail. In preparing this report, each group coordinator as- 
sembled ideas and prepared an initial draft, which was then 
reviewed by a.11 the workshop participants. 

The record of the deliberations of these four groups, in 
the following four sections, forms t.he bulk of this report. 
Each of these sections begins with the group’s charter and a 
brief snapshot of the status of the field and ends with a list 
of follow-on efforts. The last, section identifies the workshop 
pa.rticipants. The full report’ provides more discussion and 
many additional references t,o the literature. 

2 Group A: Special Requirements 
and Approaches 

2.1 Introduction and Group Charter 

Tempora.1 databases can be used in a variety of applica.- 
tions. In addition to conventional applications handling ad- 
ministrative data of various types, other applications such 
as of logistics, scientific applications, and artificial intelli- 
gence present new requirements to the tempora.1 database 
community. 

The working group on Special Requirements and Ap- 
proaches, consisting of G. Ariav, M. Baudinet., M. Boddy, 
C. Dyreson, M. Egenhofer, P. Hayes, F. Olken, B. Pernici, 
and S. Sripada., with the collaboration of occasional visitors, 
discussed characteristics of the different application areas, 
attempted to relate terminology differing from that gener- 
a.lly used in the temporal database community, and st,rived 

‘The full version of this report is available as Technical Report. 

91-01, Computer Science Department. University of Arizona, January. 
1994. 55 pages. 
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to ident,ify essentia.1 fea.tures t.o be provicled by a t.empo- 
rat database system in order t.o be usa.ble by these different, 
communities as well as fea.tures and functionality for which 
additional research is needed. 

In the following, the basic characteristics of the differ- 
ent application areas are briefly outlined, followed by an 
analysis of features to be support,ed by a temporal database 
management system (TDBMS). 

2.2 Current Status of the Field 

G. Ariav started the discussion with a. presentation based 
on a set of problems from case st*udies illustrated in his po- 
sit.ion paper at the workshop [AriavS.?]. Other applica.tion 
domains were also considered, specifically geographical in- 
formation systems (GIS), scientific applications, and plan- 
ning alld scheduling applications. 

an a.ttribute is defined on the integer domain, it. is not pos- 
sible to insert characters as values. Obviously, more sophis- 
ticated types of consistency checks ca.n be defined. Analo- 
gously, there is a need for providing true temporal attributes 
with a.ppropriate consistency checks, to justify the definition 
of a temporal attribute. For instance. let us suppose that 
Name functionally determines Sa.lary. The TDBMS should 
ensure that the same nameis not associated wit.11 tow dif- 
ferent salaries a.t the same time. Such integrity constraints 
may be defined on attribute values that. have been specified 
as valid bime attribut.es. If the temporal attribute is treated 
simply as any other a.tt,ribute, there seems to be no need to 
define it specifically as “temporal.” 

2.3.2 Basic Functiouality 

The group isolated two needs not met in current TDBMS 
proposals: multiple time lines (several validity times seem 
to be needed), and an undo operation of less global impact 
than a rollback operation. 

A common feature of applica.tions is that temporal data 
are mostly imprecise and concern relative times. Ordering 
relationships between events are often more frequent than a 
precise location on the time a.sis of t,he events. An additional 
common feature, is that t,here is a. need for merging different 
databases, possibly defined on different time granularities.. 

A fundamental need of most users is for support of time val- 
ues at many different granularities. Appropriate operations 
must be supplied to perform conversions of time values be- 
tween the different. granularities, and to formulate queries 
and present results in a,n appropriat,e form. 

A related feature is the need for a merge operation in 
order to be able to work with data coming from different 
databases (or relations) defined a.t different granularity lev- 
els. 

2.3 Features to be Supported by a TDBMS 

2.3.1 General Discussion 

In genera.1, there seems t,o be a ga.p between the goals as- 
sumed by the temporal database community and the needs 
discussed in the working group on special requirements. 

Concerning times, in scientific databases and in planning 
and scheduling databases it is essential to provide support 
not only for times based on the time line (a.b.solute times) 
but also for t,ime which are relative t,o other times. To 
this purpose, the use of time variables, both for t*ime point.s 
and for time entities, has been suggested (a.lternative name: 
symbolic t.ime point,s/interva.l). 

To define the needed requirement,s, the first, important 
considera.tion is the definition of t,he boundary between the 
functionality to be support,ed by the t.emporal database sys- 
tem and t,hat provided by applications working with t,he 
data stored in the da.tabase. 

It initially seems desirable that. the TDBMS provide not 
only basic functions, but also advanced features useful for 
specific applications. For instance, a classical problem found 
in scientific and logistic a.pp1ication.s is the “shortest path” 
problem. In practice, it seems tha.t in order to provide rea- 
sonably efficient access to data, it might be important to 
provide some support also for t,his type of computation. A 
similar related problem is that of providing recursive queries 
support in relational databases. 

Accordingly, appropriate temporal relationships (pos- 
sibly imprecise) have to be defined a.nd supported in 
the TDBMS (point-point relat,ions, interval-point, relations, 
interval-interval rela.tions). However, only storage support 
should be provided: reasoning on these times is considered 
outside the scope of the temporal database. 

Several features related t.o queries have been identified: 
support for relative times (t,emporally ordered attributes), 
support for aggregation opera.tors over time, and support 
for temporal joins. 

However, the group, decided tha.t, at least for the short 
term, only basic functionality should be considered for the 
purpose of establishing an infrast.ructure, provided that the 
system does not become an obstacle for users to retrieve 
their data. 

In our discussions, the t,erm “relative time” was used in 
several senses: times specified with respect to an unan- 
chored rather than an anchored ordering, but, a.lso times 
that were “variable” (e.g., we would consider “Easter” 
as a va.riable time. dependent on context for disambigua- 
tion/grounding, and “a.fter A but. before B” as a relat.ive 
time specified as a position in an ordering that, is unan- 
chored to a time-line); 

An important consideration concerns the nature of tem- The issue of query result presentation is also important, 
poral data in a temporal database. The request is for pa,r- in pa.rticular concerning the presentation of approximate a.n- 
titular forms of support for dat,a. defined as temporal. This swers, and in providing a.nswers sorted according t.o a spec- 
support should be a,nalogous t,o t,ha.t provided in classica. ified time dimensions, t,o increa.se readability (re-a.rranging 
data.bases for predefined att2ribut,e domains. For instance, if in t,ime). 
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2.3.3 Additional Needs 

A number of possible extensions t,o the a.bove basic func- 
tionalit,y can be considered: definition of time-varying dat,a 
t,ypes (with int.erpolat,ion functions, with associated proba- 
bilit,ies. and the like) and of associated operations; definition 
of composite events; associating disjoint, interva,ls wit,h da.ta. 
values; and support of periodic data. 

2.4 Conclusion and Follow-on Efforts 

The result of this working group can be summarized by con- 
sidering the following question: “Can the diverse needs of 
the user communit.y be served by t.emporal data.base t,ech- 
llology?" 

Chara.cterizing the commonalities of the user community 
is an enterprise doomed to fail, because users are many and 
their needs are diverse. Nonetheless, it is an effort we at- 
tempted in our group, gathering potential users from a va- 
riety of disciplines. Although the group was not represen- 
tative of the user community as a whole, those that were 
present were knowledgeable potential users fa.miliar with, 
by and la.rge, da.ta.base technology, and their ta,rget, a.pplica- 
tions also involved time at a fundamental level. Yet. these 
were only potentiuf users of temporal database technology, 
prima.rily because of two factors. 

First, no common infrastructure for temporal database 
resea.rch esists. This lack of common infrastructure is detri- 
mental, not only from a. research perspective, but more im- 
portantly for this group, from a pure salesmanship perspec- 
t.ive. Users could not. say what a temporal database is, nor 
even begin to comprehend how it could be of service to 
their applications. Towards this end, the glossary was im- 
port.a.nt, yet a.t the sa.me time confusing. The glossary was 
couched in the langua.ge of temporal database researchers. 
But, as researchers in other disciplines have their own (im- 
plicit) glossaries for time related concepts; the “conceptual 
gap” bet(ween the two glossaries was difficult to bridge. Also, 
the lack of an infrastructure document led users to look for 
such in the glossary, but the glossary was not writ,ten nor 
designed for such a purpose. Consequently, basic concepts 
such as chronon and event remained permanently baffling, 
prima.rily because there exists no “road map” to provide 
users an understanding of how these terms fit together. 

This raises the issue of whether the glossary should serve 
as a. document for researchers a.ctive in the field or provide 
a gentle introduction to temporal data.bases to researchers 
and users from other communities. The consensus of the 
group seemed to be that the glossary can only be written 
for researchers in t,he field and that some other form or doc- 
ument, should present the infrastructure and advertise the 
utility of tempora.1 databases. The glossary should provide 
a backdrop to the infrastructure, only giving meaning to 
words that are unfamiliar to the reader. 

The second factor is related to the first. The users in our 
group have developed tools to meet their needs (e.g., the 
geographer in our group developed a GIS). By and large, 
users want t,o “extend” their tools to include support for 
t,ime values. The key chara.cteristic of this extension is it,s 

a.d-hoc nature. The t,ools exist. and a great. cleal of effort, 
and research has been invested in crea.ting them. By and 
la.rge these users are only interest,ed in providing bet,ter sup- 
port, for time values or time-related processes, r&her t,han 
replacing these tools with a temporal da.ta.base. In order 
for t.emporal database technology to serve t,hese users. that. 
technology must provide a pla.tform on which t,hese tools 
can reside, without requiring substantial modification of t.he 
tools themselves. Perhaps one could cha.ract,erize t,his need 
by saying that users are very strongly in fa.vor of an “open” 
archit.ecture. 

Because time is considered an “add-on” in t,hese systems. 
many of the issues discussed by other working groups for 
inclusion in the infrastructure did not emerge it5 user con- 
cerns. In particular, we did not discuss nor even raise ques- 
tions a3 to whether SQL-92 or SQL3 should serve as a plat,- 
form for an infrastructure query language a.nd dat.a model. 
IJsers have their own “high-level” query langua.ge t,a.rgeted 
for their a.pplications (e.g., temporal reasoner, GE, human 
genome project) and any language that is capa.ble of extract- 
ing time-related information (in a very primitive wa.y) would 
suffice. This is not a criticism of the lauda.ble goa.ls of these 
other groups, only a.n observat.ion that none of t.he users in 
our group currently baqe their tools on SQL-like interfaces 
or databases. The consensus TSQL2/3 effort. is certa.inly 
of importance to the large community of actual da.tabase 
users. But ahnost unanimously, the users in our group were 
uninterested in the differences between these adterna.tives 
because they already have their own query langua.ges a.nd 

data models. It is an open quest,ion as to whether t,he users 
wasted a temporal a.bstract data type (ADT) or something 
more complex. 

In essence, it. is a matter of timing. The t.emporal 
da.ta.base community is somewhat late to the game due 
t.o a lack of common infrastructure and working temporal 
da.tabases. Consequently other players have a.lrea.dy taken 
the field. If we a.re to have any impact on t.he game, as a. 
practical matter, the question of how to int.egrate with es- 
ist,ing tools is of primary importance and runs deeper than 
SQL-integration. 

Some specific user needs did emerge, aside from the 
“open” architecture requirement. Let, us consider relative 
time. Can it be supported by a temporal database’? Tha.t 
depends on what is meant by “supported”. Certainly, a 
temporal database can store such times and their associ- 
at.ed constraints. Interpreting these constra.ints however is 
a.nother matter, and lies in the sphere of general tempora,l 
reasoners rather than temporal databases. But. embedding 
a temporal database within a tempora.1 reasoner is exact,ly 
what the users in our group desired. Our users had tem- 
poral reasoners. They were interested in knowing whether 
and how their reasoners could be seamlessly coupled witah 
a temporal database. They did not expect the t.emporal 
database to interpret the relative times, that would be done 
by t,he reasoner. At first glance, it would seem that, t,he only 
requirement for a. temporal database to “support,” rela.tive 
times is the ca.pability of storing such times (as valid times) 
a.nd passing “uninterpreted” times to a. higher level. Since 
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these times are uninterpreted, they should remain inert in 
determining temporal keys aad norma. forms. 

This is not to suggest tha.t a.ll user requirement,s can be 
accommodated as easily; a user, sa.y. who desires continu- 
ous times may be somewhat harder to sa.tisfy. R.ather it 
suggests that the functionality of a temporal database must 
be clearly and distinctly articulated before integra.tion can 
take place. The above example places relat,ive times outside 
the sphere of temporal databases (a widely-held viewpoint 
within the community?). The line must be drawn every- 
where on exactly what is and what is not, supported by a. 
temporal database, perhaps furt.her dividing that support. 
into core and optiona. functionality. The consensus of our 
group was that user needs are diverse, consequently core 
functionality should be minimized and ease of extensibility 
should be maximized. 

3 Group B: Extending SQL-92 

3.1 Introduction and Group Charter 

The working group, consisting of I. Ahn, J. Clifford, 
F. Grandi, C.S. Jensen, W. Kafer, I<. Kulkarni, N. Lorent- 
zos, R. Snodgrass, A. Tansel, with occasional visitors, ad- 
dressed a fairly narrow but complex topic: how should SQL- 
92 be extended to support time in a comprehensive fashion. 
The ultimate goal is to produce a concrete laagua.ge defini- 
tion that can be used by temporal DBMS researchers as an 
infrastructure, incorporated into legacy (rela.tional) DBMS 
products, and considered by the SQL sta.nda.rds committee. 
The (quite ambitious) goa.ls of this working group were to 
put into place a structure for such a la.nguage definition, 
and to reduce the number of possibilit,ies t,o a small set that 
ca.n be further evaluated in the coming months. 

3.2 Current Status of the Field 

Researchers have been prolific in developing ten1pora.l data 
models and query languages, in an attempt to find the right 
tradeoffs among a set of irreconcilable constraints [MSSla]. 
Over the last fifteen years of work, a tota. of over two dozen 
temporal extensions of the relational data model have been 
proposed. Approximately half of these models support only 
valid time; three models support only transa.ction time; and 
the remaining seven or so support hitemporal relations. The 
t,emporal data models ma.y be compared by asking four ba- 
sic questions: how is valid time represented (alterna.tives 
include event, interval or temporal element stamping of in- 
dividual attributes or tuples), how is tra.nsaction time rep 
resented (alternatives include event, interva.1, three events, 
or temporal element stamping of individual a.ttributes, tu- 
pies, or sets of tuples), how are attribute va.lues represented 
(alternatives range from atomic valued, to ordered pairs, 
to triplet valued, to set-triplet valued), and is the model 
homogeneous and coalesced (all four a.lt,ernatives are repre- 
sented). 

Most temporal data. models are pa.ired with a t,empora.l 
query la.nguage proposal. Some two dozen tempora.1 rela.- 

tional query langua.ges have been proposed, including seven 
extending the relational a.lgebra, five extending Quel, seven 
extending SQL, and a few being based on other formalisms. 

Support for time in conventional data base systems (e.g., 
[TC83, OC87]) IS entirely at the level of user-defined time 
(i.e., attribute values drawn from a temporal domain). 
These implementations are limited in scope a.nd are, in gen- 
eral, unsystema.tic in their design [Date88, DWSO]. The 
standards bodies (e.g., ANSI) a.re somewhat behind the 
curve, in that SQL includes no time support,. Date and time 
support very similar to tha.t in DB2 is included in t.he SQL- 
92 standard [MS93]. SQL-92 corrects some of t.lie incon- 
sistencies in the time support provided by DB2 but. inherits 
its basic design limit*ations [SS92]. The SQL3 dra,ft. proposal 
contains no additional temporal support. over SQL-92. 

3.3 Level of Language Support 

The primary realization to come out of the workshop was 
that there were three fundamental viewpoints on how time 
should be incorporated into SQL. In the following, we 
present each of these viewpoints, along with some of their 
supporting arguments. 

The first viewpoint argues that the SQL data model is 
already quite close to having the support required by 6em- 
poral applications. The additiona. support that is necessary 
is primarily in the algebraic operators and to the syntax of 
the language. A concrete realization of this viewpoint is the 
IXSQL proposal, which extends SQL with a generic Enter- 
ml data type (of course, t,he focus here is on int.ervals of 
time). The data model is identical to that of SQL, with the 
a.ddition of DATEINTERVAL. The algebra for this language 
is a.n extension of the relational algebra, retaining the tra.- 
ditional operators in an unmodified form, and a.dding two 
new operators. Unfold convertjs an interva.1 into a set of 
time points, with the remaining attributes duplicated for 
each time point. Fold is the inverse opera.tor. In terms 
of the SQL syntax, new predica.tes on intervals are defined, 
and two clauses a.re added, a REFORMAT cla.use. t,o support 
Fold and Unfold, and a NORHALISE clause, which can be 
simulated with the REFORMAT clause. 

Several advantages accrue from this approach. 

l Since interva.ls are generic, and can thus be defined over 
any metric, this approach naturally supports spatial 
and spatiotemporal databases. 

l Since the extensions to SQL are minima.1. especia.lly 
compared with other approaches, implementation is 
less difficult, and a.cceptance by the user community 
may be easier to attain. 

l Multiple time (and other metric) intervals may easily 
be incorporated. 

l Every snapshot relation is also a valid valid-t.ime rela- 
tion. 

The second and third viewpoints share the belief that 
time is a basic aspect of da.ta. and therefore should be in- 
corporated in a. fundamenta.1 wa.y into the da.ta, model and 
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query language. The two viewpoints differ on the timing of 
the language definitions. The second viewpoint holds that, 
with SQL-92 an accepted standard and SQL3 being actively 
designed, there is no sense in est,ending SQL-92. Instead, 
efforts should be directed towards adding time to the SQL3 
proposal, yielding perhaps a temporal query language stan- 
dard in the 1995-1996 t*ime frame. 

Several advantages have been stated of a single SQL3 

extension. 

SQL-92 is frozen, so a.ny ext,ensions based on SQL-92 
will be rendered meaningless when SQL3 is accepted. 

SQL3 has several data modeling constructs, including 

object orientation, which can aid in the development 
of temporal ext.ensions. For example, it allows nested 
relations to be simulated, thereby accommodating more 
temporal data models than SQL-92. 

A two-pronged approach would be difficult to coordi- 
nate, and could easily result in incompatible proposals. 

Research is act.ive in temporal databases, with new 
ideas appearing all the time. It, is important to do 
the design “right,” or we will be saddled with a poor 
design, with no opportunity to change it (we get only 

one chance). 

The third viewpoint favors a two-pronged approach, in 
which parallel eff0rt.s would consider adding time to SQL- 
92 and to SQLS. The rat,iona.le is that time will be added 
to the SQL standard only when there is implementation 
experience availa.ble. and tl1a.t won’t occur unless there is a 
consensus extension of SQL that a.dmits a straightforward 
implementation without requiring SQL3 constructs. 

Proponents of the third viewpoint counter with advan- 
tages of their approach. 

l SQL-92 provides a stable basis on which to do language 
design; SQL3 is constantly changing. 

l Designing an SQL3 extension will not impact actual ap- 
plications befol:e 1997, when the first implementations 
supporting SQL3 may sta.rt to appear. 

l Should estension of only SQL3 proceed, there is the 
chance that a vendor will go ahead and implement tem- 
poral support now, in an ad hoc fashion, which the 
SQL3 standard will be forced to incorporate (as hap 
pened with user-defined time). 

l The SQL3 standa.rds bodies will not be interested in 
fundamental time support until users clamor for it, and 
until a commercial, relational DBMS (or perhaps two 
such systems) supports time. 

These three viewpoints are clearly in conflict. However, 
each has its vocal proponents, marshaling strong technical 
arguments to advocate their position. The disparity be- 
tween these distinct. viewpoints offers one explanation as 
to why there has not, been greater consensus in the field. 
Clearly, it is difficult t.o arrive at a single data model when 
t,here are fundament,a.l disagreements concerning even the 
extent to which time should be incorporated in the model. 

3.4 Desired Functionality 

Much of the discussion of the working group was devoted 
t.o determining the functiona.lity that is desired in a tern- 
poral query la.ngua.ge. We now list the aspects discussed. 
We refer to an extension of SQL (-92 or 3) as T.~QL. for 
convenience, keeping in mind the diversity of opiuion listed 
in the previous section. 

There have been three t,ypes of time that may be used in a 
t,emporal database: user-defined tense, valid time, and t~zs- 

Cd011 ti?JW [SA86]. u ser-defined time has garnered support 

in most commercial DBMS’s (and is present in t,he SQL- 
92 standa,rd), and transa.ction time is supported in some 

object-oriented da.tabases (as version identifiers) and one 
relationa. database (Montage). However, the range of a.p- 
plications that could use va.lid-time support (most applica- 
tions, in fact), as well as those that could use support, of 
all three kinds of t.ime (which is not the majority of a.p- 
plications, but certainly a sizable portion), dictates that a. 
bitemporal extension of SQL is warranted. 

At the same time, it is important to support legacy ap 
plications. Hence, temporal support should be optional in 
both the schema and in the query language. This require- 
ment translates into the ability to specify snapshot rela- 
tions (for which no temporal support is required), as well 
as valid-time, transaction-t,ime, and bitemporal relations in 
t,he CREATE TABLE statement. It also implies that queries 
should be able to include multiple types of relat,ions in the 
FROM clause, and evaluate to multiple types of relations. For 
example, it should be possible to compute via SELECT a 
snapshot relation from a bit*emporal relation. 

The extension to SQL should be upward compatible. Ex- 
isting SQL queries should remain valid in TSQL. Query lan- 
guage reducibility is also important: an SQL query, evalu- 
ated on a temporal database as a TSQL query, should result 
in a temporal relation, which, when timesliced at a pa.rt.ic- 
ular time, yields the same snapshot relation that results 

when this same query is evaluated as an SQL query on the 
timeslice of the temporal database at the same t.ime. This 
property ensures that. user’s intuition concerning SQL will 
transfer over wholesale to TSQL. 

Some data model proposa.ls require that the underlying 
valid time domain extend only to now. Other data models 
support future time. (Note that transaction time, on t,he 
other hand, is never allowed to extend past now: it is im- 
possible to know entirely accurately what will be stored in 
the future in the database). Planning applications require 
future time support; hence, it should be present in the data. 
model for TSQL. 

The controversy of discrete versus continuous time sur- 
faced in several working group discussions, as well as the 
workshop plenary sessions. As this topic has been discussed 

for literally thousands of years by philosophers, mathema.ti- 
cians and physicists, it is understandable tha.t the intrica- 
cies of this dichotomy would not be fully resolved in t,his 
workshop. Nevertheless, this working group agreed tha.t the 
representation (as opposed to the conceptual model) should 
be discrete. Gio Wiederhold invoked a useful analogy of real 
numbers and their representations. While floating point 

SIGMOD RECORD, Vol. 23, No. 1, March 1994 39 



numbers in computer programs can be concept,ua.lizecl by 
programmers as real (i.e., continuous) numbers, their rep- 
resent5ation must necessarily be discret,e. The sa.me should 
hold for timestamps in TSQL’s da.ta model. 

A more restricted incarna.tion of t,his issue is t,he dist,inc- 
t*ion between open and closed int,ervals. An open interuul, 
generally denoted as [a., 6), where a. and b are timest.amps, 
contains the time between (I. and 6, as well as t,he time in&ant 

n, but. not the t,ime instant b. Conversely, the closed Inter& 
[a, 61 contains the instant b. In a. discret.e representation, 

[a, 6+1) - [a, 61; in a continuous model of time, t,here is no 

successor t,o 6. and so the two a.re not. compara.ble. At, t.he 
representat,ion level of TSQL, which uses discrete t,ime, t.he 
distinction is not important. At the language level, which 
the user can pretend is based on continuous time, the lan- 
guage should support. both open and closed interva.ls in the 
present,ation (input and output) of temporal values. 

The final issue discussed at length was that of trrzyrouped 
versus grouped completeness. These terms were presented 
by James Clifford at the workshop, based upon his previ- 
ous research [CCT93]. In this work t*he authors a.ttempt to 
contrast those models which employ tuple-time-stamping, 
which they term temporally ungrouped, a.nd those which 
employ complex attribute values bearing the temporal di- 
mension, which they t,erm temporally grouped. Aft.er defin- 

ing canonical versions of these two types of data models, 
ca.lled MTu and MTG, respectively, they present logic-based 
query languages for each of them a.nd propose them as Stan- 
dards for measuring the expressive power of query languages 
for such models. They further demonstrate that the grouped 
models are more expressive than t.he ungrouped models, but, 
define a precise, though cumbersome, technique for extend- 
ing a temporally dngrouped model, by means of a group 
surrogate, in such a way as to extend its expressive power 
t,o that of the temporally grouped complete models. In sur- 
veying some (but by no mea,ns a.11) of the models that have 
appeared in the literature, they demonst,rate the following: 
(i) several algebras a.nd calculus-based query languages are 
ungrouped complete, (ii) the calculus Lh is, by t,heir def- 
inition, grouped complete, and (iii) to their knowledge no 
algebra has been shown to be grouped complete. 

While the expressive power of ungrouped complete was 
generally accepted as a desirable property for TSQL, there 
was considera.ble discussion concerning grouped complete. 
The benefit of grouped complete is that it supports a rather 
strong notion of the “history of an attribute,” called a his- 
tory in the Glossary. For example, one can t.a.lk about 
“John’s salary history” as a single object, and ask to see 
it,. or define constraints over it, etc. I f  the data model and 
query language are not grouped complete, then the salary 
history will be lost unless the key (here, the name) is always 
ret.ained, which places a burden on the user. Ungrouped 
models also generally require some kind of time-invaria.nt 
key to identify entities in the niiniworld being modeled by 
the database, whereas “histories” are supported directly in 
grouped models without any need for time-invariant keys. 

The primary concern raised by some members of the 
working group was one of implementability. It was pointed 

out. tha.t no ilnplementa.tion of a grouped model exists, but 
this was countered by the observation tha.t few of t.hc pro- 
posed models of any ilk have been implement,ed. A for- 
mal ma.pping of a grouped complet,e data. model onto all 
ungrouped complete model, via syst.em-ma.intaiiied surro- 
gates, has been given. However, it was pointed out tha.t 
t,his mapping has never been implement,ed, a.nd the concern 
was ra.ised that implementing joins in this a.pproa.ch appea.rs 
t,o some to be difficult,. 

The working group members fell into t.wo camps. One 
position was tl1a.t the lack of a.n existing SQL est.ension def- 
inition that was grouped complete, as well as t,he la.ck of 
any implementation experience with grouped complete data. 
models, rendered this requirement of grouped complete too 
risky to incorporate into TSQL a.t this t.ime. The other 
position held that the ultimate a.im was to ma.ke life eas- 
ier for the user, even if it complicated Ihe implementation, 
and thus grouped complete shoulcl be a. requirement of the 
model. 

This discussion can be exa.mined in light of the three 
viewpoints presented earlier. The first viewpoint. minimally 
a.dapt the data model to support. time, fa.vors neit,her un- 
grouped nor grouped complete, as both of t,hese distort, t,he 
original relational model to t,oo grent a. degree. The second 
viewpoint, that only SQL3 should be ext,ended, is comfort,- 
able with grouped complete. The third viewpoint,, advo- 

ca.ting definition of both TSQL2 a.nd TSQL3, was genera.lly 
comfortable with TSQLS being grouped complete, but. not. 
so wit,11 TSQL2. 

3.5 Separation of Concerns 

As previously mentioned, there a.re now over t.wo dozen tem- 

poral data models, each with one or more associated query 
langua.ges. While such a diversit.y of approa.ches is a reflec- 

t.ion of the excitement. and ferment in the area. of tempo- 
ral da.tabases, it also a.t some point may become counter- 

productive. 
Focusing on data semantics (wha.t is the meaning of the 

data stored in the data model), data presentation (how tem- 
poral data. is displayed to t,he user), on da.ta. storuge (what 
regular storage structures can be employed with t#empora.l 
data), and on efficient query evaluation, has complicated the 
primary task of capturing the t,ime-varying sema.ntics. The 
result. has been a plethora of incompatible data. models and 
query languages, and a corresponding dearth of data.base de- 
sign and implementation strategies that ma.y be employed 
across these models. 

The previously proposed data models a.rose from several 
considerations. They were a.11 extensions of the conventional 
relational model that attempted to capture t*he time-varying 
semantics of both the enterprise being modeled and the state 
of the database. They attempted to retain the simplicity of 
the relational model; the tuple-timestamping models were 
perhaps most successful in this regard. They attempted to 
present all the information concerning an object in one tu- 
ple; t.he attribute-value timestamped models were perha.ps 

best at that. And they a.ttempted to ensure ease of im- 
plementation and query eva.luation efficiency; the backlog 
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representa.tion may be a.dvantageous here. 

Most proposed models aim at being suit,able for data. pre- 
sentation, for data. stora.ge, and for capturing the temporal 
semantics of dat,a. Seen solely as mea.ns of capturing the 
temporal semantics, such models exhibit, presentational and 
representat.ional anomalies because they encode the tem- 
poral semantics in ways that are more complicated than 
necessary. Put, differently, the time-va.rying semantics is ob- 
scured in the representation schemes by other considerations 
of presentation a.nd implementa.tion. 

It is clear from the large number of proposed data mod- 
els that meeting all goa.ls simultaneously is a difficult, if 
not impossible, t,ask. We t,herefore advocate a separation of 
concerns, i.e., adopting a. very simple conceptual data model 
that captures the essentia.1 semant.ics of time-varying rela- 
tions, but has no illusions of being suitable for presentation, 
storage, or query evaluation. Proposals for this conceptual 
data model were discussed, but a final choice was not made. 

Figure 1 places the conceptual temporal data model with 
respect to the tasks of logica. and physical database design, 
storage representation, query optimiza.tion, and display. As 
the figure shows, logical database design produces the con- 
ceptual relation schemas, which are t,hen refined into rela- 
tion schemas in some reyr-esentational data model(s) during 
physical da.tabase design. The query language itself would 
be based on the conceptual da.ta. model. Query optimiza- 
tion may be performed on the logical algebra, parameter- 
ized by the cost, models of the representation(s) chosen for 
the stored data, and in the algebra of the representational 
model. Finally, display presenta.tion should be decoupled 
from the storage representa.tion, and should be capable of 
exploiting the severa. exist,ing da t.a models ha.ving conve- 
nient display formats. 

Note tha.t this arrangement hinges on the semantic equiv- 
alence of the various data. models. It. must be possible to 
map bet,ween t,he conceptual model and the various repre- 
sentational models. An a.ppropria.te conceptual data model 
would allow equivalences to be demonstra.ted with many of 
the representational models thus far proposed. This equiv- 
alence should be based 011 snapshot equivalence, which says 
that two relation insta.nces a.re equivalent if all their snap 
shots, taken at all times (valid and transaction), are identi- 
cal. Snapshot equivalence provides one means of comparing 
rather dispara.te representa.tions. However, it can be demon- 
strated that a grouped relation ca.n be snapshot equivalent 
to a large number of ungrouped relations, only one of which 
carries the same information content. Some argued that the 
notion of strong equivalence [CCT93], somewhat (but not 
entirely) captured by the the t,erm “history equivalence” in 
the glossary, provides a more appropriate means of compar- 
ing dispa.rate representations. 

3.6 Conclusion and Follow-on Efforts 

As mentioned in Section 3.3, there were conflicting view- 
points on a temporal est.ension of SQL. They can be summa- 
rized as (a) with the a.ddit,ion of an interval data type, there 
will be sufficient, support. in SQL2/3’s da.ta model to support 
applica.tions using temporal data.; (b) a t,wo-pronged effort 

should be init,ia.ted, t.he first, being a. short-t,erm effort t,o 
define a t.empora1 extension t.o SQL-92 and t.he second be- 
ing a long-term effort t.0 define a. comprehensive extension 
to SQLS, and (c) t.emporal support. should be a.dded, but 
only SQL3 should be extended. Whatever the approach. 
it was a.greed that the temporal data model underlying the 
la.ngua.ge be designed solely in terms of its sema.ntic proper- 
t,ies, with distinct. and possibly multiple data models being 
employed for representation and presentation. 

4 Group C: Advanced Temporal 
Databases 

4.1 Introduction and Group Charter 

The overall objective of the discussions in working group 

C, consisting of A. Buchmann, S. Chakravarthy, T.- 
S. Cheng, I<.. Dittrich, S.K. Gadia. T. Lawson, I.S. Mu- 
mick, M.T. Ozsu, N. Pissinou, I<. Ral~amritham, A. Segev, 
M. Soo, S. Su, B. Theodoulidis, and G. Wuu, was to iden- 
tify the common infrastructure for the next generation of 
temporal database concepts including extensions of the re- 
lational da.ta models as well as the adoption of concepts 
from the semantic and object-orient,ed data models. 

While it is true that the ma.jority of t,he work on tem- 
poral databases has been in the cont.ext of the relational 
data model, a number of a.pproa.ches based on semant.ic 
da.ta models, such as t,he entity-relat.ionship, infological and 

object da.ta models, ha.ve appeared in the literature. The 
motivation behind all of these a.pproaches is that, the re- 
lational data model is considered t.o be insufficiently ex- 
pressive for comples database a.pplications such as multime- 
dia, executive information syst.ems. computer-aided design 
(CAD), computer integrated manufacturing (CIM), and ge- 
ographicad informa.tion systems (GIS). These a.pplications 
have strong requiren1ent.s to model t,he temporal or spa.tio- 
temporal relationships bet*ween object,s. Therefore, “tempo- 
rality” is an important (even if not int.egral) part of the next, 
generation of database systems. Another t.rend t,hat. start.ed 
in the 1980’s is the incorporat,ion of constra.ints, triggers, 
and rules in relational aad object-oriented da.tabases. Work 
in this area. is concerned with a.ctive t.emporal databases and 

was considered at the group discussions. 
In view of this, the overall objective of the discussions 

in group C was to identify a common infrastructure for 
the next generation of temporal databases, including exten- 
sions to the relationa. data model and object,-based models. 
These issues were discussed in two subgroups, then int.e- 
grated in plenary sessions of group C. S.ubgroup Cl, con- 
sisting of S.K. Gadia, T. Lawson, M.T. Oszu, N. Pissinou, 
S. Su, B. Theodoulidis and G. Wuu, addressed data mod- 
eling concepts, time concepts and t,he incorporation of time 
into the next genera.tion of tempora.1 databases, with an em- 
phasis on object based models. Subgroup C2, consisting of 
A. Buchmann, S. Chakra,varthy, I<. Dittrich, I.S. Mumick, 
Ii. Ramamritham, and A. Segev addressed the area of active 
tempora.1 da,tabases with pa.rticu1a.r reference to the notion 
of t,empora.l rules. 

SIGMOD RECORD, Vol. 23, No. 1, March 1994 41 



Display Formats Representational Data Models 

Format, 

. . . 

I Format n 

Logical 
Database 

’ Design 

Temporal 
Conceptual 

~ Data Model 

1 

Logical 
Query 

Optimization 

Tuple-timestamping 

Backlogs 

Attribute-value 
Timestamping 

Sequence of 
Valid-time States 

Five timestamps 

Physical 
Database 

Design 

Figure 1: Interaction of Conceptual a.nd Representat.ional Data Models 

The following sections elaborate on the consensus reached 
for the infrastructure and the open issues and future work 
that need to be carried out in order to complete the infras- 
tructure for the next generation of temporal databases. 

4.2 Current Status of the Field 

4.2.1 Temporal 0 b ject Based Modeling 

The two most prominent models that provided the basis 
for the development of tempora.1 conceptual models are 
the entity-relationship (ER) model [Chen76] and the ob- 
ject. based model. The ER model dea.ls with the structural 
component, and is founded on the notions of entit,y and re- 
lationship. The object, model deals with both the structura.1 
and behavioral components and is founded on .the notions 
of object, structure and behavior (method). Furthermore, a 
number of approaches include notions like Event-Condition- 
A&ion (ECA) rules that deal with the constraint compo- 
nent. Severa. approaches of introducing time into an object 
based data model were discussed. The group isolated three 
ma.in approaches: (1) to extend the semantics of a preexist- 
ing snapshot, model to incorporate time directly (built-in); 
(2) t,o base the new model on a snapshot model with time ap- 
pearing as an additional attribute(s); a.nd (3) to move in an 
independent direction, developing entirely new approaches. 

4.2.2 Active & Real-Time Databases 

Active databases evaluate conditions and execute actions 
in response to event, occurrences (either primitive or com- 
plex) according to the semantics of rule processing in ac- 
tive databases. Incorporation of active capability has typi- 
ca.lly been addressed with respect to a. snapshot (i.e., non- 
temporal) database. A limited notion of time is used in 
events (e.g., temporal events and composite events) and 
for specifying deadlines (e.g., complete action prior t.o a 
given time). A large body of work exists on the specifica- 
tion of rules, its execution semantics, modeling of events, 
and incorporating active capability into object-oriented 
paradigms. [Cha92, DBB+88, MD89, WF90] 

Alt.hough rules have been used in temporal databases, 
there is no agreement on when a rule itself, used in a t,em- 
pora.l or non-temporal database, may be considered to be 

temporal. A related issue is, when does a rule require t.em- 
poral support for its activation ? Further, rules often are not, 
modeled in the same way as data; rules should be treated ns 
first class objects, and so rules must be subject t,o the same 
temporal semantics as data. The working group addressed 
this new aspect of temporal rules in addition to defining rule 
structure for active databases. 

Work on integrating temporal and active database fea- 
tures has started appearing in t,he literature only re- 
cently, e.g., [GJMS93]. Some rela.ted issues have a.lso 
been discussed in the context of real-time databases [BB93, 
Rama934. 

4.3 Next Generation Temporal Data Mod- 
eling Concepts 

The purpose of this discussion was to identify the key con- 
cept,s of the next generation of tempora.1 data models and 

languages. It was a.greed that, the next generation of t,empo- 
ral data models should be an extended model, rather t.han 
extensible with respect to the current generation. This im- 
plies the design of the next generation of tempora.1 da.tabases 
should not be limited to current solutions and approaches to 
temporal modeling, nor should be an “extensible relational 
approach.” 

An important issue, rising from the isolation of the three 
approa.ches for next generation temporal data. modeling pro- 
posed in Section 4.2, concerns the role of a temporal data 
model. Without clarifying this issue, it is difficult to ex- 
tend the object. model to include temporality. The role of a. 
tempora.1 data model is to visualize a.nd structure temporal 
data, temporal information and the t,emporal relationship of 
objects. In general, one of the main wa.ys of structuring and 
visualizing temporal data is through the use of abstraction 
at various levels of granularity. To do so, a tempora.1 model 
can be discussed in terms of three distinct parts: structures, 
operations and constraints. The structural component. of a 
data model, dea.ls with objects and their relationships while 
the opera.tiona.l/behavioral component deals with the ma- 
nipulation of objects. The constraint component deals with 
rules for t’he integrity of the object structure a.nd manipu- 
la.tion over time. 

In line with existing data modeling design principles, t,he 
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basic concepts and components identified by the group for 
the nest. generation of tzempora.l data. models were classified 
into t,hree broad categories: Temporal Structural properties, 
Tempora.1 Operational/behaviora.l properties, and Tempo- 
ra.1 Constra.int properties. Temporal structural properties 
describe the objects of the applica.tion domain in terms of 
their properties and t$heir relationships with other objects 
(inter/int.ra object relationships) wit,h respect to time. Tem- 
poral operational properties describe the behaviour of ob- 
jects over time, as reflected through changes in their prop- 
erties. Finally, temporal constraint, properties describe con- 
ditions the object. properties must. satisfy during the object 
lifespan. More specifically, 

1. A tentpod object is defined as a set of one or more 
t.empora.1 properties. The t3emporal properties describe 
st,ruct,ural, operational and constraint characteristics of 
objects over time. 

2. A temporal cot&mint or rule is a database rule that in- 
cludes also its validity period and is divided into three 
parts namely etrent, condition a.nd action part. All 
these parts may refer to time points but at least the 
event or condition part do so in order for the rule to be 
characterized as a tempora,l rule. 

Based on these definitions, a.nd after many hours of dis- 
cussions the following consensus were achieved. 

l The design of the temporal query language associated 
witch the above concepts should take into consideration 
t,he traditional language design issues such as ease of 
use, optimizability, expressiveness and implementabil- 
ity. 

l Schema evolution should be supported in a way that 
will accommodate object persistence across schema 
cha.nges. The issue of dynamic schema evolution is very 
importa.nt in object-orient,ed data.bases and time sup- 
port can provide approaches to deal with this issue. 

l The participants agreed that the modeling of time 
should be independent of the particular choice for the 
data model. This means that irrespective of the data 
modeling concepts, time has an ontology by itself that 
needs t.o be defined and agreed upon. 

l Besides the basic infrastructure concepts of the next 
generation of temporal da.ta. models, it is possible to 
define additional constructs for the declaration of con- 
ditions/constra.ints (e.g., homogeneity) which may be 
beneficial in a.pplication development. 

The nest generation of temporal databases should ex- 
plicitly support a rich set of time concepts. The workshop 
pa,rticipants identified the following concepts as the mini- 
mum set of concepts to be incorporated: bitemporal inter- 
val, bitemporal span, bitempora.l chronon, bitemporal ele- 
ment, bit,emporal time point, and operations on intervals, 
spans a.nd t.ime point,s as well as conversion facilities between 
them. 

Although all the above concepts are necessary for a com- 
prehensive trea.tment of time in data.baseq, the pa.rticipa.nts 
singled out. t.he notions of interval, span and time point a.3 
the key concepts upon which the other concepts can be de- 
fined. 

4.4 Active and Temporal Database Con- 
cepts 

To reach consensus on the subject of Active Temporal 
Databases, there first, has to be a. shared understanding of 
the structure of rules a.nd the definition of event. Accord- 
ingly, we first provide consensus definitions of a.ct.ive rules 

and events (in the contest of rule definition). We limit t,he 
discussion to active rules (ignoring, for instance, deductive 
rules). 

An active rule is an Event-Condition-Action (EGA) 
rule, where 

Event E: is a basic or composite event, as defined below. 

Condition C: is either (1) a. boolean expression, or (2) a 
query in the da,tabase query language that results in a 
TRUE/FALSE answer. The query must be side-effect 
free. 

Action A: is a.11 execution of a database operation or an 
arbitrary applicat.ion program. 

Definition 4.1 Basic Event: a pair (event occurrence, 
time instant). The event occurrence is represented by some 
symbol e and is ma.pped to a. time instant, t on t,he system 
clock. The basic event (e, t) is said to occur a.t time t. •I 

It should be noted that aa event occurs at a point in time. 
Examples of basic events include begin transaction. 
after commit, and before read. In fact, basic events can 
be obtained from most data.base operat,ions by adding the 
modifiers before or after to the name of the database 
operation. External signals, and time events, such as 
lf:OOam, a.re permitted as basic events. A time event is 
represented by the pair (time nume, time instant), where 
time name is the symbol representing the event. occurrence. 
(“11:00am”, 1l:OOam on July 20, 1993) is ai1 exaiii- 
pie of a basic event.. 

Events may ha.ve attributes. For instance, an after 
insert event has information regarding t,he specific relation 
updated as well as the specific tuple inserted. Such infor- 

mation is an attribute of the event. In a.ddition, event at.- 
tributes may include system-level information such as trans- 
action id, user id, and time. 

Definition 4.2 Composite Event: can be created from 
basic and other composit,e events through the use of a closed 
algebra. A composite event occurs at a time instant, as 
specified by the closed algebra. in t.erms of t.he time instants 
of component basic event,s. 0 

Several algebras for composite events have been pro- 
posed, e.g., ODE [GJS92, GJMSSS]). We permit simple 
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condit.ions, such as X > 10X on attribute X of an event, or 
a boolean predicate on attributes of events, to be included 
in the a.lgebra for composite events. Note that the boolean 
predicates in a. comp0sit.e event. do not refer to items stored 
in the database, and can be eva.luated from the given event.. 
withoub querying the database. Permitting boo1ea.n expres- 
sions allows for easy specification and efficient. implementa- 
tion of events such as 

every ilth trade of IBM stock at price > 50 

that would otherwise require complex temporal queries in 
the &n&ion part. A more complex algebra may also per- 
mit, predicates that, refer to database items, We assume that, 
an optimizer tha.t can move such complex predicates into 
the condition part would be provided, thereby making the 
algebra equivalent, to the one we consider. 

Both basic and composite events are usually referred to 
by event5 names or event identifiers. Depending upon the 
event, description, and the type of database, a rule may get 
associated with one or more relations, views, or objects. 
Rules can typically be inserted, deleted, updated, activated, 
and deactivated by the user as well as by the system. 

To summarize, for the purpose of this report, we will 
assume that the event pa.rt of a rule is based on an alge- 
bra, that the algebra will permit certain conditions to be 
included in the event part, and that there will be a separate 
Condition part, in the rule. For high-level syntax, we will 
express a rule as “WHEN event IF condition THEN action”; 
different syntax may be used and defaults assumed in actual 
implementations. It is desirable of course to standardize on 
a rule language. 

4.5 Temporal Rules 

Following the above definitions of rules and events, we focus 
on t*he definition of temporal rules, and distinguish bet,ween 
two cases: temporal rules in non-temporal databases and 
temporal rules in temporal data.bases. 

Definition 4.3 Temporal Active Rule: An active rule 
is said to be temporal if (1) the event is a composite event 
that refers to basic events occurring at time points other 
than the time when the rule is fired, or (2) the event refers 
to explicit time basic events, or (3) the condition contains 
a temporal database query that cannot be expressed in a 
non-temporal query language that can reference the basic 
event (or the last basic event in the composite event that 
caused the rule to fire), operating over a database that does 
not maintain a temporal history. 0 

Note that the a.ction is not mentioned in the definition of 
a temporal active rule. The action is an arbitrary procedure, 
and we will not attempt to characterize a rule based on the 
behaviour of the action. 

In the above definition of a temporal active rule, condi- 
tions (1) and (2) may be seen as the definitions of a temporal 
event, and condition (3) as the definition of a temporal con- 
dztion. 

4.5.1 Temporal Rules in a Non-temporal Database 

In a. non-temporal da.taba.se, t,he query langua.ge is nol1- 
t,empora.l, so t.he condition of a rule cannot contain a tempo- 
ral query. Hence, active rules in a non-temporal dat,abase 
are t,emporal if and only if (1) t,he event is a con1posit.r 
event t.hat refers t,o basic events occurring at time points 
ot,her t.1la.n the time when the rule is fired, or (2) the event. 
refers t,o explicit t.ime basic events. 

We consider bot*h these cases: 

Composite events a Temporal Rules Composite 
event a.lgebras enable one to relate basic events occurring 
at, different points in time. One can specify simple pa.tt*erns 
of such eve& that are of interest, in much the sa.me way as 
a. temporal query can specify patterns of va.lues in successive 
versions of relations. Composite events thus represent sim- 
ple forms of temporal queries, and can provide simple tem- 
poral features. Active rules using such event algebras must. 
therefore be considered to be temporxd rules. The composit,e 
algebras can be used in non-temporal databases, provided 
mechanisms to recognize these event patterns are provided, 
e.g., [GJSSS]. While we will not discuss any pa.rticular al- 
gebra. in this paper, we will illustrate their rela.tionship to 
temporal databases through a representative syntax. 

EXAMPLE 4.1 Consider a.n inventory database in a 
&ore. There is a.n invent.ory( item, amount) relation &or- 
ing the amount of each item in stock. Further, a.t the end 
of every month, sales statistics for the month are computed. 
One of t,he statistics is the average price and quantity sold 
for each item in the store during the last month. 

We want to label an item as high-tech if it sold in low 
quantities a.nd at high prices for three consecut,ive mont.hs 
some time in the past, and has been selling in high quanti- 
ties and at. low prices for the last three consecutive months. 
Clearly, in a temporal database, a temporal query can be 
used t,o identify the high-tech it.ems. We show how a com- 
posite algebra can be used to define a temporal rule that, 
la.bels items as high-tech. 

Let u be an item carried by the store, and let usale(Q, 
P) be an event representing the insertion of the monthly 
sta.tistic “item u sold in quantity Q at average price P during 
the last month”. 

We first define derived events ulosale and u&sale 
that represent the facts that (1) item u sold in low quant.i- 
ties at high prices, and (2) item u sold in high quantities a.t 
low prices, respectively, in the last month. Assume LO-QTY, 
LOSRICE, HIATY, and HI_PRICE are system constants de- 
fined elsewhere. 

(rl ): ltdef ine ulosale = usale(Q, P) && Q < LO-CITY 
&& P > HIPRICE; 

#define uhisale = usale(q, P) && Q > HI-QTY 
&& P < LO-PRICE;; 

Suppose that, when we identify an item to be high-tech, 
we want t,o check if its current stock is greater than HI_QTY, 
a.nd if not,, we wa.nt to pla.ce an order for an amount = 
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IiIJJTY less the currently stocked quantity of the it,em. One 
may chose to write t.his as follows (the syntax below is for 
purpose of illustration only, we are not. promoting t,his syn- 
tax. For instance, in a real language, one would have higher 
order constructs to represent repetition). 

(~2 ): WHEN sequence(ulosale, u-losale , ulosale) 
follovedby 
sequence (u&sale, uhisale, uhisale) 

IF (SELECT amount 
FROM inventory 
WHERE item = ‘u’ AND amount < HI-QTY) 

THEN orderou’, (HIJTY - amount)); 

The WHEN part of t,he active rule uses two con+ 
posite algebra operators: sequence and f ollowedby. 
sequence(u-losale, ulosale, ulosale) is a compos- 
ite event that occurs when a sequence of three consecutive 
ulosale events occur, at the point when the last ulosale 
event in the sequence occurs. The composite event (u 
followedby 6) occurs if the event b occurs somet,ime af- 
ter event a has occurred, at the point in time when event 6 
occurs. So, the composite event in the WHEN clause occurs 
at the point in time when t,he third month’s high sale figure 
is reported, and at some t*ime in the past, three consecu- 
tive low sale figures were posted. The IF part of the rule 
is a condition that checks if the given SQL query returns a 
nonempty answer. In case it does, an order is placed for the 
difference between HIJJTY and the amount returned by the 
SQL query. 0 

The active rule ~2 is considered to be a. telnporal rule 
because it can be mapped to an equivalent rule where the 
WHEN clause contains basic events, and the IF clause con- 
tains a temporal query, providing such a query was per- 
missible in the system. For example, if the WHEN part 
was limited to basic events, then it would contain the event 
uhisale: and the IF part would need a temporal query 
that refers to old versions of a sales relation. We assume 
here that the sales relation only keeps the average price and 
total quantities for the last one month. Since an active rule 
t,hat has a tempora.1 query in the condition part and a. basic 
event in the event part would definitely be called a temporal 
rule, we must also consider t*he equivalent rules of t,ype ~2 
as temporal. 

One may want, to enhance Example 4.1 to: 

1. Require that the sequence of u-losale events be fol- 
lowed by the sequence of u-hisale events within one 
year. 

2. Check whether the current inventory amount is less 
t,ha,n the sum of the last two mont,hs sales, and if so, 
to order the difference between the sum of the last two 
months sales and the current amount in the inventory. 

3. Rather than writing a separate rule for each item that 
one wants to track in a similar fashion, write one active 
rule to track all such items. 

These enhancements require that events have att,ributes, 
and that attributes of events be passed across t,ime, t,o other 
events, and into the condition and a.ction part [GJMS93]. 

Explicit Time Events 3 Temporal Rules The event, 
ca,n contain explicit reference t,o times, such as at “1 l:OOanl 
on Jan 26, 1950”. A calendar alyebrn can be defined to 
refer t.o time events at. a higher level, such as “3rd Friday 
of a. month”. In either of the above cases. we say t.hat the 
event refers to basic time events, so the active rule is tem- 
poral. Such basic time events can be used like any other 
basic events in defining composite events using a composite 
algebra.. 

An esample of a temporal rule using basic time 
events is, “WHEN every 10 Minutes IF condition THEN 
Evaluate(Portfolio)“, where Evaluate is a. user-defined 
procedure that is applied to the na.med object. (condition 
may be any condition on the cla.ta.base states). 

4.5.2 Temporal Rules in Temporal Databases 

From the definition of temporal rules, it follows that an ac- 
tive rule in a temporal database is nontemporal if t,he event. 
is basic and the condition contains a. non-temporal query 
that could be expressed in a non-temporal query language. 
All other rules in a temporal data.ba.se are called temporal 

rules. Thus, rules tha.t would be considered temporal in a 
non-temporal database. are also considered tempora.1 in a. 
t,emporal database. 

Further, both temporal and non-temporal act.ive rules 
can be be viewed as first class database ob.jects. This means 
tha.t the history of rules should be kept,. Ea.ch rule is associ- 
a.ted with transaction and va.lid times. Transaction t.ime is 
the time when the rule was recorded in the database. Valid 
time represent the time point.(s) when the rule is applica.- 
ble, i.e., checked for activat,ion. The valid time of a rule 
can be specified explicitly as a t,emporal element, or implic- 
itly in terms of data condition(s) or t,he occurrence of some 
event,(s). Activation and deactivation of rules is achieved by 
changing their valid time. 

There are two basic alternat.ives for modeling the history 
of rules. In the first way, t.he rule is considered as a sin- 
gle unit, and thus, a change to one of the components is 
regarded as deletion (note: in t,he t,emporal data.base case, 
deletion of a rule amounts to indefinite deactivation) of the 
rule and the addition of a new rule. In the second way, a. 
rule is considered to be a complex object and the history 
of the individual components is maintained, that is. we can 
represent different versions of the same rule. 

4.5.3 Actions of Rules in Temporal Databases 

When a rule is activated, and the condition evaluates t*o 
true, the action part of the rule get,s executed. In a. t,emporal 
database, the a.ction ca.n include a.ny upda.te t,o t,he dat,abase, 
including updates to past or fut.ure va.lid times of data items. 
Such updates are called ret,ro-active and pro-act*ive updates, 
respectively. 

If proa.ctive or retroa.ctive updates are allowed in a tem- 
poral database, rules can effect, data in several ways. We will 
elaborate on the retroactive case only; dealing with proac- 
tive updates is similar. In [EGS93a] the following charac- 
t,erizatioii of retroa.ctive effects is given In the following 
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definitions, “past,” is measured relat,ive t.o t,he t,ime of the 
operat,ion or t.riggering of a rule: 

Definition 4.4 Retroactive Update: an update opera- 
tion that modifies pa& values of data. elements. q 

Definition 4.5 A Retroactive Rule: a rule whose action 
includes a. retroa.ctive upda.te. •I 

Definition 4.6 Retroactive Rule Activation: the ap- 

plication of a rule to past snapshots. 0 

These definitions indicate tha.t rules ca.n effect data. retroac- 
tively in two main ways: due t,o retroactive rules, or due 
to retroactive activation of rules. The latter case can oc- 
cur for two reasons: 1) a rule is introduced in the system 
with a valid time tha.t includes past time interval(s), or 2) 
a retroactive update occurred, and the updated data ele- 
ment(s) trigger a rule which was valid at, that past time. 

4.6 Temporal Consistency 

Generally speaking, the consistency of a. database is mea.- 

sured relative to the effect of a serial execution of a set of 
transactions on a state that is assumed to be consistent (i.e., 

the serializability condition), and relative to a set of con- 
straints that limit the space of legal da.tabase states. In the 
rest of this section we assulne that the serializability con- 

diGon is satisfied, and therefore, consistency is in the con- 
text of constraints only. Constraints ca.n be non-temporal, 
i.e., they refer to any valid time sna.pshot, or temporal, i.e., 
they refer to particular snapshot(s). It is assumed that con- 
straints can be compiled into rules that enforce them. Note 
that these rules can also derive da.ta items. 

In order to characterize the actions of rules in a tem- 
poral database, there is a need to distinguish between a 
database state and a sna.pshot. The following definitions 
refer t,o a bitempod database, i.e., a. database that sup- 
ports both transaction a.nd valid times. We use the term 
system time to refer to the time values generated by the 
system clock. It, is assumed that these time values are used 
as the domain of transaction time. Observation time refers 
to the reference point in the system time line from which the 
database state is observed. In conventional databases the 
observation point is always NOW. In temporal databases 
the observation point can be less than or equal to NOW. 
Only data objects with transaction time less than the ob- 

servation time can be seen by a query (or a transa.ction). 
We define a. few concepts needed to understand temporal 

consistency. 

Definition 4.7 Database State(t): all the values of data 
objects committed by system time t. •I 

Since we assume no overwriting of data, each state contains 
the complet(e database evolution up to time t. Moreover, 
the history of database states is kept as well, a.nd therefore 
is a history of histories (or a sequence of sequences). Note 
that data.base states are ordered by system time. 

Definition 4.8 Transaction Time Database 
Snapshot(t): t,he dat,abase state at, syst,em t,ime t. It is 
assumed tl1a.t this sna.pshot, is the sa.me for a.ny observation 
time grea.ter t1ia.n t. 0 

Note that Transaction Time Database Snapshot is t,he same 
as the da.tabase state a.t t,he specified t,ime. The reason the 
two definitions are given is that, those t,wo terms are used 
by many people wit,h different meaning. It, is convenient in 
some cont.exts to use the t.erm data.base stat,e and in oth- 
ers t,o use transaction time snapshot.. However, t.hese are 
sy11011yms. 

Definition 4.9 Valid Time Database Suapshot(tl. tz): 
the world’s sta.te (as inferred from the da.taba.se st,at.es) at. 
va.lid time 11 as observed from system time tz. f  1 can be 
either greater than or less t*lian or equal to t2 (greater t,lian 
implies that the clata values are predict.ions). 0 

At the presence of ret,roa.ct,ive or proactive updat.es. a 
snapshot characterization requires t,he specification of an 
observation point, i.e., the snapshot va.lues can be different. 
for different, observation points. Thus the va.lue of a data 
object at a given valid time is a function of the observa.tion 

time. Consequently, the consistency of the database has t.o 
be determined relative to a chosen observation t,ime. 

Definition 4.10 Temporal Consistency at The 1: ,411 
active tempora.1 dat,a.base is consistent at system time f  if for 
all valid time inst,ants t,,, a. valid time sna.pshot at, t.ime f,, 
as seen from time t (which will include all the data objects 

whose valid time interva,ls include t,, when observed from 
time t) satisfies all the rules tl1a.t are va.lid at time t,,. 0 

4.7 Real Time Constraints 

The ECA model a.llows one to ca.pture the condit,ion corre- 
sponding to the lack of completion by a deadline but not 
much more. While active databases possess the necessary 
features to dea.1 with many aspects of real-time dat.abase 
systems, the crucia.1 missing ingredient is the act.ive pursuit, 
of the timely processing of actions. 

4.8 Conclusion and Follow-on Efforts 

The overall objective of the discussions in group C was to 
identify the common infrastructure for the nest, generation 
of temporal database concepts including extensions of the 
relational data models as well as the adoption of concepts 
from object based data models. The emphasis of the dis- 
cussions was on object, based models since the participants 
felt that this is the most likely way forward. Research work 
in the areas of temporal object bases and temporal active 
databases is quite preliminary and consequently, t,he infras- 
t,ructure is less well developed here as compared nit,11 tha.t 
for temporal relational databases. 

The pa.rticipants of group Cl discussed in some detail 
the future directions of t,he work in this area. Although. 
it is too early to consolida.te, the participants felt, tha.t any 
future work on infrastructure should be linked wit,h work 
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on SQL3. The ma.in reason for that is that. SQL3 is still t.emporal dat*a.bases over file syst,ems. In these implemfw 

open for negotiation and in addition, incorporation of time Qa.tions, the meaning and interpreta.tion of t.ime is imple- 
semantics into it. will certa,inly have a major impact in the ment,ed by the user application programs rather than being 
community unlike the work in temporal rela.tional databases understood by the DBMS softwa.re itself, which is t,he goal 
and estensions of SQL-89 and SQL-92. of a. generalized t,emporal DBMS. 

Future work in this area should a.lso be linked wit(h the 
findings and conclusions reported in the next section, in or- 
der to provide t*he required performance levels necessary for 

the wide accepta.bility of temporal object dat,abase technol- 
ogy. This link was not, investigated in any detail during this 
workshop but it will certainly be a major issue for discussion 
at a future infrastructure workshop. 

A number of indexing techniques have been proposed 
tha.t claim to improve the performa.nce of search based on 
t,emporal conditions. Some are ext,ensions of t,echniques t.hat 
were originally proposed for spatia.1 indexing, whereas others 
were explicitly designed for temporal da.tabases. 

Finally, work on the glossary should incorporate concepts 
from any proposed extensions to SQL3 and agreed infras- 
tructure for tempora.1 object. databases. 

5 Group D: Implementation 

5.1 Introduction and Group Charter 

Working group D, consisting of J. Blakeley, R. Elmasri, 
S. Jajodia, V. Iiouramajian, I<. Makki, D. Peuquet, V. Tso- 
tras, and D. Wells, was concerned with the definition of sys- 
tem implementation techniques and an architecture for tem- 
poral databases. The identification of any similarities and 
differences bet,ween an architecture for a temporal DBMS 
and that for a non-temporal DBMS was one of our goals. 
Proposing a reference architecture was one of the goals of 
the group. 

A crucial aspect, of a temporal DBn4S a.rchitecture is to 
define a. standard algebra. that is well accepted for temporal 
data.ba.se operations. This would correspond (.o t,he well- 
accepted relational a.lgebra operations for representming non- 
temporal dat,abase requests. In addition, a set. of updat,r 
operations for temporal databases would be useful. These 
operations would be the ta.rget internal representa.t.ion for 
temporal queries and updates, and would serve as a ba- 
sis for such system modules as query processing and opt,i- 
mization. Unfortunately, there is no well-accepted temporal 
database algebra (there is, however, no shorta.ge of candi- 
dates [MSSla]). 

There has been little resea.rch in areas such as identifying 
concurrency control, recovery, security, and other techniques 
that would take a.dvantage of t.emporal database fea.tures. 
such as the availability of the history of data.ba.se changes. 

5.3 Baseline Architecture 

A second goal was to identify a suitable model, or mod- 
els, for representing temporal databases a.t the storage level. 

Such a model would be neLded for discussions on several sys- 
tem modules, such as query optimization, it was argued. As 
it t,urned out, our discussions led us to change this opinion. 

A third goal was to identify which aspects of a. t,emporal 
database, if any, need to be identifiable at the storage level; 

for example, whether such time dimensions as valid and 
transaction time would need to be explicitly represented at 
the storage level. 

After heated discussion, there was genera.1 agreement t.hat. 
the architecture of a tempora.1 DBMS should not differ dras- 
tically from that for a non-temporal DBR4S. In particular. 
it seems that at the physical storage level (i.e. disk pa.ges). 

data can be stored as byte strea.ms as for non-t.emporal 
databases. However, we did not have enough time to dis- 

cuss the impact of time on concurrency cont.rol, recovery. 
and security mechanisms. We mainly were considering t.he 
system modules for query processing and optimiza,tion. 

The fourth goa.1 was to identify a number of system mod- 
ules (query optimization, concurrency control, security, etc.) 
and to determine preliminary requirements for each of these 
modules. 

Finally, we wanted to discuss what are typically temporal 
da.tabase applications in preparation for the specification 
of performance benchmarks. These benchmarks would be 
used to compare proposed indexing and storage structures 
for temporal databases. 

5.2 Current Status of the Field 

Only a. few generalized temporal database management sys- 
tems have been implemented. The TQuel prototype [AS861 
is perhaps the best known. However, because many applica- 
tions of databases are inherently temporal, there ha.ve been 

countless implementations of ad-hoc temporal databases 
t,hat, either utilize existing commercial DBMSs or tha,t build 

Our baseline architecture consists of four main modules. 
At the lowest level, a storage system exists, which stores 
persistent data in disk pages. This level could use esist.- 
ing storage systems, such as EXODUS or the UNIX file 
system. Stored objects are retrieved as byte streams, and 
interpreted as objects a.t a higher level of the system based 
on the information stored in the system catalog. We could 
not agree whether the basic storage model should be based 
on tuple versioning, attribute versioning, the use of deltas, 
or a combination of these techniques. At. the stora.ge level. 
data records can be clustered for efficient access. For ex- 
ample, the partitioning of storage into a current store and 
history store could be used. Indexes to loca,te rela.ted da.ta 
or to search based on time conditions, attribute va.lues, or 
a combination of both, could be built. 

Above the storage level, there would be a. number of 
higher level modules. One module would include an exten- 
sible library of available execution algorithms is proposed. 
Another module that, contains a. libra.ry of a.vailable index 
structures would be accessible by some of the execut,ion al- 
gorithms. The execution algorithms would be va.rious im- 
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plementations of the high-level temporal database opera- 
tions. A query optimization module would create an execu- 
tion strategy for a temporal query by choosing the appro- 
priate options from the esecution algorithms library. With 
reference to the conceptual architecture shown in Figure 1, 
these two lower levels (storage system, query optimization 
and evaluation) correspond to the representational side of 
that figure. 

Standard modules such as query parser would create an 
internal query representation, which would then be opti- 
mized by the query optimizer (query pa.rsing and logica. 
query optimization corresponds to t,he right middle of Fig- 
ure 1, concerned with the (single) conceptual data model on 
which the temporal query language is based. 

The issue of which set of formal operations to use in 
representing and optimizing temporal queries was not re- 
solved. There were two main points of view. The first was 
that we should extend the standa.rd relational algebra oper- 
ations with the interva.1 algebra [A11831 so that we can pro- 
ceed with prototype implementations and analysis of various 
optimization methods, indexing techniques, and execution 
algorithms. The second point of view was that we do not 
fully understand how temporal databases differ from non- 
temporal ones, and that we should examine new algebras 
developed explicitly for temporal databases. The conclusion 
was that we should proceed in both directions, with some re- 
searchers taking the first shorter-term approach, while oth- 
ers pursue a possible long-term better solution. 

The indexing module should be extensible. Thus, new 
indexing methods would be added to the library as they 
become implemented. For each indexing method, the spec- 
ification of the storage model that it, is compatible with, 
as well as the execution modules that can use it, and cost. 
estimate functions for use by the optimizer, must be given 
when it is added to the index library. 

5.4 Performance Benchmarks 

Performance benchmarks to compare various proposals for 
temporal index st,ructures and search techniques are needed. 
We agreed that there is probably no typical temporal 
database application, so that it would be necessary to cre- 
ate a number of benchmarks for different applications. The 
following characteristics should be considered when design- 
ing a temporal benchmark: database size, frequency of up- 
dates, archiving characteristics, presence of retrospective 
updates, and query characteristics. The metrics to be mea- 
sured by a benchmark include the space consumption by in- 
dexing and storage structures, the update time, the archiv- 
ing/migration time, and access times for different types of 
queries. 

5.5 Extensible Query Processing Architec- 
ture 

We further discussed the query processing architecture for 
temporal databases aad agreed tha.t it should support ex- 
tensibility at various levels. At the algebra level, the ar- 
chitecture should support. the use of different algebras; for 

esample, a relationad algebra estended with Allen’s interval 
algebra, or one of t,he many algebras proposed by tempo- 
ral database resea.rchers. The set of execution algorithms 
in the execution algorithms library should also be extensi- 
ble. New search techniques can be incorporated by a&&g 
their implement.ations and descriptions to the library, along 
with cost estimation formulas to be used by the optimizer. 
The optimization algorithms themselves may be changed by 
basing them on different para.digms, such as dynamic pro- 
gramming or bra.nch and bound. 

This organization is consistent with the trend towards 
open architectures. 

5.6 Conclusion and Follow-on Efforts 

In summary, our group recommends that the architecture 
for temporal databases be based on similar archit,ectures for 
non-temporal databases. The emphasis is on flexibility so 
that various query optimizers, execution algorithms, index 
techniques, and storage models could be supported. We 
recommend two levels of future investigation: short term 
and long term. 

For the short term, we should examine in more deta.il 
the suggested framework for temporal query processing and 
optimization. The proposed system modules and their in- 
teractions should be further specified. We recommend t,hat. 
a.n algebra for internal representation of t(empora.1 queries be 
developed based on extending the existing relational algebra 
with temporal operations. Research to optimize t.emporal 
queries based on this algebra. would then proceed. A library 
of execution algorithms and a library of indexing methods 
that can be used to implement the operations of this a.l- 
gebra would be needed. The characterization of a number 
of benchmarks for various tempora.1 database applications 
is needed to be able to compare various optimization tech- 
niques and indexing methods. 

For the longer term, we recommend tha.t research con- 
tinue in identifying whether or not there are more significant 
differences between temporal and non-temporal databases. 
The use of proposed t.emporal algebras that, are more inde- 
pendent from the relational algebra as a basis for system 
implementation should be investigated. The impact of tem- 
poral databases on concurrency control, recovery, security, 
and other system modules should be investigated. 

6 Conclusions 

This workshop was the first opportunity for those active in 
temporal databases to meet and discuss the common aspects 
of extant ideas and proposals. The workshop was unusual in 
that the topics of discussion were not new results of resea.rch, 
nor recommendations for future research, but, ra.ther which 
results of previous research could be identified as common 
infrastructure. 

The preceding four sections each enumerate specific con- 
tributions to an infrastructure for temporal databases. 
There were several common threads that ran through many 
of these individual group discussions. 
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l The znfrastructure must be bused on a core set of desked 
features. so that most temporal applications recezue at 
least some support from the temporal DBMS. 

Applica.tions demand a wide variety of temporal 
da.ta.base fea.tures, from storage of timestamps through 
t,emporal .ioins through support for relative time (in 
which only the relative ordering of events is known), 
through full-fledged temporal reasoning. Because of 
this diversity of requirements, the infrastructure should 
only include those aspects tha.t support a significant 
fract.ion of the applications, and that are fairly well un- 
clerst,ood. 

l Terminology is critical. 

As time is such a prevalent aspect of data, and indeed 
of life in general, it is natural that different spheres 
of activity would come up with different terms for the 
same concept (e.g., an airplane trip from New York to 
Paris is a “macro-event” to some and an “interval” to 
ot,hers) and identical terms for different concepts (e.g., 
an “event? to some is simply a position on a time line, 
whereas to others it is an occurrence of something in- 
teresting). Much effort was invested to develop a well- 
defined glossary of relevant terms. 

l Aspects of the conceptual model must be separated from 
concerns of the representation. 

This separation proved to he beneficial in severa. of the 
discussions: it enabled the issue of performance to be 
separated from the issue of semantic integrity. Particu- 
larly in databases, performance is seen as all-important, 
with other issues subjugated to a. lesser status. Sev- 
eral of the groups made explicit distinction between the 
semantics of t,he data, as expressed in the conceptual 
model, from the encoding of the data, as expressed in 
a. representational model. 

l The baseline architecture must be extensible, and must 
identify what is different about a temporal DBMS, and 
what can vary between TDBMS implementations. 

The distinction of conceptual versus representational 
is incorporated into the architecture. Extensibility of 
the storage model and index library ensures that differ- 
ent representational models can be employed, thereby 
achieving high performance through the use of storage 
models and temporal indexes appropriate to the appli- 
cation. 

In addition to this report, several other components of 
an infrastruct,ure for temporal databases have recently been 
complet,ed. 

Substantial effort over the two years preceding the work- 
shop genera.ted an initial glossary that was published in the 
SIGMOD Record [JCG+92], and its impact on standard- 
izing terminology is now being felt. Christian S. Jensen 
headed an editorial board to complete the glossary. The 
glossary, conta.ining 87 terms and their definitions, appears 
in this issue. 

Also, over the six months prior to the workshop a fa.irI> 
exhausting consensus effort generated a.n initial draft of ;I 
“language benchmark” intended to be an aid in evalua.ting 
the user-friendliness of proposals for tempora.1 query lan- 
guages. Christian S. Jensen spearheaded the effort to com- 
plete “test. suite of temporal query languages”, as it is now 
called. This document is focused on SQL language exten- 
sions. 

Several other efforts contemporaneous with the plan- 
ning of the workshop also contribute to an infrastruc- 
ture for temporal databases. The first book on tempora.1 
databases [TCG+93] is a comprehensive volmue covering 
modeling, languages, and implementation aspects of t.em- 
poral data.bases. The book consists of 23 chapters tha.t. re- 
port t.he research results of leading researchers in temporal 
databases. The fifth in a series of bibliographies on tempo- 
ral databases appeared in the December, 1993 issue of .i’iG- 
MOD Record, a bibliography on spatiotemporal databases 
appeared in the March, 1993 issue of SIGMOD Record. and 

an extended version will appear in the International Jout-nal 
of Geographical Information Systems. 

Several consensus efforts were started as a. result of the 
discussions at the workshop. The glossa.ry is continuing. and 
new terms will be added as temporal databases and their 
diverse applications are better understood. The TSQL2 and 
TSQL3 language design efforts are ongoing. In particular, 
the TSQL2 language design committee has released an ini- 
tial language specification, in this issue. 
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