Performance Evaluation of
a Temporal Database Management System

Ilsoo Ahn and Richard Snodgrasst

Department of Computer Science
University of North Carolina
Chapel Hill, NC 27514

Abstract

A prototype of a temporal database management system was built by extending Ingres It supports
the temporal query language TQuel, a superset of Quel, handling four types of databases static,
rollback, historical and temporal A benchmark set of queries was run to study the performance of
the prototype on the four types of databases We analyze the results of the benchmark, and 1denti-
fy major factors that have the greatest impact on the performance of the system We also discuss
several mechamsms to address the performance bottlenecks we encountered

1. Introduction

Database management systems are supposed
to model reahty, but conventional DBMS’s lack the
capabihty to record and process time-varying
aspects of the real world With growing sophisti-
cation of DBMS apphications, the lack of temporal
support raises serious problems For example, con-
ventional DBMS'’s cannot support historscal queries
about the past status, much less frend analysis
which 1s essential for applications such as decision
support systems [Ariav 1984] There 1s no way to
represent retroactive or postactive changes, while
support for error correction or audst trasl necessi-
tates costly maintenance of backups, checkpoints,
or transaction logs to preserve past states There
1s also a growing interest in applying database
methods for version management and design con-
trol in computer aided design, requiring capabilities
to store and process time dependent data
Without temporal support from the system, many
applications have been forced to manage temporal
information 1n an ad-hoc manner

This research was supported by NSF grant DCR-8402339

t The work of this author was also supported by an IBM
Faculty Development Award
Permussion to copy without fee all or part of this material 1s granted
provided that the copies are not made or distnbuted for direct
commercial advantage, the ACM copyright notice and the title of the
publication and 1ts date appear, and notice 1s given that copying 1s by
permussion of the Association for Computing Machinery To copy
otherwise, or to republish, requires a fee and/or specific permission

© 1986 ACM 0-89791-191-1/86/0500/0096 $00 75

The need for providing temporal support in
DBMS’s has been recogmzed for at least a decade
[Bubenko 1976, Schueler 1977] Recently, the
rapid decrease of storage cost, coupled with the
emergence of promsing new mass storage technolo-
gies such as optical disks [Fujtam 1984, Hoagland
1985], have amphfied interest in database manage-
ment systems with temporal support or version
management [Copeland 1982, Wiederhold 1984] A
bibliographical survey contained about 70 articles
relating time and information processing [Bolour et
al 1982|, at least 30 more articles have since
appeared 1n the literature However, most efforts
on temporal databases have focussed on conceptual
aspects such as modeling, query languages or
semantics of time Lattle has been written on
implementation 1ssues, let alone performance
analysis of such systems, except for a few version
management systems [Katz & Lehman 1984, Svo-
bodova 1981], rollback DBMS’s |[Ariav & Morgan
1982, Copeland & Maier 1984, Lum et al 1984],
and an earher version of LEGOL 20 [Jones et al
1979)

In this paper, we discuss the implementation
and performance of a prototype temporal DBMS,
and 1dentify major factors.that have the greatest
impact on the performance of the system Sections
2 and 3 briefly set the context for this investiga-
tion, describing the types of databases in terms of
temporal support, and the query language sup-
ported by the prototype The next two sections

outhne the 1mplementation and provide a
comprehensive analysis of the performance of the
prototype Finally, Section 6 discusses several
mechanisms that address the performance
bottlenecks 1dentified 1n the prototype

2. Types of Databases

Numerous schemes have been proposed to
record and process history data augmented with
additional time attributes. A taxonomy of time to
characterize the time attribute and define types of
database management systems in terms of tem-
poral support was recently proposed [Snodgrass &
Ahn 1985, Snodgrass & Ahn 1986]

No Rollback Rollback

e — e
Static Queries Static Rollback
Historical Queries Historical Temporal

Figure 1: Types of Databases

As summarized 1in Figure 1, two orthogonal
criteria are the capabiity to make Asstorscal
querses about the past status of the enterprise
modeled by a database, and the abihity to rollback
to the past state of the database modeling an
enterprise The former concerns the progression of
events through time, the latter concerns the
recording of those events in a database Historscal
databases support historical queries, incorporating
valstd tsme Rollback databases support rollback
operations, incorporating fransaction time Tem-
poral databases support both operations, incor-
porating both kinds of time A third kind of time
18 user-defined time, whose semantics 1s defined by
each application program Supporting user-defined
time requires only minimal changes to a DBMS,
and does not substantially impact its performance

Historical databases record the history of the
enterprise being modeled, and view tuples valid at
some moment as of now Rollback databases
record the history of database activities, and view
stored tuples, whether valid or not, as of some
moment in time Temporal databases combine the
benefits of the two, viewing tuples valid at some
moment seen a8 of some other moment Further
examples that emphasize the often subtle
differences in these four types of databases are
described elsewhere [Snodgrass & Ahn 1986]

97

3. TQuel

TQuel (Temporal QUEry Language)
[Snodgrass 1986], a superset of Quel [Held et al
1975), supports both historical queries and rollback
operations It extends several Quel statements to
provide query, data defimtion and data manipula-
tion capabihities supporting all four types of data-
bases It expresses historical queries by augment-
ing the retrieve statement with the when
predicate to specify temporal relationships among
participating tuples, and the wvalid clause to
specify how the implicit time attributes are com-
puted for result tuples The rollback operation 15
specified by the as of clause for the rollback or
the temporal DBMS’s The append, delete,
and replace statements were augmented with
the wvalid and the when clauses in a similar
manner Finally, the create statement was
extended to specify the type of a relation, whether
static, rollback, historical or temporal, and to dis-
tinguish between an interval and an event relation
if the relation 13 historical or temporal The
semantics of TQuel was formalized using tuple
relational calculus [Snodgrass 1986]

The example query 1n Figure 2 inquires the
state of a database as of 1981, shifting back n
time Retrieved tuples satisfy not only the where
clause, but also the when clause specifying that
the two tuples must have coexisted at some
moment The walld clause specifies the values of
the valid from and valid to attributes of the result
tuples

retrieve (h.id, h.seq, i.id, i seq)
valid from start of (h overlap i)
to end of (h extend i)
where h id = 500 and
i amount = 73700
when h overlap i
as of "1981"

Figure 2: A TQuel Query

4. A Prototype Temporal DBMS

It involves substantial research and imple-
mentation effort to fully integrate temporal sup-
port imto the DBMS itself New access methods
and query processing algorithms need to be
developed to achieve reasonable performance for a
variety of temporal queries, without penalizing
more frequent non-temporal queries

As an intermediate step towards a fully
integrated temporal DBMS, we built a prototype
by modifying portions of the static DBMS Ingres
[Stonebraker et al 1976], while still keeping the
conventional access methods and query processing
algorithms Hence the performance of the proto-
type was expected to be less than 1deal, rapidly
deteriorating for both temporal and non-temporal
queries However, 1t 15 still useful to 1dentify prob-
lems with conventional access methods and query
processing algorithms, and to suggest possible
mechanisms for addressing those problems In
addition, the prototype can serve as a comparison
point for fully integrated DBMS’s developed 1n the
future

The prototype supports all the augmented
TQuel statements retrieve, append,
delete, replace and create The valid,
when and as of clauses are fully supported,
though default values for these clauses are not
supphed The ecopy statement was modified to
perform batch input and output of relations having
time attributes It also supports all four types of
databases static, rollback, historical and temporal

The parser was modified to accept TQuel
statements and generate an extended syntax tree
with subtrees for valid, when, and as-of
clauses Some of the query evaluation modules
were changed to handle the newly defined node
types and implhcit time attributes such as valid
from, valid to, transaction start and transaction
stop Functions to handle temporal operators
start of, end of, precede, overlap, and
extend were added 1n the one-variable query pro-
cessing interpreter

The system relation was modified to support
various combinations of implicit time attributes,
which depend on the type of a relation as specified
by its create statement A time attribute 1s
represented as a 32 bit integer with a resolution of
one second It has a distinct type, so that input
and output can be done in human readable form
by automatically converting to and from the inter-
nal representation Various formats of date and
time are accepted for input, and resolutions rang-
ing from a second to a year are selectable for out-
put

One of the most important decisions was how
to embed a four-dimensional temporal relation into
a two-dimensional static relation as supported by
Ingres There are at least five such embeddings
[Snodgrass 1986] Our prototype adopts the

98

scheme of augmenting each tuple with two tran-
saction lime attributes for a rollback and a tem-
poral relation, and one or two valid tsme attributes
for a historical and a temporal relation depending
on whether the relation models events or intervals

For a rollback relation, an append operation
inserts a tuple with the ¢ransactson start and tran-
saction stop attributes set to the current time and
“forever’’ respectively A delete operation on
a tuple simply changes the transaction stop attri-
bute to the current time A =zreplace operation
first executes a delete operation, then inserts a
new version with the transaction start attribute set
to the current time A historical relation follows
similar steps for append, delete and replace
operations with the valsd from and valid to attri-
butes as the counterparts of transaction start and
transaction stop attributes Values of the vahd
from and vahd to attributes are defaulted to the
current time and ““forever’ respectively, but also
can be specified by the valid clause

For a temporal relation, an append opera-
tion inserts a tuple with the transaction start of
the current time, and transaction stop of ‘‘for-
ever” Attributes valid from and vald to are set
as specified by the valid clause, or defaulted if 18
1s absent A delete operation on a tuple sets the
transaction stop attribute to the current time indi-
cating that the tuple was virtually deleted from
the relation Next a new version with the updated
valid to attribute is inserted indicating that the
version has been valld until that time A
replace operation first executes a delete
operation as above, then appends a new version
marked with appropriate time attributes There-
fore, each replace operation in a temporal rela-
tion inserts two new versions This scheme has a
high overhead in terms of space, but completely
captures the history of retroactive and postactive
changes In addition, all modification operations
for rollback and temporal relations in this scheme
are append only, so write-once optical disks can be
utilized A more detailed discussions of these
operations can be found elsewhere [Snodgrass
1986

The prototype was constructed in about 3
person-months over a period of a year; this figure
does not include famiharization with the Ingres
internals or with TQuel Most changes were addi-
tions, increasing the source by 2,900 lines, or 49 %
(our version of Ingres 1s approximately 58,800 hines
long)

5. Benchmarking the Prototype

We define the update count for a tuple as the
number of update operations on the tuple, and the
average update count for a relation as the average
of the update counts over all tuples in the relation
We hypothesized that, as the average update
count 1ncreases, the performance of our prototype
with conventional access methods would
deteriorate rapidly not only for temporal but also
for static queries We postulated the major factors
to affect the performance of a temporal DBMS
were the type of a database, the query type, the
access methods and loading factors, and the
update count

A benchmark was run to confirm these
hypotheses in various situations, and to determine
the rate of performance degradation as the aver-
age update count increased. This section describes
the details of the benchmark, presents its results,
and analyzes the performance data from the
benchmark

5.1. The Benchmark

To compare performance on different types of
databases, we needed test databases of all four
types described 1n Section 2 For each of the four
types, we created two databases, one with a 100%
loading factor and the other with a 50 % loading
factor As the sample commands for a temporal
database 1n Figure 3 show, each database contains
two relations, Type_h and Type_i, where Type 18
one of Static, Rollback, Historical, and
Temporal

create persistent interval Temporal_h
{(id = 14, amount = i4,
seq = 14, string = c96)

modify Temporal_h to hash on id
where fillfactor = 100

create persistent interval Temporal i
(id = 14, amount = 14,
seq = 14, string = c96)

modify Temporal_i to isam on id
where fillfactor = 100

Figure 3: Creating a Temporal Database

Type_h 1s stored 1n a hashed file, and Type_i 18
stored 1n an ISAM file The loading factor of the
files are specified with the fillfactor parame-
ter 1n a modify statement [Woodfill et al 1981]

Each tuple has 108 bytes of data in four
attributes, id, amount, seq and string
1d, a four byte integer, 1s the key 1n both relations
Amount and string are randomly generated as
integers and strings respectively, and seq 1s ni-
tialized as zero In addition, rollback and histori-
cal relations carry two time attributes, while tem-
poral relations contain four time attributes Attri-
butes transaction start and vahd from are ran-
domly 1mitiahzed to values between Jan 1 and Feb
15 1n 1980, while attributes transaction stop and
valid to are set to “forever’’ indicating that they
are the current versions The evolution of these
relations will be described shortly

Each relation 13 imtiahzed to have 1024
tuples using a copy statement The page size 1n
our prototype is 1024 bytes With 100 % loading,
there are 9 tuples per page in static relations, and
8 tuples per page in rollback, historical, or tem-
poral relations Therefore, we need at least 114
pages for each static relation, and 128 pages for
each of the others The actual size depends on the
database type, the access method, the loading fac-
tor, and the average update count

Twelve sample queries with varying charac-
teristics comprise the benchmark as shown in Fig-
ure 4 These queries were chosen 1n an attempt to
represent the characteristic queries in databases
with temporal support, to 1solate the effects of
various TQuel clauses, to exercise the access
methods available 1n Ingres, and to demonstrate
the possibility of performance enhancement The
number of output tuples were kept constant
regardless of the update count, except for queries
Q01, Q02 and Q12

QO1 retrieves all versions of a tuple fversion
scan) from a hashed file given a key QO3 15 a roll-
back query, applicable only to rollback and tem-
poral databases, retrieving the state of a relation
as of some moment 1n the past QOS5 retrieves the
most recent version of a tuple from a hashed file
given a key, while QO7 retrieves the most recent
version of a tuple from a hashed file without a key,
resulting 1n a sequenttal scan of the whole file

Queries Q02, Q04, Q06 and Q08 are counter-
parts of QO01, QO03, QO05, and QO7 respectively,
where even numbered queries access an ISAM file
and odd ones access a hashed file Both Q09 and
Q10 join current versions of two relations, Q09
goes through the primary access path of a hashed
file and Q10 goes through an ISAM file

PO1:
DO2:

DOJ:
04 :

POS :

06 *

RO7

RO9:

D10+

D11.

D12,

range of h is temporal_h

i is temporal_ i

(h.id, h.seq)
id = 500
(1.id, i.seq)
id = 500

(h.id, h.seq)

"08.00 1/1/80"

(i.1d, i seq)

"08:00 1/1/80"

(h.1d, h seq)
id = 500
overlap "now"
(1.1d, i.seq)
id = 500
overlap "now"

(h.id, h.seq)
amount = 69400
overlap "now"
(1.1d, 1 seq)
amount = 73700
overlap "now"

(h.id, 1.id, 1i.amount)
id = i.amount
overlap i and
overlap "now"
(L id, h id, h.amount)
id = h.amount
overlap i and
overlap "now"

(h.id, h.seq, i.id,
seq, 1 amount)

valid from start of h
to end of i

range of
retrieve
where h.
retrieve
where 1
retrieve
as of
retrieve
as of
retrieve
where h.
wvhen h
retrieve
where 1.
when i
retrieve
where h.
when h
. retrieve
where 1.
when i
retrieve
where h.
when h
1
retrieve
where i
when h
h
retrieve
i.
when
as of
retrieve

i.
valid from start of (h overlap i)

start of h precede 1
"4:00 1/1/80"

(h.id, h.seq, i id,
seq, i.amount)

to end of (h extend i)

where h.
i.

when h

id = 500 and
amount = 73700
overlap i

as of "now"

Figure 4: Benchmark Queries

100

Queries Q05 through Q10 all refer to only
the most recent versions They are termed stalsc
queries 1n the sense that they retrieve the current
state of a database as if from a static database.
For a static database, the when clause in these
queries are neither necessary nor apphcable For a
rollback database, we use the as of clause
instead of the when clause For example, when
x overlap "now" will become as of "now"

Q11 is a query nvolving a temporal join, a
Join of two tuples based on temporal information
In this query, the as of clause specifies the roll-
back operation shifting the reference pomnt to a
past moment The when clause specifies a tem-
poral relationship between two versions, where the
value of valid from attribute 1n the version from
Type_h relation 13 earher than the corresponding
value 1n the version from Type_1i relation The
valid clause specifies that transaction start attri-
bute of the result tuple be set to the value of tran-
saction start attribute in the version from Type_h
relation, and that transaction stop attribute of the
result tuple be set to the corresponding value n
the version from Type_i relation Q12 contains
all types of clauses in TQuel, inquiring the state of
a database as of “now” given both temporal and
non-temporal constraints Obviously, Q11 and
Q12 are relevant only for a temporal database

These twelve queries were run on each of
eight test databases as described earher, two data-
bases, with the loading factor of 100 % and 50%
respectively, for each of Static, Rollback,
Historical, and Temporal We focused solely
on the number of disk accesses per query at a
granularity of a page, as this metric 1s highly
correlated with both CPU time and response time
There are a few pitfalls to be avoided with this
metric Disk accesses to system relations are rela-
tively independent of the database type or the
characteristics of queries, but more dependent on
how a particular DBMS manages system relations
Also, the number of disk accesses varies greatly
depending on the number of internal buffers and
the algorithm for buffer management To elim-
1nate such variables, which are outside the scope of
this paper, we counted only disk accesses to user
relations, and allocated only 1 buffer for each user
relation so that a page resides 1n main memory
only until another page from the same relation 1s
brought 1n

Once performance statistics were collected
for all sample queries, we simulated the unmiformly
distributed evolution of a database by

incrementing the value of seq attribute in each of
the current versions. The time attributes were
appropriately changed for this replace operation
using the default of valid from "now" to
"forever" as described 1n Section 4. Thus a new
version (two new versions for temporal relations) of
each tuple 1s inserted, and the average update
count of the database 18 increased by one Perfor-
mance on the sample queries were measured after
determining the size of each relation appended
with new versions This process was repeated until
the average update count reached 15, which we
believed high enough to show the relationship
between the growth of I/O cost and the average
update count The benchmark was run on a Vax
11/780, consuming approximately 20 hours of CPU
time

§.2. Performance Data

Space requirements in various databases were
measured as the average update count ranged
from 0 to 15, and were useful for analyzing the
I/O cost measured in the benchmark Figure 5
shows the data for the average update count of 0
and 14 along with the growth per update It also
shows the growth rate, obtained when dividing the
growth per update by the size for the update count
of 0 From this table, we find that

o The rollback and the historical databases have
the same space requirements

e The temporal database consumes the same
amount of space as the rollback and the histor-
cal databases for the update count of 0

o The temporal database, following the embed-
ding scheme described 1n Section 4, requires
almost twice the additional pages as the update
count increases

o The growth per update for a hashed file varies
shghtly due to key collistons 1n hashing

1/O costs for sample queries on each data-
base were measured as the average update count
increased from 0 to 15 Output costs account for
storing temporary relations, which remain constant
because the size of temporary relations i1s the same
for the sample queries regardless of the update
count Since they are neghgible compared with the
input costs, being 56 pages for Q09 and Q10 each
and 4 pages for Q12 on the historical and the tem-
poral databases, and O for the others, we concen-
trate on the analysis of the input costs Figure 6
shows the input costs for the temporal database
with 100% loading

101

Similar tables, a total of 8, were obtained for
each database of different types and loading fac-
tors We summarize the input costs for sample
queries on various databases with the average
update count of 0 and 14 in Figure 7

Figure 7 shows that the rollback and the his-
torical databases exhibit simlar performance, while
the temporal database is about twice more expen-
sive than rollback and historical databases for the
update count of 14 If we draw a graph for the
input costs shown in Figure 7, we get Figure 8 (a)
Figure 8 (b) 18 a simlar graph for the rollback
database with 50% loading, showing jagged lines
caused by the odd numbered updates filling the
space left over by the previous updates before
adding overflow pages

5.3. Analysis of Performance Data

The graphs in Figure 8 show that input cost
increases almost linearly with the update count,
but with varying slopes for different queries A
question is whether there are any particular rela-
tionships independent of query types between the
input cost and the average update count, and
between the input cost and the database type To
answer this question, we now analyze how each
sample query 1s processed, and identify the dom-
inant operations which can characterize each
query

Though queries Q01 and Q05 are functionally
different from each other, one being the version
scan and the other a sfalsc query, our prototype
built with conventional access methods uses the
same mechansm to process them Both queries
are evaluated by accessing a hashed file given a
key (hashed access] Likewise, Q02 and QO6
requires the access to an ISAM file given a key
(ISAM access) Queries Q03, Q04, Q07 and QO8
all need to scan a file, whether hashed or ISAM
(sequentsal scan)

Processing Q09 first scans an ISAM file
sequentially doing selection and projection into a
temporary relation (one variable detachment) It
then performs one hashed access for each of 1024
tuples 1in the temporary relation (tuple substitu-
tion). Here the dominant operation 1s the hashed
access, repeated 1024 times Q10 is similar to Q09
except that the roles of the hashed file and the
ISAM file are reversed Hence the domnant
operation for Q10 1s the ISAM access

Q11 1s evaluated by sequentially scanning one
file to find versions satisfying the as of clause

For such a version, the other file 15 sequentially
scanned for versions satisfying both the as of
clause and the when clause Here the dominant
operation 1s the sequential scan Processing Q12
requires a sequential scan and a hash access to find
versions satisfying the where clause, then joins
them on time attributes according to the when
clause Since the number of versions extracted for
the join 1s small enough to fit into one page each,
the dominant operation 1s the sequential scan

From this analysis, we can divide the input
cost 1nto the fized portion and the varsable portion
The fixed cost 18 the portion which stays the same
regardless of the update count It accounts for
traversing the directory in the ISAM, or for creat-
ing and accessing a temporary relation whose size
18 independent of the update count The variable
cost 15 defined to be the result of subtracting the
fixed cost from the cost of a query on a database
with no update Operations contributing to the
variable cost will grow more expensive as the
number of updates on the relation increases

Now we can define the growth rate of the
input cost on a database with the update count of
nas.

Cn - CO
(variable cost) X n

Growth Rate, =

where
C, = input cost for update count of n
C, = wput cost for update count of 0

The growth rate 1s the key aspect of an implemen-
tation, characterizing the performance degradation
as the update count increases Clearly the 1deal
would be a growth rate close to 0

Fixed costs, variable costs and growth rates
for sample querles on various types of databases
were calculated The growth rate was relatively
independent of the update count n, as indicated by
the linearity shown in Figure 8 Figure 9 shows
fixed costs, variable costs and growth rates for
sample queries on the rollback and the temporal
databases with the loading factor of 100% and
50% each The historical database shows the same
variable costs and the growth rates as the rollback
database, except for Q03 and Q04 which are not
apphcable to historical databases But its fixed
costs are the same as the temporal database,
except for Q03, Q04, Q11 & Q12 which are not
apphcable

Rather surprisingly, the growth rate turned
out to be independent of the query type and the

102

access method as far as access methods of sequen-
tial scan, hashing or ISAM are concerned. It was,
however, dependent on the database type and the
loading factor For example, the growth rates for
operations such as sequential scan, hashed access,
and access of data pages in ISAM are all 20 n
case of the temporal database with 100% loading
On the other hand, the growth rates for similar
operations are approximately 05 in case of the
rollback or the historical database with 50% load-
ing

From these analyses, we can make several
observations as far as access methods of sequential
scan, hashing or ISAM are concerned

o The fixed and the variable costs are dependent
on the query type, the access method and the
loading factor, but relatively independent of the
database type

o The growth rate 1s approximately equal to the
loading factor of relations for rollback or his-
torical databases

e The growth rate of input cost 138 approximately
twice the loading factor of relations for tem-
poral databases

e The growth rate 13 independent of the query
type and the access method

The fact that the growth rate can be deter-
mined given the database type and the loading fac-
tor without regard to the query type or the access
method has a useful consequence From the
defimtion of the growth rate, we can derive the fol-
lowing formula for the cost of a query when the
update count 1s n

C, = Cy+ (growth rate) X (variable cost) X (n)
= (fized cost) + (variable cost) +
(growth rate) X (variable cost) X (n)
= (fized cost) + [variable cost) X
[1+ (growth rate)X n]

Therefore, when the cost of a query on a
database with the update count of 0 1s known and
its fixed portion 15 1dentified, 1t is possible to
predict future performance of the query on the
database when the update count grows to n Note
that the fixed cost, and hence the variable cost,
can even be counted automatically by the system,
except when the size of a temporary relation varies
greatly depending on the update count

5.4. Non-uniform Distribution

Thus far, we have assumed uniform distribu-
tion of updates where each tuple will be updated
an equal number of times as the average update
count increases Since the assumption of umform
distribution may appear rather unrealistic, we also
ran an experiment with a non-uniform distribution
To simulate a maximum variance case, only 1
tuple was updated repeatedly to reach a certain
average update count We measured performance
of queries on the updated tuple and on any of
remaining tuples, then averaged the results
weighted by the number of such tuples Since 1t
takes O (n?) page accesses to update a single tuple
for n times, owing to the overflow chain ever
lengthening, we repeated the process only up to the
update count of 4, which was good enough to
confirm our subsequent analysis

Performance of a query 1s highly dependent
upon whether the tuple participating 1n the query
has an overflow chain We hypothesized that
updating tuples with a high variance would affect
the growth rate sigmficantly, owing to the presence
of long overflow chains for some tuples and the
absence of such chains for others However, the
growth rate averaged over all tuples turned out to
remain the same as the umform distribution case
For example, if we update one tuple 1n a temporal
relation 1024 times, the average update count
becomes one For a query like QO01, a hashed
access to any tuple sharing the same page as the
changed tuple costs 257 page accesses, while a
hashed access to any tuple residing on a page
without an overflow costs just one page access
Therefore, the average cost becomes three page
accesses, the same as the uniform distribution case

We can extend this result to a more general
case If the number of primary pages 1s z with
100% loading, there will be approximately 2z
overflow pages for the average update count of one
in a temporal relation Let y be the number of pn-
mary pages which have overflow pages, and z be
the number of primary pages which do not have an
overflow, then y + 2z =12 Since the average

length of overflow chains 1s 2z pages, the average

cost of a hashed access to such a relation will be

yx(-gf+l)+le

z z

y+z ¥
showing the same result as the more restricted
case discussed above

103

This reasoning can be generalized for other
database types, access methods, loading factors,
query types, and update counts 1 a similar
fashion Now one more observation about the
growth rate can be added

o The growth rate 1s independent of the distribu-
tion of updated tuples

We conclude that the results from the benchmark
we ran under the assumption of umform distribu-
tion are still valid for any other distribution

0. Performance Enhancement

As the results of the benchmark indicate,
sequential scans are expensive Access methods
such as hashing and ISAM also suffer from rapid
performance degradation due to ever-growing
overflow chains Reorganization does not help to
shorten overflow chains, because all versions of a
tuple share the same key

Since lower loading reduces the number of
overflow pages in hashing and ISAM, 1t results in a
lower growth rate Hence better performance 1s
achieved with a lower loading factor when the
update count 1s high But there 13 an overhead for
maintaining a lower loading factor, which may
cause worse performance than a higher loading
when the update count 15 low Lower loading
requires more space for primary pages Scanning
such a file sequentially (e g for query Q07 or Q08)
1s more costly Especially for ISAM, lower loading
requires more directory pages, which may increase
the height of the directory For example, query
Q10 for the update count of 0 1n Figure 7 reads 1n
3385 pages with 50% loading, significantly higher
than 2233 pages with 100% loading

We conclude that access methods such as
hashing or ISAM are not suitable for a database
with temporal support There are other access
methods that adapt more gracefully to dyname
growth, such as B-trees, dynamic hashing, extendi-
ble hashing, and grid files [Nievergelt & Hinter-
berger 1984] These methods require complex
algorithms and significant overheads to maintain
certain structures as new records are added But
the performance 1s still dependent on the count of
all versions, which may be sigmficantly higher than
the count of current versions Furthermore, a
large number of versions for some tuples will
require more than a bucket for a single key, caus-
g similar problems exhibited 1n conventional
hashing and ISAM It 1s also difficult to maintain
secondary indices for these methods, which often

spht a bucket and rearrange its records, and to
utiize write-once storage medium like optical
disks Therefore, new storage structures and
access methods tailored to the particular charac-
teristics of temporal databases are needed to
enhance performance significantly

Databases with temporal support maintain
both the current and the history data on hine But
the current and the history data exhibit clear
differences 1n their characteristics, such as the
number of versions, storage requirements, access
frequency and update patterns These differences
make 1t natural to process them separately exploit-
ing their unmique characteristics Therefore, we
adopt the two level store with separate storage
areas for the current and the history data [Ahn
1986] The primary store contains current versions
which can satisfy all non-temporal queries and pos-
sibly some of frequently accessed history versions
The history store holds the remaining history ver-
sions This scheme to separate current data from
the bulk of history data can mimmze the overhead
for non-temporal queries, and at the same time
provide a fast access path for temporal queries

In addition, queries retrieving records
through non-key attributes (e g Q07 and QO8) can
be facihtated by secondary sndezing There are
several alternative structures for a secondary index
on a relation with multiple versions The 1ndex
may be stored into a single file for all the versions
(1 level), or may itself be maintained as a 2-level
structure having a current index for the current
data and a history index for the history data In
each case, any storage structure such as the heap,
hashing or ISAM may be chosen for the index

Figure 10 shows the estimated input costs for
the sample queries on the temporal database with
the two level store and the secondary indexing,
where ‘=’ indicates no change from the conven-
tional case The advantage of the two level store
18 evident 1n processing static queries such as Q05
through Q10 The cost remains constant for any
update count As shown under the column Ssmple
in Figure 10, Q10 on the temporal database with
the update count of 14 costs 2233 pages 1nstead of
34493 pages Version scan (Q01 and Q02) can also
be improved by clustering history versions of the
same tuple into a mimmum number of pages, ¢ g
28 history versions into 4 pages as the column
Clustered in Figure 10 shows

Columns under ag I-Level 1n Figure 10 show
the estimated input cost when an index s

104

maintained as a single file on the amount attri-
bute for the temporal relation The index needs
eight bytes for each entry, four for the secondary
key and four for a tuple 1d, and hence c¢an store
101 entries 1n a page of 1024 bytes Since there
are 20 versions multipied by 1024 tuples, 295
pages are needed for the index If we store them
1n a heap, 1t costs 324 pages, 205 index plus 29
data pages, to evaluate Q07 This 1s 1n fact more
expensive than the simple 2-level store without any
index, though better than the conventional struc-
ture itself If we use hashing for the index, the
cost is reduced to 30 page accesses with 1 index
page and 29 data pages

If we use the 2-level indexing with a separate
index for current data, there are only 1024 entries
1n the index, requiring 11 index pages QO7 costs
12 pages with the heap index, while 1t costs only 2
pages with the hashed index, as shown in columns
under as 2-Level in Figure 10 Note the difference
between 3717 pages and 2 pages for processing the
same query

7. Summary

We built a prototype of a temporal database
management system by extending the static DBMS
Ingres It supports the temporal query language
TQuel, a superset of Quel, handhng all four types
of databases static, rollback, historical and tem-
poral A benchmark with a set of queries was run
to study the performance of the prototype on the
four types of databases with two loading factors
We analyzed the results of the benchmark, and
identified major factors that have the greatest
impact on the performance of the system As far
as the access methods of sequential scan, hashing
or ISAM are concerned, the growth rate 1s deter-
mined by the database type and the loading factor,
but independent of the query type, the access
method, or even the distribution of updated tuples
A formula was obtained to estimate the cost of a
query on a database with multiple temporal ver-
sions, when the cost of a query on the database
with a single version 1s known and its fixed portion
18 1dentified We also discussed possible perfor-
mance enhancements using two-level storage struc-
tures and secondary indexing mechanisms tailored
for databases with temporal support

8. Bibliography

[Ahn 1986] Ahn, I Towards an Implementation of
Database Management Systems with

Temporal Support In The Second Inter-
national Conference on Data Engineering,
IEEE Feb 1986, pp 374-381

[Ariav & Morgan 1982] Ariav, G and H L Mor-
gan MDM Embedding the Tsme Dimen-
stion sn Information Systems Techmeal
Report 82-03-01 Department of Decision
Sciences, The Wharton School, University
of Pennsylvania 1982

[Ariav 1984] Ariav, G Preserving The Time
Dimensson In Information Systems PhD
Diss The Wharton School, University of
Pennsylvama, Apr. 1984

[Bolour et al 1982] Bolour, A, TL Anderson, L J
Debeyser and HKT Wong The Role of
Time sn Information Processing A Survey
S1gArt Newsletter, 80, Apr. 1982, pp 28

48
[Bubenko 1976] Bubenko, J A, Jr The temporal
dimenston in nformation modeling

Technical Report RC 6187 #26479 IBM
Thomal J. Watson Research Center Nov
1976

[Copeland 1982] Copeland, G What If Mass
Storage Were Free? IEEE Computer, 15,
No 7, July 1982, pp 27-35

[Copeland & Maier 1984] Copeland, G and D
Maier Making Smalitalk a Database Sys-
tem In Proceedings of the Sigmod ’84
Conference, June 1984, pp 316-325

[Fuptam 1984] Funtam, L Laser Optical Dssk The
Coming Revolution sn On-Line Storage
Communicatione of the Assocsatson of
Computing Machinery, 27, No 6, June
1984, pp 546-554

[Held et al 1975) Held, GD, M Stonebraker and
E Wong INGRES--A relational data base
management system Proceedings of the
1975 National Computer Conference, 44
(1975) pp 409-416

[Hoagland 1985) Hoagland, A Information Storage
Technology A Look at the Future IEEE
Computer, 18, No. 7, July 1985, pp 60-67

[Jones et al 1979] Jones, S, P Mason and R
Stamper LEGOL 20 a relational
specification language for complez rules
Informatson Systems, 4, No 4, Nov 1979,
PP 293-305

105

[Katz & Lehman 1984] Katz, R. and T Lehman
Database Support for Verssons and Alter-
natives of Large Design Files IEEE Tran-
sactions on Software Engineersng, SE-10,
No 2, Mar 1984, pp 191-200

[Lum et al 1984] Lum, V, P Dadam, R Erbe, J
Guenauer, P Pistor, G Walch, H Werner
and J Woodfill Dessgning DBMS Support
for the Temporal Dimensson In Proceed-
ings of the Sigmod '84 Conference, June
1984, pp 115-130

[Nievergelt & Hinterberger 1984] Nievergelt, J and
H Hinterberger The Grid File An Adapt-
able, Symmetric Multskey File Structure
ACM Transactions on Database Systems,
9, No 1, Mar 1984, pp 38-71

[Schueler 1977] Schueler, B Update Reconsidered
In Architecture and Models sn Dats Base
Management Systems Ed G M Nijssen-
North Holland Publishing Co , 1977

[Snodgrass & Ahn 1985] Snodgrass, R and I Ahn
A Tazonomy of Time sn Databases In
Proceedings of the International Confer-
ence on Management of Data, ACM SIG-
Mod Austin, TX May 1985, pp 236-246

[Snodgrass 1986] Snodgrass, R A Temporal Query
Language ACM Transactions on Database
Systems (to appear), (1986)

[Snodgrass & Ahn 1986 Snodgrass, R and I Ahn
Temporal Databases IEEE Computer (to
appear), (1986)

[Stonebraker et al 1976] Stonebraker, M, E
Wong, P Kreps and G Held The Design
and Implementation of INGRES ACM
Transactions on Database Systems, 1, No
3, Sep 1976, pp 189-222

[Svobodova 1981] Svobodova, L A reliable object-
orsented data deposstory for a distributed
computer In Proceedings of Sth Sympo-
ssum on Operating Systems Principles,
Dec 1981, pp 47-58

[Wiederhold 1984] Wiederhold, G Databases IEEE
Computer, 17, No. 10, Oct. 1984, pp 211-
223

[Woodfill et al 1981] Woodfill, J, P Siegal, J
Ranstrom, M Meyer and e allman Ingres
Reference Manual Version 7 ed 1981

Type Static Rollback Historical Temporal
Loading 100 % 50 % 100 % 50 % 100 % 50 % 100 % 50 %
Relation HilI]|H]|I H | H I H I H I H 1 H I

Size, UC=0 {166 | 115|257 [259 || 120 | 120| 257 259{] 120 129| 257] 250 120 128| 257 259

Sue, UC=14|] =] —| —| —|l1927| 1921 2048 2051|1927 | 1021 | 2048 | 2051|{3717 | 3713 | 3830 | 3843

G’G;;::’ —| - -| -|h284]|1280{1279|1280}h28 4 | 1280|1279 | 128 0|P56 3 |256 0| 2559 2560
Growth

Rate -] -] - - 1 1] 05| 05 1 1] 05] 05}j199 2 1 1

Notes .
Relation H 1s a hashed file ‘UC’ denotes Update Count
Relation I 1s an ISAM file ‘-’ denotes not applscable
Figure 5: Space Requirements (1in Pages)
Undate 1 0 1 v la s | a|s e |7 8o |wo|um||i|ulis
Count
Qo1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Qo2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Qo3 129| 387 645] 903| 1153 | 1411 1669 | 1927 2177| 2435] 2693 | 2051 | 3201| 3459] 3717 3975
Qo4 128] 384| 640] 896 1152| 1408 1664] 1920| 2176 | 2432| 2688 | 2044] 3200| 3458| 3712| 3968
Qo5 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Qos 2 4 6 8 10 12 14 18 18 20 22 24 26 28 30 32
Qo7 120 387! 645| 903} 1153 1411| 1669| 1927 2177§ 2435] 2693 | 2051] 3201| 3459} 3717| 3975
Qo8 128] 384| 640| 896 1152| 1408| 1664| 1920 2178| 2432| 2688 | 2944 3200| 3456] 3712] 3968
Qo9 1200 | 3512|5816 |8120 | 10386 | 12690 | 14994 | 17298 | 19564 | 21868 | 24172 126476 | 28742 {31046 | 33350 | 35654
Q10 2233 4539 {6845]9151 [11449] 1375516081 | 18367 | 20665 | 22971 {25277 {27583 | 29881 | 32187 | 34493 | 36799
Q1 385]1155 (192512695 3457 | 4227 | 4997| 5767| 68529 72909| 8069 | 8839| 9601 |10371{11141]11911
Q12 131| 389| 647| 905]| 1163 | 1421 | 1679} 1937] 2195] 2453 2711| 2069 3227 | 3485| 3743 4001
Figure 8: Input Costs for the Temporal Database with 100% Loading
Type Static Rollback Historical Temporal
Loading |[100 % | 50 % 100 % 50 % 100 % 50 % 100 % 50 %
Q Uc |UC Uuc ucC ucC UcC uc ucC

el o 0 {Jo | 14 | o] 14 [Jo | 14 | o | 14 [0] 14 0] 14
Qo1 2 1 1 15 1 8 1 15 1 8 1 29 1 15
Qo2 2 2 18 10 16 10 30 3 17
Qo3 - - 1201 1927 257 | 2048 || — - - - 129 | 3717 | 257 | 3839
Qo4 - - 128 | 1920 | 256 | 2048 || — - - - 128 | 3712) 256 ; 3840
Q05 2 1 1 15 1 8 1 15 1 8 1 29 1 15
Qo6 2 3 2 16 3 10 2 16 3 10 2 30 3 17
Qo7 166 257 || 120 | 1927 | 257 | 2048 || 120 | 1927 | 257 | 2048] 120 | 3717 | 257 | 3839
Qo8 114 256 {1 1281 1920 | 256 | 2048 (| 128 | 1820 | 256 | 2048 || 128 | 3712 | 256 | 3840
Qo9 1585 | 1276 {1141 | 17242 | 1271 | 10240 |11197 | 17298 | 1327 | 10296 ||1200 | 33350 | 1333 | 19256
Q10 2214 | 3329 ||2177 | 18311 | 3329 | 12288 ||2233 | 18387 | 3385 | 12344 | {2233 | 34493 | 3385 21303
Qi1 - - - - - - - - - - 385 | 11141 | 769 | 11519
Q12 - - -1 -=-1=-1=H=1=1=1 = |l 131] 3143] 250 3857

Figure 7: Input Costs for Four Types of Databases

106

Input, Input
Pages@ % Pagesh
30000 12000 Qo
Qw
20000 8000
10000 Qu 4000
Q03478,12 e Q03,4,7,8
) 3 10 15 T o 3 16 B e
(2) Temporal Database with 100% Loading (b) Rollback Database with 50% Loading
Figure 8: Graphs for Input Pages
Type Rollback Temporal
Loading 100 % 50 % 100 % 50 %
Q Cost (1n Pages) [Growth | Cost (in Pages) |Growth]|Cost (in Pages) |Growth| Cost (in Pages} |Growth
uery Fixed | Variable | Rate [Fixed| Vanable | Rate ixed | Variable | Rate |[Fixed| Variable | Rate
Qo1 (/] 1 1 0 1 05 0 1 2 0 1 1
Qo2 1 1 1 2 1 05 1 1 2 2 1 1
Qo3 0 129 1 0 257 05 0 129 199 0 257 1
Qo4 0 128 1 0 256 05 0 128 2 0 256 1
Q05 0 1 1 0 1 05 0 1 2 0 1 1
Qos 1 1 1 2 1 05 1 1 2 2 1 1
Qo7 0 129 1 0 257 05 0 129 199 0 257 1
Qo8 0 128 1 0 256 05 0 128 2 0 256 1
Qo9 0 1141 101 0 1271 05 56 1144 201 56 1277 1
Q10 1024 1153 1 2048 1281 05 ([1080 1153 2 2104 1281 1
Q11 - - - - - - 0 385 2 0 769 1
Q12 - - - - - - 2 129 2 2 257 1
Figure 9: Fixed Costs, Variable Costs and Growth Rates
Conventional 2-Level Store for Update Count = 14
Query Update Count Simple Clustered Indexed on amount
0 14 as 1-Level as 2-Level
as Heap as Hash a8 Heap as Hash
Qo1 1 29 - 5 - - - -
Qo2 2 30 - 6 - - - -
Qo3 129 3717 - - - - - -
Qo4 128 3712 - - - — - -
Q05 1 29 1 - - - - -
Qo8 2 30 2 - - - - -
Qo7 120 3717 129 - 324 30 12 2
Qo8 128 3712 128 - 324 30 12 2
Qo9 1200 33350 1200 - - - - -
Q10 2233 34493 2233 - - - - -
Q11 385 11141 - - - - - -
Q12 131 3743 - - - - - -

Figure 10s Improvements for the Temporal Database with 100% Loading

107

