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Abstract

In this paper we discuss extensions to the conven-
tional relational algebra to support transaction time
We show that these extensions are applicable to his-
torical algebras that support valid time, yielding a
temporal algebraic language Since transaction time
concerns the storage of mformation 1 the database,
the notion of state 1s central The extensions are for-
malized usmg denotational semantics The additions
preserve the useful properties of the conventional re-
lational algebra

1 Introduction

Codd’s relational algebra [Codd 1970] 1s truly time-
less, in several senses First, the relations 1t op-
erates on model the current reality as is currently
best known, the imformation approximates an in-
stantaneous snapshot Secondly, while the compu-
tation of a relational algebraic expression occurs 1n
an mnermost-out fashion, there 1s no sense of the
computation requiring time to complete Third,
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the disposition of the derived relation computed
by the algebraic expression 1s ethereal, presumably
this relation will be displayed or stored back in the
database—the algebra will never tell

In this paper we propose extensions that address
the first and third aspects Time must be added to
the underlying data model before 1t can be added
to the relational algebra In previous papers, we
identified three orthogonal kinds of time that a
database management system (DBMS) needs to sup-
port vahd time, transaction time, and user-defined
time [Snodgrass & Ahn 1985, Snodgrass & Ahn
1986] Valid time concerns modehng time-varying
realhity The valid time of, say, an event 1s the clock
time that the event occurred in the real world, in-
dependent of the recording of that event 1n some
database Transaction time, on the other hand, con-
cerns the storage of information m the database The
transaction time of an event 1s the transaction num-
ber (an nteger) of the transaction that stored the
information concerning the event mm the database
User-defined time 18 an uninterpreted domam for
which the DBMS supports the operations of input,
output, and perhaps comparison and mmmmal com-
putation As its name implies, the semantics of user-
defined time 1s provided by the user or application
program These three types of time are orthogonal
1n the support required of the DBMS

In these same papers, we defined four classes of
relational databases depending on thewr support for
valid time and transaction time snapshot databases,
rollback databases, historical databases, and tempo-
ral databases User-defined time 1s in fact already
supported by the relational algebra, in that it 1s
simply another domain, such as integer or charac-
ter string, provided by the DBMS [Bontempo 1983,
Overmyer & Stonebraker 1982, Tandem 1983| Snap-



shot databases support neither valid time nor trans-
action time They represent a relation as a smgle
snapshot state (1e, the state of the enterprise being
modeled at one particular pomnt n time) Snapshot
databases are exactly those databases supported by
the relational algebra Hence, for clarity, we will
refer to the relational algebra hereafter as the snap-
shot algebra Rollback databases support transaction
time but do not support valid time They represent
a relation as a sequence of snapshot states mdexed
by transaction time By recording the history of
database activity, rollback databases allow relations
to be rolled back to one of their past snapshot states
for querymng Historical databases support vahd time
but do not support transaction time They represent
arelation as a single historical state (1 e , the history
as 18 best known of the enterprise bemng modeled)

By recording the history of the real world, histor:-
cal databases provide support for historical queries

When an historical database 1s changed, however,
past historical states are not retamed Temporal
databases support both valid tune and transaction
time They represent a relation as a sequence of
historical states mndexed by transaction tume By
recording both the history of the enterprise bemng
modeled and the history of database activities, tem-
poral databases provide support for both historical
queries and rollback operations

In this paper we discuss extensions to the snap-
shot algebra to enable 1t to handle transaction time
There have already been several proposals for adding
vahd time to the algebra [Ben-Zv1 1982, Chfford
& Croker 1987, Gadia 1984, Gadia 1986, Jones et
al 1979, McKenzie & Snodgrass 1987B, Navathe &
Ahmed 1986, Tansel 1986, so we will not consider
extensions to support vahd time Fortunately, since
the two types of time are orthogonal, they can be
studied 1 1solation We examine how transaction
time can be added to the snapshot algebra and show
how our approach applies without modification to all
historical algebras supporting valid time, yielding a
temporal algebraic language that can accommodate
all three kinds of time

Several benefits accrue from extending the snap-
shot algebra to support transaction time The ac-
tion of update 1s available m the algebra, allowing
the algebra to be the executable form to which up-
date operations 1 a calculus-based language (e g,
append, delete, replace m Quel [Held et al 1975])
can be mapped If these operations m the calcu-
lus are formahzed, the mapping can be proven cor-
rect Secondly, update optimizations analogous to
the retrieval optimizations that have been exten-
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sively studied [Smith & Chang 1975] can now be
investigated m a rigorous fashion. A third benefit
18 that the contents of the database, and 1its evolu-
tion, are now placed on a formal basis In partic-
ular, the domain of database states and the change
to each state effected by each operator are defined
Of course, actual implementations will vary consid-
erably 1 the physical structures used to encode the
information on secondary storage However, the ex-
1stence of a formal definition of database state al-
lows rigorous statements to be made concerning the
correctness of those structures and the mformation
content of the database

Additional benefits accrue from our approach for
adding transaction tmme to the snapshot algebra
First, our approach 1s general, 1t can be apphed to
any historical algebra to yield a temporal algebraic
language Our approach for adding transaction time
to the snapshot algebra depends on no specific tech-
nique for adding valid time to the snapshot alge-
bra Rather, 1t 18 compatible with any such tech-
nique Secondly, our approach 18 consistent with the
concepts of time-stamped concurrency control pre-
sented elsewhere [Bernstemn et al 1987, Reed 1983,
Rosenkrantz et al 1978, Stearns et al 1976)

2 The Approach

In adding transaction time to the relational model,
we discovered a fundamental problem, that of state
An algebra by definition 1s side-effect-free, but the
essential aspect of a database transaction 1s solely 1ts
side-effect of modifying the database One awkward
but perhaps feasible solution 1s to add the database
as a parameter to every operator We adopt a dif-
ferent strategy, leaving the basic structure of the al-
gebra mtact, and mstead inserting 1t into another
structure of commands that provide the needed side-
effects Hence, what we are proposing in this paper
18 not only an extended algebra, but a language with
the (shghtly extended) algebra as a significant com-
ponent In domng so, we preserve all the properties of
the snapshot algebra (e g, commutativity of select,
distributivity of select over join), permitting the full
applcation of previously developed algebraic opti-
mizations

We employ denotational semantics to define the
semantics of commands, due to 1ts success in formal-
1zing operations mvolving side-effects, such as assign-
ment, In programming languages [Gordon 1979, Stoy
1977] The language thus defined 1s our proposal for
adding transaction time to the relational model 1n



order to support a rollback relation as a sequence
of snapshot states indexed by transaction time It 1s
consistent with Maier’s definition of a snapshot state
and the snapshot algebra [Maier 1983]

A second modification does involve an extension to
the snapshot algebra When transaction time 1s sup-
ported by a DBMS, a means of accessing states other
than the current one must be included We define a
new algebraic operator called rollback to make past
states available in the algebra Fortunately, rollback
18 side-effect-free, 80 1t 18 eastly incorporated into the
algebra

Vahd time 18 supported by allowing a relation to
contain one or more historscal states Each histor-
1cal state models the history of changes 1n the real
world An historical relation contans a single histor-
1cal state, and models the history as 1s currently best
known A temporal relation contains a sequence of
historical states, each modehng the history as it was
stored in the database at a particular pomnt in time
Our language 18 consistent with definitions of histor-
ical state and historical relational algebras proposed
by others [Chfford & Croker 1987, Gadia 1984, Ga-
dia 1986, Jones et al 1979, McKenzie & Snodgrass
1987B, Navathe & Ahmed 1986, Tansel 1986]

In defining the semantics of commands and alge-
braic operators, we have favored simphcity of seman-
tics at the expense of efficient direct implementation
The language would be quite mefficient, 1n terms of
storage space and execution time, if mapped directly
mto an implementation However, the semantics do
not preclude more efficient implementations using
optimization strategies for both storage and retrieval
of information

Summarizing the changes, we add

o commands formalized using denotational se-
mantics to express additions to the state of the
database,

o a rollback operator to the algebra to access pre-
vious states, and

e valid time, accommodated by permitting histor-
1cal states to be stored in relations

The first two changes will be the topic of the next
section Section 4 will address incorporating valhd
time and section 5 will compare our approach with
those of others
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3 Commands and the Roll-
back Operator

In denotational semantics, a language 1s described
by assigning to each language construct a denota-
tion — an abstract entity which models its meaning
We chose denotational semantics as the methodol-
ogy for defining our language because denotational
semantics combmes a powerful descriptive notation
with rigorous mathematical theory to allow the pre-
cise definition of state First, we define the syntax of
our language Then we define the semantic domains
of the language and several auxihary functions Fi-
nally, we define the semantic functions which map
the language constructs into their denotations

3.1 Syntax

Our language has three basic types of language con-
structs sentences, commands, and expressions A
sentence 1n our language 18 a non-empty sequence of
commands Commands are analogous to statements
m Quel or SQL 1n that they specify some task that
either queries or changes the database (e g, define
a relation, modify the contents of a relation, display
the contents of a relation) Expressions occur within
commands and always evaluate to a smgle snapshot
state We represent these three types of constructs
by the three syntactic domains

EXPRESSION Domain of expressions
COMMAND Domain of commands
SENTENCE Doman of sentences

We use Backus-Naur Form to specify here the syn-
tax of expressions and commands 1n terms of their
smmediate constituents (1e, the highest-level con-
structs which make up expressions and commands)
The complete syntax of the language, including def-
mitions of the lower-level constituents such as iden-
tifiers, snapshot states, and boolean expressions, 18
given elsewhere |[McKenzie & Snodgrass 1987A] If
we let

E, E;, and E; range over the domam

EXPRESSION,

C, Cy, and C, range over the domain

COMMAND,
P range over the domam SENTENCE,

I range over the domain JDENTIFIER of



alphanumeric identifiers,

N range over the domam NIMERAL of decimal
numerals and the special symbol oo,

S range over the domain STRING of strings
1n an alphabet,

A range over the domam STATE of alphanumeric
representations of snapshot states (1 e,
constant relations),

Y range over the domamn TYPE of character
strings denoting relation types (1 e , snapshot,
rollback),

X range over the domam ®(IDENTIFIER),
the power set of IDENTIFIER, and

F range over the doman ¥ of boolean
expressions of elements from the domains

IDENTIFIER and STRING, the relational

operators, and the logical operators

then the syntax for the language 18

E = A|EUE, |E-FE|E xE
| 7x (E) |or(E) | p(I, N)
C = define_relation(/, Y)
| mod1fy state(l, E) | Cy, C2
P = C

An expression may be a snapshot state or an al-
gebraic operator on either one or two other expres-
sions The allowable operators include the five oper-
ators that serve to define the snapshot algebra To
these, we have added an additional operator, a roll-
back operator p The rollback operator takes two
arguments, the name of a relation (an IDENTIFIER)
and a transaction number (a NUMERAL), and re-
trieves the snapshot state from the named relation
current at the time of the indicated transaction

There are two commands 1 the language The
define_relation command binds a relation type
Y and an empty sequence of snapshot states to an
unbound 1dentifier I The modify_state command
changes a relation’s state but leaves the relation’s
type unchanged The command evaluates an expres-
sion E to produce a snapshot state which becomes
the current state of relation I This new state may,
but need not, contamn tuples from the relation’s pre-
vious state as well as tuples not found in the rela-
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tion’s previous state Tuples from the relation’s pre-
vious state may appear unchanged or have different
values for some attributes in the new state Thus,
the mod1fy_state command effectively performs ap-
pend, delete, and replace operations (e g, Quel [Held
et al 1975]) on relations by adding tuples to, delet-
g tuples from, or replacing tuples mn a relation’s
previous state to produce a new current state for that
relation. For simphcity, we assume that there 1s no
delete_relation command in the language A re-
lation, once defined, cannot be deleted A relation’s
state may be changed, but the relation itself exists
permanently (We assume that the database admun-
1strator will have additional facihities to migrate roll-
back relations to tape ) Elsewhere we mtroduce into
the language a delete_relation command, applica-
ble to both snapshot and rollback relations [McKen-
zie & Snodgrass 1987A]

How changes to a relation’s state are handled de-
pends on the relation’s type For snapshot relations,
a state change causes the most recent state 1 the re-
lation’s sequence of states to be replaced by the new
state For rollback relations, a state change causes
the new state to be concatenated at the end of the
relation’s sequence of states Thus, while only the
most recent state of snapshot relations 1s saved, all
past states of rollback relations are saved Note that
the sequence of states for a snapshot relation will
always be a single-element sequence

The rollback operator p retrieves the state of re-
lation I at the time of transaction N The behavior
of this operator depends on whether or not the ar-
gument N 18 oo If N 18 0o, p retrieves the state
of a relation at the time of the most recent trans-
action on the database In this case, the operator
p may be apphed to either a snapshot or a rollback
relation, retrieving the relation’s most recent state
If N 18 not oo, p may only be apphed to a rollback
relation Thus, the rollback operator retrieves either
the current state of a snapshot or rollback relation
or a past state of a rollback relation The rollback
operator cannot retrieve a past state of a snapshot
relation

3.2 Semantic Domains

SENTENCE 18 the set of all syntactically valid sen-
tences mm our language FEach sentence, which con-
sists of a sequence of one or more imdividual com-
mands, defines the database resulting from the ex-
ecution of those commands, in order, on an empty
database As we will see later, the syntactic domain



of sentences 1s needed only to ensure this restric-
tion By defining the database that results from an
arbitrary sentence, we specify the semantics of that
sentence, and hence the semantics of the language
In this section, we will formally define the domaimn
of database states, subsequent sections will provide
the connection between the syntactic domain of sen-
tences and the semantic domain of database states

Assume that we are given a set of domamns D =
{D1, D2y , Dm}, where each domam D, 1 <1 <
m, 18 an arbitrary, non-empty, finite or countably in-
finite set Then, we can define the following semantic
domains for our language

TRANSACTION NUMBER £{0,1, }

A transaction number 1s a non-negative nteger
which 18 used to identify a transaction that modi-
fies the database The transaction number assigned
to a transaction can be viewed as that transaction’s
time-stamp We assume that database modifications
occur sequentially and that a transaction’s time-
stamp as represented by its transaction number 18
the commat time for the transaction (1 e, the tine
the database 18 actually changed as a result of the
transaction’s execution) We note in passing that
implementations may use some other time, such as
the begin transaction time for the transaction, for
greater efficiency (e g , POSTGRES [Stonebraker &
Rowe 1986]) However, such implementations should
preserve the semantics of commit transaction time
as specified here Implementations may also permt
concurrent transactions, agamn as long as the seman-
tics of sequential update with a monotonically n-
creasing transaction time 1s preserved

RELATION TYPE £ {SNAPSHOT, ROLLBACK}
SNAPSNOT STATE £ Domam of all vahd snap-

shot states, as defined in the snapshot algebra
[Maier 1983, over elements of {D,UDU  UD,,}

RELATION & RELATION TYPE x
[SNAPSHOT STATE x
TRANSACTION NUMBER]*

A relation 18 an ordered pair consisting of

e a relation type, and

e a sequence of (snapshot state, transaction num-
ber) pairs

A relation’s state 13 dynamic When a transaction
changes the state of a snapshot relation, the single
element 1n the relation’s state sequence 1s replaced by
a new element consisting of a new snapshot state and
associated transaction number When a transaction
changes the state of a rollback relation, a new pair
consisting of a new snapshot state and associated
transaction number 1s appended to the relation’s ex-
1sting state sequence Thus, rollback relations are
append only relations defined in terms of snapshot
states

Note that the transaction number of each ele-
ment m a relation’s state sequence can be viewed
as a time-stamp indicating when its associated re-
lation state was entered into the database and be-
came the relation’s current state Since we assume
that database modifications occur sequentially, the
transaction-number components of a state sequence,
while not necessarily consecutive, will be neverthe-
less strictly increasing (as a consequence of transac-
tion time being associated with commit) Thus, we
can 1nterpolate on the transaction-number compo-
nent of elements 1n a given state sequence to deter-
mine the state of a rollback relation at any time

DATABASE STATE &
IDENTIFIER — [RELATION + {L}]

A database state 1s a function that maps 1dentifiers
either into a relation or into the special symbol 1,
which here indicates that the 1dentifier 18 unbounded
in that database state (1€, 18 associated with no re-
lation) The notation “+” on domains means the
disjoint union of domains

DATABASE £ DATABASE STATE x
TRANSACTION NUMBER

A database 18 an ordered parr consisting of a
database state and a transaction number indicating
the most recent transaction that caused a change to
the database

3.3 Auxiliary Functions

To specify the meaning of the expressions and com-
mands defined syntactically in Section 3 1, we will
define a function mapping each vahd expression into
a snapshot state (1e, an element of the SNAPSHOT
STATE semantic domain) and a function mappmg
each valid command mto a database (1e, an ele-
ment of the DATABASE semantic domam) We use



several auxihary functions in the definitions of these
semantic functions for expressions and commands
We present here an informal description of each of
these auxihary functions A formal definition for
FINDSTATE 1s presented elsewhere [McKenzie &
Snodgrass 1987A] Formal defimitions for the other
functions are either straightforward or notationally
cumbersome and hence are not presented

RTYPE maps a relation into 1ts relation type

RSTATE maps arelation mto 1ts sequence of {(snap-
shot state, transaction number) pairs

FINDSTATE maps a relation mto the snapshot-
state component of the element in the relation’s
state sequence having the largest transaction-
number component less than or equal to a given
integer If the sequence 18 empty or no such ele-
ment exists 1n the sequence, then FINDSTATE
returns the empty set

N 1s a semantic function which maps the syntac-
tic domain NUMERAL of decimal numerals mto
the semantic domain TRANSACTION NUMBER of

non-negative integer numbers

Y 1s a semantic function which maps each charac-
ter string 1n the syntactic domain TYPE mto the
relation type which 1t denotes

S 13 a semantic function which maps each al-
phanumeric representation of a snapshot state
m the syntactic domamn STATE mto its corre-
sponding snapshot state i the semantic doman

SNAPSHOT STATE

3.4 Expressions

We now define the semantic function E, which de-
fines the denotation of expressions in our language,
as follows

E EXPRESSION —
[DATABASE — [SNAPSXOT STATE)|

The result of evaluating an expression on a specific
database 1s a snapshot state Note that evaluation of
an expression on a specific database does not change
that database

This definition of the semantic function E does not
handle the possibility that an expression, when eval-
uated on a specific database, causes an error (e g,
an attempt to project a non-existent attribute) We
Iimit our discussion of expressions to vahd expres-
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sions on a given database Thus, the semantic func-
tion E, which defines the denotation of expressions n
our language, 18 a partial function on vald expres-
sions only A discussion of invalid expressions and
a mechamism for handling such expressions appears
elsewhere [McKenzie & Snodgrass 1987A]

We now formally define the semantic function E
for each kind of expression allowed in the language
If we let

n range over the domam TRANSACTION
NUMBER,

r range over the domamm RELATION,

b range over the domamn DATABASE STATE, and

d range over the domain DATABASE,

then
E[A]d £ s[4]

E[E,U E]d £ E[E,]|dUE[E]d

E[E — E;]d £ E[E]d-E[E]d

E[E; x B;]d £ E[E,]d x E[E]d

e

E[rx (E)]d nx (E[E] d)

Efor (E)]d £ or(E[E]d)

We now define the semantic function E for the new
rollback operator p

E[p(I,M]d £ f N=oo
then FINDSTATE(r, n)

else FINDSTATE (r, N[N])

where d = (b,n) and r = b(I) K N = oo, then
the result of evaluating the expression p(I, N) 1s the
most recent snapshot state 1n the state sequence
of the relation corresponding to the identifier I If
N # oo, then the result of evaluating the expres-
sion p(I, N) 1s the snapshot state associated with the
largest transaction number less than or equal to the
transaction number N[N] in the state sequence of
the relation corresponding to the identifier I Thus,
the operator p either retrieves the current state of
the relation identified by I or rolls back the relation
to 1ts state at the time the transaction associated
with N[[N] was processed This definition assumes
if N = oo that the relation 1s either a snapshot or
rollback relation and f N # co that the relation 1s



a rollback relation, otherwise, the rollback operation
would be 1llegal

3.5 Commands

Commands are the only language constructs that
change the database Execution of a command ei-
ther produces a new database or leaves the database
unchanged

C COMMAND — [DATABASE — [DATABASE]|

We define formally the semantics of commands us-
g the same approach we used to define the seman-
tics of expressions We define the semantic function
C for each kind of command allowed 1n the language

The command define relation defines a new,
active relation in the database

C[define relation(I, Y)]d £

iof b(I)=1
then (b[(Y[Y], ())/I],n+1)
else d

where d = (b,n) If the database’s database-
state component maps the identifier I mnto L, then
the command define_relation(l, Y) changes the
database so that the database’s database-state com-
ponent maps the identifier I into an empty sequence
of relation states of relation type Y[Y] The trans-
action number for the database 18 also incremented
If the database’s database-state component does not
currently map the identifier I into L, then the 1den-
tifier already denotes a defined relation and the com-
mand leaves the database unchanged

The command modify_state either replaces the
single element in the state sequence of a defined
snapshot relation or adds a new element to the state
sequence of a defined rollback relation

C[modify state(l, E)]d 2
if r# L A RTYPE (r) = SNAPSHOT
then (b[(RTYPE(r),
((E[E}d, n+1)))/1),n+1)
else f r# 1 ARTYPE (r) = ROLLBACK

then (b[(RTYPE(r),
RSTATE(r) || (E[E] d, n + 1))/1],
n+1)

else d
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where d = (b,n), r = b(I), and “||” 18 the con-
catenation operator on sequences If the database’s
database-state component maps the identifier I into
a defined snapshot relation, then the modify_state
command replaces the relation with a new rela-
tion consisting of its type (RTYPE(r)) and a new
state sequence This state sequence 18 a single-
element sequence consisting of the new (snapshot
state, transaction number) par (E[E]d, n+1) If
the database’s database-state component maps the
1dentifier I mto a defined rollback relation, then the
modify_state command replaces the relation with a
new relation consisting of its type and 1its state se-
quence to which 18 concatenated at the end a new
(snapshot state, transaction number) pair Hence,
the single state in snapshot relations 1s replaced with
the state resulting from the evaluation of E, whereas,
a new state 18 appended m roliback relations In e
ther case, the new (snapshot state, transaction num-
ber) pair 18 the snapshot state E[E] d and the trans-
action number of the most recent transaction on the
database plus one The modify_state command
supports all update operations Append 18 accom-
modated by an expression E that evaluates to a
snapshot state contaming all of the tuples 1n a re-
lation’s most recent state plus one or more tuples
not 1 the relation’s most recent state Delete 18 ac-
commodated by an expression E that evaluates to
a snapshot state containing only a proper subset of
the tuples in a relation’s most recent state Finally,
replace 18 accommodated by an expression E that
evaluates to a snapshot state that differs from a re-
lation’s most recent state only mn the attribute values
of one or more tuples

If two commands appear mn sequence, command
C1 18 executed first Then, command C5 18 executed
using the database resulting from the execution of
command C;

C[Ci1. C2]d & c[c.](C[C1]d)

3.6 Sentences

Sentences are the highest-level construct in our lan-
guage A sentence defines the database state result-
mg from the execution of a sequence of one or more
commands, starting with the empty database Our
language requires that the evaluation of a sentence 1n
the language always start with an empty database
This requirement 18 both necessary and sufficient,
given the above defimtions of the commands de-
fine _relation and modify_state, to ensure that
transaction-number components of the state se-



quence of each rollback relation mn the database will
be strictly increasing. The content of a database
18 the cumulative result of all the transactions that
have been performed on 1t since 1t was created

P SENTENCE — [DATABASE]

P[C] & C[C](EMPTY, 0)
where EMPTY  IDENTIFIER — {1} The

database-state component of the database 18 defined
to be the function which maps all 1dentifiers to L
(1, no 1dentifier 18 associated with a relation) and
the transaction-count component of the database 18
set to O

4 Supporting Both Valid
Time and Transaction Time

The previous section showed how the snapshot al-
gebra can be extended to handle transaction time
by defining a rollback operator and several com-
mands that modify the database Since valid time
and transaction time are orthogonal concepts, 1t 1s
possible to extend an historical algebra in much the
same way to obtain a temporal algebraic language
We now show how to extend an historical algebra to
support transaction time For illustration, we will
use one particular historical algebra (defined else-
where [McKenzie & Snodgrass 1987B]), but the ap-
proach applies to any historical algebra

The key aspect of an historical algebra 1s 1ts def-
mition of historical state, which models reality over
a period of time By stormng an historical state, this
model can be captured for further analysis An his-
torical relation will consist of exactly one historical
state A temporal relation will contam a sequence of
historical states, indexed by transaction time, a new
rollback operator p will be used to access a particular
historical state

We first define the syntax of the historical algebra
by redefining two syntactic domams and mtroducing
two additional syntactic domains If we let

A range over the domam STATE of alphanumeric
representations of snapshot and historical
states,

Y range over the domam TYPE of character
strings denoting relation types (1e, snapshot,
rollback, historical, temporal),
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V range over the doman V of temporal
expressions, and

G range over the domamn § of boolean
expressions of elements from the domain V,
the relational operators, and the logical
operators

then the syntax for the language may be extended
with

E

(Y,A) |E\UE |E,~F | EXE,
| #x (E) | 6r (E) | bc,v (E) | p(I, N)

The constant may now be a snapshot or historical
state and 1s extended to specify the relation type
The first five operators are historical counterparts
to conventional algebraic operators Each 1s repre-
sented as dp to distinguish 1t from 1its snapshot al-
gebra counterpart op The sixth operator 6¢ v 18
a new historical operator which performs functions,
stmilar to those of the selection and projection op-
erators 1 the snapshot algebra, on the vahd-time
components of historical tuples The seventh opera-
tor 1s an historical counterpart of the rollback oper-
ator defined on temporal relations All evaluate to
historical states

Next we extend the set of relation types, define the
domain of historical states, and augment the defim-

tion of the RELATION domain

RELATION TYPE & {SNAPSHOT, ROLLBACK,
HISTORICAL, TEMPORAL}

HISTORICAL STATE & Domain of all valid his-
torical relations as defined 1 the historical al-
gebra

RELATION & RELATION TYPE x
[[ SNAPSHOT STATE x
TRANSACTION NUMBER]* +
[XISTORICAL STATE x
TRANSACTION NUMBER]*]

We also need one more semantic function, H,
which maps an alphanumeric representation of an
historical state in the syntactic domamn STATE mto
1ts corresponding historical state in the semantic do-

mamn ¥ISTORICAL STATE

Definitions of the semantic function E for ex-
pressions mvolving historical operators are speci-
fied next The denotations for this class of expres-



sions are analogous to those for expressions mvolving
snapshot operators

E[(Y, A)]d o Y[Y] = sNaPsHOT
then S[A]
else H[A]

e

E[E,OE]d & E[E]dC E[E]d

g

E|E, - E;]d = E[E]d =~ E[E]d

E[E: X B;]d £ E[E]d X E[E]d
E[#x (B)]d £ #x(E[E]d)

ar(E[E]d)

>

E[ér(E)]d
Eléc,v(E)]d & 6c,v(E[E]d)

EpU,M]d 2 f N=co
then FINDSTATE (r, n)
else FINDSTATE (r, N[N})

where d = (b, n) and r = b(I)

Finally, the mod1fy_state command must be ex-
tended shghtly to handle the historical and temporal
relation types

Clmodity_state(I, E)]d Y

if r# LA
(FINDTYPE (r, n) = SNAPSHOT V
FINDTYPE (r, n) = HISTORICAL)
then (b[(RTYPE(r),

((E[E]}d, n+1)))/1], n+1)
elsef r# LA
(FINDTYPE (r, n) = ROLLBACK V
FINDTYPE (r, n) = TEMPORAL)

then (b[{(RTYPE(r),
RSTATE(r) || (E[E]d, » + 1))/1],
n+1)

else d

where d = (b,n) and r = b(I) Notice that histor-
1cal relations are handled similarly to snapshot re-
lations, the only difference 1s that E evaluates to a
historical state rather than a snapshot state The
same relationship holds between rollback and tem-
poral relations By embedding the algebra m the
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structure of commands, we have emphasized the or-
thogonality of transaction and vahd time Vahd time
18 handled through new historical algebraic operators
and a definition of historical state, transaction time
1s handled through the modify_state command and
the rollback operator(s) In a sense, our semantics
provides additional assurance that the two kinds of
time are 1n fact orthogonal

5 Related Work and Sum-
mary

There are two contributions of this paper The first
1s that the database state 13 modeled as a sequence
of snapshot (or historical) states indexed by trans-
action time This approach 1s similar to that pro-
posed in the context of time-stamp concurrency con-
trol algorithms [Bernstem et al 1987, Reed 1983,
Rosenkrantz et al 1978, Stearns et al 1976] and
dynamic constrants [Vianu 1983]. In a related ef-
fort, Abiteboul and Vianu have defined a transac-
tion language TL consisting of parameterized expres-
sions containing tuple insertions and deletions and
a looping construct [Abiteboul & Vianu 1987] In
TL, the database state 18 modeled “procedurally”
by providing the transaction(s) that compute that
state, transaction tume 18 mmphcit The focus of
this and previous research [Abiteboul & Vianu 1985,
Abiteboul & Vianu 1986, Vianu 1983] 1s developing a
characterization of the possible database states com-
putable by constramed transactions, with the goal
of usmg such transactions as a specification tool for
stating dynamic constraints The goal of our lan-
guage 18 different, we hope to model the evolution
of the database 1n terms of transactions specified by
the user mn a calculus-based update language that 1s
translated by the DBMS into algebraic expressions

There has been one other attempt to incorporate
both vahid tune and transaction time mn an algebra
[Ben-Zv11982] Valid time and transaction time were
supported through the addition of imphcit time at-
tributes to each tuple in a relation The algebra
was extended with the Time-View algebraic oper-
ator which takes a relation and two times as argu-
ments and produces the subset of tuples in the rela-
tion vahd at the first time (the valid time) as of the
second time (the transaction time) The Time-View
operator thus rolls back a relation to a transaction
time but returns only a subset of the tuples in the
relation at that transaction time (1e, those tuples
valid at some specified time) This restricted defim-
tion of the Tiume-View operator 18 tied mextricably



to his particular handhng of vahd time Our ap-
proach 18 compatible with any historical algebra

The second contribution 18 the formahzation of
the evolving state through the definition of the mod-
1fy state command This aspect has been mvesti-
gated at the conceptual level by several researchers
1n the context of dynamic constraints on updates of
database instances [Brodie 1981, Cer1 et al 1981,
Hammer & McLeod 1981] At the logical level, only
Ben-Zvi has attempted such a formalization His
approach 1s to provide procedures for various ma-
mpulation commands (e g , insert, delete, terminate)
and prove that these procedures mamtain various de-
sirable properties The effect of these procedures
are localized to a specific tuple that changes dur-
ing the transaction Our modify_state command
sumply replaces or appends a new entire snapshot
or historical state, allowmng many tuples to change
during a transaction Of course, actual implementa-
tions would be based on more complex representa-
tions that exhibit greater space and time efficiency
Venifying the correctness of such implementations
would mvolve demonstrating the equivalence of therr
semantics with the simple semantics presented here

An aspect concerning transaction time that 1s
not addressed m this paper 18 scheme evolution
The scheme 1s associated solely with transaction
time, simce 1t defines how reahty 1s modeled by the
database For example, a person’s marital status 18
a (time-varying) aspect of reality, but the decision as
to whether to record marital status, encoded 1n the
scheme, 18 a (time-varying) aspect of the database
Hence, as the scheme describes how data are stored
1 the database, changes to the scheme are properly
the province of transaction time Elsewhere we pro-
vide extensions to the language presented here to
accommodate scheme evolution [McKenze & Snod-
grass 1987A] We include a delete_relation com-
mand as part of those extensions

Another aspect that requires further work 18 that
of completeness One approach 18 to define a lan-
guage and propose 1t as a standard, Codd proposed
his snapshot algebra as the yardstick for snapshot
completeness (1e, supporting neither transaction
nor vahd time) Several others have proposed no-
tions of query completeness based on computabihty
[Abiteboul & Vianu 1987, Chandra & Harel 1980,
which, unfortunately, are mcomparable We feel that
this latter approach 1s preferable and await a con-
sensus to form aganst which we could measure our
language for rollback completeness (1 e, supporting
transaction time) Similar statements apply to his-
torical and temporal completeness, supporting vahd
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and both kinds of time respectively [Snodgrass 1987]

In summary, this paper has defined an algebraic
language that has a simple semantics and handles
vahd, transaction, and user-defined time Only two
additional operators, p and p, were necessary The
additions required for transaction time did not com-
promise any of the useful properties of the snapshot
algebra
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