
Towards an Infrastructure for Temporal Databases:

Report of an Invitational ARPA/NSF Workshop

Niki Pissinou, Richard T. Snodgra.ss, R.amez Elmasri,

Index-pal S. Mumick, M. Tamer bzsu, Barbara Pernici,
Arie Segev, Babis Theodoulidis and IJmeshwar Dayal

1 Introduction

Temporal data.bases has been an active a.rea of research for
the last fifteen years, with a corpus nearing 700 papers
[Kline93]. Most d&abase conferences include at least one
paper on temporal databases (TDB). Temporal databases
are now discussed in several undergraduate database text-
books. There are perhaps one hundred researchers actively
studying temporal databases.

During that time an astonishing diversity of temporal
data models and query languages has a.risen. Most applica-
tions, whether business, engineering, medical, or scientific,
need to store time-varying data.

Surprisingly, in spite of both this substantial activity and
this pressing requirements from the user community, thete
are no widely used commercial temporal database manage-
ment systems (TDBMS). One view is that there is an em-
barrassment of riches in the TDB literature: with so many
alternative approaches from which to choose, it is safer for
a DBMS vendor not to choose than to choose an a.pproach

that ultimately yields to a competing alternative. The same
phenomenon may be occurring in TDB research. In contrast
to the flurry of activity in query languages and data mod-
els, there is a dearth of results in t,emporal database design

and temporal query optimization, in part because there is
no commonly accepted consensus data model or query lan-
guage upon which to base research and development. At a
more fundamental level, even the terminology is highly non-
standard. As an example, the terms intrinsic time, logical
time, real-world time, and valid time have all been used for
the core concept of the time at which something happened.

It was decided in early 1992 that a meeting should be held
with the objective of identifying a common infrastructure to
provide a foundation for implementation and standardiza-
tion as well as for further resea.rch into temporal databases.
Subsequently, on June 14-16, 1993, the International Work-
shop on an Infrastructure for Temporal Databases was held
in Arlington, Texas.

The workshop consisted of plenary sessions (invited talks
one day and discussions the other two days) as well as group
sessions where four working groups addressed specific issues
amenable to infrastructure.

There was a.lso substantial effort both before the meet-
ing, to prepare infrastructure proposa.ls for debate, a.nd af-
ter the meeting, to build on the insights that emerged from

the discussion. Specifically, an initial glossary of tempo-
ral database concepts and a. test suite of temporal queries
were distributed before the workshop. Both of these doc-
ument*s were amended based on the analysis and critique
of the workshop. A language design committee was consti-
tuted after the workshop to develop a consensus temporal
query la,nguage extension to SQL-92; this design also bene-
fited from the discussion at the workshop.

This report documents the discussions and consensus
reached at the workshop. The report. reflects the conclu-
sions rea.ched at the workshop in June, 1993 and further dis-
cussions amongst the group participants through electronic

mail. In preparing this report, each group coordinator as-
sembled ideas and prepared an initial draft, which was then
reviewed by a.11 the workshop participants.

The record of the deliberations of these four groups, in
the following four sections, forms t.he bulk of this report.
Each of these sections begins with the group’s charter and a
brief snapshot of the status of the field and ends with a list
of follow-on efforts. The last, section identifies the workshop
pa.rticipants. The full report’ provides more discussion and
many additional references t,o the literature.

2 Group A: Special Requirements
and Approaches

2.1 Introduction and Group Charter

Tempora.1 databases can be used in a variety of applica.-
tions. In addition to conventional applications handling ad-
ministrative data of various types, other applications such
as of logistics, scientific applications, and artificial intelli-
gence present new requirements to the tempora.1 database
community.

The working group on Special Requirements and Ap-
proaches, consisting of G. Ariav, M. Baudinet., M. Boddy,
C. Dyreson, M. Egenhofer, P. Hayes, F. Olken, B. Pernici,
and S. Sripada., with the collaboration of occasional visitors,
discussed characteristics of the different application areas,
attempted to relate terminology differing from that gener-
a.lly used in the temporal database community, and st,rived

‘The full version of this report is available as Technical Report.

91-01, Computer Science Department. University of Arizona, January.
1994. 55 pages.

SIGMOD RECORD, Vol. 23, No. 1, March 1994 35

to ident,ify essentia.1 fea.tures t.o be provicled by a t.empo-
rat database system in order t.o be usa.ble by these different,
communities as well as fea.tures and functionality for which
additional research is needed.

In the following, the basic characteristics of the differ-
ent application areas are briefly outlined, followed by an
analysis of features to be support,ed by a temporal database
management system (TDBMS).

2.2 Current Status of the Field

G. Ariav started the discussion with a. presentation based
on a set of problems from case st*udies illustrated in his po-
sit.ion paper at the workshop [AriavS.?]. Other applica.tion
domains were also considered, specifically geographical in-
formation systems (GIS), scientific applications, and plan-
ning alld scheduling applications.

an a.ttribute is defined on the integer domain, it. is not pos-
sible to insert characters as values. Obviously, more sophis-
ticated types of consistency checks ca.n be defined. Analo-
gously, there is a need for providing true temporal attributes
with a.ppropriate consistency checks, to justify the definition
of a temporal attribute. For instance. let us suppose that
Name functionally determines Sa.lary. The TDBMS should
ensure that the same nameis not associated wit.11 tow dif-
ferent salaries a.t the same time. Such integrity constraints
may be defined on attribute values that. have been specified
as valid bime attribut.es. If the temporal attribute is treated
simply as any other a.tt,ribute, there seems to be no need to
define it specifically as “temporal.”

2.3.2 Basic Functiouality

The group isolated two needs not met in current TDBMS
proposals: multiple time lines (several validity times seem
to be needed), and an undo operation of less global impact
than a rollback operation.

A common feature of applica.tions is that temporal data
are mostly imprecise and concern relative times. Ordering
relationships between events are often more frequent than a
precise location on the time a.sis of t,he events. An additional
common feature, is that t,here is a. need for merging different
databases, possibly defined on different time granularities..

A fundamental need of most users is for support of time val-
ues at many different granularities. Appropriate operations
must be supplied to perform conversions of time values be-
tween the different. granularities, and to formulate queries
and present results in a,n appropriat,e form.

A related feature is the need for a merge operation in
order to be able to work with data coming from different
databases (or relations) defined a.t different granularity lev-
els.

2.3 Features to be Supported by a TDBMS

2.3.1 General Discussion

In genera.1, there seems t,o be a ga.p between the goals as-
sumed by the temporal database community and the needs
discussed in the working group on special requirements.

Concerning times, in scientific databases and in planning
and scheduling databases it is essential to provide support
not only for times based on the time line (a.b.solute times)
but also for t,ime which are relative t,o other times. To
this purpose, the use of time variables, both for t*ime point.s
and for time entities, has been suggested (a.lternative name:
symbolic t.ime point,s/interva.l).

To define the needed requirement,s, the first, important
considera.tion is the definition of t,he boundary between the
functionality to be support,ed by the t.emporal database sys-
tem and t,hat provided by applications working with t,he
data stored in the da.tabase.

It initially seems desirable that. the TDBMS provide not
only basic functions, but also advanced features useful for
specific applications. For instance, a classical problem found
in scientific and logistic a.pp1ication.s is the “shortest path”
problem. In practice, it seems tha.t in order to provide rea-
sonably efficient access to data, it might be important to
provide some support also for t,his type of computation. A
similar related problem is that of providing recursive queries
support in relational databases.

Accordingly, appropriate temporal relationships (pos-
sibly imprecise) have to be defined a.nd supported in
the TDBMS (point-point relat,ions, interval-point, relations,
interval-interval rela.tions). However, only storage support
should be provided: reasoning on these times is considered
outside the scope of the temporal database.

Several features related t.o queries have been identified:
support for relative times (t,emporally ordered attributes),
support for aggregation opera.tors over time, and support
for temporal joins.

However, the group, decided tha.t, at least for the short
term, only basic functionality should be considered for the
purpose of establishing an infrast.ructure, provided that the
system does not become an obstacle for users to retrieve
their data.

In our discussions, the t,erm “relative time” was used in
several senses: times specified with respect to an unan-
chored rather than an anchored ordering, but, a.lso times
that were “variable” (e.g., we would consider “Easter”
as a va.riable time. dependent on context for disambigua-
tion/grounding, and “a.fter A but. before B” as a relat.ive
time specified as a position in an ordering that, is unan-
chored to a time-line);

An important consideration concerns the nature of tem- The issue of query result presentation is also important,
poral data in a temporal database. The request is for pa,r- in pa.rticular concerning the presentation of approximate a.n-
titular forms of support for dat,a. defined as temporal. This swers, and in providing a.nswers sorted according t.o a spec-
support should be a,nalogous t,o t,ha.t provided in classica. ified time dimensions, t,o increa.se readability (re-a.rranging
data.bases for predefined att2ribut,e domains. For instance, if in t,ime).

36 SIGMOD RECORD, Vol. 23, No. 1, March 1994

2.3.3 Additional Needs

A number of possible extensions t,o the a.bove basic func-
tionalit,y can be considered: definition of time-varying dat,a
t,ypes (with int.erpolat,ion functions, with associated proba-
bilit,ies. and the like) and of associated operations; definition
of composite events; associating disjoint, interva,ls wit,h da.ta.
values; and support of periodic data.

2.4 Conclusion and Follow-on Efforts

The result of this working group can be summarized by con-
sidering the following question: “Can the diverse needs of
the user communit.y be served by t.emporal data.base t,ech-
llology?"

Chara.cterizing the commonalities of the user community
is an enterprise doomed to fail, because users are many and
their needs are diverse. Nonetheless, it is an effort we at-
tempted in our group, gathering potential users from a va-
riety of disciplines. Although the group was not represen-
tative of the user community as a whole, those that were
present were knowledgeable potential users fa.miliar with,
by and la.rge, da.ta.base technology, and their ta,rget, a.pplica-
tions also involved time at a fundamental level. Yet. these
were only potentiuf users of temporal database technology,
prima.rily because of two factors.

First, no common infrastructure for temporal database
resea.rch esists. This lack of common infrastructure is detri-
mental, not only from a. research perspective, but more im-
portantly for this group, from a pure salesmanship perspec-
t.ive. Users could not. say what a temporal database is, nor
even begin to comprehend how it could be of service to
their applications. Towards this end, the glossary was im-
port.a.nt, yet a.t the sa.me time confusing. The glossary was
couched in the langua.ge of temporal database researchers.
But, as researchers in other disciplines have their own (im-
plicit) glossaries for time related concepts; the “conceptual
gap” bet(ween the two glossaries was difficult to bridge. Also,
the lack of an infrastructure document led users to look for
such in the glossary, but the glossary was not writ,ten nor
designed for such a purpose. Consequently, basic concepts
such as chronon and event remained permanently baffling,
prima.rily because there exists no “road map” to provide
users an understanding of how these terms fit together.

This raises the issue of whether the glossary should serve
as a. document for researchers a.ctive in the field or provide
a gentle introduction to temporal data.bases to researchers
and users from other communities. The consensus of the
group seemed to be that the glossary can only be written
for researchers in t,he field and that some other form or doc-
ument, should present the infrastructure and advertise the
utility of tempora.1 databases. The glossary should provide
a backdrop to the infrastructure, only giving meaning to
words that are unfamiliar to the reader.

The second factor is related to the first. The users in our
group have developed tools to meet their needs (e.g., the
geographer in our group developed a GIS). By and large,
users want t,o “extend” their tools to include support for
t,ime values. The key chara.cteristic of this extension is it,s

a.d-hoc nature. The t,ools exist. and a great. cleal of effort,
and research has been invested in crea.ting them. By and
la.rge these users are only interest,ed in providing bet,ter sup-
port, for time values or time-related processes, r&her t,han
replacing these tools with a temporal da.ta.base. In order
for t.emporal database technology to serve t,hese users. that.
technology must provide a pla.tform on which t,hese tools
can reside, without requiring substantial modification of t.he
tools themselves. Perhaps one could cha.ract,erize t,his need
by saying that users are very strongly in fa.vor of an “open”
archit.ecture.

Because time is considered an “add-on” in t,hese systems.
many of the issues discussed by other working groups for
inclusion in the infrastructure did not emerge it5 user con-
cerns. In particular, we did not discuss nor even raise ques-
tions a3 to whether SQL-92 or SQL3 should serve as a plat,-
form for an infrastructure query language a.nd dat.a model.
IJsers have their own “high-level” query langua.ge t,a.rgeted
for their a.pplications (e.g., temporal reasoner, GE, human
genome project) and any language that is capa.ble of extract-
ing time-related information (in a very primitive wa.y) would
suffice. This is not a criticism of the lauda.ble goa.ls of these
other groups, only a.n observat.ion that none of t.he users in
our group currently baqe their tools on SQL-like interfaces
or databases. The consensus TSQL2/3 effort. is certa.inly
of importance to the large community of actual da.tabase
users. But ahnost unanimously, the users in our group were
uninterested in the differences between these adterna.tives
because they already have their own query langua.ges a.nd

data models. It is an open quest,ion as to whether t,he users
wasted a temporal a.bstract data type (ADT) or something
more complex.

In essence, it. is a matter of timing. The t.emporal
da.ta.base community is somewhat late to the game due
t.o a lack of common infrastructure and working temporal
da.tabases. Consequently other players have a.lrea.dy taken
the field. If we a.re to have any impact on t.he game, as a.
practical matter, the question of how to int.egrate with es-
ist,ing tools is of primary importance and runs deeper than
SQL-integration.

Some specific user needs did emerge, aside from the
“open” architecture requirement. Let, us consider relative
time. Can it be supported by a temporal database’? Tha.t
depends on what is meant by “supported”. Certainly, a
temporal database can store such times and their associ-
at.ed constraints. Interpreting these constra.ints however is
a.nother matter, and lies in the sphere of general tempora,l
reasoners rather than temporal databases. But. embedding
a temporal database within a tempora.1 reasoner is exact,ly
what the users in our group desired. Our users had tem-
poral reasoners. They were interested in knowing whether
and how their reasoners could be seamlessly coupled witah
a temporal database. They did not expect the t.emporal
database to interpret the relative times, that would be done
by t,he reasoner. At first glance, it would seem that, t,he only
requirement for a. temporal database to “support,” rela.tive
times is the ca.pability of storing such times (as valid times)
a.nd passing “uninterpreted” times to a. higher level. Since

SIGMOD RECORD, Vol. 23, No. 1, March 1994 37

these times are uninterpreted, they should remain inert in
determining temporal keys aad norma. forms.

This is not to suggest tha.t a.ll user requirement,s can be
accommodated as easily; a user, sa.y. who desires continu-
ous times may be somewhat harder to sa.tisfy. R.ather it
suggests that the functionality of a temporal database must
be clearly and distinctly articulated before integra.tion can
take place. The above example places relat,ive times outside
the sphere of temporal databases (a widely-held viewpoint
within the community?). The line must be drawn every-
where on exactly what is and what is not, supported by a.
temporal database, perhaps furt.her dividing that support.
into core and optiona. functionality. The consensus of our
group was that user needs are diverse, consequently core
functionality should be minimized and ease of extensibility
should be maximized.

3 Group B: Extending SQL-92

3.1 Introduction and Group Charter

The working group, consisting of I. Ahn, J. Clifford,
F. Grandi, C.S. Jensen, W. Kafer, I<. Kulkarni, N. Lorent-
zos, R. Snodgrass, A. Tansel, with occasional visitors, ad-
dressed a fairly narrow but complex topic: how should SQL-
92 be extended to support time in a comprehensive fashion.
The ultimate goal is to produce a concrete laagua.ge defini-
tion that can be used by temporal DBMS researchers as an
infrastructure, incorporated into legacy (rela.tional) DBMS
products, and considered by the SQL sta.nda.rds committee.
The (quite ambitious) goa.ls of this working group were to
put into place a structure for such a la.nguage definition,
and to reduce the number of possibilit,ies t,o a small set that
ca.n be further evaluated in the coming months.

3.2 Current Status of the Field

Researchers have been prolific in developing ten1pora.l data
models and query languages, in an attempt to find the right
tradeoffs among a set of irreconcilable constraints [MSSla].
Over the last fifteen years of work, a tota. of over two dozen
temporal extensions of the relational data model have been
proposed. Approximately half of these models support only
valid time; three models support only transa.ction time; and
the remaining seven or so support hitemporal relations. The
t,emporal data models ma.y be compared by asking four ba-
sic questions: how is valid time represented (alterna.tives
include event, interval or temporal element stamping of in-
dividual attributes or tuples), how is tra.nsaction time rep
resented (alternatives include event, interva.1, three events,
or temporal element stamping of individual a.ttributes, tu-
pies, or sets of tuples), how are attribute va.lues represented
(alternatives range from atomic valued, to ordered pairs,
to triplet valued, to set-triplet valued), and is the model
homogeneous and coalesced (all four a.lt,ernatives are repre-
sented).

Most temporal data. models are pa.ired with a t,empora.l
query la.nguage proposal. Some two dozen tempora.1 rela.-

tional query langua.ges have been proposed, including seven
extending the relational a.lgebra, five extending Quel, seven
extending SQL, and a few being based on other formalisms.

Support for time in conventional data base systems (e.g.,
[TC83, OC87]) IS entirely at the level of user-defined time
(i.e., attribute values drawn from a temporal domain).
These implementations are limited in scope a.nd are, in gen-
eral, unsystema.tic in their design [Date88, DWSO]. The
standards bodies (e.g., ANSI) a.re somewhat behind the
curve, in that SQL includes no time support,. Date and time
support very similar to tha.t in DB2 is included in t.he SQL-
92 standard [MS93]. SQL-92 corrects some of t.lie incon-
sistencies in the time support provided by DB2 but. inherits
its basic design limit*ations [SS92]. The SQL3 dra,ft. proposal
contains no additional temporal support. over SQL-92.

3.3 Level of Language Support

The primary realization to come out of the workshop was
that there were three fundamental viewpoints on how time
should be incorporated into SQL. In the following, we
present each of these viewpoints, along with some of their
supporting arguments.

The first viewpoint argues that the SQL data model is
already quite close to having the support required by 6em-
poral applications. The additiona. support that is necessary
is primarily in the algebraic operators and to the syntax of
the language. A concrete realization of this viewpoint is the
IXSQL proposal, which extends SQL with a generic Enter-
ml data type (of course, t,he focus here is on int.ervals of
time). The data model is identical to that of SQL, with the
a.ddition of DATEINTERVAL. The algebra for this language
is a.n extension of the relational algebra, retaining the tra.-
ditional operators in an unmodified form, and a.dding two
new operators. Unfold convertjs an interva.1 into a set of
time points, with the remaining attributes duplicated for
each time point. Fold is the inverse opera.tor. In terms
of the SQL syntax, new predica.tes on intervals are defined,
and two clauses a.re added, a REFORMAT cla.use. t,o support
Fold and Unfold, and a NORHALISE clause, which can be
simulated with the REFORMAT clause.

Several advantages accrue from this approach.

l Since interva.ls are generic, and can thus be defined over
any metric, this approach naturally supports spatial
and spatiotemporal databases.

l Since the extensions to SQL are minima.1. especia.lly
compared with other approaches, implementation is
less difficult, and a.cceptance by the user community
may be easier to attain.

l Multiple time (and other metric) intervals may easily
be incorporated.

l Every snapshot relation is also a valid valid-t.ime rela-
tion.

The second and third viewpoints share the belief that
time is a basic aspect of da.ta. and therefore should be in-
corporated in a. fundamenta.1 wa.y into the da.ta, model and

38 SIGMOD RECORD, Vol. 23, No. 1, March 1994

query language. The two viewpoints differ on the timing of
the language definitions. The second viewpoint holds that,
with SQL-92 an accepted standard and SQL3 being actively
designed, there is no sense in est,ending SQL-92. Instead,
efforts should be directed towards adding time to the SQL3
proposal, yielding perhaps a temporal query language stan-
dard in the 1995-1996 t*ime frame.

Several advantages have been stated of a single SQL3

extension.

SQL-92 is frozen, so a.ny ext,ensions based on SQL-92
will be rendered meaningless when SQL3 is accepted.

SQL3 has several data modeling constructs, including

object orientation, which can aid in the development
of temporal ext.ensions. For example, it allows nested
relations to be simulated, thereby accommodating more
temporal data models than SQL-92.

A two-pronged approach would be difficult to coordi-
nate, and could easily result in incompatible proposals.

Research is act.ive in temporal databases, with new
ideas appearing all the time. It, is important to do
the design “right,” or we will be saddled with a poor
design, with no opportunity to change it (we get only

one chance).

The third viewpoint favors a two-pronged approach, in
which parallel eff0rt.s would consider adding time to SQL-
92 and to SQLS. The rat,iona.le is that time will be added
to the SQL standard only when there is implementation
experience availa.ble. and tl1a.t won’t occur unless there is a
consensus extension of SQL that a.dmits a straightforward
implementation without requiring SQL3 constructs.

Proponents of the third viewpoint counter with advan-
tages of their approach.

l SQL-92 provides a stable basis on which to do language
design; SQL3 is constantly changing.

l Designing an SQL3 extension will not impact actual ap-
plications befol:e 1997, when the first implementations
supporting SQL3 may sta.rt to appear.

l Should estension of only SQL3 proceed, there is the
chance that a vendor will go ahead and implement tem-
poral support now, in an ad hoc fashion, which the
SQL3 standard will be forced to incorporate (as hap
pened with user-defined time).

l The SQL3 standa.rds bodies will not be interested in
fundamental time support until users clamor for it, and
until a commercial, relational DBMS (or perhaps two
such systems) supports time.

These three viewpoints are clearly in conflict. However,
each has its vocal proponents, marshaling strong technical
arguments to advocate their position. The disparity be-
tween these distinct. viewpoints offers one explanation as
to why there has not, been greater consensus in the field.
Clearly, it is difficult t.o arrive at a single data model when
t,here are fundament,a.l disagreements concerning even the
extent to which time should be incorporated in the model.

3.4 Desired Functionality

Much of the discussion of the working group was devoted
t.o determining the functiona.lity that is desired in a tern-
poral query la.ngua.ge. We now list the aspects discussed.
We refer to an extension of SQL (-92 or 3) as T.~QL. for
convenience, keeping in mind the diversity of opiuion listed
in the previous section.

There have been three t,ypes of time that may be used in a
t,emporal database: user-defined tense, valid time, and t~zs-

Cd011 ti?JW [SA86]. u ser-defined time has garnered support

in most commercial DBMS’s (and is present in t,he SQL-
92 standa,rd), and transa.ction time is supported in some

object-oriented da.tabases (as version identifiers) and one
relationa. database (Montage). However, the range of a.p-
plications that could use va.lid-time support (most applica-
tions, in fact), as well as those that could use support, of
all three kinds of t.ime (which is not the majority of a.p-
plications, but certainly a sizable portion), dictates that a.
bitemporal extension of SQL is warranted.

At the same time, it is important to support legacy ap
plications. Hence, temporal support should be optional in
both the schema and in the query language. This require-
ment translates into the ability to specify snapshot rela-
tions (for which no temporal support is required), as well
as valid-time, transaction-t,ime, and bitemporal relations in
t,he CREATE TABLE statement. It also implies that queries
should be able to include multiple types of relat,ions in the
FROM clause, and evaluate to multiple types of relations. For
example, it should be possible to compute via SELECT a
snapshot relation from a bit*emporal relation.

The extension to SQL should be upward compatible. Ex-
isting SQL queries should remain valid in TSQL. Query lan-
guage reducibility is also important: an SQL query, evalu-
ated on a temporal database as a TSQL query, should result
in a temporal relation, which, when timesliced at a pa.rt.ic-
ular time, yields the same snapshot relation that results

when this same query is evaluated as an SQL query on the
timeslice of the temporal database at the same t.ime. This
property ensures that. user’s intuition concerning SQL will
transfer over wholesale to TSQL.

Some data model proposa.ls require that the underlying
valid time domain extend only to now. Other data models
support future time. (Note that transaction time, on t,he
other hand, is never allowed to extend past now: it is im-
possible to know entirely accurately what will be stored in
the future in the database). Planning applications require
future time support; hence, it should be present in the data.
model for TSQL.

The controversy of discrete versus continuous time sur-
faced in several working group discussions, as well as the
workshop plenary sessions. As this topic has been discussed

for literally thousands of years by philosophers, mathema.ti-
cians and physicists, it is understandable tha.t the intrica-
cies of this dichotomy would not be fully resolved in t,his
workshop. Nevertheless, this working group agreed tha.t the
representation (as opposed to the conceptual model) should
be discrete. Gio Wiederhold invoked a useful analogy of real
numbers and their representations. While floating point

SIGMOD RECORD, Vol. 23, No. 1, March 1994 39

numbers in computer programs can be concept,ua.lizecl by
programmers as real (i.e., continuous) numbers, their rep-
resent5ation must necessarily be discret,e. The sa.me should
hold for timestamps in TSQL’s da.ta model.

A more restricted incarna.tion of t,his issue is t,he dist,inc-
t*ion between open and closed int,ervals. An open interuul,
generally denoted as [a., 6), where a. and b are timest.amps,
contains the time between (I. and 6, as well as t,he time in&ant

n, but. not the t,ime instant b. Conversely, the closed Inter&
[a, 61 contains the instant b. In a. discret.e representation,

[a, 6+1) - [a, 61; in a continuous model of time, t,here is no

successor t,o 6. and so the two a.re not. compara.ble. At, t.he
representat,ion level of TSQL, which uses discrete t,ime, t.he
distinction is not important. At the language level, which
the user can pretend is based on continuous time, the lan-
guage should support. both open and closed interva.ls in the
present,ation (input and output) of temporal values.

The final issue discussed at length was that of trrzyrouped
versus grouped completeness. These terms were presented
by James Clifford at the workshop, based upon his previ-
ous research [CCT93]. In this work t*he authors a.ttempt to
contrast those models which employ tuple-time-stamping,
which they term temporally ungrouped, a.nd those which
employ complex attribute values bearing the temporal di-
mension, which they t,erm temporally grouped. Aft.er defin-

ing canonical versions of these two types of data models,
ca.lled MTu and MTG, respectively, they present logic-based
query languages for each of them a.nd propose them as Stan-
dards for measuring the expressive power of query languages
for such models. They further demonstrate that the grouped
models are more expressive than t.he ungrouped models, but,
define a precise, though cumbersome, technique for extend-
ing a temporally dngrouped model, by means of a group
surrogate, in such a way as to extend its expressive power
t,o that of the temporally grouped complete models. In sur-
veying some (but by no mea,ns a.11) of the models that have
appeared in the literature, they demonst,rate the following:
(i) several algebras a.nd calculus-based query languages are
ungrouped complete, (ii) the calculus Lh is, by t,heir def-
inition, grouped complete, and (iii) to their knowledge no
algebra has been shown to be grouped complete.

While the expressive power of ungrouped complete was
generally accepted as a desirable property for TSQL, there
was considera.ble discussion concerning grouped complete.
The benefit of grouped complete is that it supports a rather
strong notion of the “history of an attribute,” called a his-
tory in the Glossary. For example, one can t.a.lk about
“John’s salary history” as a single object, and ask to see
it,. or define constraints over it, etc. I f the data model and
query language are not grouped complete, then the salary
history will be lost unless the key (here, the name) is always
ret.ained, which places a burden on the user. Ungrouped
models also generally require some kind of time-invaria.nt
key to identify entities in the niiniworld being modeled by
the database, whereas “histories” are supported directly in
grouped models without any need for time-invariant keys.

The primary concern raised by some members of the
working group was one of implementability. It was pointed

out. tha.t no ilnplementa.tion of a grouped model exists, but
this was countered by the observation tha.t few of t.hc pro-
posed models of any ilk have been implement,ed. A for-
mal ma.pping of a grouped complet,e data. model onto all
ungrouped complete model, via syst.em-ma.intaiiied surro-
gates, has been given. However, it was pointed out tha.t
t,his mapping has never been implement,ed, a.nd the concern
was ra.ised that implementing joins in this a.pproa.ch appea.rs
t,o some to be difficult,.

The working group members fell into t.wo camps. One
position was tl1a.t the lack of a.n existing SQL est.ension def-
inition that was grouped complete, as well as t,he la.ck of
any implementation experience with grouped complete data.
models, rendered this requirement of grouped complete too
risky to incorporate into TSQL a.t this t.ime. The other
position held that the ultimate a.im was to ma.ke life eas-
ier for the user, even if it complicated Ihe implementation,
and thus grouped complete shoulcl be a. requirement of the
model.

This discussion can be exa.mined in light of the three
viewpoints presented earlier. The first viewpoint. minimally
a.dapt the data model to support. time, fa.vors neit,her un-
grouped nor grouped complete, as both of t,hese distort, t,he
original relational model to t,oo grent a. degree. The second
viewpoint, that only SQL3 should be ext,ended, is comfort,-
able with grouped complete. The third viewpoint,, advo-

ca.ting definition of both TSQL2 a.nd TSQL3, was genera.lly
comfortable with TSQLS being grouped complete, but. not.
so wit,11 TSQL2.

3.5 Separation of Concerns

As previously mentioned, there a.re now over t.wo dozen tem-

poral data models, each with one or more associated query
langua.ges. While such a diversit.y of approa.ches is a reflec-

t.ion of the excitement. and ferment in the area. of tempo-
ral da.tabases, it also a.t some point may become counter-

productive.
Focusing on data semantics (wha.t is the meaning of the

data stored in the data model), data presentation (how tem-
poral data. is displayed to t,he user), on da.ta. storuge (what
regular storage structures can be employed with t#empora.l
data), and on efficient query evaluation, has complicated the
primary task of capturing the t,ime-varying sema.ntics. The
result. has been a plethora of incompatible data. models and
query languages, and a corresponding dearth of data.base de-
sign and implementation strategies that ma.y be employed
across these models.

The previously proposed data models a.rose from several
considerations. They were a.11 extensions of the conventional
relational model that attempted to capture t*he time-varying
semantics of both the enterprise being modeled and the state
of the database. They attempted to retain the simplicity of
the relational model; the tuple-timestamping models were
perhaps most successful in this regard. They attempted to
present all the information concerning an object in one tu-
ple; t.he attribute-value timestamped models were perha.ps

best at that. And they a.ttempted to ensure ease of im-
plementation and query eva.luation efficiency; the backlog

40 SIGMOD RECORD, Vol. 23, No. 1, March 1994

representa.tion may be a.dvantageous here.

Most proposed models aim at being suit,able for data. pre-
sentation, for data. stora.ge, and for capturing the temporal
semantics of dat,a. Seen solely as mea.ns of capturing the
temporal semantics, such models exhibit, presentational and
representat.ional anomalies because they encode the tem-
poral semantics in ways that are more complicated than
necessary. Put, differently, the time-va.rying semantics is ob-
scured in the representation schemes by other considerations
of presentation a.nd implementa.tion.

It is clear from the large number of proposed data mod-
els that meeting all goa.ls simultaneously is a difficult, if
not impossible, t,ask. We t,herefore advocate a separation of
concerns, i.e., adopting a. very simple conceptual data model
that captures the essentia.1 semant.ics of time-varying rela-
tions, but has no illusions of being suitable for presentation,
storage, or query evaluation. Proposals for this conceptual
data model were discussed, but a final choice was not made.

Figure 1 places the conceptual temporal data model with
respect to the tasks of logica. and physical database design,
storage representation, query optimiza.tion, and display. As
the figure shows, logical database design produces the con-
ceptual relation schemas, which are t,hen refined into rela-
tion schemas in some reyr-esentational data model(s) during
physical da.tabase design. The query language itself would
be based on the conceptual da.ta. model. Query optimiza-
tion may be performed on the logical algebra, parameter-
ized by the cost, models of the representation(s) chosen for
the stored data, and in the algebra of the representational
model. Finally, display presenta.tion should be decoupled
from the storage representa.tion, and should be capable of
exploiting the severa. exist,ing da t.a models ha.ving conve-
nient display formats.

Note tha.t this arrangement hinges on the semantic equiv-
alence of the various data. models. It. must be possible to
map bet,ween t,he conceptual model and the various repre-
sentational models. An a.ppropria.te conceptual data model
would allow equivalences to be demonstra.ted with many of
the representational models thus far proposed. This equiv-
alence should be based 011 snapshot equivalence, which says
that two relation insta.nces a.re equivalent if all their snap
shots, taken at all times (valid and transaction), are identi-
cal. Snapshot equivalence provides one means of comparing
rather dispara.te representa.tions. However, it can be demon-
strated that a grouped relation ca.n be snapshot equivalent
to a large number of ungrouped relations, only one of which
carries the same information content. Some argued that the
notion of strong equivalence [CCT93], somewhat (but not
entirely) captured by the the t,erm “history equivalence” in
the glossary, provides a more appropriate means of compar-
ing dispa.rate representations.

3.6 Conclusion and Follow-on Efforts

As mentioned in Section 3.3, there were conflicting view-
points on a temporal est.ension of SQL. They can be summa-
rized as (a) with the a.ddit,ion of an interval data type, there
will be sufficient, support. in SQL2/3’s da.ta model to support
applica.tions using temporal data.; (b) a t,wo-pronged effort

should be init,ia.ted, t.he first, being a. short-t,erm effort t,o
define a t.empora1 extension t.o SQL-92 and t.he second be-
ing a long-term effort t.0 define a. comprehensive extension
to SQLS, and (c) t.emporal support. should be a.dded, but
only SQL3 should be extended. Whatever the approach.
it was a.greed that the temporal data model underlying the
la.ngua.ge be designed solely in terms of its sema.ntic proper-
t,ies, with distinct. and possibly multiple data models being
employed for representation and presentation.

4 Group C: Advanced Temporal
Databases

4.1 Introduction and Group Charter

The overall objective of the discussions in working group

C, consisting of A. Buchmann, S. Chakravarthy, T.-
S. Cheng, I<.. Dittrich, S.K. Gadia. T. Lawson, I.S. Mu-
mick, M.T. Ozsu, N. Pissinou, I<. Ral~amritham, A. Segev,
M. Soo, S. Su, B. Theodoulidis, and G. Wuu, was to iden-
tify the common infrastructure for the next generation of
temporal database concepts including extensions of the re-
lational da.ta models as well as the adoption of concepts
from the semantic and object-orient,ed data models.

While it is true that the ma.jority of t,he work on tem-
poral databases has been in the cont.ext of the relational
data model, a number of a.pproa.ches based on semant.ic
da.ta models, such as t,he entity-relat.ionship, infological and

object da.ta models, ha.ve appeared in the literature. The
motivation behind all of these a.pproaches is that, the re-
lational data model is considered t.o be insufficiently ex-
pressive for comples database a.pplications such as multime-
dia, executive information syst.ems. computer-aided design
(CAD), computer integrated manufacturing (CIM), and ge-
ographicad informa.tion systems (GIS). These a.pplications
have strong requiren1ent.s to model t,he temporal or spa.tio-
temporal relationships bet*ween object,s. Therefore, “tempo-
rality” is an important (even if not int.egral) part of the next,
generation of database systems. Another t.rend t,hat. start.ed
in the 1980’s is the incorporat,ion of constra.ints, triggers,
and rules in relational aad object-oriented da.tabases. Work
in this area. is concerned with a.ctive t.emporal databases and

was considered at the group discussions.
In view of this, the overall objective of the discussions

in group C was to identify a common infrastructure for
the next generation of temporal databases, including exten-
sions to the relationa. data model and object,-based models.
These issues were discussed in two subgroups, then int.e-
grated in plenary sessions of group C. S.ubgroup Cl, con-
sisting of S.K. Gadia, T. Lawson, M.T. Oszu, N. Pissinou,
S. Su, B. Theodoulidis and G. Wuu, addressed data mod-
eling concepts, time concepts and t,he incorporation of time
into the next genera.tion of tempora.1 databases, with an em-
phasis on object based models. Subgroup C2, consisting of
A. Buchmann, S. Chakra,varthy, I<. Dittrich, I.S. Mumick,
Ii. Ramamritham, and A. Segev addressed the area of active
tempora.1 da,tabases with pa.rticu1a.r reference to the notion
of t,empora.l rules.

SIGMOD RECORD, Vol. 23, No. 1, March 1994 41

Display Formats Representational Data Models

Format,

. . .

I Format n

Logical
Database

’ Design

Temporal
Conceptual

~ Data Model

1

Logical
Query

Optimization

Tuple-timestamping

Backlogs

Attribute-value
Timestamping

Sequence of
Valid-time States

Five timestamps

Physical
Database

Design

Figure 1: Interaction of Conceptual a.nd Representat.ional Data Models

The following sections elaborate on the consensus reached
for the infrastructure and the open issues and future work
that need to be carried out in order to complete the infras-
tructure for the next generation of temporal databases.

4.2 Current Status of the Field

4.2.1 Temporal 0 b ject Based Modeling

The two most prominent models that provided the basis
for the development of tempora.1 conceptual models are
the entity-relationship (ER) model [Chen76] and the ob-
ject. based model. The ER model dea.ls with the structural
component, and is founded on the notions of entit,y and re-
lationship. The object, model deals with both the structura.1
and behavioral components and is founded on .the notions
of object, structure and behavior (method). Furthermore, a
number of approaches include notions like Event-Condition-
A&ion (ECA) rules that deal with the constraint compo-
nent. Severa. approaches of introducing time into an object
based data model were discussed. The group isolated three
ma.in approaches: (1) to extend the semantics of a preexist-
ing snapshot, model to incorporate time directly (built-in);
(2) t,o base the new model on a snapshot model with time ap-
pearing as an additional attribute(s); a.nd (3) to move in an
independent direction, developing entirely new approaches.

4.2.2 Active & Real-Time Databases

Active databases evaluate conditions and execute actions
in response to event, occurrences (either primitive or com-
plex) according to the semantics of rule processing in ac-
tive databases. Incorporation of active capability has typi-
ca.lly been addressed with respect to a. snapshot (i.e., non-
temporal) database. A limited notion of time is used in
events (e.g., temporal events and composite events) and
for specifying deadlines (e.g., complete action prior t.o a
given time). A large body of work exists on the specifica-
tion of rules, its execution semantics, modeling of events,
and incorporating active capability into object-oriented
paradigms. [Cha92, DBB+88, MD89, WF90]

Alt.hough rules have been used in temporal databases,
there is no agreement on when a rule itself, used in a t,em-
pora.l or non-temporal database, may be considered to be

temporal. A related issue is, when does a rule require t.em-
poral support for its activation ? Further, rules often are not,
modeled in the same way as data; rules should be treated ns
first class objects, and so rules must be subject t,o the same
temporal semantics as data. The working group addressed
this new aspect of temporal rules in addition to defining rule
structure for active databases.

Work on integrating temporal and active database fea-
tures has started appearing in t,he literature only re-
cently, e.g., [GJMS93]. Some rela.ted issues have a.lso
been discussed in the context of real-time databases [BB93,
Rama934.

4.3 Next Generation Temporal Data Mod-
eling Concepts

The purpose of this discussion was to identify the key con-
cept,s of the next generation of tempora.1 data models and

languages. It was a.greed that, the next generation of t,empo-
ral data models should be an extended model, rather t.han
extensible with respect to the current generation. This im-
plies the design of the next generation of tempora.1 da.tabases
should not be limited to current solutions and approaches to
temporal modeling, nor should be an “extensible relational
approach.”

An important issue, rising from the isolation of the three
approa.ches for next generation temporal data. modeling pro-
posed in Section 4.2, concerns the role of a temporal data
model. Without clarifying this issue, it is difficult to ex-
tend the object. model to include temporality. The role of a.
tempora.1 data model is to visualize a.nd structure temporal
data, temporal information and the t,emporal relationship of
objects. In general, one of the main wa.ys of structuring and
visualizing temporal data is through the use of abstraction
at various levels of granularity. To do so, a tempora.1 model
can be discussed in terms of three distinct parts: structures,
operations and constraints. The structural component. of a
data model, dea.ls with objects and their relationships while
the opera.tiona.l/behavioral component deals with the ma-
nipulation of objects. The constraint component deals with
rules for t’he integrity of the object structure a.nd manipu-
la.tion over time.

In line with existing data modeling design principles, t,he

42 SIGMOD RECORD, Vol. 23, No. 1, March 1994

basic concepts and components identified by the group for
the nest. generation of tzempora.l data. models were classified
into t,hree broad categories: Temporal Structural properties,
Tempora.1 Operational/behaviora.l properties, and Tempo-
ra.1 Constra.int properties. Temporal structural properties
describe the objects of the applica.tion domain in terms of
their properties and t$heir relationships with other objects
(inter/int.ra object relationships) wit,h respect to time. Tem-
poral operational properties describe the behaviour of ob-
jects over time, as reflected through changes in their prop-
erties. Finally, temporal constraint, properties describe con-
ditions the object. properties must. satisfy during the object
lifespan. More specifically,

1. A tentpod object is defined as a set of one or more
t.empora.1 properties. The t3emporal properties describe
st,ruct,ural, operational and constraint characteristics of
objects over time.

2. A temporal cot&mint or rule is a database rule that in-
cludes also its validity period and is divided into three
parts namely etrent, condition a.nd action part. All
these parts may refer to time points but at least the
event or condition part do so in order for the rule to be
characterized as a tempora,l rule.

Based on these definitions, a.nd after many hours of dis-
cussions the following consensus were achieved.

l The design of the temporal query language associated
witch the above concepts should take into consideration
t,he traditional language design issues such as ease of
use, optimizability, expressiveness and implementabil-
ity.

l Schema evolution should be supported in a way that
will accommodate object persistence across schema
cha.nges. The issue of dynamic schema evolution is very
importa.nt in object-orient,ed data.bases and time sup-
port can provide approaches to deal with this issue.

l The participants agreed that the modeling of time
should be independent of the particular choice for the
data model. This means that irrespective of the data
modeling concepts, time has an ontology by itself that
needs t.o be defined and agreed upon.

l Besides the basic infrastructure concepts of the next
generation of temporal da.ta. models, it is possible to
define additional constructs for the declaration of con-
ditions/constra.ints (e.g., homogeneity) which may be
beneficial in a.pplication development.

The nest generation of temporal databases should ex-
plicitly support a rich set of time concepts. The workshop
pa,rticipants identified the following concepts as the mini-
mum set of concepts to be incorporated: bitemporal inter-
val, bitemporal span, bitempora.l chronon, bitemporal ele-
ment, bit,emporal time point, and operations on intervals,
spans a.nd t.ime point,s as well as conversion facilities between
them.

Although all the above concepts are necessary for a com-
prehensive trea.tment of time in data.baseq, the pa.rticipa.nts
singled out. t.he notions of interval, span and time point a.3
the key concepts upon which the other concepts can be de-
fined.

4.4 Active and Temporal Database Con-
cepts

To reach consensus on the subject of Active Temporal
Databases, there first, has to be a. shared understanding of
the structure of rules a.nd the definition of event. Accord-
ingly, we first provide consensus definitions of a.ct.ive rules

and events (in the contest of rule definition). We limit t,he
discussion to active rules (ignoring, for instance, deductive
rules).

An active rule is an Event-Condition-Action (EGA)
rule, where

Event E: is a basic or composite event, as defined below.

Condition C: is either (1) a. boolean expression, or (2) a
query in the da,tabase query language that results in a
TRUE/FALSE answer. The query must be side-effect
free.

Action A: is a.11 execution of a database operation or an
arbitrary applicat.ion program.

Definition 4.1 Basic Event: a pair (event occurrence,
time instant). The event occurrence is represented by some
symbol e and is ma.pped to a. time instant, t on t,he system
clock. The basic event (e, t) is said to occur a.t time t. •I

It should be noted that aa event occurs at a point in time.
Examples of basic events include begin transaction.
after commit, and before read. In fact, basic events can
be obtained from most data.base operat,ions by adding the
modifiers before or after to the name of the database
operation. External signals, and time events, such as
lf:OOam, a.re permitted as basic events. A time event is
represented by the pair (time nume, time instant), where
time name is the symbol representing the event. occurrence.
(“11:00am”, 1l:OOam on July 20, 1993) is ai1 exaiii-
pie of a basic event..

Events may ha.ve attributes. For instance, an after
insert event has information regarding t,he specific relation
updated as well as the specific tuple inserted. Such infor-

mation is an attribute of the event. In a.ddition, event at.-
tributes may include system-level information such as trans-
action id, user id, and time.

Definition 4.2 Composite Event: can be created from
basic and other composit,e events through the use of a closed
algebra. A composite event occurs at a time instant, as
specified by the closed algebra. in t.erms of t.he time instants
of component basic event,s. 0

Several algebras for composite events have been pro-
posed, e.g., ODE [GJS92, GJMSSS]). We permit simple

SIGMOD RECORD, Vol. 23, No. 1, March 1994 43

condit.ions, such as X > 10X on attribute X of an event, or
a boolean predicate on attributes of events, to be included
in the a.lgebra for composite events. Note that the boolean
predicates in a. comp0sit.e event. do not refer to items stored
in the database, and can be eva.luated from the given event..
withoub querying the database. Permitting boo1ea.n expres-
sions allows for easy specification and efficient. implementa-
tion of events such as

every ilth trade of IBM stock at price > 50

that would otherwise require complex temporal queries in
the &n&ion part. A more complex algebra may also per-
mit, predicates that, refer to database items, We assume that,
an optimizer tha.t can move such complex predicates into
the condition part would be provided, thereby making the
algebra equivalent, to the one we consider.

Both basic and composite events are usually referred to
by event5 names or event identifiers. Depending upon the
event, description, and the type of database, a rule may get
associated with one or more relations, views, or objects.
Rules can typically be inserted, deleted, updated, activated,
and deactivated by the user as well as by the system.

To summarize, for the purpose of this report, we will
assume that the event pa.rt of a rule is based on an alge-
bra, that the algebra will permit certain conditions to be
included in the event part, and that there will be a separate
Condition part, in the rule. For high-level syntax, we will
express a rule as “WHEN event IF condition THEN action”;
different syntax may be used and defaults assumed in actual
implementations. It is desirable of course to standardize on
a rule language.

4.5 Temporal Rules

Following the above definitions of rules and events, we focus
on t*he definition of temporal rules, and distinguish bet,ween
two cases: temporal rules in non-temporal databases and
temporal rules in temporal data.bases.

Definition 4.3 Temporal Active Rule: An active rule
is said to be temporal if (1) the event is a composite event
that refers to basic events occurring at time points other
than the time when the rule is fired, or (2) the event refers
to explicit time basic events, or (3) the condition contains
a temporal database query that cannot be expressed in a
non-temporal query language that can reference the basic
event (or the last basic event in the composite event that
caused the rule to fire), operating over a database that does
not maintain a temporal history. 0

Note that the a.ction is not mentioned in the definition of
a temporal active rule. The action is an arbitrary procedure,
and we will not attempt to characterize a rule based on the
behaviour of the action.

In the above definition of a temporal active rule, condi-
tions (1) and (2) may be seen as the definitions of a temporal
event, and condition (3) as the definition of a temporal con-
dztion.

4.5.1 Temporal Rules in a Non-temporal Database

In a. non-temporal da.taba.se, t,he query langua.ge is nol1-
t,empora.l, so t.he condition of a rule cannot contain a tempo-
ral query. Hence, active rules in a non-temporal dat,abase
are t,emporal if and only if (1) t,he event is a con1posit.r
event t.hat refers t,o basic events occurring at time points
ot,her t.1la.n the time when the rule is fired, or (2) the event.
refers t,o explicit t.ime basic events.

We consider bot*h these cases:

Composite events a Temporal Rules Composite
event a.lgebras enable one to relate basic events occurring
at, different points in time. One can specify simple pa.tt*erns
of such eve& that are of interest, in much the sa.me way as
a. temporal query can specify patterns of va.lues in successive
versions of relations. Composite events thus represent sim-
ple forms of temporal queries, and can provide simple tem-
poral features. Active rules using such event algebras must.
therefore be considered to be temporxd rules. The composit,e
algebras can be used in non-temporal databases, provided
mechanisms to recognize these event patterns are provided,
e.g., [GJSSS]. While we will not discuss any pa.rticular al-
gebra. in this paper, we will illustrate their rela.tionship to
temporal databases through a representative syntax.

EXAMPLE 4.1 Consider a.n inventory database in a
&ore. There is a.n invent.ory(item, amount) relation &or-
ing the amount of each item in stock. Further, a.t the end
of every month, sales statistics for the month are computed.
One of t,he statistics is the average price and quantity sold
for each item in the store during the last month.

We want to label an item as high-tech if it sold in low
quantities a.nd at high prices for three consecut,ive mont.hs
some time in the past, and has been selling in high quanti-
ties and at. low prices for the last three consecutive months.
Clearly, in a temporal database, a temporal query can be
used t,o identify the high-tech it.ems. We show how a com-
posite algebra can be used to define a temporal rule that,
la.bels items as high-tech.

Let u be an item carried by the store, and let usale(Q,
P) be an event representing the insertion of the monthly
sta.tistic “item u sold in quantity Q at average price P during
the last month”.

We first define derived events ulosale and u&sale
that represent the facts that (1) item u sold in low quant.i-
ties at high prices, and (2) item u sold in high quantities a.t
low prices, respectively, in the last month. Assume LO-QTY,
LOSRICE, HIATY, and HI_PRICE are system constants de-
fined elsewhere.

(rl): ltdef ine ulosale = usale(Q, P) && Q < LO-CITY
&& P > HIPRICE;

#define uhisale = usale(q, P) && Q > HI-QTY
&& P < LO-PRICE;;

Suppose that, when we identify an item to be high-tech,
we want t,o check if its current stock is greater than HI_QTY,
a.nd if not,, we wa.nt to pla.ce an order for an amount =

44 SIGMOD RECORD, Vol. 23, No. 1, March 1994

IiIJJTY less the currently stocked quantity of the it,em. One
may chose to write t.his as follows (the syntax below is for
purpose of illustration only, we are not. promoting t,his syn-
tax. For instance, in a real language, one would have higher
order constructs to represent repetition).

(~2): WHEN sequence(ulosale, u-losale , ulosale)
follovedby
sequence (u&sale, uhisale, uhisale)

IF (SELECT amount
FROM inventory
WHERE item = ‘u’ AND amount < HI-QTY)

THEN orderou’, (HIJTY - amount));

The WHEN part of t,he active rule uses two con+
posite algebra operators: sequence and f ollowedby.
sequence(u-losale, ulosale, ulosale) is a compos-
ite event that occurs when a sequence of three consecutive
ulosale events occur, at the point when the last ulosale
event in the sequence occurs. The composite event (u
followedby 6) occurs if the event b occurs somet,ime af-
ter event a has occurred, at the point in time when event 6
occurs. So, the composite event in the WHEN clause occurs
at the point in time when t,he third month’s high sale figure
is reported, and at some t*ime in the past, three consecu-
tive low sale figures were posted. The IF part of the rule
is a condition that checks if the given SQL query returns a
nonempty answer. In case it does, an order is placed for the
difference between HIJJTY and the amount returned by the
SQL query. 0

The active rule ~2 is considered to be a. telnporal rule
because it can be mapped to an equivalent rule where the
WHEN clause contains basic events, and the IF clause con-
tains a temporal query, providing such a query was per-
missible in the system. For example, if the WHEN part
was limited to basic events, then it would contain the event
uhisale: and the IF part would need a temporal query
that refers to old versions of a sales relation. We assume
here that the sales relation only keeps the average price and
total quantities for the last one month. Since an active rule
t,hat has a tempora.1 query in the condition part and a. basic
event in the event part would definitely be called a temporal
rule, we must also consider t*he equivalent rules of t,ype ~2
as temporal.

One may want, to enhance Example 4.1 to:

1. Require that the sequence of u-losale events be fol-
lowed by the sequence of u-hisale events within one
year.

2. Check whether the current inventory amount is less
t,ha,n the sum of the last two mont,hs sales, and if so,
to order the difference between the sum of the last two
months sales and the current amount in the inventory.

3. Rather than writing a separate rule for each item that
one wants to track in a similar fashion, write one active
rule to track all such items.

These enhancements require that events have att,ributes,
and that attributes of events be passed across t,ime, t,o other
events, and into the condition and a.ction part [GJMS93].

Explicit Time Events 3 Temporal Rules The event,
ca,n contain explicit reference t,o times, such as at “1 l:OOanl
on Jan 26, 1950”. A calendar alyebrn can be defined to
refer t.o time events at. a higher level, such as “3rd Friday
of a. month”. In either of the above cases. we say t.hat the
event refers to basic time events, so the active rule is tem-
poral. Such basic time events can be used like any other
basic events in defining composite events using a composite
algebra..

An esample of a temporal rule using basic time
events is, “WHEN every 10 Minutes IF condition THEN
Evaluate(Portfolio)“, where Evaluate is a. user-defined
procedure that is applied to the na.med object. (condition
may be any condition on the cla.ta.base states).

4.5.2 Temporal Rules in Temporal Databases

From the definition of temporal rules, it follows that an ac-
tive rule in a temporal database is nontemporal if t,he event.
is basic and the condition contains a. non-temporal query
that could be expressed in a non-temporal query language.
All other rules in a temporal data.ba.se are called temporal

rules. Thus, rules tha.t would be considered temporal in a
non-temporal database. are also considered tempora.1 in a.
t,emporal database.

Further, both temporal and non-temporal act.ive rules
can be be viewed as first class database ob.jects. This means
tha.t the history of rules should be kept,. Ea.ch rule is associ-
a.ted with transaction and va.lid times. Transaction t.ime is
the time when the rule was recorded in the database. Valid
time represent the time point.(s) when the rule is applica.-
ble, i.e., checked for activat,ion. The valid time of a rule
can be specified explicitly as a t,emporal element, or implic-
itly in terms of data condition(s) or t,he occurrence of some
event,(s). Activation and deactivation of rules is achieved by
changing their valid time.

There are two basic alternat.ives for modeling the history
of rules. In the first way, t.he rule is considered as a sin-
gle unit, and thus, a change to one of the components is
regarded as deletion (note: in t,he t,emporal data.base case,
deletion of a rule amounts to indefinite deactivation) of the
rule and the addition of a new rule. In the second way, a.
rule is considered to be a complex object and the history
of the individual components is maintained, that is. we can
represent different versions of the same rule.

4.5.3 Actions of Rules in Temporal Databases

When a rule is activated, and the condition evaluates t*o
true, the action part of the rule get,s executed. In a. t,emporal
database, the a.ction ca.n include a.ny upda.te t,o t,he dat,abase,
including updates to past or fut.ure va.lid times of data items.
Such updates are called ret,ro-active and pro-act*ive updates,
respectively.

If proa.ctive or retroa.ctive updates are allowed in a tem-
poral database, rules can effect, data in several ways. We will
elaborate on the retroactive case only; dealing with proac-
tive updates is similar. In [EGS93a] the following charac-
t,erizatioii of retroa.ctive effects is given In the following

SIGMOD RECORD, Vol. 23, No. 1, March 1994 45

definitions, “past,” is measured relat,ive t.o t,he t,ime of the
operat,ion or t.riggering of a rule:

Definition 4.4 Retroactive Update: an update opera-
tion that modifies pa& values of data. elements. q

Definition 4.5 A Retroactive Rule: a rule whose action
includes a. retroa.ctive upda.te. •I

Definition 4.6 Retroactive Rule Activation: the ap-

plication of a rule to past snapshots. 0

These definitions indicate tha.t rules ca.n effect data. retroac-
tively in two main ways: due t,o retroactive rules, or due
to retroactive activation of rules. The latter case can oc-
cur for two reasons: 1) a rule is introduced in the system
with a valid time tha.t includes past time interval(s), or 2)
a retroactive update occurred, and the updated data ele-
ment(s) trigger a rule which was valid at, that past time.

4.6 Temporal Consistency

Generally speaking, the consistency of a. database is mea.-

sured relative to the effect of a serial execution of a set of
transactions on a state that is assumed to be consistent (i.e.,

the serializability condition), and relative to a set of con-
straints that limit the space of legal da.tabase states. In the
rest of this section we assulne that the serializability con-

diGon is satisfied, and therefore, consistency is in the con-
text of constraints only. Constraints ca.n be non-temporal,
i.e., they refer to any valid time sna.pshot, or temporal, i.e.,
they refer to particular snapshot(s). It is assumed that con-
straints can be compiled into rules that enforce them. Note
that these rules can also derive da.ta items.

In order to characterize the actions of rules in a tem-
poral database, there is a need to distinguish between a
database state and a sna.pshot. The following definitions
refer t,o a bitempod database, i.e., a. database that sup-
ports both transaction a.nd valid times. We use the term
system time to refer to the time values generated by the
system clock. It, is assumed that these time values are used
as the domain of transaction time. Observation time refers
to the reference point in the system time line from which the
database state is observed. In conventional databases the
observation point is always NOW. In temporal databases
the observation point can be less than or equal to NOW.
Only data objects with transaction time less than the ob-

servation time can be seen by a query (or a transa.ction).
We define a. few concepts needed to understand temporal

consistency.

Definition 4.7 Database State(t): all the values of data
objects committed by system time t. •I

Since we assume no overwriting of data, each state contains
the complet(e database evolution up to time t. Moreover,
the history of database states is kept as well, a.nd therefore
is a history of histories (or a sequence of sequences). Note
that data.base states are ordered by system time.

Definition 4.8 Transaction Time Database
Snapshot(t): t,he dat,abase state at, syst,em t,ime t. It is
assumed tl1a.t this sna.pshot, is the sa.me for a.ny observation
time grea.ter t1ia.n t. 0

Note that Transaction Time Database Snapshot is t,he same
as the da.tabase state a.t t,he specified t,ime. The reason the
two definitions are given is that, those t,wo terms are used
by many people wit,h different meaning. It, is convenient in
some cont.exts to use the t.erm data.base stat,e and in oth-
ers t,o use transaction time snapshot.. However, t.hese are
sy11011yms.

Definition 4.9 Valid Time Database Suapshot(tl. tz):
the world’s sta.te (as inferred from the da.taba.se st,at.es) at.
va.lid time 11 as observed from system time tz. f 1 can be
either greater than or less t*lian or equal to t2 (greater t,lian
implies that the clata values are predict.ions). 0

At the presence of ret,roa.ct,ive or proactive updat.es. a
snapshot characterization requires t,he specification of an
observation point, i.e., the snapshot va.lues can be different.
for different, observation points. Thus the va.lue of a data
object at a given valid time is a function of the observa.tion

time. Consequently, the consistency of the database has t.o
be determined relative to a chosen observation t,ime.

Definition 4.10 Temporal Consistency at The 1: ,411
active tempora.1 dat,a.base is consistent at system time f if for
all valid time inst,ants t,,, a. valid time sna.pshot at, t.ime f,,
as seen from time t (which will include all the data objects

whose valid time interva,ls include t,, when observed from
time t) satisfies all the rules tl1a.t are va.lid at time t,,. 0

4.7 Real Time Constraints

The ECA model a.llows one to ca.pture the condit,ion corre-
sponding to the lack of completion by a deadline but not
much more. While active databases possess the necessary
features to dea.1 with many aspects of real-time dat.abase
systems, the crucia.1 missing ingredient is the act.ive pursuit,
of the timely processing of actions.

4.8 Conclusion and Follow-on Efforts

The overall objective of the discussions in group C was to
identify the common infrastructure for the nest, generation
of temporal database concepts including extensions of the
relational data models as well as the adoption of concepts
from object based data models. The emphasis of the dis-
cussions was on object, based models since the participants
felt that this is the most likely way forward. Research work
in the areas of temporal object bases and temporal active
databases is quite preliminary and consequently, t,he infras-
t,ructure is less well developed here as compared nit,11 tha.t
for temporal relational databases.

The pa.rticipants of group Cl discussed in some detail
the future directions of t,he work in this area. Although.
it is too early to consolida.te, the participants felt, tha.t any
future work on infrastructure should be linked wit,h work

46 SIGMOD RECORD, Vol. 23, No. 1, March 1994

on SQL3. The ma.in reason for that is that. SQL3 is still t.emporal dat*a.bases over file syst,ems. In these implemfw

open for negotiation and in addition, incorporation of time Qa.tions, the meaning and interpreta.tion of t.ime is imple-
semantics into it. will certa,inly have a major impact in the ment,ed by the user application programs rather than being
community unlike the work in temporal rela.tional databases understood by the DBMS softwa.re itself, which is t,he goal
and estensions of SQL-89 and SQL-92. of a. generalized t,emporal DBMS.

Future work in this area should a.lso be linked wit(h the
findings and conclusions reported in the next section, in or-
der to provide t*he required performance levels necessary for

the wide accepta.bility of temporal object dat,abase technol-
ogy. This link was not, investigated in any detail during this
workshop but it will certainly be a major issue for discussion
at a future infrastructure workshop.

A number of indexing techniques have been proposed
tha.t claim to improve the performa.nce of search based on
t,emporal conditions. Some are ext,ensions of t,echniques t.hat
were originally proposed for spatia.1 indexing, whereas others
were explicitly designed for temporal da.tabases.

Finally, work on the glossary should incorporate concepts
from any proposed extensions to SQL3 and agreed infras-
tructure for tempora.1 object. databases.

5 Group D: Implementation

5.1 Introduction and Group Charter

Working group D, consisting of J. Blakeley, R. Elmasri,
S. Jajodia, V. Iiouramajian, I<. Makki, D. Peuquet, V. Tso-
tras, and D. Wells, was concerned with the definition of sys-
tem implementation techniques and an architecture for tem-
poral databases. The identification of any similarities and
differences bet,ween an architecture for a temporal DBMS
and that for a non-temporal DBMS was one of our goals.
Proposing a reference architecture was one of the goals of
the group.

A crucial aspect, of a temporal DBn4S a.rchitecture is to
define a. standard algebra. that is well accepted for temporal
data.ba.se operations. This would correspond (.o t,he well-
accepted relational a.lgebra operations for representming non-
temporal dat,abase requests. In addition, a set. of updat,r
operations for temporal databases would be useful. These
operations would be the ta.rget internal representa.t.ion for
temporal queries and updates, and would serve as a ba-
sis for such system modules as query processing and opt,i-
mization. Unfortunately, there is no well-accepted temporal
database algebra (there is, however, no shorta.ge of candi-
dates [MSSla]).

There has been little resea.rch in areas such as identifying
concurrency control, recovery, security, and other techniques
that would take a.dvantage of t.emporal database fea.tures.
such as the availability of the history of data.ba.se changes.

5.3 Baseline Architecture

A second goal was to identify a suitable model, or mod-
els, for representing temporal databases a.t the storage level.

Such a model would be neLded for discussions on several sys-
tem modules, such as query optimization, it was argued. As
it t,urned out, our discussions led us to change this opinion.

A third goal was to identify which aspects of a. t,emporal
database, if any, need to be identifiable at the storage level;

for example, whether such time dimensions as valid and
transaction time would need to be explicitly represented at
the storage level.

After heated discussion, there was genera.1 agreement t.hat.
the architecture of a tempora.1 DBMS should not differ dras-
tically from that for a non-temporal DBR4S. In particular.
it seems that at the physical storage level (i.e. disk pa.ges).

data can be stored as byte strea.ms as for non-t.emporal
databases. However, we did not have enough time to dis-

cuss the impact of time on concurrency cont.rol, recovery.
and security mechanisms. We mainly were considering t.he
system modules for query processing and optimiza,tion.

The fourth goa.1 was to identify a number of system mod-
ules (query optimization, concurrency control, security, etc.)
and to determine preliminary requirements for each of these
modules.

Finally, we wanted to discuss what are typically temporal
da.tabase applications in preparation for the specification
of performance benchmarks. These benchmarks would be
used to compare proposed indexing and storage structures
for temporal databases.

5.2 Current Status of the Field

Only a. few generalized temporal database management sys-
tems have been implemented. The TQuel prototype [AS861
is perhaps the best known. However, because many applica-
tions of databases are inherently temporal, there ha.ve been

countless implementations of ad-hoc temporal databases
t,hat, either utilize existing commercial DBMSs or tha,t build

Our baseline architecture consists of four main modules.
At the lowest level, a storage system exists, which stores
persistent data in disk pages. This level could use esist.-
ing storage systems, such as EXODUS or the UNIX file
system. Stored objects are retrieved as byte streams, and
interpreted as objects a.t a higher level of the system based
on the information stored in the system catalog. We could
not agree whether the basic storage model should be based
on tuple versioning, attribute versioning, the use of deltas,
or a combination of these techniques. At. the stora.ge level.
data records can be clustered for efficient access. For ex-
ample, the partitioning of storage into a current store and
history store could be used. Indexes to loca,te rela.ted da.ta
or to search based on time conditions, attribute va.lues, or
a combination of both, could be built.

Above the storage level, there would be a. number of
higher level modules. One module would include an exten-
sible library of available execution algorithms is proposed.
Another module that, contains a. libra.ry of a.vailable index
structures would be accessible by some of the execut,ion al-
gorithms. The execution algorithms would be va.rious im-

SIGMOD RECORD, Vol. 23, No. 1, March 1994 47

plementations of the high-level temporal database opera-
tions. A query optimization module would create an execu-
tion strategy for a temporal query by choosing the appro-
priate options from the esecution algorithms library. With
reference to the conceptual architecture shown in Figure 1,
these two lower levels (storage system, query optimization
and evaluation) correspond to the representational side of
that figure.

Standard modules such as query parser would create an
internal query representation, which would then be opti-
mized by the query optimizer (query pa.rsing and logica.
query optimization corresponds to t,he right middle of Fig-
ure 1, concerned with the (single) conceptual data model on
which the temporal query language is based.

The issue of which set of formal operations to use in
representing and optimizing temporal queries was not re-
solved. There were two main points of view. The first was
that we should extend the standa.rd relational algebra oper-
ations with the interva.1 algebra [A11831 so that we can pro-
ceed with prototype implementations and analysis of various
optimization methods, indexing techniques, and execution
algorithms. The second point of view was that we do not
fully understand how temporal databases differ from non-
temporal ones, and that we should examine new algebras
developed explicitly for temporal databases. The conclusion
was that we should proceed in both directions, with some re-
searchers taking the first shorter-term approach, while oth-
ers pursue a possible long-term better solution.

The indexing module should be extensible. Thus, new
indexing methods would be added to the library as they
become implemented. For each indexing method, the spec-
ification of the storage model that it, is compatible with,
as well as the execution modules that can use it, and cost.
estimate functions for use by the optimizer, must be given
when it is added to the index library.

5.4 Performance Benchmarks

Performance benchmarks to compare various proposals for
temporal index st,ructures and search techniques are needed.
We agreed that there is probably no typical temporal
database application, so that it would be necessary to cre-
ate a number of benchmarks for different applications. The
following characteristics should be considered when design-
ing a temporal benchmark: database size, frequency of up-
dates, archiving characteristics, presence of retrospective
updates, and query characteristics. The metrics to be mea-
sured by a benchmark include the space consumption by in-
dexing and storage structures, the update time, the archiv-
ing/migration time, and access times for different types of
queries.

5.5 Extensible Query Processing Architec-
ture

We further discussed the query processing architecture for
temporal databases aad agreed tha.t it should support ex-
tensibility at various levels. At the algebra level, the ar-
chitecture should support. the use of different algebras; for

esample, a relationad algebra estended with Allen’s interval
algebra, or one of t,he many algebras proposed by tempo-
ral database resea.rchers. The set of execution algorithms
in the execution algorithms library should also be extensi-
ble. New search techniques can be incorporated by a&&g
their implement.ations and descriptions to the library, along
with cost estimation formulas to be used by the optimizer.
The optimization algorithms themselves may be changed by
basing them on different para.digms, such as dynamic pro-
gramming or bra.nch and bound.

This organization is consistent with the trend towards
open architectures.

5.6 Conclusion and Follow-on Efforts

In summary, our group recommends that the architecture
for temporal databases be based on similar archit,ectures for
non-temporal databases. The emphasis is on flexibility so
that various query optimizers, execution algorithms, index
techniques, and storage models could be supported. We
recommend two levels of future investigation: short term
and long term.

For the short term, we should examine in more deta.il
the suggested framework for temporal query processing and
optimization. The proposed system modules and their in-
teractions should be further specified. We recommend t,hat.
a.n algebra for internal representation of t(empora.1 queries be
developed based on extending the existing relational algebra
with temporal operations. Research to optimize t.emporal
queries based on this algebra. would then proceed. A library
of execution algorithms and a library of indexing methods
that can be used to implement the operations of this a.l-
gebra would be needed. The characterization of a number
of benchmarks for various tempora.1 database applications
is needed to be able to compare various optimization tech-
niques and indexing methods.

For the longer term, we recommend tha.t research con-
tinue in identifying whether or not there are more significant
differences between temporal and non-temporal databases.
The use of proposed t.emporal algebras that, are more inde-
pendent from the relational algebra as a basis for system
implementation should be investigated. The impact of tem-
poral databases on concurrency control, recovery, security,
and other system modules should be investigated.

6 Conclusions

This workshop was the first opportunity for those active in
temporal databases to meet and discuss the common aspects
of extant ideas and proposals. The workshop was unusual in
that the topics of discussion were not new results of resea.rch,
nor recommendations for future research, but, ra.ther which
results of previous research could be identified as common
infrastructure.

The preceding four sections each enumerate specific con-
tributions to an infrastructure for temporal databases.
There were several common threads that ran through many
of these individual group discussions.

48 SIGMOD RECORD, Vol. 23, No. 1, March 1994

l The znfrastructure must be bused on a core set of desked
features. so that most temporal applications recezue at
least some support from the temporal DBMS.

Applica.tions demand a wide variety of temporal
da.ta.base fea.tures, from storage of timestamps through
t,emporal .ioins through support for relative time (in
which only the relative ordering of events is known),
through full-fledged temporal reasoning. Because of
this diversity of requirements, the infrastructure should
only include those aspects tha.t support a significant
fract.ion of the applications, and that are fairly well un-
clerst,ood.

l Terminology is critical.

As time is such a prevalent aspect of data, and indeed
of life in general, it is natural that different spheres
of activity would come up with different terms for the
same concept (e.g., an airplane trip from New York to
Paris is a “macro-event” to some and an “interval” to
ot,hers) and identical terms for different concepts (e.g.,
an “event? to some is simply a position on a time line,
whereas to others it is an occurrence of something in-
teresting). Much effort was invested to develop a well-
defined glossary of relevant terms.

l Aspects of the conceptual model must be separated from
concerns of the representation.

This separation proved to he beneficial in severa. of the
discussions: it enabled the issue of performance to be
separated from the issue of semantic integrity. Particu-
larly in databases, performance is seen as all-important,
with other issues subjugated to a. lesser status. Sev-
eral of the groups made explicit distinction between the
semantics of t,he data, as expressed in the conceptual
model, from the encoding of the data, as expressed in
a. representational model.

l The baseline architecture must be extensible, and must
identify what is different about a temporal DBMS, and
what can vary between TDBMS implementations.

The distinction of conceptual versus representational
is incorporated into the architecture. Extensibility of
the storage model and index library ensures that differ-
ent representational models can be employed, thereby
achieving high performance through the use of storage
models and temporal indexes appropriate to the appli-
cation.

In addition to this report, several other components of
an infrastruct,ure for temporal databases have recently been
complet,ed.

Substantial effort over the two years preceding the work-
shop genera.ted an initial glossary that was published in the
SIGMOD Record [JCG+92], and its impact on standard-
izing terminology is now being felt. Christian S. Jensen
headed an editorial board to complete the glossary. The
glossary, conta.ining 87 terms and their definitions, appears
in this issue.

Also, over the six months prior to the workshop a fa.irI>
exhausting consensus effort generated a.n initial draft of ;I
“language benchmark” intended to be an aid in evalua.ting
the user-friendliness of proposals for tempora.1 query lan-
guages. Christian S. Jensen spearheaded the effort to com-
plete “test. suite of temporal query languages”, as it is now
called. This document is focused on SQL language exten-
sions.

Several other efforts contemporaneous with the plan-
ning of the workshop also contribute to an infrastruc-
ture for temporal databases. The first book on tempora.1
databases [TCG+93] is a comprehensive volmue covering
modeling, languages, and implementation aspects of t.em-
poral data.bases. The book consists of 23 chapters tha.t. re-
port t.he research results of leading researchers in temporal
databases. The fifth in a series of bibliographies on tempo-
ral databases appeared in the December, 1993 issue of .i’iG-
MOD Record, a bibliography on spatiotemporal databases
appeared in the March, 1993 issue of SIGMOD Record. and

an extended version will appear in the International Jout-nal
of Geographical Information Systems.

Several consensus efforts were started as a. result of the
discussions at the workshop. The glossa.ry is continuing. and
new terms will be added as temporal databases and their
diverse applications are better understood. The TSQL2 and
TSQL3 language design efforts are ongoing. In particular,
the TSQL2 language design committee has released an ini-
tial language specification, in this issue.

7 Acknowledgements

Curtis Dyreson contributed to the preparation of Section 2.
Fabio Grandi’s notes were helpful in t.he preparation of Sec-
tion 3.

This report benefited from the viewpoints expressed by
the workshop participants, listed in Table 1.

This workshop was supported by ARPA and t.he National
Science Foundation under grant IRI-9304091. Support was
also provided by Bell Communications Research a.nd Tan-
dem Corporation. However, the findings expressed in this
report do not necessarily reflect the official position of any
of the sponsoring agencies.

References

[A11831 J.F. Allen. Maintaining Knowledge about Tem-
poral Intervals. CACM, 2G(11):832-843, Novem-
ber 1983.

[AriavSS] G. Ariav. Tools for managing temporally ori-
ented da.ta: are they really prectically relevant’?
In Proceedings of the International Worlishop on
an Infrastructure for Temporal Databases, Ar-
lington, TX, June 1993.

[AS8G] I. Ahn and R. Snodgrass. Performance Evalua-
tion of a Temporal Database Management Sys-
tem. In Proceedings of the SIGMOD Interna-

SIGMOD RECORD, Vol. 23, No. 1, March 1994 49

[BB93]

[CCT93]

(Cha.921

[Chen7G]

[Date881

[DBBSBB]

[DWSO]

[EGSSSa]

[GJS92]

[GJMS93]

hnal Cbnference, Wa.shgt.on, DC:, pp. W-107,
May 1986.

A.P. Buchmann. Ii. Branding. On Combining
Temporal and Rea.l-Time Da.tabases. In Pro-
ceedings of the International WOI-kshop OIZ on

Infrastmctwe for Temporcd Databases, Arling-
t,on, TS. June 1993.

J. Clifford, A. Croker, a.nd A. Tuzhilin. On
complet.eness of hist,oricad rela.tional query lan-
guages. Technica. report. STERN IS-93-8, New
York University Stern School of Business, 1993.
(t*o appea.r in TODS).

S. Cha.kra.varthy. Architectures a,nd monitoring
techniques for act,ive databases: An evalua.tion.
UF-CIS TR-92-041. (Submitted to Applied Data
and Knowledge Engineering Journal).

P.P.-C. Chen. The Entity-Rela.tionship Model-
Toward a Unified View of Data. ACM TODS
l(1):9-36, March 1976.

C.J. Dat,e. A proposal for adding date and
time support to sql. ACM SIGMOD Record,
17(2):53-76, June 1988.

U. Dayal, B. Blanstein, A. Buchmann,
U. Chakravarthy, M. Hsu, R. Ladin, D.R. Mc-
Cart.hy, A. Rosenthal, S. Sarin, M.J. Ca.rey,
R4. Livny, and R. Jauhari. The HIPAC project:
Combining a.ct,ive data.bases and timing con-
st.raints. ACh4 SIGh4OD Record, lT(1):51-70,
March 1988.

C. J. Date and C. J. White. A Guide to DB2,
Volume 1, Third edition. Addison-Wesley, Read-
ing, MA,. September 1990.

0. Etzion, A. Gal, and A. Segev. Retroactive
and Proactive Database Processing. Technical
Report LBL-34424, Lawrence Berkeley Labora-
tory, July 1993.

N. Gehani, H.V. Ja.gadish, and
0. Shmueli. Composite event specification in ac-
tive data.bases: Model and implementation. In
Proceedings of the Eighteenth International Con-
ference on Very Large Databases, pp. 327-338,
Va.ncouver, Canada, August 1992.

N. Gehani, H.V. Ja.gadish, I.S. Mumick, and
0. Shmueli. Temporal Queries for Active
Da.tabase Support. In Proceedings of the In-
ternational Workshop on an Infrastructure for
Temporal Databases, Arlington, TX, June 1993.

[Iiline93]

[MD891

[MS931

[MSSla]

[OCBT]

N. Kline. An Upda.te of the Ten1pora.l Dat,abase
Bibliography. SIGMOD R.ecord. 22(4):66-80,
December, 1993.

D.R. McCa.rthy and U. Dayal. The architec-
ture of an active da.tabase management system.
In Proceedings of ACh4 SIGMOD 1989 Inter-
national Conference on hlonagement of Data,
pp. 215-224, Portla.nd, OR, May 1989.

J. Melton a.nd A.R.. Simon. Understanding the
New SQL: A Comp1et.e Guide. R4organ Iiauf-
mann, 1993.

E. McKenzie and H. Snodgrass. An Eva.lua.tion
of R.ela.tional Algebras Incorporating the Time
Dimension in Databases. ACM Computing Sur-
veys, 23(4):501-543, December 1991.

Oracle Computer, Inc. ORACLE Terminul

User’s Guide. Ora.cle Corporation, 1987.

[Rama93a] I<. Ramamritham. Real-Time Databases. Jour-
nal of Distributed and Parallel Da.ta.bases,
1(2):199-226, 1993.

[SA86]

[SS92]

[TC83]

[TCG+93]

[WFSO]

R.T. Snodgrass and I. Ahn. Temporal
databases. IEEE Computer, 19(9):35-42,
September 198G.

M. Soo and R. Snodgrass. Mixed Ca.lendar
Query La.nguage Support for Temporal Con-
stants. TempIS Technical Report 29, Computer
Science Department.. University of Arizona, Tuc-
son, Arizona, Revised hlay 1992.

Tandem Computers. ENFORM Reference h4un-
ual. Cupertino, CA. 1983.

A. Tansel, J. Clifford, S. Ga.dia.. S. Jajodia.,
A. Segev, and R. Snodgrass (eds.). Temporal
Databases: Theo,ry, Design, and Implementa-
tion. Database Syst,ems and App1ica.tion.s Series.
Benjamin/Cummings, Redwood City, CA, 1993.

J. Widom and S.J. Finkelstein. Set-oriented pro-
duction rules in a. relational database system.
In Proceedings of .4Ch4 SIGMOD 1990 Inter-
national Conference on Management of Data,
pp. 259-270, Atlantic City, NJ, May 1990.

[JCG+92] C.S. J ensen, J. Clifford, S.K. Gadia, A. Segev,
and R.T. Snodgrass. A glossary of t.emporal
database concepts. ACM SIGMOD Record,
21(3):35-43, September 1992.

50 SIGMOD RECORD, Vol. 23, No. 1, March 1994

Ilsoo Ahn
Gad .4ria.v
R4arianne Ba.udinet.
Jo& Blakeley
Mark Boddy
Alex Buchmann
Sharma. Chakra.va,rthy
Su-Shing Chen
Tsz-Shing Cheng
James Clifford
Klaus Dittrich
Curtis Dyreson
Ramez Ehnasri
Max Egenhoffer
Shashi K. Gadia
Fabio Grandi
Pat Hayes
Sushi1 Jajodia
Christian S. Jensen
Wolfgang 1i;ifer
Vram Kourainajian
Krishna Kulkarni
Ted Lawson
Nikos Lorentzos
Kia Makki
Inderpal Singh Mumick
Frank Olken
M. Tamer &zu
Barbara Pernici
Donna Peuquet,
Niki Pissinou
Krithi Ramamritharn
Scott Relan
Arie Segev
Richard Snodgrass
Micha.el Soo
Sury Sripada
Stanley Su
Abdullah Uz Tame1
Babis Theodoulidis
Vassilis Tsotras
David Wells
Gio Wiederhold
Gene Wuu

Group
B
A
A
D
A

c.2
c.2

C.l’s rapporteur
B

c.2
A’s rapporteur
D’s coordinator

A
C.l; visited B
B’s rapporteur

A
D
B
B

D’s rapporteur
B

c.1
B
D

c.2
A

c.1
A’s coordinator

D
c.1
c.2

(3.2’~ coordinator
B’s coordinator

C. l’s ra.pporteur
A

c.1
B

C. l’s coordinator
D
D

c.1

Afiliat~~olz
AT&T Bell Laboratories
Tel Aviv University, Israel
Universit,e Libre de Bruxelles, Belgium
Tesas Instruments
Honeywell Systems and Research Center
Technisch Hochschule Darrnstadt, Germany
IJniversit,!; of Florida.
Na.tional Science Foundation
Iowa St.ate University
New York University
Universit,at Zurich, Switzerland
IJniversit,y of Arizona
University of Texas at Arlington
University of Maine
Iowa Stat.e University
Universit& di Bologna, Ita.ly
Beckman Institute
George Mason University
Aalborg Universitetscenter, Dennmrk
Universitaet I<aisersla.utern, Germany
IJniversity of Texas a.t Arlington
Tandem Corpora.tion
University of Wales College of Ca.rdiff, U.K.
Agricult,ural University of Athens, Greece
Universit.y of Nevada
AT&T Bell Laboratories
Lawrence Berkeley Lab
Universit.y of Alberta., Canada
Politecnico di Milano, Italy
Pennsylvania State University
University of Southwestern Louisiana
University of Massa.chusetts
Digital Systems R.esearch
University of California at Berkeley
Universit,y of Arizona
University of Arizona
ECRC, Munich, Germany
University of Florida
City University of New York
UMIST, Manchester, U.K.
Polytechnic University
Texas Instrunients
ARPA/SISTO
Bell Coniniunications Research

Table 1: Workshop Participants

SIGMOD RECORD, Vol. 23, No. 1, March 1994 51

