
Skew Handling Techniques in Sort-Merge Join 

Wei Li 
Oracle Corporation 
weili@us, oracle, com 

Dengfeng Gao Richard T. Snodgrass 
Department of Computer Science, University of Arizona 

{dgao,rt s}@cs, arizona, edu 

A B S T R A C T  
Joins are among the most frequently executed operations. Sev- 
eral fast join algorithms have been developed and extensively 
studied; these can be categorized as sort-merge, hash-based, 
and index-based algorithms. While all three types of algo- 
rithms exhibit excellent performance over most data, amelio- 
rating the performance degradation in the presence of skew 
has been investigated only for hash-based algorithms. How- 
ever, for sort-merge join, even a small amount of skew present 
in realistic data can result in a significant performance hit on a 
commercial DBMS. This paper examines the negative ramifi- 
cations of skew in sort-merge join and proposes several refine- 
ments that deal effectively with data skew. Experiments show 
that some of these algorithms also impose virtually no penalty 
in the absence of data skew and are thus suitable for replacing 
existing sort-merge implementations. We also show how sort- 
merge band join performance is significantly enhanced with 
these refinements. 

1. I N T R O D U C T I O N  
Because joins are so frequently used in relational queries 

and because joins are so expensive, much effort has gone into 
developing efficient join algorithms. The simple nested-loop 
join is applicable in all cases, but imposes quadratic perfor- 
mance. For equijoins, sort-merge join was found to be much 
more effective, with excellent performance over a wide range 
of relation sizes, given adequate main memory. Later, re- 
searchers became interested in hash-based join algorithms and 
it has been shown that in many situations, hash-based algo- 
rithms perform better than sort-based algorithms. However, 
there exist cases in which the performance of hash-based joins 
falls short. If there are several relations that will participate in 
multiple joins, the "interesting order" will often determine that 
sort-based join is better, to enable the joins to run in a pipeline 
fashion [18], because the output of sort-merge join is sorted, 
thereby possibly obviating the need for sorting in subsequent 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, to 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
ACM SIGMOD '2002 June 4-6, Madison, Wisconsin, USA 
Copyright 2002 ACM 1-58113-497-5/02/06 ...$5.00. 

sort-merge joins. Graefe has exposed many dualities between 
the two types of algorithms and shown that their costs differ 
mostly by percentages [6, 7]. Most DBMSs now include both 
sort- and hash-based as well as nested-loop and index-based 
join algorithms. 

The distribution of the input data values can have a dramatic 
impact on the performance of both sort- and hash-based algo- 
rithms. The term "skew" involves several related but different 
effects. The most ~ndamental  distinction is that between par- 
tition skew and intrinsic skew [20]. 

Partition skew is of concern in hash-based join. In the first 
step of hash join, some buckets may contain more tuples than 
other buckets due to an interaction between the distribution of 
attribute values and the hashing fimction itself. When this dis- 
parity becomes large, the bucket no longer fits in main memory 
and hash-based join degrades into nested-loop join. Partition 
skew originates in the hash fimction chosen by the optimizer. 
Several papers have proposed ways to deal with partition skew 
in hash-based join [3, 9, 10, 17, 20]. 

Intrinsic skew occurs when attributes are not distributed uni- 
formly; it has also been called attribute value skew [20]. In- 
trinsic skew impacts the performance of both hash- and sort- 
based joins. Sort-merge join works best when the join attributes 
are the primary key of both relations. This ensures that there 
are no duplicates present, so that a tuple in the left-hand re- 
lation will join with at most one tuple in the right-hand rela- 
tion, avoiding intrinsic skew. When an equi-join is performed 
over non-key attributes, intrinsic skew is generally present. In- 
equality predicates, such as found in band join (to be discussed 
in detail later), in temporal join [19] and temporal Cartesian 
product [22], and in multi-predicate merge join [21] and EE- 
Join and E.A-Join [14] proposed for queries on XML data, ex- 
acerbate the problem. 

The general advice is to use sort-merge join in the presence 
of significant intrinsic skew, because bucket overflow in hash 
join is so expensive. However, we are aware of no paper ei- 
ther on the impact of intrinsic skew on the performance of 
(centralized) sort-merge join, nor on ways to deal with such 
skew. In fact, the classical sort-merge algorithm presented in 
many database textbooks yields incorrect results in the pres- 
ence of intrinsic skew. While the sort-merge implementations 
in commercial systems yield correct results, we'll see shortly 
that even a small amount of intrinsic skew present in realistic 
data can result in a significant performance hit. 

In this paper we provide a variety of algorithms that cor- 
rectly and efficiently contend with intrinsic skew in sort-merge 

169 



join. For the remainder, the term "skew" will denote intrin- 
sic skew and "join" will refer to sort-merge join (also called 
merge-join or sort-join, in several variants). We first demon- 
strate the high cost of intrinsic skew on a commercial system 
on actual data; the rest of this paper shows how to reduce al- 
most completely this performance penalty. Section 3 identifies 
the three problems that skew presents to sort-merge join and 
shows how two of these problems can be solved. Section 4 is 
the core of this paper, proposing eight variants of sort-merge 
join, all operating correctly in the presence of all three types 
of skew. The following section compares the performance of 
these algorithms. Section 6 shows how the algorithms per- 
form for band joins [2], in which substantial skew is invariably 
present. Finally, Section 7 concludes with a recommended re- 
placement for the traditional sort-merge join algorithm. 

2. THE COST OF INTRINSIC SKEW 
It may be surprising that anything new can be said about the 

venerable sort-merge join. The problem of intrinsic skew in 
sort-merge join is almost certainly known by vendors, though 
there is little in the extant literature about this problem. Our 
discussions with vendors indicate that some DBMSs fall back 
to nested loop when problematic skew is encountered, or shift 
tuples up in memory so that more tuples can be read, which 
allows greater skew to be accommodated, but doesn't solve the 
full problem (we examine shifting tuples in Section 4.3). Such 
approaches can impose a significant performance penalty, as 
we now illustrate. 

We used an actual data set from the University Information 
System (UIS), a major research university's personnel database. 
Specifically, we used the Incumbents table, which includes 
information on job assignments for University employees. The 
size of the table is 7.8MB and has the following schema. 
Incumbents (SSN, PCN, start_date, end_date, 

pay_hourly_rate, incum_fte, obj_code, 
t rack_code) 

Two queries on this table are shown in Figure 1. Q1 pairs rows 
that have the same key. Q2 pairs those employees that have the 
same p a y _ h o u r l y _ r a t e  during the same time period. The 
primary key of Incumbents is (SSN, PCN, start_date), 
which implies that there is no skew present in Q1. However, 
intrinsic skew does impact Q2. 96.4% tuples have unique 
p a y . _ h o u r l y _ r a t e  values. The remaining 3.6% tuples have 
duplicate values for this attribute. This small amount of skew 
turns out to decrease the performance of the join significantly. 

The DBMS uses sort-merge join for these two queries. We 
measured both the elapsed time and the number of physical 
reads performed by just the merge step of each query, by sep- 
arating out the time and number of physical reads for sorting. 
We varied the memory allocated for merging from the default 
size (64KB) defined by this DBMS to a much larger 1MB. 

While the execution time to sort depends heavily on the size 
of main memory, the merge phase should be linear in the car- 
dinality of the resulting table and independent of the size of 
main memory. The result size of Q2 is only 1.5% larger than 
the result size of Q1, and so Q1 and Q2 should behave simi- 
larly. However, as shown in Figure 2, the performance of the 
merge step for this commercial DBMS degrades greatly in the 
presence of skew, especially when the size of memory is small. 
For 64KB of memory (the default size), the count of physical 

1." 
selectil.SSN, il.pay-hourly~ate, i2.SSN 
from incumbents il, incumbents i2 
where ii.SSN = i2.SSN 
and ii.PCN = i2.PCN 
and il.start~ate = i2.start~ate 

Q2: 

(a) 

selectil.SSN, il.pay_hourly_rate, i2.SSN 
from incumbents il, incumbents i2 

where i i. pay_hourly_rate=i2, pay_hourly_rate 
and ((il.start_date >= i2.start_date 

andil.end_date <= i2.end_date) 
or (il.start_date > i2.start_date 

andil.end_date > i2.end_date 
andil.start_date < i2.end_date) 

or (il.start_date < i2.start_date 
andil.end_date < i2.end_date 
and i2.start_date < il.end_date) 

or (il.start_date <= i2.start_date 
and il.end_date >= i2.end_date)) 

(b) 

Figure h Two queries used to examine the performance of 
commercial DBMS 

reads of Q2 is almost three times that of Q1. The difference 
between the elapsed time is even larger, five times, due to the 
prevalence of the random reads that are involved when skew is 
improperly handled, as we will discuss shortly. 

We've heard informally that some commercial sort-merge 
algorithms are variants of the R- 1 approach we introduce be- 
low; our simulation studies for R-1 exhibit performance results 
similar to that shown in Figure 2. However, as we show, R-1 
and its multi-run variant R-n are not competitive in perfor- 
mance when compared to the other algorithms we propose. In 
any case, the present paper is the first to carefully examine pre- 
cisely when skew becomes a problem in sort-merge join, the 
first to present specific algorithms to address these problems 
and the first to analyze the performance implications of these 
approaches. We feel that our recommended replacement could 
ensure a more accurate analysis of algorithms in the literature 
that are based on sort-merge join and could enhance the per- 
formance of commercial sort-merge join implementations on 
realistic data. 

3. PRELIMINARIES 
The join algebraic operator takes two input relations, of ar- 

ity m and n, and produces a single resulting relation. A wide 
variety of joins have been defined, including equijoins, nat- 
ural joins, semi-loins, outer joins and composition [16]. We 
consider the general case in which the join outputs all the at- 
tributes (hence, the arity of the result is m + n). We assume 
that the join has an explicit predicate containing at least one 
equality test between attributes of the two underlying relations 
(these attributes are termed equijoin attributes: EA); sort- 
merge join is applicable only in the presence of such equi- 
join attributes. We term the (optional) remainder of the join 
predicate the supplementalpredicate (SP), which can involve 
equality comparisons between attributes of one of the input 

170 



36O00 

® 30000 t 

Q1 -o-- 
Q2 ~ 

~ 12000 

6OO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

120 
Q1 -e--  
Q2 

80 

60 

40 

20 ...................... ~ ............................. 

320 640 1024 64 320 640 
rnemoqf size (KB) memory size (KB) 

(a) Count of physical reads (b) Elapsed time 

1024 

Figure 2: Performance of merge in sort-merge join in a commercial DBMS 

relations, either with themselves or with constants, as well as 
inequality comparisons and function invocations. The supple- 
mental predicate can significantly reduce the size of the result- 
ing relation, especially if the equijoin attributes do not consti- 
tute a primary key of either of the underlying relations. 

The traditional sort-merge algorithm is usually shown as in 
Figure 3(a), in which pL is a pointer into relation L and sim- 
ilarly with pR, each ranging from 1 to the cardinality of the 
relation; L[pL] is the tuple at position pL; and L[pL](EA) 
are the value(s) of the equijoin attribute(s) of that tuple. In 
this algorithm, the sequence of attributes on which the sort is 
applied is not important. (From now on, we assume a single 
equi-join attribute.) Sort-merge join preserves the sort order 
of the inputs, a useful property to exploit in the presence of 
multiple joins. 

In this context, skew is simply the presence of multiple tu- 
pies in L or R with identical values for the equijoin attribute. 
These tuples, collectively called a value packet [5, 12] for each 
such value, are contiguous in the input relations after they are 
sorted. So an equivalent definition of skew is the presence of 
a value packet containing more than one tuple. The traditional 
algorithm must be modified to backtrack, yielding the algo- 
rithm in Figure 3(b). This algorithm effectively applies nested 
loop (cf. the nested repeats) on the tuples in value packets it 
encounters, applying the supplemental predicate, if present, to 
each pair of tuples, one from each value packet, pR records 
where the value packet starts in R; pR2 iterates over the value 
packet. 

This algorithm as presented in Figure 3(b) is tuple-oriented: 
the input relations are treated as in-memory arrays of tuples. 
Join implementations are almost always block-based, in which 
a block (or several blocks) oftuples is read into main memory, 
to be processed and then replaced with successive blocks read 
from disk. The algorithm in the figure can be rendered block- 
based by simply inserting block reads (to an in-memory array, 
either BL or BR, of size B tuples) whenever a pointer is in- 
dexed out of the in-memory block, as shown with new code 
for advance in Figure 3(c) and changing references of L to 
BL and of R to BR. 

This is where most presentations of sort-merge move on to 
a complexity analysis of the algorithm. Unfortunately, making 
this straightforward change breaks the algorithm when skew is 
present. There are three types of skew: 

1. skew occurring only in the left-hand side (LHS) relation, 

2. skew occurring only in the RHS relation, or 

3. skew occurring in both the LHS and RHS relations. 

The problem arises when a value packet crosses a buffer bound- 
ary. (A value packet entirely contained in a buffer presents no 
problem.) These three cases are shown in Figure 4. In this 
figure, each rectangle denotes a buffer's worth oftuples. A de- 
notes a value packet with an equijoin attribute value of A; sim- 
ilarly, B denotes a value packet with an equijoin attribute value 
of B. The arrows in the figure denot!ng the reading pointer 
(pL or pR) into the buffer. 

Graefe mentioned the skew problem and indicated that one 
of two merging scans must be backed up when both inputs 
contain duplicates of a join attribute value and when the spe- 
cific one-to-one match operation requires that all matches be 
found [5]. Mishra and Eich also address this problem: if the 
join atttributes are not the primary key attributes, several tuples 
with the same attribute value may exist [ 16]. This necessitates 
several passes over the same set of tuples of the inner relation. 
So whenever a duplicate LHS value is encountered, they state 
that it is necessary to backtrack to the previous starting point in 
the RHS relation, but don't provide any details. The only algo- 
rithm for handling skew in a block-oriented environment that 
we have found is in the book by Garcia-Molina et al., which 
we will consider further in Section 4.4. 

We now consider in detail how to contend with these three 
sources of skew. The first case of skew, which we term LHS 
skew, presents no problem, as the buffer boundary is encoun- 
tered in the outer loop. The subsequent blocks of the LHS are 
read in and the join continues with the same value packet in 
the RHS. Skew in the RHS (either alone, termed RHS skew, 
or in conjunction with LHS skew, termed dual skew) does 
cause problems, because the buffer boundary is encountered 
within the inner loop. In the presence of RHS skew, subse- 
quent blocks of the RHS are read in while the right-hand value 
packet is being joined with the first tuple of the left-hand value 
packet, which renders the previous buffer inaccessible for join- 
ing with the remaining tuples in the value packet in the LHS. 
The fight-hand pointer can only be moved back to the start of 
the buffer, so subsequent tuples in the left-hand value packet 
will only be joined with the second portion of the right-hand 
value packet. 

171 



• Traditional Sort-Merge Join : 
Sort relation L on the attribute E A  
Sort relation .R on the attribute E A  
p L y -  1 
p R ~ -  1 
repeat until pL = L.length or pR = _/:/.length 

if L[pL](EA) = R[pR](EA) 
if SP( L[pL], R[pR]) oulput(L[pL] o R[pR]) 
advance p R 

else if L[pL] (EA) > R[pR] (EA) 
advance p R 

else //L[pL](EA) < R[pR](EA) 
advance p L 

Advance pL : 
pL +-pL+ l 

(a) 

Traditional Sort-Merge Join With Skew: 
Sort relation L on the attribute E A  
Sort relation R on the attribute E A  
p L + - I  
pR+-  1 
repeat until pL = L.length or pR = R.length 

if L[pL](EA) = R[pR](EA) 
pR2 ~-- pR 
repeat 

if SP(L[pL], R[pR2]) output(L[pL] o R[pR2]) 
advance pR2 

until L[pL](EA) ~ R[pR2](EA) 
or pR2 = R.length 

advance p L 
else if L[pL](EA) > R[pR](EA) 

advance pR 
else //L[pL](EA) < R[pR](EA) 

advance p L 

(b) 

Advance pL : 
pL +--pL+ l 
i fpL = B + 1 

read next block of L into BL 
pL+- 1 

(c) 

Figure 3: Traditional sort-merge join algorithms, origi- 
nal (a) and accommodating skew (b), and rendering sort- 
merge join block-based (c) 

This implies that if skew is known to be absent from one of 
the underlying relations, for example if the equijoin attributes 
form a primary key of a relation, then that relation should be 
placed as the RHS of the join, which is always possible due 
to the commutativity of join, though that swap may have im- 
plications to the efficiency both of the join in question and 
other joins in the query. Doing so, however, doesn't solve the 

LHS RHS LHS RHS LHS RHS 
-"~'~ A~ B A "--It'D ~ A -"tit ~ ~ 

Case 1 Case 2 Case 3 
Figure 4: Types of skew in sort-merge join 

problem in the general case; we still need a join method that 
can accommodate skew, especially as often the reason sort- 
merge join is considered in the first place is that the skew that 
is present argued against adopting hash join. 

There is one additional complication that will become rel- 
evant. Recall that sort-merge join uses a disk-based sorting 
phase that starts by generating many small fully-sorted runs, 
merging these into longer runs until a single run is obtained 
(this is done for the left-hand side and right-hand side inde- 
pendently). Each step of the sort phase reads and writes the 
entire relation. The merge phase then scans the totally-sorted 
left and right-hand relations to produce the output relation. 

A common optimization is to stop the sorting phase one 
step early, when there are a small number of fully sorted runs. 
The final step is done in parallel with the merge phase of the 
join, thereby avoiding one read and one write scan. Our algo- 
rithms with multiple runs described in the following sections 
are based on this optimization. This impacts how dual skew is 
accommodated. 

In our implementation, each run is accorded one buffer in 
main memory, with the size of this run buffer dependent on the 
amount of available main memory and the size of the relation. 
In our description, the term "buffer" denotes "run buffer". To 
simplify the implementation, multiple blocks that can fit in one 
buffer are read into memory at one time unless we explicitly 
mention otherwise. 

The equij oin predicate may consist of multiple equality con- 
ditions that require the value of several columns to be equal. 
The query optimizer might choose to merge the relations on 
only some of the equality columns, with the remaining equal- 
ity columns in the residual predicate processed in the inner 
loop of the merge algorithm. One possible reason is the pres- 
ence of convenient indexes in the database on these particular 
columns. Our algorithms apply in this situation especially be- 
cause skew is likely to appear on the merge columns. From 
this point on, the term "equijoin attribute(s)" denotes the at- 
tribute(s) on which the input relation is sorted and merged, 
separate from the residual predicate. 

4. CONTENDING WITH SKEWED DATA 
The goals of the new algorithms are to incur no disk over- 

head under low skew and perform efficiently under heavy skew. 

4.1 Reread with One Run (R-l) and with 
Multiple Runs (R-n) 

R-1 is a simple extension of Figure 3(b)+Figure 3(c), in 
which a block of the RHS are reread whenever a reference 
is made to a tuple in a block that was previously replaced with 
a subsequent block (during the advancing ofpR2) .  This al- 

172 



gorithm exploits the presence of only two runs to be merged, 
one each from the LHS and the RHS. The down side is that an 
extra pass is needed to produce a single run for the right hand 
side. 

To accommodate RHS and dual skew, the R-1 algorithm 
reads blocks when necessary (when a pointer is incremented 
past the end of  a buffer) and rereads blocks of  the R_HS when 
pR is reset to the beginning of  a value packet, an event termed 
a hiccup. The hiccup comes in the middle of the algorithm, 
when the disk block of  RHS that started the value packet is 
reread (pR2 ~- pR). 

R-1 can be considered to be the minimal extension of  the 
standard sort-merge join that correctly deals with all three kinds 
of intrinsic skew. As we' l l  see later in the paper, the perfor- 
mance of this algorithm degrades very quickly in the presence 
of  skew. 

R-n is a variant that supports multiple runs on the right- 
hand side, with rereading on a per-run basis. (The "n"  simply 
means "multiple runs ' ; '  as contrasted with a single run on each 
side.) The difference between single run and multiple runs is, 
when multiple runs are deployed, the final merge of  the sort 
phase is done during joining phase. With multiple runs, the 
rereading process becomes more complex. For each RHS run, 
we record the backup pointer (pR2 in Figure 3(b)). Every 
time we increment the LHS pointer, we check the recorded 
information to see whether it is necessary for each RHS to 
reread the block containing the initial tuple of  the value-packet 
(the runs for which the value packet does not entirely fit in the 
run's block will have to be reread) and the subsequent blocks. 
If  there is no skew, we still need to check this information, 
which represents CPU overhead. Skew will probably generate 
more random reads, since the skewed data is likely to be spread 
across several runs. 

If  the inner relation is an intermediate result, and thus it 
is not easy to rewind within it, the intermediate result can be 
written out in a temporary file or can be materialized as a B- 
tree index. The algorithms proposed in this section and in 
the following sections can be applied to either of the cases. 
Another variant of  join utilizes iterators to supply tuples from 
left or right arguments [5]. Although the implementation of  
iterators generally doesn't allow rewinding to the previous tu- 
ples, in Section 4.4 we will see an approach which works di- 
rectly with an iterator. 

4.2 Block-based Reread (BR-1 and BR-n) 
While R-1 and R-n were block-based in terms of  their non- 

skew portion, they are both tuple-based in terms of  their reread- 
ing: a hiccup occurs for the second and successive tuples in the 
LHS value packet. We now present two further refinements 
(BR-1 and BR-n) that are entirely block-based. 

The discussion in Section 3 differentiated RHS and dual 
skew. To address the simpler of the two, RHS skew, we break 
the nested loop into two parts, joining the left value packet 
with the portion of  the right value packet in the buffer before 
moving on to the next right-hand buffer. To distinguish be- 
tween cases 2 and 3 (RHS skew and dual skew), we adopt a 
prediction rule: dual skew is present if  the value of  the last 
tuple in the left buffer matches (for the equijoin attribute) that 
of  the value of  the last tuple of  the right buffer. 

In BR-1, shown in Figure 5, the LHS and RHS in-memory 
buffers are denoted by BL and BR, respectively, with a buffer 

size of  B tuples, pL, pR and pR2 range from 1 to B,  pointing 
into the main-memory buffer of  L or R. pR2 points to the 
first tuple in the main-memory portion of  the value packet for 
the RHS; pL and pR range over the value packets of  LHS and 
RHS. The innermost nested loops ensure that the left value 
packet is joined with the portion of  the right value packet in 
the buffer before moving on to the next right-hand block. 

BR-n avoids the last run merge by storing information about 
the state of  each LHS run. The idea is the same as BR-1; the 
algorithm is similar but more complex. Since a value packet 
can be distributed across buffers in multiple runs in both sides, 
to make sure each LHS block joins with each RHS block ex- 
actly once, the algorithm has to remember with which block 
each LHS run has finished joining. 

A note on the implementation: the prediction rule requires 
that we look at the last record in the buffer. This is easy 
for fixed-length records, but more difficult for variable-length 
records. To avoid the CPU overhead needed to search from the 
first record to the last record in the buffer, the offset of  the last 
record can be recorded in each buffer when writing out the run 
in the sort phase. 

BR-n handles hiccups on a buffer basis, across many runs. 
Even with this optimization, hiccups are still quite expensive, 
as we' l l  see in Section 5. The next four algorithms attempt to 
avoid hiccups in the presence of  skew. 

4.3 Block-based Reread with Smart Use of 
Memory (BR-S-n) 

Although BR-n avoids hiccups in the presence of  RHS skew, 
it has to reread the blocks in a run buffer when it encounters 
dual skew. To address dual skew with less rereading, we can 
make better use of  the main memory buffer. 

BR-S-n handles hiccups on a single-block basis. As illus- 
trated in Figure 6, when the end of  the RHS buffer is encoun- 
tered and dual skew is detected, we clearly know that all the 
blocks preceding the current value packet have been joined 
and need not be kept in the memory. Thus, these blocks can 
be discarded and their space can be used to hold the tuples in 
the current value packet that resides in the successive blocks. 
This involves shifting the current value packet, which resides 
at the very bottom of the buffer in main memory, to the top of  
the buffer, then reading in more of  the value packet into the 
free area below. From our previous analysis, the buffer should 
be relatively large; in most cases, we can accommodate all the 
skewed data in one buffer and thus avoid rereading altogether. 

In the extreme situation that the size of  skewed data exceeds 
the buffer size, the reread can't be avoided. But we are care- 
fill to reread from the block that contains the starting tuple of  
the value packet, so that the blocks preceding the most recent 
value packet are not reread: only the most recent value packet 
and subsequent blocks need to be reread. One potential disad- 
vantage of  BR-S-n is it partially loads a buffer into memory in- 
stead of  loading blocks for a whole buffer at one time. There- 
fore, it may change some sequential reads to random reads. 

4.4 Spooled Cache (SC-1) 
In their book, Garcia-Molina et al. [93] recommend in the 

case of  skewed input that main-memory use for other aspects 
of  the algorithm be reduced, thus making available a poten- 
tially large number of  blocks to hold the tuples in a given value 
packet. Subsequent blocks of  both the LHS and R/IS value 

173 



Block-based Sort-Merge Join : 
Sort relation L on the attribute EA 
Sort relation R on the attribute EA 
read blocks for one buffer of L into B L  
pL+- 1 
read blocks for one buffer of R into B R  
pro-- 1 
repeat until finished with L 

pR2 ~-- J_ 
repeat until finished with R 

if BL[pL](EA) < BR[pR](EA) 
break 

else if BL[pL] (EA) > BR[pR](EA) 
advance p R 

else / /match 
i fpR2 = _L 

pR2 e-- pR l~ remember start of 
//value packet 

if SP(BL[pL], BR[pR]) 
output(B L[pL] o B R[pR]) 

i f  pR # B I/end of RHS buffer 
advance p R 

else 
pred ~ (BL[B](EA) = BR[B](EA)) 
repeat until no matching tuple exists in RHS 

//finish off value packet 
join all the matching tuples in BL and B R  
read the next blocks for one buffer of RHS 

if pred I/dual skew 
advance pL I/ to next buffer of LHS 
pR ~- pR2 //restore RHS pointer 

else //RHS skew only 
advance pL II to new value packet 
advance pR II to new value packet 
pR2 ~ _1_ 

i fpR2 ~ _L 
pR ~ pR2 

advance p L 

Figure 5: Block-based reread with one run, BR-1 

---II~~A OldBufferl ~ :  ~ 

~ A  " ~ B  

LHS RHS 

New Buffer 1 

Figure 6: Smart use of block space 

packets are read in, replacing blocks already scanned. If the 
value packet still doesn't fit in main memory, nested loop on 
the tuples in the value packet is required. 

As they note, this algorithm is difficult to generalize to mul- 
tiple runs. However, no details were presented, nor a perfor- 
mance study. Here we present a related approach that we ex- 
tend in the next section to support multiple runs. 

The basic idea is to reserve a buffer in main memory, termed 
the join-condition cache, to hold the skewed tuples. Specifi- 
cally, the join-condition cache holds tuples from the RHS that 
satisfy the join condition and have not yet been completely 
joined with tuples from the corresponding value packet in the 
LHS. The size of the cache can be specified before the join, 
or it can be expanded incrementally within the join. However, 
there always exists the possibility that the cache may overflow. 
At the cache's overflow point, we have to make a decision: ei- 
ther spool the cache data to the disk or use rereading to prevent 
the cache from overflowing. Here, we adopt the first approach; 
in Section 4.6, we will adapt the algorithm to ensure the cache 
never overflows, by rereading. We consider the one-run vari- 
ant here; the next section generalizes this spooled cache ap- 
proach to multiple runs. In both sections, the spooled cache 
avoids rereading the previous blocks, and therefore works with 
an iterator. 

We need to handle both RHS and dual skew with the cache 
(as before, LHS skew is trivially handled). We adapt the pre- 
diction rule to introduce another rule which will be helpful for 
block-based execution. 

1. Prediction rule - -  If we find that the RHS buffer con- 
tains the skewed data, then before moving the skewed 
data into the cache for joining with future tuples, we 
check the last tuple in LHS buffer to determine if dual 
skew is present. If so, we need to store the RHS skewed 
data in the cache. Otherwise, we avoid this overhead by 
joining all the RHS skewed data with all the correspond- 
ing LHS tuples. 

2. Join before caching rule - -  Before we put the RHS skew- 
ed tuples into the cache, we always join them with the 
corresponding LHS tuples. Thus we know exactly which 
LHS tuples the cached tuples have already been joined 
with. This rule saves a lot of bookkeeping work, which 
makes the algorithm's logic easier to understand. 

This approach ensures the following invariant. 

I lnvariant: tuples in the cache have been joined with I 
all tuples in previously-read LHS buffers I 

Using the cache and these rules, we can optimize the algorithm 
in the following ways. 

• When we hit the end of the RHS buffer, join all the tu- 
ples in RHS buffer with corresponding LHS tuples. 

• After the buffer join listed above, we decide whether we 
should put the RHS skewed tuples into the cache, using 
the modified prediction rule. This avoids unnecessary 
movement of tuples into the cache. 

• Each time we read in a new LHS buffer, we should first 
join all the tuples in the cache with the tuples in the just- 
read LHS buffer. 

174 



Algorithm SC-1 : 
Spooled Join-Condition Cache with One Run 

Sort relation L on the attribute EA 
Sort relation R on the attribute EA 
Merge L so that it has only one run 
read the blocks for one buffer of L into BL 
pLy--1  
read the blocks for one buffer of R into B R  
pR~-- 1 
repeat until finished reading L 

pR2 +- _L 
repeat until finished reading R 

if  BL[pL](EA) < BR[pR](EA) 
break II the repeat  loop 

elseif BL[pL](EA) > BR[pR](EA) 
advance pR 
continue fl the repeat loop 

else 
i f  this is the first matching tuple for BL[pL] (EA) 

pR2 ~ pR //remember start of 
//value packet 

if  SP(  B L[pL], B R[pR]) 
outpul(B n[pL] o B R[pR]) 

i fpR  ¢ B 
p R ~ - p R + l  

else II end of R buffer 
purge the join-condition cache 
join all the corresponding tuples in BL and BR 
i f  prediction on BL 

move skewed tuples into cache 
advance pR 
pR2 ~-- pR //modify start position of 

//value packet 
i f p R 2  ¢ _L 

pR ~-- pR2 
advance pL 
if pL = 1 I/new L buffer 

join the join-condition cache with all the  tuples 

in L 's  new buffer 

//restore RHS reading pointer 

Figure 7: Spooled cache algorithm, SC-1 

The SC-1 algorithm is shown in Figure 7. 
A similar approach was used in the tree-merge structure join 

algorithm [1], in which the nodes in a current sweep (analo- 
gous to our value packet) are stored in a temporary SHORE 
file, whose pages are written to and from disk by the SHORE 
buffer manager. Our appoaeh uses the prediction rule to de- 
termine whether to put tuples into the cache and exerts more 
careful control over the cache. 

4.5 Spooled Cache on Multiple Runs (SC-n) 
SC-1 assumes that the LHS is only one run, which requires 

an additional pass to merge the LHS runs before the merge step 
of  the join. Here we present a revised algorithm, SC-n, which 

accommodates several LHS runs, while maintaining excellent 
performance in most situations. 

Managing several LHS runs with the prediction rule be- 
comes more difficult, because if  any of  the LHS runs fail the 
test, we have to expand the cache. This situation is shown in 
Figure 8. In the figure, even though Runl and Run3 satisfy 
the prediction test, we still need to put the RHS tuples in the 
value packet into the cache, because Run2 needs to read in 
new tuples (because the boundary between buffers in Run2 in- 
conveniently occurs within a value packet), which means that 
it has just encountered dual skew. 

LHS 

Runl: 

Run2: 

Run3: 

RHS 

IAIBI 
r 

D A IAIIA 

i ~  Still need to cache 
I AI B the RHS tuples 

Figure 8: Several runs versus only one run? 

To transition to multiple runs, we must keep track of  the 
state of  each LHS run. If  there are n LHS runs, we create an 
array (actually, a bit vector) of  size n to record the status of  
each run, with the following two values. 

• complete: indicates that the tuples in this run have been 
joined with all the tuples in the cache 

• pending: indicates that the tuples in this run have not 
been joined with any tuples in the cache 

Initially, all the runs' status are set to complete, since there are 
no tuples in the cache at the beginning. We need to ensure the 
following invariant. 

New lnvariant: complete runs have been joined with all 
the tuples in the cache, while pending 
runs have been joined with no tuples in the 
cache 

With this invariant in mind, we make the following revisions 
on the algorithm SC-1 to get the new algorithm. 

When any RHS run reaches the end of  a buffer (correspond- 
ing to the last statement inside the inner loop in Figure 7), the 
prediction rule is used to check whether we should move the 
RHS tuples into the cache. If  there is no need to expand the 
cache, tuples in current RHS run are joined with tuples in each 
LHS run. Otherwise, tuples in current RHS run are only joined 
with tuples in complete LHS runs and the applicable RHS tu- 
ples are moved into the cache. 

When any LHS run reaches the end of  one buffer (corre- 
sponding to the last i f  statement in Figure 7), the algorithm 
checks the status of  this run. If  this run is a complete run, just 
load the subsequent blocks for this run and change this run's 
status to pending. I f  instead this run is a pending run, the al- 
gorithm joins all the pending LHS runs with the tuples in the 
cache and changes the status of  all the LHS runs to complete. 
Then, the subsequent blocks are loaded and the run's status is 
changed to pending. 

175 



In this algorithm, purging the cache becomes a little more 
complex than in SC-1, where we simply set the cache to empty 
when we encounter a new RHS value packet. When there are 
multiple LHS runs, there exists the possibility that there are 
other runs which may join with tuples being purged from the 
cache, as shown in Figure 9. This figure shows two value pack- 
ets, with values A and B. The dotted lines show that tuples 
from the A value packet from Runl and Run2 of the LHS have 
been joined with all the tuples in the cache. The first tuple of 
the B value packet has just been encountered in Runl of the 
LHS. When we reach the end of the second buffer in the RHS 
run and we find that the value packet has changed (since it is 
associated with B values, but the cache contains A values), we 
purge the cache. But these tuples in the cache have not yet 
been joined with the value packet(s) in (pending) LHS runs. 
So before purging the cache, we need to join the cache with 
corresponding tuples in the pending runs, thereby converting 
them to complete runs. 

LHS RHS 

gunl: [-~--~ ~ - ~  ~ A  

' ) Run2: ~ A 
I \\ B 

Cache: I A [ 

Figure 9: Purging the cache with multiple runs 

4.6 Block-based Reread with a Non-Spooled 
Cache (BR-NC-n) 

Algorithm R-n (cf. Section 4.1) avoids the overhead of cache 
maintenance. However, for low skew, this version may cause 
more disk I/O than algorithm SC-n, which imposes no I/O if 
the cache can hold all of the skewed data from a value packet. 
This last algorithm, BR-NC-n, attempts to combine the best 
features of both the spooled cache and rereading by using a 
small cache that can deal with low skew in the data distribu- 
tion. This cache never spools. If cache fills up, we record the 
cache overflow point and start rereading from that point. Be- 
cause the cache never reaches the disk, it would not form a 
new hot point. This is the most complex algorithm of the ones 
we propose. 

5. EVALUATION AND COMPARISON 
Among the algorithms we proposed in the previous section, 

we implemented R-n, BR-n, BR-S-n, SC-1, SC-n and BR- 
NC-n. We did not implement the simpler R-1 algorithm be- 
cause preliminary experiments with SC-1 indicated that the 
additional pass to produce one run of the LHS extracted a high 
penalty, rendering that algorithm noncompetitive. The results 
of all the algorithms for the different input relations were com- 
pared to ensure that they were identical. 

The experiments were developed and executed using the 
TIMEIT system [I 1], a software package supporting the pro- 
totyping of database components. Some parameters are fixed 
for all the experiments. They are shown in Table l(a). The 

cache size for those algorithms that use a cache was set at 3% 
of the available main memory. In all test cases, the generated 
relations were randomly ordered, and the join algorithms were 
run with a cold main memory. 

Parameter Value 
memory size 

cache size 
output buffer size 

block size 
tuple size 

join attribute 

I MB/16MB 
32KB/512KB 

32KB 
1KB 

128 bytes 
4 bytes 

(a) 

Metric Conversion 
sequential I/O cost 1 msee 
random I/O cost 10 msec 

attribute compare 20 nsee 
pointer swap 60 nsec 
tuple move 640 nsec 

(b) 
Table 1: System characteristics (a) and cost metrics (b) 

TIMEIT collects a variety of metrics, shown in Table l(b); 
both main memory operations and disk I/O operations were 
measured. TIMEIT then combines these into a single metric of 
elapsed time in seconds using the identified weights, thereby 
not tying the measurements to the underlying processor. We 
emphasize that this is a computed metric, not actual wall clock 
time, and so does not capture all of the subtle differences of 
the algorithms. However, such an approach allows us to un- 
derstand exactly how each of these metrics is affected by the 
parameters and by the algorithms. 

5.1 Experiments 
Data skew is the presence of a repeated value in the equi- 

joined attribute. Skew can be realized in a variety of ways. At 
one end of the spectrum is smooth skew, in which some num- 
ber of tuples have a single duplicate. In smooth skew, some 
value sets contain two tuples, with the rest containing exactly 
one tuple. At the other end of the spectrum is chunky skew (us- 
ing a peanut butter metaphor), in which a single attribute value 
is duplicated many times, thus effecting a very large value set. 
We examine the performance of the various algorithms under 
these two kinds of skew. 

5.1.1 Smooth Skew 
In this experiment, we fixed the memory size (16MB) and 

cache size (512KB). A series of relations were generated with 
a fixed size of 128MB and with increasing skew on the join 
attribute, from I% to 25%. A relation has 1% smooth skew 
when 1% of the tuples in the relation have one duplicate value 
on the join attribute and 98% of the tuples have no duplicates. 
We examined self-joins to ensure that the LHS and RHS have 
the same degree of skew. The results are shown in Figure 10. 
Note that the y-axis starts at 1050 seconds to emphasize the 
difference between the algorithms, which is less than that for 
chunky skew. At large skew, the difference between the slow- 
est (R-n) and fastest (SC-n) is 11% of the fastest time. 

The graph shows the performance of the algorithms fall into 

176 



1350- 

1300 

1250 

1200- 

1150- 

1100- 

1050 

,~ . - . -  - :..= ::.7 .......... R-n 
, -  % /  ,....::::: ....... BR-n - * -  

:~: .... BR-NC-n - * "  
SC-n • 

" 1'0 1'5 2'0 
skew (percentage)  

Algorithm 
R - n  

BR-n 
BR-S-n 
BR-NC-n 
SC-n 

Time (sec) 
1325.1 
1268.8 
1197.2 
1196.6 
1194.8 

Figure 10: Fixed relation size (128MB) with smooth skew 

1800 

1600 , 

1400 

1200 : 

1000 - 

800 - 

600 - 

400 - 

200- 

O'  i ~ i 16 
LHS relation size (MB) 

Algorithm 
R - T l .  

BR-n 
SC-n 
BR-NC-n 
BR-S-n 

Time (see) 
1728 
571 
563 
562 
561 

Figure 11: Varying relation size with chunky skew of 1% 

three groups. R-n has the highest cost. BR-n exhibits a lower 
cost than R-n but is worse than all the other algorithms, which 
constitute the third group. The difference between these groups 
increases along with the increasing skew percentage. The more 
skew in the relations, the higher probability that the skew ap- 
pears at the boundary of  buffers and the more hiccups and thus 
disk reads for R-n. BR-n has less rereading than R-n due to its 
block-based rereading. As for BR-S-n, SC-n and BR-NC-n, 
there are at most two tuples in the value set at any time. The 
cache never overflows and there is no rereading. No extra I/O 
overhead is caused by smooth skew. Therefore, these three 
algorithms behave similarly and show the best performance. 

5.1.2 Chunky Skew 

At first, we tried to use large memory and larger relations. 
However, for one test case, the program for R-n didn't com- 
plete after 30 hours. The test case joined a 256MB relation 
with a 32MB relation using 16MB memory. Both of  the rela- 
tions have 1% chunky skew. A relation has 1% chunky skew 
when only one value of  the join attribute repeats and the num- 
ber of  duplicates is 1% of the total number of  the tuples in the 
relation. The number of  skewed tuples in the LHS relation is 
about 20000. Since skew appears in RHS relation, the skewed 
tuple must be distributed at least in two buffers. That means 
at least the blocks in two buffers were read 20000 times. In 
this case, the buffer size is about 0.8MB. This indicates 32GB 
extra reads and joins, which is 1000 times the size of the RHS 
relation(!). We conclude that the performance of tuple-based 
reread degrades significantly with the increase of  the number 
of  skewed tuples. A large data set with a small percentage of 
chunky skew renders tuple-based reread impractical. 

Therefore, we decide to use a small memory (1MB) with 
small data set to compare our algorithm and tuple-based reread. 
Since the memory is small, we chose a smaller cache (32KB) 
than in smooth skew (that is, 3% of  main memory). We fixed 
the RHS size at 16MB. The LHS size varies from 1MB to 
16MB. The relations on both sides have 1% skew on their join 

attribute. The results are shown in Figure 11. 
R-n behaves terribly when the LHS size increases, because 

the absolute number of  skewed tuples increases when the rela- 
tion size increases. In fact, it is more than three times slower 
than the other algorithms. The number of  skewed tuples deter- 
mines the number of  hiccups. We counted the number of  hic- 
cups in all the experiments. According to our data, the num- 
ber of  hiccups in R-n surpasses 13000 when the LHS reaches 
16MB. For the same relation size, BR-n only exhibits 110 hic- 
cups due to the block-based rereading. The cost of  SC-n and 
BR-NC-n are almost identical to BR-n, because chunky skew 
can cause the cache to overflow, which also causes disk op- 
erations. From the results, we conclude that the overhead of  
cache overflow is almost identical to the overhead of  block- 
based rereading. 

We found when we examined higher chunky skew levels 
that SC-n had somewhat worse performance than BR-NC-n, 
due to the random writes to spool the cache, which are not nec- 
essary for the rereading algorithms. However, large chunky 
skew levels are rare in practice, because of  the very large re- 
suiting relation size (approximating Cartesian product sizes). 

As we expected, BR-S-n is better than BR-n since it avoids 
rereading (in our test case, the size of  skewed data is less than 
the buffer size). BR-S-n has the similar performance to SC-n 
and BR-NC-n, because BR-S-n essentially uses the RHS run 
buffer as a cache when skew is present. Therefore, BR-S-n 
emits the least number of  reads. However, i f  one buffer can't 
hold the value set, SC-n with a larger cache will perform better 
than BR-S-n. 

5.1.3 No Skew 

A critical question is how much extra cost our algorithms 
impose when there is no skew present. In this experiment, we 
use the same parameters as for smooth skew. We fixed the 
RHS size at 128MB and let the LHS size vary from 16MB 
to 128MB. All the relations have no skew. All the algorithms 
have almost the same performance for each size of  relation. 

177 



The results for the smallest (16MB with 128MB) and the largest 
relation size (128MB with 128MB) are shown in Table 2. Ta- 
ble 2 does not include the result data for BR-S-n because it 
has exactly the same cost as BR-n. Our data shows that the 
algorithms we proposed have at most 0.002% extra overhead 
compared with R-n (which is the traditional sort-merge join 
in the absence of skew). This is not difficult to explain. The 
only overhead of BR-n and BR-S-n is to test the prediction 
at the end of each buffer, which is a simple attribute com- 
pare operation. As for SC-n, BR-NC-n and BR-S-n, they may 
need to add one tuple into the cache or shift one tuple for each 
buffer, which is a tuple move operation. These overheads are 
all minor CPU-only costs (there are no additional I/O's in the 
absence of skew for any of the algorithms) and are extremely 
low. 

LHS Elapsed Time (sec) 

16MB 447.5724 447.5733 447.5729 447.5913 
128MB 805.5714 805.5787 805.5877 805.5785 

Table 2: No Skew 

5.2 Cache Size 
For the above experiments, we used a 3% cache size: a 

32KB cache for 1MB memory and a 512K_B cache for 16MB 
memory for the cache-based algorithms, SC-n and BR-NC-n. 
The cache size is impacted only by the size of individual value 
packets and so need be only as large as the biggest value packet. 

For the smooth skew experiments, the largest value packet 
was two tuples, and so any cache will be large enough. For the 
chunky skew experiments, 1% skew represents a value packet 
of 10KB (80 tuples) for a IMB LHS up to 160KB (1280 tu- 
ples) for a 16MB LHS. As such, it overflows at a LHS relation 
of 4MB and indeed we see that in Figure 11. (The effect is 
small because there is only one such value packet.) 

Some vendors (such as Oracle) now support automatic mem- 
ory management. Each relational operator (join, sort, aggre- 
gation) can ask for more memory according to the situation 
encountered at run-time. With this feature, the join algorithm 
could use the maximum skew (which might be estimated from 
attribute statistics) to set an appropriate cache size. If the 
cache overflows, the operator can decide whether to increase 
the cache size (if the unexpectedly large value packet occurs 
early and is likely to happen again) or spool the cache (if the 
large value packet occurs later and is likely to be spurious). 
For small-footprint applications, it is best to use only a small 
cache and spool that cache when necessary. 

5.3 Summary 
The results of the experiments show that in all cases of skew, 

SC-n, BR-NC-n and BR-S-n have the best performance. All 
the algorithms proposed in this paper perform much better than 
the traditional sort-merge join algorithm, R-n. All the algo- 
rithms we proposed have almost identical performance as tra- 
ditional sort-merge join in the absence of skew. The effect of 
cache overflow and block-based rereading are almost the same 
under chunky skew since both cache and buffer share the space 
of the fixed main memory. 

Among the new algorithms we proposed, R-1 and R-n re- 

tain the sort order of the outer input in the output result. The 
block-based algorithms and the cache-based algorithms might 
change the order of the outer input, due to the complexity of 
multiple runs; however, the result remains sorted on the join 
attribute. In all the cases, if there is only one run in each of the 
input relations, the order of the input relations will be retained 
completely in the result. 

Now consider a multiway join instead of two-way join, for 
example, a three-way join. If the three-way join merges the 
relations on the same columns, a spooled cache approach can 
be applied since the result is sorted on the merge columns. 

6. BAND JOIN 
We now consider a particular non-equijoin: band jo in  [2]. 

A band join between relations L and R on attributes L . A  and 
R . B  is a join in which the join condition can be written as 
L . A  - cl < R . B  < L . A  + c2. Skew is more likely to hap- 
pen in band join. Consider the query finding the salary of 
the employees from the Accounting department and the aver- 
age salary of all employees that entered the company at about 
the same time. Assuming the unit of time is day and "about 
the same time" means a time difference less than 90 days, the 
query can be expressed in SQL as follows. 

select Ei.Name, El.salary, AVG(E2.salary) 

from Emp as El, Emp as E2 

where Ei.Dept = 'Accounting' 

and E2.start >= El.start - 90 

and E2.start <= El.start + 90 

group by El.Name 

Such a query would be amenable to a band join, as the alterna- 
tive would probably be nested loop. (We note in passing that 
temporal joins [19] exhibit a very similar structure; much of 
the following also applies to temporal joins.) 

Consider a sort-merge join implementation of this band join. 
For each tuple in El,  its value packet includes all the tuples 
in E2 with the join value falling in the indicated range. This 
implies large (non-disjoint) value packets and hence skew; and 
in particular dual skew is more likely to happen. As hiccups 
are expensive, this skew must be handled carefully. 

6.1 Band Join Algorithms 
The conventional join algorithms discussed in this paper are 

appropriate for band join, with two changes. First, the pre- 
diction rule should be changed to identify dual skew when the 
value of the last tuple in RHS buffer falls within the band de- 
fined by the value of the last tuple in LHS buffer. 

The second change is a more sophisticated purging policy 
for the algorithms with an auxiliary value-packet cache (SC-n 
and BR-NC-n). In the equi-join algorithms discussed in Sec- 
tion 4, purging an existing value packet in the cache is easy. 
Because all the tuples in the value packet are point values, we 
simply clear the cache (both the in-memory and spooled por- 
tions). There is no overhead for this purging operation. 

In a band join, because the R_HS value packets are not dis- 
joint, some of the tuples in the cache will be part of the next 
value packet. So it is necessary to only purge the beginning un- 
qualified tuples (termed garbage collecting the cache), rather 
than the entire cache contents. For example, if our join con- 
dition is L . A  - cl _< R . B  < L . A  + c 2  and the current 

178 



(LHS) join value changes from A to A + 1, we need to re- 
move all the tuples in the cache with join attribute value less 
than (A + 1 - ca) and reorganize the cache. A design decision 
is when to garbage collect the cache. If we purge the cache 
too often, this overhead can become significant. If we do not 
purge the cache, the cache will become larger and the cost for 
joining with the cache will become greater. 

We modified the algorithms discussed in Section 4 to sup- 
port band join. We eliminated from consideration BR-NC-n 
because it is too complex. We are left with the three most 
promising algorithms, SC-n, BR-S-n and BR-n, along with 
the simplest, R-n. Since they are band join algorithms, we 
call them BDSC-n, BDBR-S-n, BDBR-n and BDR-n respec- 
tively. For BDSC-n, the cache is garbage collected when tu- 
pies need to be added (this garbage collection can occur as the 
cache is scanned). 

6.2 Experiments for Band Join 
As in Section 5.1, we did experiments for band join algo- 

rithms on chunky skew, smooth skew and no skew. We discuss 
the results for smooth skew and no skew. 

For smooth skew, we use the same data and same parameters 
as in Section 5.1.1. The constants defining the band are ca = 0 
and c2 = I respectively. Thus, the degree of skew is almost the 
same as in Section 5.1.1. The results are shown in Figure 12. 
From the plot, we see that the results are very similar to the 
results of equi-join experiment. The results for chunky skew 
can be found in the full version of the paper [15]. All the four 
algorithms show the same relative performance as in equi-join. 

A 

1600- 
BDR-n ~ 

BDBR-n - * -  
BDBR-S-n . . . . . .  

1 5 0 0 "  B D S C c - n  - a - -  

/ 

1400. ~ 
1300" 

................................. 5551111 12°° I - ............... ................... 11 ........... 

1 1 0 0  '[[ . . . . . . . . . . . .  : 2  . . . . . . . . . . . . . . .  

1000 . . . . . . . . .  , , , , 
1 5 10 15 20 25 

skew (percentage) 

Algorithm Time (see) 
BDR-n 1582 
BDBR-n 1295 
BDBR-S-n 1234 
BDSC-n 1195 

Figure 12: Fixed relation size (128MB) with smooth skew 
for band join 

The new algorithms add virtually no extra cost to the tradi- 
tional sort-merge join in the absence of skew. Specifically, we 
used the same parameters and data set as in Section 5.1.3. For 
the largest relation size, BDSC-n has 0.005% extra cost, while 
B D B R - n  and BDBR-S-n exhibit only 0.002% extra cost in the 
absence of skew (Table 3). 

Al ont  I so BRn BRSn]SCo I 
Time (see) 805.4957 805.5099 805.5099 805.5369 

Table 3: Band join without skew 

7. CONCLUSIONS 
While skew has been investigated in detail for hash-join, 

there have been only general recommendations for how to han- 
dle skew in sort-merge join. We showed that even a small 
amount of dual skew can have a significant detrimental ef- 
fect on the performance of a commercial DBMS on realistic 
data. We proposed several variants of sort-merge join that 
can accommodate intrinsic skew: Reread with one run (R-l), 
Reread with multiple runs (R-n), Block-based Reread with 
one run (BR-1) and for multiple runs (BR-n), Block-based 
Reread with Smart use of memory (BR-S-n), Spooled Cache 
for skewed data with one more pass on the LHS for one run 
(SC-1) and for multiple runs (SC-n) and Block-based Reread 
with a Non-spooled Cache on multiple runs (BR-NC-n). 

We experimented with these algorithms on a variety of re- 
lation sizes, for smooth skew, chunky skew and with varying 
percentages of skew. All of the algorithms proposed here per- 
form much better than the traditional sort-merge algorithm, 
R-1 and its multi-run variant R-n, in the presence of chunky 
skew. SC-n, BR-n, BR-S-n and BR-NC-n have almost the 
same performance as traditional sort-merge in the absence of 
skew. 

We also looked at four variants that deal with skew for band 
join. As before, the performance of BDR-n (the traditional 
sort-merge join) is much worse than the new algorithms. All 
three of the new algorithms also did well in the absence of 
skew. 

If it is known a priori that there is no skew on the right 
hand side relation, for example, if no duplicates exist in the 
sense of equality join, then the simpler join algorithm without 
backup can be used in the situation. However, the overhead 
of all the algorithms in the presence of no skew is so small 
that we doubt that having a separate join algorithm is justifi- 
able. Taking all of these experiments into account, SC-n has 
slightly better performance and of the four competitive algo- 
rithms (the other three being BR-n, BR-S-n and BR-NC-n) is 
the easiest to implement. Hence, we recommend that the ex- 
isting sort-merge join be replaced with SC-n, which exhibits 
strikingly better performance in the presence of skew, for both 
conventional and band joins, and exhibits virtually identical 
performance as traditional sort-merge join in the absence of 
skew. 

We know some vendors use single-run algorithms rather 
than multi-run algorithms for sort-merge join. Those vendors 
can benefit from SC-1 which is the single-run counterpart for 
SC-n. Conceming the cache size, our recommendation is to 
use a cache with the same size as the (run) buffer. 

8. ACKNOWLEDGMENTS 
This work was supported in part by NSF Grants EIA-0080123 

and IIS-0100436 and by grants from Amazon.corn and the 
Boeing Corporation. We would like to thank Goetz Graefe for 
his extensive comments on a previous version of this paper. 

179 



9. REFERENCES 
[1] Shurug Al-Khalifa, H. V. Jagadish, Nick Koudas, 

Jignesh M. Patel, Divesh Srivastava and Yuqing Wu, 
"structural Joins: A Primitive for Efficient XML Query 
Pattern Matching," Proceedings of the International 
Conference on Data Engineering, San Jose, CA, 
February, 2002. 

[2] David J. DeWitt, Jeffrey E Naughton and Donovan 
A. Schneider, "An Evaluation of Non-Equijoin 
Algorithms," Proceedings of the International 
Conference on Very Large Databases, Guy M. Lohman, 
Am Alcar Sernadas and Rafael Camps (eds.), 
Barcelona, Spain, pp. 443-452, September, 1991. 

[3] David J. DeWitt, Jeffrey E Naughton, Donovan 
A. Schneider and S. Seshadri, "Practical Skew Handling 
in Parallel Joins," Proceedings of the International 
Conference on Very Large Databases, Li-Yan Yuan 
(ed.), Vancouver, British Columbia, Canada, pp. 27-40, 
August, 1992. 

[4] Hector Garcia-Molina, Jeffrey D. Ullman and Jennifer 
Widom, Database System Implementation, Prentice 
Hall Publishers, 1999. 

[5] Goetz Graefe, "Query Evaluation Techniques for Large 
Databases," ACM Computing Surveys 25(2):73-170, 
June 1993. 

[6] Goetz Graefe, "Sort-Merge-Join: An Idea Whose Time 
Has(h) Passed?" in Proceedings of the IEEE 
International Conference on Data Engineering, 
Houston, TX, pp. 406-417, February, 1994. 

[7] Goetz Graefe, Ann Linville and Leonard D. Shapiro, 
"Sort vs. Hash Revisited," IEEE Transactions on 
Knowledge and Data Engineering 6(6):934-944, 
December, 1994 

[8] Himawan Gunadhi and Arie Segev, "A Framework for 
Query Optimization in Temporal Databases," in 
Proceedings of the the International Conference on 
Statistical and Scientific Database Management, 
Zbigniew Michalewicz (ed.), pp. 131-147, Charlotte, 
NC, April, 1990. 

[9] Kien A. Hua and Chiang Lee, "Handling Data Skew in 
Multiprocessor Database Computers Using Partition 
Tuning," in Proceedings of the International Conference 
on Very Large Data Bases, Guy M. Lohman, Amlcar 
Sernadas and Rafael Camps (eds.), Barcelona, 
Catalonia, Spain, pp. 525-535, September, 1991. 

[10] Masaru Kitsuregawa, Masaya Nakayama and Mikio 
Takagi, "The Effect of Bucket Size Tuning in the 
Dynamic Hybrid GRACE Hash Join Method" in 
Proceedings of the International Conference on Very 
Large Data Bases, Peter M. G. Apers and Gio 
Wiederhold (eds), pp. 257-266, Amsterdam, The 
Netherlands, August, 1989. 

[11] Roger N. Kline and Michael D. Soo, "The TIMEIT 
Temporal Database Testbed," 1998. 
www. cs. auc. dk/TimeCenter/software, htm. 

[ 12] Robert P. Kooi, The Optimization of Queries in 
Relational Databases, Ph.D. thesis, Case Western 
Reserve University, 1980. 

[13] T. Y. CliffLeung and Richard R. Muntz, "Generalized 
Data Stream Indexing and Temporal Query Processing," 

in International Workshop on Research Issues in Data 
Engineering: Transaction and Query Processing, Philip 
S. Yu (ed.), pp. 124-131, Tempe, AZ, February, 1992. 

[14] Quanzhong Li and Bongki Moon, "Indexing and 
Querying XML Data for Regular Path Expressions," in 
Proceedings of the International Conference on Very 
Large Databases, Peter M. G. Apers, Paolo Atzeni, 
Stefano Ceri, Stefano Paraboschi, Kotagiri 
Ramamohanarao, Richard T. Snodgrass (eds.), 
pp. 361-370, Rome, September 2001. 

[15] Wei Li, Dengfeng Gao and Richard T. Snodgrass, 
"Skew Handling Techniques in Sort-Merge Join," 2001. 
http : //www. cs. auc. dk/research/DP/tdb/ 

TimeCenter/TimeCenterPublications/TR- 
62 .pdf. 

[ 16] Priti Mishra and Margaret H. Eich, "Join Processing in 
Relational Databases" ACM Computing Surveys, 
24(1):63-113, March 1992. 

[ 17] Masaya Nakayama, Masaru Kitsuregawa and Mikio 
Takagi, "Hash-partitioned Join Method Using Dynamic 
Destaging Strategy," in Proceedings of the International 
Conference on Very Large Data Bases, Francois 
Bancilhon and David J. DeWitt (eds), pp. 469--478, Los 
Angeles, CA, August, 1988. 

[18] Patficia G. Selinger, Morton M. Astrahan, Donald 
D. Chamberlin, Raymond A. Lorie and Thomas 
G. Price, "Access Path Selection in a Relational 
Database Management System," in Proceedings of the 
SIGMOD International Conference on Data 
Management, Philip A. Bernstein (ed.), Boston, 
Massachusetts, pp. 23-34, May, 1979. 

[19] Michael D. Soo, Richard T. Snodgrass and C. S. Jensen, 
"Efficient Evaluation of the Valid-Time Natural Join" in 
Proceedings of the International Conference on Data 
Engineering, Houston, TX, February, 1994, 
pp. 282-292. 

[20] Christopher B. Walton, Alfred G. Dale and Roy 
M. Jenevein, "A Taxonomy and Performance Model of 
Data Skew Effects in Parallel Joins," in Proceedings of 
the International Conference on Very Large Data Bases, 
Guy M. Lohman, Amlcar Sernadas and Rafael Camps 
(eds.), Barcelona, Catalonia, Spain, pp. 537-548, 
September, 1991. 

[21] Chun Zhang, Jeffrey F. Naughton, David J. DeWitt, 
Qiong Luo and Guy Lohman, "On Supporting 
Containment Queries in Relational Database 
Management Systems," in Proceedings of the SIGMOD 
International Conference on Management of Data, 
Timos K. Sellis, Sharad Mehrotra (eds.), pp. 425-436, 
Santa Barbara, May, 2001. 

[22] Thomas Zurek, Parallel Temporal Nested-Loop Joins, 
Ph.D. Dissertation, Dept. of Computer Science, 
Edinburgh University, 1996. 

180 


