
TSQL2 Language Specification*

Richard T. Snodgrass Ilsoo Ahn Gadi Ariav Don Batory
James Clifford Curtis E. Dyreson Ramez Elmasri Fabio Grandi

Christian S. Jensen Wolfgang K%fer Nick Kline Krishna Kulkarni
T. Y. Cliff Leung Nikos Lorentzos John F. Roddick

Arie Segev Michael D. Soo Suryana,raiana M. Sripada

1 Introduction

This docuinent specifies a temporal extension to the SQL-92
language standard. The language is designated TSQLZ.

The document is organized as follows. The next sec-
tion indicates the starting point of the design, the SQL-
92 language. Section 4 lists the desired features on which
the TSQL2 Language Design Committee reached consensus.
Section 5 presents the major concepts underlying TSQL2.
Compatibility with SQL-92 is the topic of Section 6. Sec-
tion 7 briefly discusses how the language can be imple-
mented. Subsequent sections specify the syntax of the lan-
guage extensions.

2 Normative References

The following standards contain provisions that, through
reference in this document, constitute provisions of this lan-
guage specification.

- ISO/IEC 9075:1992, Znternationul Organization for
Standardization/International Electrotechnical Com-
mission--Database Language SQL.

TSQL2 is a modification and extension of SQL-92. The
functionality of user-defined time support in SQL-92 is
enhanced. This required replacing the DATETIME and
INTERVAL types with alternative timestamp types. Section 6
discusses how legacy SQL-92 applications can be supported
in TSQL2 without any code or SQL statement modifica-
tions.

The rest of the language, supporting temporal relations,
is an upward-compatible extension of SQL-92.

The language has been evaluated against the Test Suite
of Temporal Database Queries.

*Correspondence may be directed to the chair of the TSQLZ

Language Design Committee, Richard Snodgrass, Department of

Computer Science, University of Arizona, Tucson, AZ 85721,
rts@cs.arizona.edu. The affiliations and e-mail addresses of the

TSQL2 Language Design Committee members may be found in a seg
arate section at the end of the document.

3 Definitions, notations, and con-
ventions

This document adheres to the terminology defined in the
consensus temporal database glossary.

The syntax description is a modification of the SQL-92
syntax description, and follows all conventions used therein.

4 Desired Features

This section lists the desired features that should be sup-
ported by TSQL2. These features guided the design of the
language.

We first considered aspects of the data model.

SIGMOD RECORD, Vol. 23, No. 1, March 1994

TSQLZ should not distinguish between snapshot equiv-
alent instances, i.e., snapshot equivalence and identity
should be synonymous.

This provides conceptual simplicity.

TSQLZ should support only one valid-time dimension.

For simplicity, tuple timestampingshould be employed.

TSQL2 should be based on homogeneous tuples.

Valid time support should include support for both the
past and the future.

While some existing temporal models only include valid
time support. up to now, it is important to provide sup-
port for future valid time so that planning activities
can be accommodated.

Timestamp values should not be Jimited in range or
precision.

SQL-92 is limited to A.D., to 9999 years, and to an ex-
cessive coa.rse precision of seconds for a representation
of 20 positions. It is also not sufficiently defined (ad-
dition is implementation defined!, and it is not stated
which of seven possible definitions of second is used.)
For temporal databases to be used in scientific applica-
tions, as well as by historians and others requiring an
extended ra.nge, the representation and semantics must
be extended and be better defined.

65

We then considered the language proper.

TSQL2 should be a consistent extension of SQL-92.

TSQLZ should allow the restructuring of relation in-
stances on any set of attributes.

Such an ability was first proposed in the TempSQL lan-
guage proposal.

TSQL2 should allow for flexible temporal projection,
but TSQLZ syntax should reveal clearly when non-
standard temporal projections are being done.

Operations in TSQL2 should not accord any explicit
attributes special semantics.

For example, operations should not rely on the notion
of a key.

Temporal support be optional.

Relations that are not specified to be temporal should
be considered to be snapshot relations. It is important
to be an extension of SQL-92’s data model when pos-
sible, not a replacement. Hence, the schema definition
language should allow the definition of snapshot rela-
tions, when temporal support is not desired. Similarly,
it should be possible to derive a snapshot relation from
a t,emporal relation.

User-defined time support should include instants, in-
terva.ls, and fixed and variable spans.

User-defined time support in SQL-92 is greatly Aa.wed.
C.J. Date has listed many of the problems with it.

Existing aggregates should have temporal analogues in
TSQLZ.

It is important that existing language features such as
aggregates still apply in the temporal data model.

Multiple calendar and multiple language support
should be present in timestamp input and output, and
timestamp operations.

SQL-92 supports only one calendar, a particular variant
of the Gregorian calendar, and one time format. The
highly varying uses of databases demand much more
flexibility.

l It should be possible to derive temporal and non-
temporal relations from underlying temporal and non-
temporal relations.

An instant is modeled by a timestamp coupled with an
associated scale (e.g., day, year, month). An interval is mod-
eled by the composition of two instant timestamps and the
constraint that the instant timestamp that starts the in-
terval equals or precedes (in the given scale) the instant,
timestamp that terminates the interval.

Finally, we made ease of implementation a priority. 5.2 Base Line Clock

l TSQL2 relations should be implementable in terms of
relations in some first normal form representational
model.

In particular, the language should be implementable via
a data model that employs interval-timestamped tu-
pies. This is the most straightforward representational
model, in terms of extending current relational technol-
ogy. Nevertheless, the language should accept imple-
mentation using other representational models, such as
attribute timestamped representational models.

A semantics must be given to each time that is stored in the
database. SQL-92 specifies that times are given in seconds,
but does not indicate which of at least seven definitions of
second is used.

TSQL2 includes the concept of a baseline clock, which
provides the semantics of timestamps. The baseline clock
relates each second to physical phenomena. Since we a,re
targeting use for a general-purpose database, we attempted
to anticipate the needs of an average database user and to
provide a baseline clock that meets those needs.

l TSQL2 must have an efficiently implementable algebra.
that allows for optimization a.nd that is an extension of
the snapshot algebra.

Current DBMS implementations are based on the sna.p-
shot algebra. The temporal algebra used with the
TSQLZ temporal data model should contain temporal
operators that are extensions of the operations in the
snapshot algebra. Snapshot reducibility is also highly
desired, so that, for example, optimization strategies
will continue to work in the new data model.

l The language data model should allow multiple repre-
sentational data models.

In particular, it would be best if the data model accom-
modated the major temporal data models proposed to
date, including attribute timestamped models.

5 Concepts

Here we briefly outline the major concepts behind the
TSQLP extension. Much more discussion may be found in
the commentaries.

5.1 Time Ontology

The TSQLZ model of time is bounded on both ends. The
model refrains from deciding whether time is ultimately con-
tinuous, dense, or discrete. TSQLS does not allow the user
to ask a question that will differentiate the alternatives. In-
stead, the model accommodates all three alternatives by as-
suming that an instant on a time-line is much smaller than a.
chronon, which is the smallest entity that a timestamp can
represent exactly (the size of a chronon is implementation-
dependent). An instant can only be approximately repre-
sented. A discrete image of the represented times emerges at
run-time as timestamps are scaled to user-specified (or de-
fault) granularities and as operations on those timestamps
are performed to the given scale.

66 SIGMOD RECORD, Vol. 23, No. 1, March 1994

The baseline clock is shown in Figure 1 (not. to scale).
It partitions the time line into a set, of contiguous periods.
Each period runs on a. different clock. .4 synchronitation
point delimits a. period boundary. The baseline clock and
its representation a.re independent, of a.ny calendar. We use
Gregorian calendar dates in this discussion only t.o provide
an informal indication of when the synchronization points
occur.

From the Big Bang to Midnight Janua.ry 1, 9000 B.C. the
baseline clock runs on ephemeris time. For historic instants,
9000 B.C. to January 1, 1972, the baseline clock follows the
mean solar day clock. The mea.n solar clock carries the
baseline clock up to Midnight Janua.ry 1, 1972 after which
the baseline clock follows UTC. Midnight Janua,ry 1, 1972 is
when UTC was synchronized with the atomic clock and the
current system of leap seconds was adopted. In particular,
during the,interval in which the baseline clock uses UTC,
26 leap seconds were added. The baseline clock runs on
UTC until one second before Midnight. July 1, 1993. This
is the next time at which a leap second might be a.dded (leap
second announcements are made by the International Earth
Rotation Service). After Midnight July 1, 1993, until the
“Big Crunch” or the end of our baseline clock, the baseline
clock follows Terrestrial Dynamic Time (TDT) since both
UTC and mean solar. time are unknown and unpredictable.
Also, since 1984, TDT has been favored over ephemeris time
by the international standards community.

5.3 Data Types

SQL-92’s datetime a.nd interval data types a.re replaced with
more precise instants, intervals, and spans of specifiable
range and precision. The ra.nge and precision can be es-
pressed as an integer (e.g., a precisiou of 3 fractional digits)
or as a span (e.g., a precision of a millisecond). Operators
are available to compare timestamps and to compute new
timestamps, with a. user-specified precision. Temporal val-
ues can be input and output in user-specifiable formats, in
a variety of natural languages. Calendars and calendric sys-
tems permit the application-dependent semantics of time to
be incorporated.

A surrogate data is introduced in TSQL2. Surrogates
are unique identifiers that can be compared for equality,
but the values of which cannot be seen by the users. In this
sense, a surrogate is “pure” identity and does not describe
a property (i.e., it has no observable value). Surrogates are
useful in identifying objects having time-varying attributes.

5.4 Time-lines

Three time-lines are supported in TSQL2: user-defined
time, valid time, and transaction time. All three have
the ontology described above. Hence values from disparate
time-lines can be compared, at an a.ppropria.te precision.
?Sansaction-time is bounded by inception, the time when
the database was created, and until changed. In addi-
tion, user-defined and valid time have two special values,
beginning and forever, where are the least and greatest

values in t.he ordering. Transaction time has t,he special
va.lue until changed.

Valid and user-defined data. types ca.n be temporully In-
determinate. In temporal indeterminacy, it is know that
aa event stored in a temporal data.base did in fact occur.
but it is not known exactly when that event occurred. An
insta,nt (interval, span) can be specified as determinate or
indeterminate; if the latt.er, then the possible mass func-
tions, as well as t,he generality of the indeterminacy to be
represented can be specified. The quality of the underlying
data. (termed its credibility) and the plausibility of the or-
dering predicates expressed in the query can be controlled
on a per-query or global basis.

Finally, temporal values (insta.nt. timest.amps) can be
now-relative. A now-rela.tive time of “now - 1 day”, in-
terpreted when the query was executed on June 12, 1993,
would have the bound value of “June 11, 1993.” The user
can specify whether values to be stored in the da.tabase are
to be bound (i.e., not now-relative) or unbound.

5.5 Aggregates

The conventional SQL-92 aggregates are extended to apply
over temporal domains. They are also extended to return
time-varying values and to permit temporal grouping. Val-
ues can be weighted by their dura.tion during the computa-
tion of the aggregate. Finally, one new temporal a.ggregate,
RISING is added. A taxonomy of temporal aggregates identi-
fies fourteen possible kinds of aggregates; there a.re instances
of a.11 of these kinds in TSQL2.

5.6 Valid-time Tables

The snapshot ta.bles currently supported by SQL-92 con-
tinue to be available in TSQL2. TSQL2 also allows state

tables to be specified. In such tables, each tuple is times-
tamped with a tempo& element, which is a union of max-
imal intervals. As an example, the Employee table with
attributes Name, Salary and Manager could contain the tu-
ple (Sam, 10000, LeeAnn). The temporal element times-
tamp would record the ma.ximal (noncontiguous) intervals
in which Sam made $10000 a.nd had LeeAm as his man-
ager . Information about other values of Sa.m’s salary or
other managers would be stored in other tuples. The times-
tamp is implicitly associa.ted with each t,uple; it is not an-
other column in the table. The range, precision and inde-
terminacy of the timestamps within the temporal element
can be specified.

Temporal elements are closed under union, difference,
and intersection. Timestamping tuples with temporal el-
ements is conceptually appealing and can support multiple
representational data models. Dependency theory can be
extended to apply in full to this temporal data model.

TSQL2 also allows event tables to be specified. In such
tables, each tuple is timestamped with an instant set. As an
example, a Hired table with attributes Na.me and Position
could contain the tuple (LeeAnn, Manager). The instant
set timestamp would record t,he instant(s) when LeeAnn
was hired as a Manager. Information about ot,her values of

SIGMOD RECORD, Vol. 23, No. 1, March 1994 67

+ Ephemeris -+ -c---- Mean Solar Days - -UTC - - TDT -
Time

t
I I I

f

Dawn of Time
(The Big Bang)

(14,000,OG0,000 B.C.
+/-4,ooo,ooo,ooo)

Past UTClTA I Future (Moving)
Synchronization Synchronization Synchronization

Point Point Point
(1/1/9,000 B.C.) (A.D. 11111972) (Currently A.D. 7/l/1993)

Figure 1: The time-line clock

End of Time?

her positions would be stored in other tuples. In this case,
the timestamp is implicitly associated with each tuples.

5.7 Transaction-time and Bitemporal Ta-
bles

Orthogonally to valid time, transaction time can be associ-
ated with tables. The transaction time of a tuple, which is a
temporal element, specifies when that tuple was considered
to be logically stored in the database. If the tuple (Sam,
10000, LeeAnn) was stored in the database on March 15,
1992 (say, with an APPEND statement) and removed from
t*he database on June 1, 1992 (say, with a DELETE state-
ment), then the transaction time of that tuple would be the
interval from March 15, 1992 to June 1, 1992.

The transaction timestamps have an implementation-
dependent range and precision, and are determinate.

In summary, there are sis kinds of tableq: snapshot
(no temporal support beyond user-defined time), valid-time
state tables (consisting of sets of tuples timestamped with
valid-time elements), va.lid-time event tables (timestamped
with valid-time instant sets), transaction-time tables (times-
tamped with transaction-time elements), bitemporal state
tables (timestamped with bitemporal elements), and bitem-
poral event ta.bles (timestamped with bitemporal instant
sets).

5.8 Schema Specification

The CREATE TABLE and ALTER statements were extended to
allow specification of the valid- and transaction-time aspects
of temporal relations. The scale and precision of the valid
timestamps can a.lso be specified and later altered.

5.9 Restructuring

The FROM cla.use in TSQLZ allows tables to be restruc-
tured so that the t,emporal elements associated with tuples
with identical values on a subset of the columns are coa-
lesced. For example, to determine when Sam made a Salary
of 9;10000, independent of who his manager was, the Em-
ployee table could be restructured on the Name and Sa.lary
columns. The timestamp of this restructured tuple would
specify the intervals when Sam made $10000, information

which might be gathered from several underlying
specifying different managers.

Similarly, to determine when Sa.m had LeeAnn
manager, independent of his salary, the table would

tuples

as his
be re-

structured on the Name and Manager columns. To deter-
mine when Sam was an employee, independent of how much
he made or who his manager was, the table could be restruc-
tured on only the Name column.

Restructuring can also involve partitioning of the tem-
poral element or instant set into its constituent maximal
intervals or instants, respectively. Many queries refer to a
continuous property, in which maximal interva.ls are rele-
vant .

5.10 Temporal Selection

The valid-time timestamp of a table may participate in
predicates in the WHERE clause by simply mentioning the
table (or correlation variable) name. The transaction-time
of a table can be accessed via TRANSACTIONS. The oper-
ators have been estended to take temporal elements and
instant sets as a.rguments.

5.11 Temporal Projection

Conventional snapshot relations, as well as valid-time rela-
tions, can be derived from underlying snapshot or va.lid-time
relations. An optional VALID or VALIDINTERSECT clause is
used to specify t,he timestamp of the derived tuple. The
transaction time of an appended or modified tuple is sup-

plied by the DBMS.

5.12 Update

The update statements have been estended in a manner
similar to the SELECT statement, to specify the temporal
extent of the update.

5.13 Cursors

Cursors have been extended to optionally return the valid
time of the retrieved tuple.

68 SIGMOD RECORD, Vol. 23, No. 1, March 1994

5.14 System Tables 9 Section 4 Concepts

The TABLES base table has been est.ended to include infor-
mation on the valid and transaction time components (if
present) of a table. Two other base tables have been added
to the definition schema.

9.1 Section 4.5 Datetinles and intervals

This sect,ion is repla.ced wit,11 the mat,eria.l found above in
Section .5.

6 SQL-92 Compatibility

Some aspects of TSQL2 are pure est,ensions of SQL-92. The
user-defined time in TSQLS is a. replacement for that of
SQL-92. This was done to permit support of multiple cal-
endars and literal representations.

Legacy applications can be supported through a default
SqL-92 calendric system, along with either a preprocessor
or a compatibility option implemented by the DBMS. In
either case, it is possible to run legacy SQL-92 applica.tions
with no host language or embedded SQL changes required.

10 Section 5 Lexical Elements

10.1 Section 5.2 <token> and <separator>

The production for the non-terminal <nondelimiter t,oken>
is replaced, and a. new non-t.erminal <calenda.r defined
identifier> is added to define the format. of calendric sys-
tem defined identifiers. Glendric syst,em defined identifiers
are prefixed with an ampersand (“&“).

<nondelimiter token> ::=

The defaults for the new clauses used to support va.lid-
time relations were designed to satisfy snapshot reducibility,
thereby ensuring that these extensions constitute a strict
superset of SQL-92.

<regular identifier>
<key word>
<unsigned numeric lit,eral>
<hex string literal>

7 Implementation

During the design of the language, considerable effort, was
expended to ensure that the language could be implemented
with only moderate modification t.o a conventiona. SQL-92-
compliant DBMS. In particular, an a.lgebra has been demon-
stra.ted that can be implemented in terms of an interval-
stamped (or instant-stamped, for event relations) tuple rep-
resentational model; few extensions to the conventional al-
gebra were required to fully support the TSQL2 constructs.
This algebra is snapshot reducible to the conventional rela-
tional algebra.

. <instant literal>

. <interval literal>

.

<ca.lendar defined identifier> ::=
. <ampersand> <identifier>

The production for the non-terminal <reserved word>
is changed. The reserved words CURRENT,
CURRENTDATE, CURRENT-TIME, CURRENT-TINESTAHP,
CURRENTlJTC-TINE, CURRENTYTC-TIMESTAMP, DATE, DAY,
EXTRACT, HOUR, LOCAL, MINUTE, MONTH, SECOND, TIME,
TIMESTAMP,UTC, YEAR, and ZONE are deleted.

Support for multiple calenda.rs, multiple la.nguages,
mixed precision, and indetermina.cy have been included in
prototypes that demonstrated tha.t these extensions have
little deleterious effect on execution performance.

The following productions are added for the non-terminal
<reserved word>. To conserve space, we do not copy t.he ex-
isting reserved word definitions from the SQL92 document.

Mappings from the data model underlying TSQL2, the
bitemporal conceptual data model, to various representa-
tional data models have been given elsewhere.

8 Modified Language Syntax

The organization of this section follows that of the SQL-92
document. The syntax is listed under corresponding section
numbers in the SQL-92 document. All new or modified
syntax rules are marked with a bullet (“0”) on the left side
of the production.

<reserved word> ::=
. ALIGN
l CALENDRIC 1 CONTAINS) CREDIBILITY
. GENERAL
. INDETERMINATE 1 INSTANT
. MEETS
. NEW 1 NOBIND 1 NONSTANDARD
. PLAUSIBILITY / PRECEDES) PREVIOUS 1 PROPERTIES
. RISING
. SCALE 1 SNAPSHOT 1 SPAN 1 STATE) SURROGATE
. TRANSACTION
. VALID 1 VALIDINTERSECT
. WEIGHTED

Where appropriate, we provide disambiguating rules to
describe additional syntactic and semantic restrictions. We
assume that the reader is familiar with the SQL-92 proposal,
and that a copy of the proposal is a.vaila,ble for reference.

Nineteen reserved words a.re deleted and 24 are added, a net
a.ddition of five reserved words.

SIGMOD RECORD, Vol. 23, No. 1, March 1994 69

10.2 Section 5.3 <literal>

The <datetime lit*eral> non-terminal and its entire subtree
are deleted. This is a calendar-specific language construct
and definition of such would appear in a calendar.

The <interva.l literal> non-terminal and its entire sub-
tree a.re deleted. The <interval literal> non-terminal which
defined time durations is effectively replaced with a new
non-terminal .

The production for the non-terminal <general literal> is
replaced with the following.

<general literal> ::=
<character string literal>
<national character string literal>
<bit. string literal>
<hex string literal>

. <instant literal>

. <interval literal>
l

The following productions are added.

<instant literal> ::=
. [<introducer> <cha.racter set specification>]

<vertical bar> <instant value> <vertical bar>
<calendric-property specification>

<interval literal> ::=
. [<introducer> <chara.cter set specificat,ion>]

<left bracket> <int,erval value>
{<right* bracket> 1 <right pa.ren>}

<ca.lendric-property specification>

 ::=
. [<introducer> <chara.cter set specification>]

<percent> <percent>
<ca.lendric-property specification>

<instant va.lue> ::=
. !! See the syntax rules

<interval value> ::=
. !! See the syntax rules

 ::=
. !! See the syntax rules

Format-related property values describe the contents of
temporal constants. The BNF grammar for format strings
is as follows.

<format string> ::=
. <quote> [<background character> 1

field specification> 1. . . <quote>

<background character> ::=
. <character representation>

<field specification> ::=
. <less tha.n operator> <field identifier>

[<comma> <translation table name>
[<comma> <field formatting specification>]
<greater than operator>

<field identifier> ::=
. <identifier>

<translation table name> ::=
. <identifier>

<field forma.tting specification> ::=
. !! See the syntax rules

Additional syntax rules:

3.

4.

5.

G.

7.

8.

9.

10.

11.

12.

An <instant value> is any sequence of characters not
containing a single <vertical bar>. The format of an

<instant value> is described by the current value of
t.he instant-input-formut property.

Within a.n <instant value> a <vertical bar> is repre-
sented by <vertical bar><vertical bar>.

An <interval value> is any sequence of characters not

containing a. single <right bracket> or a. single <right.
pa.ren>. The format. of aa <interval value> is described
by the value of the interval-input-format property.

Within an <interva.l value> a single <right bracket>
is represented as <right bracket><right bracket>,
a.nd a single <right paren> is represented as <right
paren><right paren>.

ii is a.ny sequence of characters not
containing a single <percent>. The format of a
 is described by the current. value of the
span-inpzrt-format property.

Within a a single <percent> is repre-
sented as <percent><percent>.

The data type of an <instant literal> is INSTANT.

The data type of an <interval literal> is INTERVAL.

The data type of a. is SPAN.

Interva.1 literals ending with a <right bracket> a.re
closed-closed interva.ls. Intervals ending with a <right
paren> are closed-open intervals.

The non-terminal <calendric-property specification> is
defined in Appendix 15.1.

If <calendric-property specification> contains an
<calendric-spec clause> then the calendric system
named in the <calendric-spec clause> is, used when
interpreting this literal. Otherwise, the globally de-
clared calendric system whose scope includes this literal
is used.

70 SIGMOD RECORD, Vol. 23, No. 1, March 1994

13.

14.

17.

18.

19.

20.

If <calendric-property specification> contains a
<property-spec clause> then the properties conta.ined
in the named property table are activated before inter-
preting this literal, and deactivated after interpreting
this literal.

If no DECLARE CALENDRIC SYSTEM command has been
entered then the implementation defined default calen-
dric system is assumed.

A <format string> defines the syntax of strings spec-
ified as the values of format properties in property t,a-
bles. A <format string> must be contained in a.n ac-
tivated property table to affect the tra.nsla.tion times-
tamps or literal values.

In a <field specification>, the table represented by the
<translation table name> and the character pattern
shown by the <field formatting specification>, deter-
mine the output format and translation for the given
<field identifier>.

Valid <field formatting specification>s are as follows.

Wnumn-place the value in an output field of width
nuns. The default field width is just la.rge enough
to contain the constant and a sign if specified.
Truncation will occur on the right if the value is
too large, and the field is left-justified. Trunca-
tion will occur on the left is the field is too large,
and the field is right justified. Only one W spec-
ification is permitted for each <field formatting
specification>.

L-place the value left-justified in the field. Ca.n-
not be specified with R.

R-place the value right-justified in the field.
Right justification is the default. Cannot be spec-
ified with L.

Z-pad the field with zeros. Cannot be specified
with B.

B-pad the field with blanks. Blank padding is
the default. Cannot be specified with Z.

S-include a sign character in the output. For neg-
ative numeric values the sign is always displayed.
S forces a positive sign for positive numeric values.
Cannot be specified for non-numeric data.

Within a <format string>, <less than operator> <less
than operator> denotes a single <less than operator>.

Within a <format string>, <quote><quote> (that is,
a <quote symbol>) denotes a single <quote>.

Any <background character> appearing in the format
string appears in an output string in the same relative
position and order with respect to other <background
character>s and <field specification>s.

1. The chronon denoted by an instant literal is assumed t,o

be the first chronon represented by the instant string.
This behavior may be changed with appr0pria.t.e field
na.mes.

2. Interval literals are interpreted as follows. The begin-
ning chronon of the interval is the first chronon con-
tained in the interval, and the ending chronon of the
interval is the last chronon contained in the interval.
This behavior may be changed with appropriate field
names.

3. Closed-closed intervals are closed on both ends (i.e.. the
interval includes both specified instants). Closed-open
intervals do not contain t,heir specified ending instant,:
they terminate one chronon before their ending insta,nt.

10.3 Section 5.4 Names and identifiers

The following productions are added.

<calendric system name> ::=
. <identifier>

<property table name> ::=
. <table name>

Additional syntax rules:

1. The identifiers denoting ca.lendric systems a.nd propert,!’
tables are implementation dependent.

11 Section 6 Scalar Expressions

11.1 Section 6.1 <data type>

The production for the non-terminal <data. type> is re-
placed with the following.

<da.ta type> ::=
<character string type> [CHARACTER SET

<character set specification>]
<national character string type>
<bit string type>
<numeric type>

l <instant type>
. <interval type>
l
. <surrogate type>

The <datetime type> non-terminal and its entire subtree
are deleted. This is a calendar specific la.nguage construct..

The production for the <interval type> non-terminal
is replaced, and new productions for t,he non-t,erminals
<instant type> and are added as follows.

<instant type> ::=
. [<indeterminate data type>] INSTANT

[<time precision and sca.le>]

Additional general rules:

SIGMOD RECORD, Vol. 23, No. 1, March 1994 71

<interval type> ::=
. [<indeterminate data. type>] INTERVAL

[<time precision and scale>]

 ::=
. [<indeterminate data type>] SPAN

[<time precision and scale>]

The following productions a.re added. <time precision>
differs from <precision> in t,hat a span is also permitted.
<time scale> differs from <scale> in that int the former
negative integers are also allowed.

<time precision and scale> ::=
. <left paren> <time precision>

[<comma> <time scale>] <right paren>

<time precision> : : =
0 <unsigned integer>
. 1

<time scale> : : =
. <signed integer>
. I

<indeterminate data type> ::=
. [NONSTANDARD] [GENERAL] INDETERMINATE

Additional syntax rules:

1.

2.

3.

4.

5.

If a <scale> is omitted, then zero is implicit. If a.
<precision> is omitted then an implementation-defined
<precision> is implicit.

The default instant is determinate.

The default indeterminate instant is compact (not gen-
eral) .

The default distribution is standard.

The size of the timestamp format allocated depends on
the kind of time& selected and the user-specified
precision. Enough space must be allocated to the data
fields to accommodate the precision of the timestamp
(precision rules are described elsewhere). The default
indeterminate timestamp format is the chunked with
standard distributions format. By specifying GENERAL
the user chooses to use one of the general, indetermi-
nate timestamp formats. By specifying NONSTANDARD
the user chooses to use one of the nonstandard times-
tamp formats.

Additional general rules:

1. A negative <scale> implies a granularity of 10 to t,he
<scale> power.

2.

3.

4.

5.

6.

The delimiting instants of a.11 interval sha.11 ha.ve the
same precision and s&e.

The permissible integer values for both the precision
and the scale are implementa.tion defined. The permis-
sible span values are calendar-dependent, and cannot
exceed the implementation capacities.

Values of type SURROGATE cannot be seen (displayed).
Consequently, attributes of SURROGATE type are not al-
lowed in the outermost SELECT clause of a query. Also,
attributes of surr0gat.e t,ype ca.nnot. be assigned an es-
plicit va.lue.

A special reserved word. NEW may be used when up-
dating an attribute value of SURROGATE type. The new
value is a previously unused va.lue.

Va.lues of type SURROGATE can only be compared with
respect to identity.

11.2 Section 6.2 <value specification> and
<target specification>

The productions for the non-t,erminals <parameter
specification> and <varia.ble specification> a.re a.ugmented
to allow calendric system a.nd property selection per-item.

<para.meter specification> ::=
. <parameter name> [<indicator parameter>]

[<calendric-property specification>]

<variable specification> ::=
. <embedded variable name>

[<indicator variable>]
[<calendric-property specificat,ion>]

AddiG0na.l syntax rules:

1.

2.

3.

4.

The non-terminal <ca.lendric-property specification> is
defined in Appendix 15.1.

If <calendric-property specification> is specified
then <parameter name> must have the data type
<character string type>. Similar remarks apply to
<embedded variable name>.

If <calendric-property specification> is specified then
the value contained in <parameter name> or <variable
name> is interpreted as a, temporal value according to
the ca.lendric system a.nd/or ca.lendar properties named
by the <calendric-property specification>.

If <calendric-property specification> contains a
<calendric-spec clause> and the data type of the col-
umn corresponding to the <parameter specification>
or <variable specification> is INSTANT, INTERVAL,
or SPAN, then the calendric system named in the
<calendric-spec clause> is used to translate the times-
tamp into a temporal va.lue.

72 SIGMOD RECORD, Vol. 23, No. 1, March 1994

5. If <calendric-property specification> contains a
<property-spec clause> and the data t.ype of the col-
umn corresponding t,o the <parameter specification>
or <variable specification> is INSTANT, INTERVAL, or
SPAN, then the property table named in the <property-
spec clause> are a.ctivated before translating the times-
tamp, and deactivated immediately after translating
the timestamp.

If the <correlation modifier> is applied to a
<correlation name>, then the attributes are drawn
from the table upon which the <correlation na.me> is
based, and augment those attributes associated with
the <correlation name>. The latt,er attributes can he
mentioned in this <correlation modifier>, but is not
required.

6. If no SET CALENDRIC SYSTEM command has been en-
tered then the implementation defined default calendric
system is assumed.

If <partitioning unit> is not specified, then no parti-
tioning is assumed.

11.4 Section 6.5
specification>

<set function

11.3 Section 6.3 <table reference>

The production for the non-terminal <table reference> is
replaced with the following. The first component can be
more complex than a single <table name>, and multiple
space-separated <correlation name>s are permitted.

The production for t,he non-terminal <set. function
specifica.tion> is changed to allow for aggregate functions
defined by a calendric system.

<table reference> ::=
. <table source> [[AS] <correlation name>

{ <correlation>)...]
.] <derived table> [[AS] <correlation name>

{ <correlation> }...]
1 <joined table>

<set function specification> ::=
COUNT <left paren> <asterisk> <right pare0

I

<general set function>
. <calendar defined set function>

<calendar defined set function> ::=
. <calendar defined identifier> <left paren>

[<set quantifier>]
<value expression> <right pa.ren>

The following productions a.re added. The first allows
table references to be defined in terms of other table refer-
ences. The rest serve to define <correlation modifier>. We added an optional clause to the general set function

production for weighted aggregates.
<t,able source> : : =

<table name> <correlation modifier>
1 <correlation name> <correlation modifier>

<correlation modifier> : : =
[<left paren> <coalescing columns>
<right paren>]

<general function type> ::=
<set function type> <left paren>

[<set quantifier>]
l [WEIGHTED]

<value expression> <right. pa.ren>

[<left paren> <partitioning unit>
<right paren>]

One aggregate was added to the set function type.

<set function type> ::=
. I RISING

<coalescing columns> : : =
<column name> [{<comma> <column name>) . . . Pdditional ‘yntax ru1es’
<asterisk> 1. A <calenda.r defined set function> is denoted by

a <calendar defined identifier> prefixed with an

<partitioning unit> : : =
<ampersand>.

INSTANT

I
2. Specifying DISTINCT in a <calendar defined set

INTERVAL function> removes null values and duplicate values be-
fore computing the the aggregate function.

Additional syntax rules: 3. Specifying ALL in a <calendar defined set function> re-
moves null values but does not remove duplica.te values

1. <coalescing attributes> of <asterisk> imply all the at- before computing the the a.ggregate function. ALL is
tributes of the <table name> or <correlation name>. the default option.

2. If the <coalescing attributes> are not, present, then 4. Let T be the data type of the values given as arguments
<asterisk> is assumed. to the <set function specification>.

SIGMOD RECORD, Vol. 23, No. 1, March 1994 73

5. I f SUM is specified then T may not be INSTANT or
INTERVAL.

G. Let DT be the data. type of t,he <value expression>.

7. If RISING is specified, t,he data type of the result is an
interval.

8. I f SUM is specified, DT shall not be an instant or an
interval.

9. I f AVG is specified. DT shall not be an interval or a
temporal element.

10. If COUNT is specified, WEIGHTED is not permit,ted.

Additional genera.1 rules:

1. I f WEIGHTED is specified, and DT is temporal, then
WEIGHTED has no effect on the aggregate.

2. I f WEIGHTED is specified, let A be the specified attribute
of the aggregate and let T be the argument source.

Case:

(4

(b)

(cl

(4

I f MAX is specified, then the result is attribute A of
the tuple, where, of T, attribute A multiplied by
the number of granules in its t,imestamp is maxi-
mal.

I f HIN is specified, then the result is attribute A of
the tuple, where, of T, attribute A multiplied by
the number of granules in its timestamp is mini-
mal.

I f SUM is specified, then the result is the sum
of all attributes A in T. piecewise multipled by
their timestamps, divided by the sum of the times-
tamps.

If AVG is specified, then the result is the SUM func-
tion over T divided by the cardinality of T.

3. If RISING is specified without WEIGHTED, then the re-
sult shall be the largest interval such that the argument
source T is monotonic increasing. If WEIGHTED is speci-
fied, then the largest interval is computed over the value
of each attribute multipled by its timestamp.

4. If MIN, MAX, SUM, or AVG is specified and T is a times-
tamp, then

Case:

(a) If MIN is present, then use PRECEDE to determine
the minimum timestamp, except in the case that
A is a span, in which case return the span with
the minimal number of granules.

(b) If MAX is present, then use not PRECEDE to deter-
mine the maximum timestamp, except in the case
that A is a spa.n, in which case return the span
with the mqximal number of granules.

(c) If SUM is present, if t,he type of A is a span, then
return a spa.11 equal in length to the sum of the
granules in T. Ot,herwise, the type of A must. be
a temporal element, and the result is the result of
set union of the elements of T.

(d) If AVG is present, if the t.ype of A is a span, then re-
turn a span equal in length to the average number
of granules in T. Ot,herwise, the type of A must be
an instant. Pick any origin 0. Comput,e the av-
era.ge of the distance from 0 to each instant in T,
and return the inst,ant representing the distance
from 0 to this a.vera.ge.

11.5 Section 6.8
function>

<datetime value

The <datetime value function> non-terminal and its entire
subtree are deleted.

The following productions are added, including expres-
sions evaluating to or taking as a parameter temporal ex-
pressions.

<instant value function> ::=
.

.

.

.

.

.

.

.

.

.

.

.

.

BEGIN <left paren> <interval va.lue expression>
<right paren>

1 END <left paren> <interval value expression>
<right paren>

1 FIRST <left paren> <instant value expression>
<comma> <instant value espression>
<right paren>

1 FIRST <left paren>
<temporal element value expression>
<right paren>

1 FIRST <left pa,ren>
<instant set va.lue expression> <right paren>

1 LAST <left paren> <instant value expression>
<comma.> <instant value expression>

<right pa.ren>
1 LAST <left paren>

<temporal element value expression>
<right paren>

1 LAST <left paren> <instant set value expression>
<right paren>

1 NOBIND <left paren> <instant literal>

<right pa.ren>
1 NOBIND <left paren> <column reference>

<right paren>
<calendar defined identifier>

[<left paren> <token>
[<comma> <token> I.. .
<right paren>]

1 SCALE <left paren> <instant value expression>
<comma> <time scale> <right pa,ren>

1 ALIGN <left paren> <instant value expression>
<comma>
<right paren>

74 SIGMOD RECORD, Vol. 23, No. 1, March 1994

<interval va.lue function> ::=
. INTERVAL <left paren> <instant value expression>

<comma> <instant va.lue expression>
<right paren>

. 1 INTERSECT <left paren>
<int,erval value expression> <comma>
<interva.l value expression> <right paren>

. 1 NOBIND <left paren> <interval literal>
<right pare0

. 1 NOBIND <left paren> <column reference>
<right paren>

. 1 <calendar defined identifier> [<left paren>
<t30ken> [<comma> <token> 1. . .
<right paren>]

.) SCALE <left paren> <interval value expression>
<comma> <time scale> <right paren>

. / ALIGN <left pa.ren> <interval value expression>
<comma>
<right paren>

. 1 FIRST <left paren>
<temporal element value expression>
<right paren>

. 1 LAST <left paren>
<tempora.l element value expression>
<right* pa.ren>

 ::=
. SPAN <left. pa.ren> <interval value expression>

<right. paren>
. 1 SPAN <left paren>

<temporal element value expression>
<right paren>

. 1 ABSOLUTE <left pa.ren>
<right paren>

. NOBIND <left paren> <right pare0
l NOBIND <left. paren> <column reference>

<right. paren>
. 1 <calendar defined identifier> [<left paren>

<token> [<comma> <token> I.. .
<right pa.ren>]

. 1 SCALE <left paren>
<comma> <time scale> <right paren>

. 1 ALIGN <left paren>
<comma>

<right pa.ren>

<temporal element value function> ::=
. INTERSECT <left paren>

<temporal element value expression>

<comma>
<temporal element value expression>
<right paren>

A new nonterminal, <instant set value function>, is
added.

<instant set value function> ::=
. INTERSECT <left paren>

<instant set value expression> <comma>
<instant set value expression> <right paren>

.i\dditional syntax rules:

1. <calenda.r defined identifier> must be a function de-
fined via the currently active calendric system.

2. The number and types of the tokens in the parameter
list of a. <calendar defined identifier> function must
agree in number and type with the definition of the
function in the calendric system. A compilation error
will be generated if any type errors are detected.

Additional general rules:

1. FIRST (LAST) extracts the first (last) maximal interval
from the tempora.1 element.

2. FIRST (LAST) extracts the first (last) instant from the

instant set.

3. Intersection of teinporal elements is set intersection.

4. Local invocation of a scale or align function overrides
the global defa.ult .

5. A nobind function can only appear in the ta.rget list, of
a.n insert or modify sta.tement. Any other use of a
nobind will generate a compile-time error.

11.6 Section 6.11 <value expression>

The production for the non-termina,l <value expression>
is replaced with the following. Value expressions are a.ug-
mented to include expressions evaluating to temporal ele-
ments. Value expressions are a.ugmented to include expres-

sions eva.luating to instant sets.

<value expression> ::=
<numeric value expression>
<string value expression>

. <instant value expression>

. <interval value expression>

.

. <teinporal element value expression>
. <instant set va.lue expression>

11.7 Section 6.12
expression>

<numeric value

The non-terminal <extract expression> and its entire sub-
tree is deleted, and the production for the non-terminal
<numeric primary> is changed to the following.

SIGMOD RECORD, Vol. 23, No. 1, March 1994 75

<numeric primary> ::=
<unsigned va.lue specification>
<column reference>
<set function specification>
<scala.r subquery>
<case espression>
<left pa.ren> <numeric value expression>

<right paren>
l 1 <calendar defined identifier> [<left paren>

<token> [<comma> <token> I..
<right. paren>]

<numeric cast. specification>
<position espression>
<length expression>

Additional syntax rules:

1. <ca.lendar defined identifier> must be a.n <identifier>
representing a ca.lendar defined function tha.t returns a.
numeric value.

2. <calendar defined identifier> can be used to define field
extraction functions for temporal values.

3. A calendar of the currently active calendric system is
assumed to define the <calendar defined identifier>.
If no SET CALENDRIC SYSTEM command has been en-
tered during the session then a calendar of the imple-
mentation defined default calendric system is assumed
to define the <calendar defined identifier>. Any other
situation generates a. compilation error.

4. The number a.nd types of the tokens in the para.meter
list of a <calendar defined identifier> function must
a.gree in number and type with the definition of t*he
function in the calendric syst,em. Any other situation
generates a compilation error.

11.8 Section 6.13
expression>

<string value

The production for the non-t(ermina.1 <character primary>
is changed to the following.

<cha.racter primary> ::=
<unsigned va.lue specification>
<column reference>
<set function specification>
<scalar subquery>
<case expression>
<substring.>
<fold>
<left paren> <character value expression>

<right paren>
<chara.cter cast expression>
<character translation>
<form-of-use conversion>

. <calendar defined identifier> [<left paren>
<token> [<comma> <token> 1..
<right paren>]

.4dditional syntax rules:

1. <calenda.r defined identifier> must be an <identifier>
representing a. calendar defined function tha.t returns a
st,ring value.

2. A <ca.lenda.r defined identifier> can be used to define
field estraction functions for temporal values.

3. A ca.1enda.r of the currently active calendric system is
assumed to define the <calenda.r defined identifier>.
If no SET CALENDRIC SYSTEM command has been en-
tered during the session then a calendar of the imple-
menta.tion defined default, calendric system is assumed
to define the <calendar defined identifier>. Any other
situation generates a compilation error.

4. The number and types of the tokens in the para.meter
list. of a <calendnr defined identifier> function must
agree in number and t.ype with the definition of the
function in the ca.1enda.r. Any other situation generates
a. compilation error.

11.9 Section 6.14 <datetime value
expression>

The non-terminal <da.tet.ime value espression> and its en-
tire subt.ree a.re repla.ced with the following productions.
The production for the non-terminal <instant primary> is
angmented to also include references t.o ta,bles themselves.
Also, expressions eva.luating to insta.nt, sets are added.

<instant, value espression> ::=
. <instant term>
. 1 <plus sign>

<instant value expression>
. 1 <instant value expression> {<plus sign> 1

<minus sign>}

<instant, term> ::=
. <instant fa.ctor>

<instant factor> ::=
. <instant primary>

<instant primary> ::=
.
.
.
.
.
.

.

.

.

.

<instant literal>
<column reference>
<scalar subquery>
<case expression>
<instant value function>
<left paren> <instant value expression>

<right pa.ren>
<cast specification>
<table name>
<correlation name>
VALID <lparen> { <table name> 1

<correlation name> } <right paren>

76 SIGMOD RECORD, Vol. 23, No. 1, March 1994

<interval value expression> ::=
. <interval primary>
. 1 <plus sign>

<interval value expression>
. 1 <int,erval value expression> {<plus sign> /

<minus sign>}

<interval prima.ry> ::=
. <int,erval literal>
. <column reference>
. <scalar su bquery >
. <case expression>
l <interval value function>
. <cast specification>
. <table name>
. <correlation name>
. VALID <lparen> { <table name> /

<correlation name> } <right parer0

 ::=
.
. 1 {<plus sign> 1

<minus sign>}
. 1 <instant value expression> <minus sign>

<instant term>.
. 1 <left paren> ‘<instant value expression>

<minus sign> <instant term> <right paren>

 ::=
.
. (<asterisk> I <solidus>} <factor>
. <fa.ctor> <asterisk> <spa.n t,erm>

 ::=
. [<minus sign>]

 ::=
.
. <column reference>
. <scalar subquery>
. <case expression>
. <left paren>

<right paren>
. <cast specification>
.

<temporal element value expression> ::=
. <temporal element va,lue term>
. I <temporal element value expression> { ‘ + ’ I ‘ - ’ }

<temporal element value term>

<temporal element value term> ::=
. <tempora.l element value factor>

<temporal element value factor> ::=
. <temporal element value primary>

<temporal element value primary> ::=
. <table name>
. <correlation name>
. VALID <lparen> { <table name> I

<correlation name> } <right paren>
. I TRANSACTION <lparen> { <table name> I

<correlation name> } <right pa.ren>
. I <temporal element value function>

<in&ant set va.lue expression> ::=
l <instant set, value primary>
. I <instant set. va.lue expression> { <minus> I

<plus> } <instant set. value primary>

<instant set value primary> ::=
. <table name>
. <correlation name>
. VALID <lparen> { <ta.ble name> /

<correlation name> } <right paren>
. <instant set value function>

Additional syntax rules:

1.

2.

3.

4.

5.

6.

7.

The data type of an <instant primary> is INSTANT.

The data type of a.n <int,erval prima.ry> is INTERVAL.

The data type of a is SPAN.

The data type of a.n <insta.nt value
INSTANT.

expression> is

The da.ta type of an <int.erval value
INTERVAL.

espression> is

The data type of a is SPAN.

Table 1 lists the arithmetic espressions involving time
values that are valid.

Addit,ional general rules:

1. Let T be the <table> or <correlation name>.

2. VALID is only permitted on va.lid-t,ime and bit,empora.l
tables.

3. TRANSACTION is only permitted on transaction-time and
bit,empora.l tables.

4. Case:

(a) If T is a valid-time or bitemporal table, then t,he
<t,able name> or <correlation name> alone is
equivalent to VALID(<name>).

(b) If T is a transaction-time ta.ble, then the <table
name> or <correlation name> alone is equiva.lent,
to TRANSACTION(<name>),

SIGMOD RECORD, Vol. 23, No. 1, March 1994 77

5.

6.

7.

8.

9.

Opemnd 1 Opeiator Opeinid 2

span

span + spu 11

Yields

span

span

span span

instant

instant

spa11

instaid

+ span instant

spa 11 instant

+ instant instant

instant svan

span

ntiinei+c

* numeric span

* svan svan

spun

SVUll

/ numeric span

/ simn nuine7ic

span

interval

+ interval interval

+ svcl1a interval

inle~val

element

span inter-d

+ element element

elenteiit element element

event set + event set event set

event set + event set event set

Ta.ble 1: Valid Arithmetic Expressions and Results.

If T is a non-partitioned correlation variable associated
with a valid-time state ta.ble, then VALID is a temporal
element. If T is a correla.tion variable partitioned by
INTERVAL, then VALID is a.11 int,erval. If T is a non-

partitioned correlation variable associaked with a valid-
time event table, then VALID is an instant set. If T
is a. correlation varia.ble pa.rtitioned by INSTANT, then

VALID is an insta.nt.

Operands are coerced to the global scale specified in
the last SET DEFAULT SCALE command prior to the op-
era.tion.

The range and sca.le of intermediate results are the max-
imum allowed by the implementa.tion.

‘+‘(‘-‘) on em ora e ement,s is set union (difference). t p 1 1

‘ + ’ (‘ - ‘) on instant sets is set union (difference).

11.10 Section 6.15
expression>

<interval value

The non-terminal <interval va.lue expression> and its sub-
tree are deleted. It is effectively replaced by the new non-
terminal .

12 Section 7 Query expressions

12.1 7.1 <row value constuctor>

1.

2.

3.

4.

5.

A tuple can now include a. valid t.ime.

If the credibility phrase is missing, the default credibil-
ity is 100 or as specified by the user with a set, state-
ment .

<row value constructor> ::=
<row value constructor element>

12.3 Section 7.6 <\vhere clause>

.) <left pa.ren> <row va.lue constructor list> To the production for <where clause> is added the plausi-
<right paren> [<valid va.lue>] bility phrase.

] <row subquery>

<valid va.lue> ::=
. VALID { <element. value expression>

1 <interval value expression>
1 <event. value expression> 1

<event set value expression> }

12.2 Section 7.3 <table expression>

The production for the non-terminal <table expression> is
replaced with the following, adding one clause.

<table expression> ::=
. [<valid clause>]

<from clause>
[<group by cla,use>]

[<having clause>]

The following production is added.

<valid clause> : : =
. { VALID 1 VALIDINTERSECT }

{ <element value expression>
f <interval va.lue expression> I

<instant value expression> }
[WITH CREDIBILITY <integer>]

Additional general rules:

VALIDINTERSECT T is

equivalent to VALID INTERSECT(T, INTERSECT(C1, .

INTERSECT cc,,- 1, C,,) , where C; are the correlation
variables (or table names) mentioned in the SELECT

clause.

The default VALID &use is VALIDINTERSECT

INTERVAL(lbeginning nowl, UNBIND(1 now

foreverI)>.

If the VALID clause specifies a.n interval or instant
value, the values from the other value-equiva.lent tu-
ples are gathered into a. temporal element or instant,
set, respectively.

The credibility is a value between 0 and 100 (inclusive).

78 SIGMOD RECORD, Vol. 23, No. 1, March 1994

<where clause> : : =
. WHERE <search condition>

[WITH PLAUSIBILITY <integer>]

Additional general rules:

1. The pla.usibility is a va.lue between 1 and 100 (inclu-
sive).

2. I f t,he plausibility phrase is missing, the default pla.u-
sibility is 100 or as specified by the user with a set.
statement.

12.4 Section 7.7 <group by clause>

The production for grouping column reference is estended.

<grouping column reference> ::=
{ <column reference> [<collate clause>] }

. I{ { TRANSACTION <left paren>
<table reference> <right paren>

. 1 VALID <left paren>
<table reference> <right paren>

. 1 <column reference> }

. [USING { 1 INSTANT }]
[LEADING] [TRAILING] }

Additional syntax rules:

1. I f the using clause, or the lea.ding clause or the trailing
clause is present, and neither VALID or TRANSACTION
is. then the type of the <column reference> must be a.
timestamp.

2. VALID or TRANSACTION may only be present once in a.
<group by clause>.

Additional genera.1 rules:

1. I f the type of the <column reference> is a. timestamp,
or TRANSACTION or VALID is present, t,hen

Case:

(a.) I f the using clause is not present, then the default
is INSTANT.

(b) If the leading (or trailing) clause is not present,
then the default spa.11 of the missing clause is a
span of length 0.

2. I f a.ny or all of the using, tra.iling or leading clauses are
present, or VALID or TRANSACTION is present, or t,he
type of the <column reference> is a timestamp, then
partition the table value the following way.

(a) Partition the time-line of the <table reference>
or the <column reference> according to the using
clause. If the using clause contains INSTANT, parti-
t,ion the time-line into separate partitions for each

granule. If the part#ition is a span, part.itioning is
a.ccording to the current ca.lendar.

(b) For each partition, determine t.he t,ra.iling and
leading intervals induced by their spans. This may
be calendar dependent. The leading interva.l. if
present, will contain the granule next, to the first,
granule of the pa.rtition. Similarly, the first gran-
ule of the trailing inter4 will be t,he first granule
after the partition. The partition will not share
aranules with either induced interval. Let I be b
t,lie interval containing the three intervals.

(c) Let T be the result, of the preceding <from
clause>, or the result of previous subsetas induced
by the <group by clause>. For each partition of
t.he time-line, a.nd each group in T, associate the
t,uples from T which over1a.p wit.11 the interval I
with the current partit.ion.

12.5 Section 7.8 <having clause>

Additional genera.1 rules:

1. Let T be one of the cla.uses in the <group by clause>.

2. If T included TRANSACTION or VALID, or T was followed

by a. using clause, leading clause, or trailing clause, and
T is present in the <having clause>, then the using
clause must not contain a span larger than a gran-
ule, and the lea.ding and trailing clauses must be zero
length.

12.6 Section 7.9 <query specification>

The production is repla.ced tiit,h t.he following, adding 011~
optional reserved word.

<select st,a.tement: single row> ::=
. SELECT [<set quantifier>] [SNAPSHOT]

<select list> <table expression>

Additional general rules:

1. SNAPSHOT specifies that the resulting table will be a
snapshot table. In this case. t,he <ta.ble expression>
should not include a <va.lid clause>.

13 Section 8 Predicates

13.1 Section 8.1 <predicate>

The production for t,he non-terminal <predicate> is re-
placed with the following.

<predicate> ::=
<comparison predicate>
<between predicate>
<in predicate>
<like predicate>

<null predicate>
<quantified compa.rison predicate>
<exists predicate>

SIGMOD RECORD, Vol. 23, No. 1, March 1994 79

<m~ique predicate>
<match predicate>
<precedes predicate>
<meets predicate>
<overlaps predicate>
<contains predicate>

13.2 Section 8.2 <comparison predicate>

No new syntax rules are required, but additional disam-
biguating rules are required for span comparison.

1. The <less than operator>, <greater than operator>,
and <equals operator> are valid for span comparison.

13.3 Section 8.7 <quantified comparison
predicate> Additional general rules:

No additional productions are required. The following syn-
tax rules are added.
Additional syntax rules:

1. Operands are coerced to the global scale specified in
the last SET DEFAULT SCALE command prior to the op-
eration.

1.

2.

3.

Let Tl be the type of <value expression>.

Let Tz be the type of <row value expression>.

If either Tl or Tz is INTERVAL, INSTANT, or SPAN then
‘I’1 and Tz must be comparable as defined in Ta.ble 2.

13.4 Section 8.11 <overlaps predicate>

The following productions a.re added for the new comparison
operators. (The production for the OVERLAPS predicate is
left as is though its semantics have changed.)

<precedes predicate> ::=
. <row value expression 1> PRECEDES

<row value expression 2>

<meets predicate> ::=
. <row value expression 1> MEETS

<row value expression 2>

<contains predicate> ::=
l <row value expression l> CONTAINS

<row value expression 2>

This grammar is overly permissive in that it generates
semantically illegal expressions. This is, however, consistent
with the grammar originally provided in the SQL92 proposal
for datetime value comparison. Expressions violating type
constraints will be detected during semantic analysis.
Additional syntax rules:

1. Let Tl be the type of <row value expression l>.

2. Let T-J be the type of <row value expression 2>.

3. Tl and T? must be either INTERVAL or INSTANT.

4. Tl and T2 shall be comparable as defined in Table 2.

5. Any comparison involving t#he INTERVAL or INSTANT

clata types not listed in T&le 2 is disa.llowed.

Operand 1 Operato f Operand 2]

Spill

span
stmn

=

<
>

span
span
svan

instant/interval = instant/interval
instant/interval PRECEDES instant/interval

instant/interval OVERLAPS instant/interval

instant/interval CONTAINS instant/interva/

instant/interval MEETS znstant/interval

Table 2: Permitted Comparison Operators

13.5 Section 10.1 <interval qualifier>

The non-terminal <interval qualifier> and its subtree are
deleted. This is a calendar-specific language construct and
definition of such would appea.r in a ca.1enda.r.

14 Section 11 Schema definition
and manipulation

14.1 Section 11.3 <table definition>

The production for the non-terminal <table definition> is
augmented with an additiona.1, optional clause.

<table definition> ::=
. CREATE [{ GLOBAL 1 LOCAL } TEMPORARY]

TABLE <table-name>
<table-elements>

[<temporal definition>]
[ON COMMIT { DELETE 1 PRESERVE } ROWS]

Two productions are a.dded.

<temporal definition> ::=
. <valid definition> [AND TRANSACTION]

. 1 AS TRANSACTION

<valid definition> ::=
. AS [VALID] { STATE 1 EVENT }

[<time precision and scale>] <default clause:

80 SIGMOD RECORD, Vol. 23, No. 1, March 1994

-

Additiona. genera.1 rules:

1. Case:

(4

(b)

(cl

(4

(4

(f)

If neither VALID nor transaction is specified, the
table is a snapshot table.

If AS VALID STATE isspecified, and TRANSACTION
is not specified, then the tuples are timestamped
with valid-time elements that are sets of non-
contiguous intervals. The precision and scale of
the intervals can be specified.

If AS VALID EVENT is specified, and TRANSACTION
is not specified, then the tuples are timestamped
with valid-time instant sets. The precision and
scale of the instants can be specified.

If TRANSACTION is specified, and VALID is not
specified, then the tuples are timepstamped with
transaction-time elements. The scale of the times-
tamps is implementation-dependent.

If TRANSACTION and VALID STATE are specified,
the the tuples are timestamped with bitemporal
elements that are sets of bitemporal chronons.
The precision and scale of the valid-time dimen-
sion can be specified; the scale of the transaction-
time dimension is implementation-dependent.

If TRANSACTION and VALID EVENT are specified,
the the tuples a.re timestamped with bitemporal
inst,ant sets that are sets of bitemporal chronons.
The precision and scale of the valid-time dimen-
sion can be specified; the scale of the transaction-
time dimension is implementation-dependent.

14.2 Section 11.5 <default clause>

The production for the non-terminal <default clause> is
changed to the following.

<default clause> ::=
<literal>

. <instant value function>

. <interval value function>

.
USER
SYSTEM USER
NULL

Additional syntax rules:

If <instant value function>, <interval value function>,
or is specified then any param-
eters passed to these functions must be property values
representing a specia.1 time value or literal values.

Let T be the type of the column being initialized.

If T is INSTANT, INTERVAL, or SPAN then USER and
SYSTEM USER ma.y not be specified.

4.

5.

e.

If T is INSTANT then either a <litera.l> representing
a,n <instant literal> or an <instant va.lue function>
may be specified. The calendric system used t.o inter-
pret the constant is the calendric system whose scope is
the smallest scope which encompasses the lit,eral. The
properties used to interpret the constant are the set, of
properties active when the default clause is esecuted.

If T is INTERVAL then either a <literal> representing
an <interval literal> or an <interval value function>
may be specified. The calendric system used t,o inter-
pret the constant is the calendric system whose scope is
the smallest scope which encompasses the literal. The
properties used to interpret the constant are the set of
properties active when the default clause is executed.

If T is SPAN then either a <literal> representing a
 or a may be
specified. The calendric system used to interpret, the
constant is the ca.lendric system whose scope is the
smallest scope which encompasses the litera.1. The
properties used to interpret the constant are the set of
properties active when the default clause is executed.

14.3 Section 11.10 <alter table statement>

The <alter table statement> is augmented with the follow-
ing alternatives.

<alter table statement> : : =
. <add valid definition>
. <drop va.lid definition>
. <replace valid definition>
. <add t,ransaction definition>
l <delete transaction definition>

The following productions a.re a.dded.

<add valid definition> : : =
. ADD [VALID] { STATE 1 EVENT }

[<time precision and scale>]

<add transa.ction definition> ::=
. ADD TRANSACTION

<delete transaction definition> ::=
. DROP TRANSACTION

Additional syntax rules:

1. Let T be the table identified in the containing <a.lter
table statement>.

2. T shall be a snapshot table or a transaction-time ta.ble.

<drop valid definition> : : =
. DROP VALID

SIGMOD RECORD, Vol. 23, No. 1, March 1994 81

Additional syntax rules: 15 Section 12 Module

1. Let T be t,he table identified in t,he containing <a.lter
table statement,>.

2. T shall be a valid-time or bitemporal table.

The production for the non-terminal <module contents>
is cha.nged to include a global ca.lendric syst,em declara-
tion statement, and a new non-terminal <declare ca.lendric
system> is added to define this sta.tement.

Additional general rules:

1. T is converted to a snapshot or transaction-time table.

2. If T is an interval table, it is converted to a snapshot
table with contents

<module contents> ::=
<declare cursor>

. <declare calendric system>
<dynamic decla.re cursor>
<procedure>

SELECT SNAPSHOT * FROM TUHERE TOVERLAPS
PRESENT

If T is an event table, it is converted to a snapshot ta.ble
with contents

SELECT SNAPSHOT * FROM T

<replace valid definition> : : =
. REPLACE[VALID] { STATE 1 EVENT }

<time precision and scale>]

<declare calendric system> ::e
. SET CALENDRIC SYSTEM WITH <calendric spec>

15.1 Section 12.5 <SQL procedure
statement >

The production for the non-terminal <SQL session
statement> is changed to include a session-level calendric
system selection command, default, se&on-level scale and
align specification commands, and credibility and plausibil-
ity defaults.

Additional syntax rules:

1. Let T be the table identified in the containing <alter
table Xlstatement >.

2. T shall be a valid-time table.

Additional general rules:

1. If T was an state table and <valid definition> specifies
interval, then only the precision or sca.le of T’s valid-
time timestamps is a.ltered. The t,emporal element of
each tuple of T is converted to t,he new precision and
scale. If the scale in increased, the additional fractional
digits are set, t,o zero.

2. If T was an state table a.nd <va.lid definition> spec-
ifies event, then the timestamp of each tuple in T is
converted from a set of intervals to a set of instants,
equivalently,

SELECT * VALID BEGIN(T) FROM T(INTERVAL)

3. If T was an event table and <va.lid definition> specifies
event, then only the precision or scale of T’s valid-time
timestamps is a.ltered. The instants in the timestamp of
each tuple of T are converted to t,he new precision and
scale. If the scale in increased, the additional fractional
digits are set to zero.

<SQL session statement> ::=
<SQL set identifier statement>
<set constraints mode statement>
<set transaction st,atement>

. <set properties statement>

. <set scale statement>

. <set align statement>

. <set credibility statement>

. <set plausibility st,at,ement>

<set properties statement> ::=
. SET PROPERTIES WITH <property spec>

<set scale statement> ::=
. SETSCALE { <timescale> / AS DEFAULT }

<set align statement> ::=
. SET ALIGN <time scale>

<calendric-property specification> ::=
. [<calendric-spec clause>]

[<property-spec clause>. .]

4. If T was an event table and <valid definition> speci-
fies interval, then the timestamp of each tuple in T is
converted from a set of instants to a set of intervals,
equivalently,

<calendric-spec clause> ::=
. WITH CALENDRIC <calendric spec>

<calendric spec> ::=
l DEFAULT
.) <calendric system name>

<property-spec clause> ::=
. WITH PROPERTIES <property spec>

SELECT * VALID INTERVAL(T, T) FROM T(EVENT)

82 SIGMOD RECORD, Vol. 23, No. 1, March 1994

<propert,y spec> ::=
. PREVIOUS
. DEFAULT
. <property table name>
. , <table value espression>

<set credibility st,atement> ::=
0 SET CREDIBILITY { <integer> 1 AS DEFAULT }

<set plausibility statement> ::=
l SET PLAUSIBILITY { <integer> 1 AS DEFAULT }

Additional syntax rules:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

In a sequence of SQL statements, the last calendric sys-
tem specified in a SET CALENDRIC SYSTEM command
remains in effect until a. new SET CALENDRIC SYSTEM
command is entered.

A SET CALENDRIC SYSTEM WITH DEFAULT statement
reactivates the implementation defined default calen-
dric system.

The non-terminal <calendric system name> must be
an <identifier> naming a calendric system.

The non-terminal <property table name> is the name
of a property table defining properties of the named
calendric system.

The most recent invocation of a <set scale statement>
or a <set align statement> takes precedence.

If both the <set sca,le statement> and the <set align
statement> are omitted, then the default scale is as-
sumed.

Specifying SET PROPERTIES WITH PREVIOUS causes
the previous set of active properties to be reactivated.

Specifying SET PROPERTIES WITH DEFAULT causes the
implementation defined set of default properties t,o be
activated.

The non-terminal <table value expression> enumerates
the rows of a property table.

A property table must have the schema (prop-
erty:chamcter stting, value:character string). The com-
mand to create a persistent property table with prop-
erty values of length at most twenty characters is the
following. (The reserved word VARCHAR indicates a.
varying length character string.)

CREATE TABLE property-table(property VARCHAR
20, value VARCHAR 20)

The most recent invocation of a <set credibility
statement> or a <set plausibility statement> ta.kes
precedence.

12. If both the <set credibility statement> and t,he <set.
plausibility statement> are omitted, then the defaults,
100 and 100, respectively, are assumed.

16 Section 13 Data manipulation

16.1 Section 13.3 <fetch statement>

<fetch statement> ::=
FETCH [[<fetch orientation>] FROM]

. <cursor name> [INTO <fetch target. list>]

. [INTO VALID [INTERVAL] <fetch t.a.rget list,>]

Additional syntax rules:

1. At least one of INTO <fetch target list> and INTO
VALID [INTERVAL] <fetch target list> must be
present in a fetch statement,.

Additional general rules:

1. When a <fetch target list> follows INTO VALID
INTERVAL, it must contain precisely a single <target
specification>. This is only allowed with a state re-
lation is being evaluated by the SELECT statement.
When a <fetch target list> follows INTO VALID (with-
out INTERVAL), it must contain exactly two <ta.rget.
specification>s if a. state relation is being evalua.ted
by the SELECT statement, and esa.ctly one <target
specfication> is an event rela.tion is being eva.luat,ed..

16.2 Section 13.5 <select statement: single
row>

The production is replaced with the following, adding one
optional reserved word.

<select statement: single row> ::=
. SELECT [<set quantifier>] [SNAPSHOT]

<select list>
INTO <select target. list>

< ta.ble expression >

Additional general rules:

1 SNAPSHOT specifies that the resulting table will be a
snapshot table. In this case, the <table expression>
should not include a <valid clause>.

16.3 Section 13.7 <delete statement:
searched>

The production for the non-termina.1 <delete statement:
searched> is augmented with an additional, optional clause.
This clause references the non-terminal <valid clause> de-
fined for the SELECT statement.

SIGMOD RECORD, Vol. 23, No. 1, March 1994 83

ALTER TABLE TABLES ADD COLUMN
VALID-TIME CHARACTERDATA

CONSTRAINT VALID-TIME-CHECK
CHECK (VALID-TIME IN (‘STATE’, ‘EVENT’, ‘NONE’))

ALTER TABLE TABLES ADD COLUMN
TRANSACTION-TIME CHARACTERDATA

CONSTRAINT TRANSACTION_TIME-CHECK
CHECK (TRANSACTION-TIME IN (‘STATE’, ‘NONE’))

Figure 2: The TABLES Base Table

<delete sta.tement,: searched> ::=
DELETE FROM <table name>

[WHERE <search condition>]
. [<valid value>]

Additiona. general rules:

1. If T is a valid-time table, and the <valid value> is
omitted, then the default valid value specified in t,he
<table definition> is assumed. If there was no default
value specified, then the interval INTERVAL(%now%,
UNBIND(%now%)) is assumed.

16.4 Section 13.8 <insert statement>

The <insert column list,> is modified to permit the use of
the NEW reserved word.

<insert column list,> ::=
. <insert. column>

[{ <comma> <insert column> }...]

The <insert column> is a new production.

<insert column> ::=
. <column na.me>
. 1 NEW

Additional genera.1 rules:

NEW is permitted only when the <data type> of the
corresponding column is SURROGATE.

16.5 Section 13.9 <update statement:
positioned>

Additional genera.1 rules:

1. If T is a t,ransaction-time or bitemporal table, the
transaction t,ime of the appended or update tuple is
INTERVAL(lnow1, luntil changedi).

16.6 Section 13.10 <update statement:
searched>

<update statement,: searched> ::=
UPDATE <table name>

SET <set clause list,>
. [<valid va.lue>]

[WHERE <search condition>]

Additiona. general rules:

1. If T is a transaction-time or bitemporal table, the
t*ransaction time of the appended or update tuple is
INTERVAL(lnow1, luntil changedl).

17 Section 16 Session Management

17.1 Section 16.5 <set local time zone
statement>

The non-terminal <set local time zone statement> and its
entire subtree are deleted. Local time displa.cement is cal-
endar specific.

18 Section 21 Information Schema
and Definition Schema

18.1 Section 21.3.8 TABLES base table

See Figure 2.

18.2 Section 21.3.x TEMPORALSPEC
base table

See Figure 3.

18.3 Section 21.3.y SURROGATE base ta-
ble

See Figure 4.

84 SIGMOD RECORD, Vol. 23, No. 1, March 1994

CREATE TABLE TEMPORALSPEC {
TABLENANE CHARACTERDATA,
TEMPORALTYPE CHARACTERDATA
SCALE SPAN,
PRECISION SPAN,
DISTRIBUTION CHARACTERDATA,
GENERAL CHARACTERDATA,
DEFAULT-EVENT NONSTANDARD GENERAL INDETERMINATE INSTANT,
DEFAULTSTATE NONSTANDARD GENERAL INDETERMINATE INTERVAL,
CONSTRAINT TEMPORALSPECPRIMARYXEY

PRIMARYKEY (TABLENAME),
CONSTRAINT TEMPORAL-TYPE-CHECK

CHECK (TEMPORAL-TYPE IN ('VALID STATE', 'VALID EVENT',
'TRANSACTION', 'BITEMPORAL STATE', 'BITEMPORAL EVENT'))

CONSTRAINT DISTRIBUTIONXHECK
CHECK (DISTRIBUTION IN ('STANDARD', 'NONSTANDARD'))

CONSTRAINT GENERAL-CHECK
CHECK (GENERAL IN ('NONGENERAL', 'GENERAL'))

Figure 3: The TEMPORALSPEC Table

CREATE TABLE
TABLENAME
COLUMNNAME
CONSTRAINT

SURROGATE {
CHARACTERDATA,
CHARACTERDATA,
SURROGATEPRIMARYKEY
PRIMARY-KEY (TABLENAME, COLUMN-NAME)

Figure 4: The SURROGATE Table

19 History Contributors

Temporal databases have been an active research topic for
at least fifteen years. During this time, several dozen tem-
poral query languages have been proposed. In April, 1992
Richard Snodgrass circulated a white paper proposing that
a temporal extension to SQL be produced by the research
community. In parallel, the temporal database community
organized the “ARPA/NSF International Workshop on an
Infrastructure for Temporal Databases,” which was held in
Arlington, TX, in June, 1993. Discussions at that workshop
indicated that there was substantial interest in a temporal
extension to SQL-92. A general invitation was sent to the
community, and about a dozen people volunteered to de-
velop a language specification (over the next few months
another half-dozen people joined the committee). The group
corresponded via email from early July, 1993, submitting,
debating, and refining proposals for the various portions
of the language. In September, 1993, the first draft speci-
fication, accompanied by thirteen commentaries, was dis-
tributed to the committee. In December, 1993 a much
enlarged draft, accompanied by some twenty-five commen-
taries, was distributed to the committee.

TSQL2 is remarkable, and perhaps unique, in t,hat it was
designed entirely via electronic mail, by a committee that
never met physically (in fact, those on the committee have
never met. everyone else individually).

The language design committee is quite broad, compris-
ing members from database vendors, industrial research
labs, industrial users, and academia. Committee members
reside in seven countries on three continents. All commit-
tee members have published scholarly papers in the area of
databases; for most, temporal databases is their primary
resea.rch focus.

The TSQL2 Language Design Committee consists of
Richard Snodgrass (chair), Department of Computer Sci-
ence, University of Arizona, Tucson, rtsQcs . arizona. edu;
Ilsoo Ahn, AT&T Bell Laboratories, Columbus Ohio,
ahnQcbnmva. att . corn; Gadi Ariav, Computer and Informa-
tion Systems, Tel Aviv University, Israel, ariavg@ccmail.-
gsm.uci. edu; Don Batory, Department of Computer Sci-
ences, University of Texas at Austin, dsbQcs . utexas . edu;
James Clifford, Information Systems Dept., New York Uni-
versity, j clif f orQis-4. stern. nyu. edu; Curtis E. Dyre-
son. Department of Computer Science, University of

SIGMOD RECORD, Vol. 23, No. 1, March 1994 85

Arizona. Tucson, curt is0cs. arizona. edu; Christian s.
.Jensen, Afdeling for Matematik Og Datalogi, Aalborg
Uuiversitetscenter, Denmark, cs j Qiesd . auc . dlc; Ramez
Elmasri, Computer Science and Engineering Depart-
ment, IJniversitJi of Texas at Arlington, elmasriQcse .-
uta.edu; Fabio Grandi, University of Bologna, Italy,
f abioQdeis64. cineca. it; Wolfgang Kgfer, Daimler Benz,
Uhn, Germany, kaef er%f uzi . uucpQgermany . eu. net; Nick
Kline, Depart,ment of Computer Science, University of
Arizona, Tucson, klineQcs . arizona. edu; Krishna Kulka-
rni, Tandem Computers, Cupertino, CA, kulkarni--
krishnaQtandem. corn, Ting Y. Cliff Leung, Data Base Tech-
nology Institut,e, IBM, San Jose, CA, cleungQalmaden.-
ibm. corn; Nikos Lorentzos, Informatics Laboratory, Agri-
cu1tura.l University of Athens, Greece, eliopQisosun. -
ariadne-t .gr; John F. Roddick, University of South
Australia, The Levels, South Australia, roddickQunisa.-
edu.au; Arie Segev, University of California, Berke-
ley, CA, segevQcsr.lbl.gov; Michael D. Soo, Depart-
ment of Computer Science, University of Arizona, Tucson,
sooQcs . arizona. edu; and Surynarayana M. Sripada., Eu-
ropean Computer-Industry Research Centre, Munich, Ger-
many, spripadaQecrc . de.

DO YOU HAVE YOUR
ELECTRONIC MAIL

ADDRESS
ON ACM.ORG YET?

S etting up a Mail Forwarding

(only $10) or Full Service

account on ACM.org is as

easy as Emailing ACM

Network Services at: Account-

Info@ACM.org

or calling l-8 17-776-6876.

Or if you prefer, write:

ACM Network Services

P.O.Box 2 1599,

Waco,TX 76702 or

ORb,t,DJ,, Fox: l-8 17-75 l-7785.

CAREERLINE
Looking for career advancement?
Contemplating a job or career change?
Worried about falling victim to a
corporate downsizing?

ACM’s career counselling service can help
with defining career goals, researching job
opportunities, preparing a winning resume,
soliciting and preparing for effective interviews,
negotiating and evaluating job offers.
Contact: Jack Wilson, Career Sciences,
100 Mills Plains Road, Danbury CT 06811
Fax: (203) 431-8042. (bet. 5:30-8:30 EST)
Email Career@ACM.org. You must provide
your Member number.

cuCOD394

86 SIGMOD RECORD, Vol. 23, No. 1, March 1994

