
Adaptable Query Optimization and Evaluation
in Temporal Middleware

Giedrius Slivinskas Christian S. Jensen
Department of Computer Science

Aalborg University, Denmark

fgiedrius,csjg@cs.auc.dk

Richard T. Snodgrass
Department of Computer Science

University of Arizona, AZ, USA

rts@cs.arizona.edu

ABSTRACT
Time-referenced data are pervasive in most real-world databases.
Recent advances in temporal query languages show that such data-
base applications may benefit substantially from built-in temporal
support in the DBMS. To achieve this, temporal query optimiza-
tion and evaluation mechanisms must be provided, either within
the DBMS proper or as a source level translation from temporal
queries to conventional SQL. This paper proposes a new approach:
using a middleware component on top of a conventional DBMS.
This component accepts temporal SQL statements and produces a
corresponding query plan consisting of algebraic as well as regular
SQL parts. The algebraic parts are processed by the middleware,
while the SQL parts are processed by the DBMS. The middleware
uses performance feedback from the DBMS to adapt its partition-
ing of subsequent queries into middleware and DBMS parts. The
paper describes the architecture and implementation of the tempo-
ral middleware component, termed TANGO, which is based on the
Volcano extensible query optimizer and the XXL query process-
ing library. Experiments with the system demonstrate the utility of
the middleware‘s internal processing capability and its cost-based
mechanism for apportioning the processing between the middle-
ware and the underlying DBMS.

1. INTRODUCTION
In this paper we propose a new approach, that oftemporal mid-

dleware, to evaluating temporal queries that enables significant per-
formance benefits.

Most real-world database applications rely on time-referenced
data. For example, time-referenced data is used in financial, med-
ical, and travel applications. Being time-variant is even one of In-
mon’s defining properties of a data warehouse [10]. Recent ad-
vances in temporal query languages [6, 12] show that such appli-
cations may benefit substantially from running on a DBMS with
built-in temporal support. The potential benefits are several: ap-
plication code is simplified and more easily maintainable, thereby
increasing programmer productivity [21], and more data processing
can be moved from applications to the DBMS, potentially leading
to better performance.

.

In contrast, the built-in temporal support offered by current data-
base products is limited to predefined time-related data types, e.g.,
the Informix TimeSeries Datablade and the Oracle8 TimeSeries
cartridge, and extensibility facilities that enable the user to define
new, e.g., temporal, data types [27]. However, temporal support is
needed that goes beyond data types. The temporal support should
encapsulate temporal operations in query optimization and process-
ing, as well as extend the query language itself.

Developing a DBMS with built-in temporal support from scratch
is a daunting task that may, at best, only be feasible by DBMS ven-
dors that already have a code base to modify and have large re-
sources available. This has led to the consideration of a layered,
or stratum, approach where a layer that implements temporal sup-
port is interposed between the user applications and a conventional
DBMS [2, 22, 23, 25]. The stratum maps temporal SQL statements
to regular SQL statements and passes them to the DBMS, which
remains unaltered.

A stratum approach presents difficulties of its own. First, ev-
ery temporal query must be expressible in the conventional SQL
supported by the underlying DBMS, which constrains the temporal
constructs that can be supported. Even more problematic is that
some temporal constructs, such as temporal aggregation, are quite
inefficient when evaluated using SQL, but can be evaluated effi-
ciently with application code that uses a cursor to access the under-
lying data.

This paper proposes a generalization of the stratum approach,
moving some of the query evaluation into the stratum. We term
this the “temporal middleware” approach. All previous approaches
have consisted entirely of a temporal-SQL-to-SQL translation, ef-
fectively a smart macro processor, with all of the work done in the
DBMS, and little flexibility in the SQL that is generated. Our mid-
dleware approach, in addition to mapping temporal SQL to con-
ventional SQL, performs query optimization and some processing.
Moving some of the query processing to the middleware improves
query performance because complex operations such as temporal
aggregation or temporal duplicate elimination have efficient algo-
rithms in the middleware, but are difficult to process efficiently in
conventional DBMSs.

Allowing some of the query processing to occur in the middle-
ware raises the issue of deciding which portion(s) of a query to
execute in the underlying DBMS, and which to execute in the mid-
dleware itself. Two transfer operations,TM andTD, are used to
move a relation from the DBMS to the middleware and vice versa.
A query plan consists of those portion(s) to be evaluated in the
middleware and SQL code for the portion(s) of the query to be pro-
cessed by the DBMS.

To flexibly divide the processing between the middleware and
the DBMS, the middleware includes a query optimizer. Heuristics

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
ACM SIGMOD 2001 May 21-24, Santa Barbara, California USA
Copyright 2001 ACM 1-58113-332-4/01/05…$5.00

127

are used to reduce the search space, e.g., one heuristic is that the
optimizer should consider evaluating in the middleware only those
operations that may be processed more efficiently there. Costing is
used to determine where to process certain operations, which is not
always obvious. For example, whether to process a temporal join
in the middleware or in the DBMS depends on the statistics of the
argument relations, which are fed into the cost formulas.

This paper makes several contributions. It validates the proposed
temporal middleware architecture with an implementation that ex-
tends the Volcano query optimizer [8] and the XXL query process-
ing system [1]. The middleware query optimization and processing
mechanisms explicitly address duplicates and order in a consistent
manner. We provide heuristics, cost formulas, and selectivity es-
timation methods for temporal operators (using available DBMS
statistics); and to divide the processing between the middleware
and the DBMS, we use the above-mentioned transfer operators.
Performance experiments with the system demonstrate that adding
query processing capabilities to the middleware significantly im-
proves the overall query performance. In addition, we show that the
cost-based optimization is effective in dividing the processing be-
tween the middleware and the DBMS. Thereby, the proposed mid-
dleware system captures the functionality of previously proposed
stratum approaches and is more flexible.

The presented temporal operators, their algorithms, cost formu-
las, transformation rules, and statistics-derivation techniques may
also be used when implementing a stand-alone temporal DBMS.
This makes the presented implementation applicable to both the in-
tegrated and the layered architecture of a temporal DBMS, in turn
making it relevant for DBMS vendors planning to incorporate tem-
poral features into their products, as well as to third-party develop-
ers that want to implement temporal support.

Section 2 presents the architecture of the temporal middleware,
and shows how queries flow through the system. The following
section presents temporal operators, their implementations in the
middleware and the DBMS, and the corresponding cost formulas.
For each temporal operation, we propose a method for estimating
its selectivity using standard DBMS-maintainable statistics on base
relations and attributes. This is needed because standard selectivity
estimation does not work well for temporal operations, as we show.
Section 4 explains the transformation rules and heuristics used by
the middleware optimizer. Performance experiments demonstrate
the utility of the shared query processing, as well as of the cost-
based optimization.

2. TEMPORAL MIDDLEWARE
We first present the architecture of the temporal middleware,

termed TANGO (Temporal Adaptive Next-Generation query Op-
timizer and processor). Then follows an example of how a query is
processed.

2.1 System Architecture
Figure 1 shows TANGO’s architecture. The parser translates

a temporal-SQL query to an algebra expression, the initial query
plan, which is passed on to the optimizer. This plan assigns all pro-
cessing to the DBMS and specifies that the result is to be transferred
to the middleware, by placing aTM operation at the end.

Optimization occurs in two phases. Initially, a set of candi-
date algebraic query plans is produced by means of the optimizer’s
transformation rules and heuristics. Next, the optimizer considers
in more detail each of these plans. For each algebraic operation in a
plan, it assumes that each of the algorithms available for computing
that operation is being used, and it estimates the consequent cost of
computing the query. This way, one bestphysicalquery execution

[algebra operators]
Initial Query Plan

Temporal Query

Result

Query Plan

Query Plan

Statistics

Cost
Factors

[algorithms]

SQL Statistics

Run timesSQL

Data Loader

Data

[algorithms and SQL]

Data, Load Instructions

ResultsSQL

DBMS

USER APPLICATION

Optimizer

Parser

Statistics
Collector

Execution Engine

Translator To SQL

Estimator
Cost

Figure 1: Middleware Architecture

plan, where all operations are specified by algorithms, is found for
each original candidate plan. To enable this procedure, the Statis-
tics Collector component obtains statistics on base relations and
attributes from the DBMS catalog and provides them to the opti-
mizer. The Cost Estimator component determines cost factors for
the cost formulas used by the optimizer. Of the plans generated, the
one with the best estimated performance is chosen for execution.

The Translator-To-SQL component translates those parts of the
chosen plan that occur in the DBMS into SQL (i.e., parts below
TMs that either reach the leaf level orTDs), and passes the
execution-ready plan to the Execution Engine, which executes the
plan. TheTM operator results in an SQL SELECT statement being
issued, while theTD operator results in an SQL CREATE TABLE
statement being issued, followed by the invocation of a DBMS-
specific data loader.

Although both heuristic- and cost-based, this optimizer is lighter
weight than a full-blown DBMS optimizer [11], because less infor-
mation is available to it. While the middleware treats the underly-
ing DBMS as a (quite full featured!) file system, it is not possible
for the middleware to accurately estimate the time for the DBMS
to deliver a block of tuples from a perhaps involved SQL statement
associated with a cursor. This contrasts with a DBMS, which can
estimate the time to read a block from disk quite accurately. How-
ever, the job of a middleware optimizer is also simpler, in that it
does not need to choose among a variety of query plans for the por-
tion of the query to be evaluated by the DBMS. Rather, it just needs
to determinewherethe processing of each part of the query should
reside. It does so by appropriately inserting transfer operations into
query plans.

The optimizer component is an extended version of McKenna
and Graefe’s Volcano optimizer [8], implemented in C/C++. This
optimizer has been enhanced to systematically capture duplicates
and order, as well as to support several different kinds of equiv-

128

alences among relational expressions (e.g., equivalences that con-
sider relations as multisets or lists) [19]. The Execution Engine
module is implemented in Java, uses the XXL library of query pro-
cessing algorithms developed by van den Bercken et al. [1], and
accesses the DBMS using a JDBC interface.

Figure 2 describes the main function of the Execution Engine,
which receives an execution-ready plan consisting of a sequence
of algorithms with their parameters and arguments. For example,
an algorithm implementing temporal aggregation takes grouping
attributes and aggregate functions as parameters, and a relation as
its argument, while an algorithm implementingTM takes an SQL
query as its parameter.

ExecuteQuery (Query Planqp):

for (i = 0; i < getNumberOfAlgorithms(qp); i++)
rs[i] = new ResultSet(getAlgorithm(qp; i),

getParameters(qp; i),
getArg1 (qp; i), getArg2 (qp; i))

for (i = 0; i < getNumberOfAlgorithms(qp); i++)
rs[i]:init()

while(rs[i� 1]:hasNext())
outputrs[i� 1]:getNext()

Figure 2: Pseudo-Code for the Execution Engine

The function first creates result sets for all algorithms in the query
plan. Each result set implements iterator interface withinit() and
getNext() methods, enabling a pipelined query execution. For
each result set, itsinit() method is then invoked. Usually this
method just initializes inner structures used by the algorithms, but
it does in some cases more: for example, in the case of the algo-
rithm implementingTD, it fetches all tuples of the argument result
set (via itsgetNext() method) and copies them into the DBMS.

Finally, thegetNext() method of the result set for the last al-
gorithm is invoked; in order to collect the result, it invokes the
getNext()’s of the result sets for the algorithms before it.

2.2 Query Processing Example
An example illustrates how queries are processed. Consider the

POSITION relation in Figure 3(a), which stores information about
the positions of employees. We assume a closed-open representa-
tion for time periods and let the time values denote days. For ex-
ample, Tom occupied position 1 from day 2 through day 19, as in-
dicated by time attributesT1 andT2. We compute the time-variant
relation that, for each position tuple, provides the number of em-
ployees assigned to that position over time, sorted on the position.
This relation is given in Figure 3(b). For example, when Tom oc-
cupied position 1 from time 2 to 5, he was the only employee with
that position (the count is 1), but from time 5 to 20, Jane also had
that position (the count is 2).

Figure 4(a) depicts the initial query plan that the optimizer re-
ceives as input. This plan consists solely of algebraic operations
and assigns all the processing to the DBMS; and aTM operation is
performed at the end, to deliver the resulting tuples to the middle-
ware, which delivers them to the client. To obtain the desired result,
temporal aggregation should be performed first to count the num-
ber of employees for each position over time (see its result in Fig-
ure 3(c)). This result is then temporally joined with thePOSITION

relation onPosID (this join also requires time periods to overlap).
The sort operation ensures the desired sorting. Algebraic opera-
tors in the initial plan include both regular and temporal operators;
temporal operators have their own algorithms for the middleware
and are translated into regular SQL if they have to be evaluated in
the DBMS.

POSITION

PosID EmpName T1 T2

1 Tom 2 20
1 Jane 5 25
2 Tom 5 10

(a)

Query Result
PosID EmpName T1 T2 COUNTofPosID
1 Tom 2 5 1
1 Tom 5 20 2
1 Jane 5 20 2
1 Jane 20 25 1
2 Tom 5 10 1

(b)

Aggregation Result
PosID T1 T2 COUNT

1 2 5 1
1 5 20 2
1 20 25 1
2 5 10 1

(c)

Figure 3: Relation POSITION (a), the Query Result (b), and the
Aggregation Result (c)

Figure 4(b) shows one of the possible query plans that can be
produced by the optimizer. Operations are replaced by actual algo-
rithms for which the optimizer has cost formulas. Superscripts for
algorithm names indicate if they have to be evaluated in the DBMS
or in the middleware. The given plan states that thePOSITION

relation first should be scanned, with relevant attributes being se-
lected. Then temporal aggregation should be performed in the mid-
dleware. Since the temporal aggregation algorithm for the middle-
ware,TAGGRM , requires a sorted argument (see Section 3.4), a
SORTD algorithm is performed before transferring the argument
to the middleware. The result of the temporal aggregation is trans-
ferred back into the DBMS, which then performs the temporal join
(regular join followed by selection and projection). Since the mid-
dleware does not know which join algorithm the DBMS will use
in each given case, the middleware optimizer uses “generic” cost
formula for the DBMS join algorithm (see Section 3.1).

The execution-ready query plan that is passed to the Execution
Engine is given in Figure 5. It consists of four algorithms. First,
TRANSFERM issues a SELECT statement to the DBMS in or-
der to obtain the argument for the temporal aggregation. Then,
TAGGRM performs a temporal aggregation, and its result is loaded
into the DBMS byTRANSFERD . Finally, TRANSFERM is-
sues a SELECT statement to the DBMS to obtain the result. In the
figure, solid lines represent algorithm arguments, and dashed lines
represent algorithm sequence (in this case, the topTRANSFERM

does not take any arguments, but must be preceded by the
TRANSFERD algorithm).

3. STATISTICS AND COST FORMULAS
The availability of statistics on base relations as well as the abil-

ity to derive statistics for intermediate relations are important to
the query optimizer. The middleware has a separate component
that collects statistics from the DBMS, either by querying base re-
lations or by querying the statistics relations that exist in differ-
ent formats in the various DBMSs. Our middleware uses standard
statistics: block counts, numbers of tuples, and average tuple sizes
for relations; minimum values, maximum values, numbers of dis-

129

TM

sort

�

��
T

�T

get

get

PosID

PosID, EmpID, T1, T2, COUNTofPosID

PosID = PosID

PosID,
COUNT(PosID)

POSITION

POSITION

(a)

TRANSFERM

SORTD

PROJECTD

FILTERD

JOIND

FULLSCANDTRANSFERD

TAGGRM

TRANSFERM

SORTD

PROJECTD

FULLSCAND

OrderBy:PosID

Attrs: PosID, EmpID,
GREATEST(1.T1,2.T1) AS T1,
LEAST(1.T2,2.T2) AS T2,
COUNTofPosID

Cond:1.T1< 2.T2 AND 1.T2> 2.T1

Join On:PosID= PosID

Table:POSITION

GroupBy:PosID
Aggregate:COUNT(PosID)

OrderBy:PosID, T1

Attrs: PosID, T1, T2

Table:POSITION

(b)

Figure 4: Initial Query Plan (a) and a Possible Selected Query
Plan (b)

TRANSFERM

TRANSFERD

TAGGRM

TRANSFERM

Query:
SELECT A.PosID AS PosID, EmpName,

GREATEST(A.T1,B.T1) AS T1,
LEAST(A.T2,B.T2) AS T2, COUNTofPosID

FROM TMP A, POSITION B
WHERE A.PosID= B.PosID AND A.T1< B.T2

AND A.T2> B.T1
ORDER BY PosID

TableName:TMP

GroupBy:PosID
Aggregate:COUNT(PosID)

Query:
SELECT PosID, T1, T2
FROM POSITION
ORDER BY PosID, T1

Figure 5: Execution-Ready Query Plan

tinct values, histograms, and index availability for attributes; and
clusterings for indexes.

We will shortly describe several algebraic operators and their im-
plementation. For each operator, we will discuss how to derive the
cardinality of its result, given the statistics for its argument(s). The
main focus is to provide reasonable estimates for the temporal op-
erations, which offers new challenges. For example, standard se-
lectivity estimation does not estimate well the result cardinalities
of selections having temporal predicates. Hence, Section 3.3 de-
scribes how to obtain more accurate selectivity estimates.

3.1 Cost Formulas
Figure 6 gives cost formulas for the transfer algorithms, the se-

lection and the temporal aggregation algorithms in the middleware,
as well as for temporal aggregation in the DBMS. Other algorithms
implemented in TANGO include temporal join, join, projection,
and sorting; in addition, the middleware optimizer has cost formu-
las for “generic” implementations of join, Cartesian product, sort-
ing, full table scan, and index scan in the DBMS (see [20] for more
details). Additional algorithms may later be added to TANGO, in-
cluding duplicate elimination, difference, and coalescing. The cost
formulas incorporate I/O and CPU costs, and the unit of measure
of their return values is microsecond; the formulas are explained
when corresponding operators are discussed in Sections 3.2–3.4.

Simplified cost formulas are used in comparison to, e.g., [5], be-
cause we generally do not know which algorithms the DBMS might
use for queries (hence, we consider only one DBMS implementa-
tion of temporal aggregation, even though it may be executed in
many different ways).

Conceptually, the cost of an algorithm consists of an initializa-
tion cost, the cost of processing the argument tuples, and the cost of
forming the output tuples. The initialization costs of all algorithms
are set to zero, as are the costs of forming the outputs for sorting,
selection, and projection. In addition, we assume a zero cost for
selection and projection in the DBMS. Each formula has a num-
ber of cost factorsp that are used to weigh the statistics, such as
size(r) (the product of cardinality and average tuple size for rela-
tion r); the determination of cost factors is discussed in more detail
in [20]. The selection cost formula includes a function that returns
a coefficient representing the selection condition.

We now turn to several specific operators and their implementa-

130

tions, along with the cost formulas and related statistics.

cost(TRANSFERM (r)) = ptm � size(r)
cost(TRANSFERD(r)) = ptd � size(r)
cost(FILTERM

P (r)) = psem � f(P) � size(r)
cost(TAGGRM

G1;::: ;Gn;F1;::: ;Fm(r)) =

cost(SORTM
G1;::: ;Gn(r)) +

ptaggm1 � size(r) + ptaggm2 � size(�TG1;::: ;Gn;F1;::: ;Fm
(r)))

cost(TAGGRD
G1;::: ;Gn;F1;::: ;Fm(r)) = ptaggd1 � size(r)+

ptaggd2 � size(�TG1;::: ;Gn;F1;::: ;Fm
(r))

Figure 6: Cost Formulas

3.2 Transfer Operators
The TM operator transfers a relation from the DBMS to the

middleware. Its implementation, theTRANSFERM algorithm, is
straightforward: it sends an SQL query to the DBMS via the JDBC
interface and fetches result tuples.

The performance of this operator depends on the number and
size of the tuples transferred. Experiments with Oracle show that
the performance is also affected by the row-prefetch setting, which
specifies the number of tuples fetched at a time by JDBC to a client-
side buffer. We have not included this latter setting in our cost
formula because it is DBMS-specific.

The TD operation transfers data from the middleware to the
DBMS. Its algorithm,TRANSFERD , first creates a table in the
DBMS and then loads data into it. The data load is specific to
the DBMS. For example, the program SQL Loader may be used
in Oracle. This program needs a data file with the actual tuples
and a control file specifying the structure of the data file. An alter-
native implementation of theTD operation could use a sequence
of INSERT statements; this solution would be inefficient for large
amounts of data.

In Oracle, a number of optimization techniques can be used to
speed up the load time of SQL Loader and to minimize the size
of the result table. First, direct-path load can be used (which loads
data directly into the database as opposed to conventional-path load
which uses INSERT statements). Second, since the size of the data
to load is known, the initial memory extent allocated for the table
can be equal to that size, avoiding the cost of multiple memory
allocations. In addition, blocks of the new table do not have to
contain any free space because the table will never be updated.

The cost ofTRANSFERD depends on the number and size
of the tuples transferred. The name of the table created must be
unique, and the table must be dropped at the end of the query.

3.3 Selection
Although DBMSs have efficient selection algorithms, we have

also implemented a selection algorithm in the middleware
(FILTERM) because it is sometimes needed. For example, if there
is a selection between two temporal algorithms to be performed in
the middleware, it would be inefficient to transfer the intermediate
result to the DBMS solely for the purpose of selection. The cost of
FILTERM depends on the relation size as well as on the selection
predicate.

If the selection predicate is non-temporal, the cardinality of the
result relation is estimated using standard methods, as in current
DBMSs, by either assuming a uniform distribution between the
minimum and maximum values or by using histograms and as-
suming a uniform distribution within each histogram bucket. (A
histogram divides attribute values into buckets; each bucket is as-
signed to a range of attribute values and stores how many attribute

values fall within that range.)
Standard estimation techniques are not directly suitable for tem-

poral predicates. Current DBMSs treat time attributes as any other
attributes, storing the same statistics. Straightforward use of these
statistics leads to very inaccurate estimates of selections having
temporal predicates. However, the statistics available from the
DBMS are sufficient to adequately estimate the selectivities of such
queries. We elaborate on these points next.

Consider a temporal relationR of 100,000 tuples, where the du-
ration of each time period is 7 days and where time periods are
uniformly distributed over the period from January 1, 1995 to Jan-
uary 1, 2000. Consequently, the time period start (T1) values are
between January 1, 1995 and December 25, 1999, and the time pe-
riod end (T2) values are between January 8, 1995 and January 1,
2000. BothT1 andT2 may have 1819 distinct values (the number
of days between their minimum and maximum values). Each day
then has about 383 tuples with an intersecting time period.

Now consider a query that retrieves all tuples overlapping with
the period starting on February 1, 1997 and ending on February 8,
1997 (the predicate would beOverlaps(1997-02-01; 1997-02-08);
and its SQL condition may be written asT1 < 1997-02-08AND
T2 > 1997-02-01). Since the distribution of time periods is uni-
form, histograms are not needed. The number of tuples in the
result should be between 383 and 383� 2 tuples, which is about
0.4%–0.8% of the original relation.

To estimate the selectivity of this query, each predicate is ana-
lyzed in turn. The first predicate results in 769/1819 = 42.3% of
the original relation, and the second predicate, when applied to the
result of the first selection, results in 1064/1819 = 58.5% of the sec-
ond relation, which is 24.7% of the tuples of the original relation.
This is a factor of 40 too high!

As an alternative to this straightforward estimation, we propose
to simply take into account that the end time of a period never
precedes its start time, which is a simple application of semantic
query optimization. The result cardinality for the above-mentioned
query can then be estimated by subtractingEndBefore(A+ 1; r),
the number of tuples ending before or atA (here, February 1, 1997),
from StartBefore(B; r), the number of tuples starting beforeB
(here, February 8, 1997).

FunctionsStartBefore(A; r) andEndBefore(A; r), whereA is
a time-attribute value in relationr, are defined next. Their def-
initions depend on whether histograms onT1 and T2 are avail-
able. For a given histogramH, functionsb1 (i;H) andb2 (i;H)
return the start and end values of bucketi; functionbVal(i;H) re-
turns the number of attribute values in thei-th bucket, and function
bNo(A; H) return the number of buckets to which attribute value
A belongs. FunctionsminVal(A; r) andmaxVal(A; r) return, re-
spectively, the minimum and maximum values of attributeA in re-
lation r, and functionhasHistogram(A; r) returns True if there is
a histogram onA in relationr.

StartBefore(A; r) ,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

A�minVal(T1; r)
maxVal(T1; r)�minVal(T1; r)

� cardinality(r)

if : hasHistogram(T1; r)

(
X

i=1; i<bNo(A;T1)

bVal(i; T1))+

A�b1 (bNo(A; T1); T1)
b2 (bNo(A; T1); T1)�b1 (bNo(A; T1); T1)

� bVal(bNo(A; T1); T1)

otherwise

131

EndBefore(A; r) ,8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

A�minVal(T2; r)
maxVal(T2; r)�minVal(T2; r)

� cardinality(r)

if : hasHistogram(T2; r)

(
X

i=1; i<bNo(A;T2)

bVal(i; T2))+

A�b1 (bNo(A; T2); T2)
b2 (bNo(A; T2); T2)�b1 (bNo(A; T2); T2)

� bVal(bNo(A; T2); T2)

otherwise

To compute these functions using histograms, we find the bucket
containing attribute valueA. Then we sum the number of values
in all preceding buckets and add a fraction of the number of values
in the bucket containingA, assuming a uniform distribution of the
values within the bucket. The formulas are valid for both height-
balanced histograms (where each bucket has the same number of
values) and width-balanced histograms (where each bucket is of
the same length); functionsb1 (i; H), b2 (i;H), bVal(i;H) would
return different values for different types ofH.

For the given query,EndBefore(1997-02-02; R) is 769/1819 =
42.3% of the original relation, andStartBefore(1997-02-08; R) is
755/1819 = 41.5% of the original relation, leading to an estimated
size of the result of 0.8% of the original relation, which is close to
the actual result.

For a timeslice predicate—such as (T1 � A AND T2 > A) which
returns all tuples with time periods containing time pointA—the re-
sult cardinality isStartBefore(A+ 1; r)� EndBefore(A+ 1; r).

The proposed estimation technique has some resemblance to a
previous proposal [18], which uses two temporal histograms: one
for the starting points of time periods, and one for “active” time
periods (a time period is active during a histogram bucket time
periodP if it starts beforeP and overlaps withP). The second
histogram is not available from current DBMSs. In contrast, we
use only statistics maintained by current DBMSs. The formula
forOverlaps(A; B) without histograms follows the estimation tech-
niques given in [9].

3.4 Temporal Aggregation
Temporal aggregation (�T) is one of those operators that clearly

benefit from running in the middleware versus in the DBMS. We
have implemented a middleware implementation,TAGGRM , and
a DBMS implementation,TAGGRD , which is a 50-line SQL query
(provided in [20]). Below we discussTAGGRM as well as how
the result cardinality is derived.

For TAGGRM , we require its argument to be sorted on the
grouping attribute values and onT1, because if tuples of the same
group are scattered throughout the relation, aggregate computation
requires scanning of the whole relation foreachgroup. Meanwhile,
if the argument is ordered on the grouping attributes, only a certain
part of the argument relation is needed at a time. The sorting en-
ables reading each tuple only once.

In addition, another copy of the argument is sorted on all group-
ing attributes andT2. The first sorting is performed by an external
algorithm (SORTM or SORTD), while the second sorting is per-
formed internally by theTAGGRM algorithm. The algorithm tra-
verses both copies of the argument similarly to sort-merge join and
computes the aggregate values group by group. The algorithm’s
pseudocode is outlined in [20]; it is different from the temporal
aggregation algorithms presented in [13], which used aggregation
trees in memory or, during computation, maintained lists of con-
stant periods and their running aggregate values.

The cost of temporal aggregation in the middleware depends on
the size of the argument and of the result (see Figure 6). For sim-

plicity, the complexity of the actual aggregate functions (such as
MIN or AVG) is not included, but experiments show that different
such functions do not change the cost significantly. The cost of
internal sorting is accounted for.

The upper bound for the cardinality of�TG1;::: ;Gn;F1;::: ;Fm
(r) is

cardinality(r) � 2� 1, and the lower bound (for a non-empty rela-
tion) is 1. Knowing the number of distinct values for the grouping
and the time attributes allows us to tighten the range between the
minimum and maximum.

The minimum cardinality is min(distinct(G1; r); : : : ;
distinct(Gn; r); distinct(T1; r) + 1; distinct(T2; r) + 1); where
distinct(A; r) is the number of distinct values in attributeA in rela-
tion r. If there are no grouping attributes, the maximum cardinality
is distinct(T1; r) + distinct(T2; r) + 1. Otherwise, it is

(
cardinality(r)

max(distinct(G1; r);::: ;distinct(Gn; r))
� 2� 1) �

max(distinct(G1; r); : : : ; distinct(Gn; r));

where the fraction represents the average number of tuples for each
value of the grouping attribute having the most distinct values, and
the factor to the right represents the maximum number of the result-
ing time periods for each such value. We multiply it by the max-
imum number of distinct values for the grouping attributes. For
experiments, we use 60% of the maximum cardinality if the result-
ing value is bigger than the minimum cardinality, and the minimum
cardinality, otherwise.

4. QUERY OPTIMIZATION HEURISTICS
AND EQUIVALENCES

Initial query plans have a singleTM operator at the top, assign-
ing all processing to the DBMS. TANGO’s optimizer applies trans-
formation rules to generate candidate query plans. In this section,
we outline the transformation rules that drive this process.

Transformation rules derive from equivalences that express that
the relations that result from two algebraic expressions are in some
sense equal. Specifically, we use two kinds of equivalences, list
equivalences and multiset equivalences. Two expressions arelist
equivalentif they evaluate to relations that are equal as lists, and
aremultiset equivalentif they evaluate to relations that are equal as
multisets. This latter notion of equal takes into account duplicates,
but not order.

List equivalence implies multiset equivalence, and for each trans-
formation rule given below, we only explicitly give the strongest
equivalence type that holds. We denote left-to-right transformation
rules (also termedheuristics) by !L or !M and bidirectional
transformation rules by�L or �M .

These two types of equivalence are essential in a middleware
architecture because the location where an operation is processed
affects the type of equivalence that holds: while the middleware al-
gorithms are designed to be order preserving, this does not hold for
the DBMS algorithms. Therefore, applying a!L rule means that
if (1) the relation produced by the left-hand side has some spec-
ified order and (2) if it is located in the middleware or if the top
operation at the left-hand side is sorting, then the relation produced
by the right-hand side will have the same order as the relation pro-
duced by the left-hand side. But if either of these two conditions
does not hold, only multiset equivalence may be assumed.

4.1 Heuristics
We divide the heuristics into four groups, based on their intended

function. We describe two of these groups; the other two—for com-
bining several operations into one and for reducing arguments to
expensive operations—are reported in [20].

132

Heuristic Group 1.Move to the middleware only those opera-
tions that may be processed more efficiently there.

An operation is moved to the middleware by introducing theTM

operation below it and theTD operation above it. Experiments
with different DBMSs show that the operations that may benefit
from being processed by the special-purpose algorithms in the mid-
dleware are temporal aggregation, join, and temporal join. Trans-
formation rules T1–T3 accomplish this move. Note that these rules
introduce the sort operator because the algorithms that implement
these operations in the middleware require sorted arguments (tem-
poral join and join are implemented as sort-merge joins). In ad-
dition, we use rules that enable moving selection, projection, and
sorting to the middleware (rules T4–T6); we do not introduce ex-
traTM andTD operations in these rules because these operations
alone cannot be the reason to partition the processing. Rule T6 has
type !L because operationTM preserves order.

(T1) �T
G1;::: ;Gn;F1;::: ;Fm

(r)!M

TD(�TG1;::: ;Gn;F1;::: ;Fm
(TM (sortG1;::: ;Gn(r))))

(T2) r1 ��ja1;ja2 r2 !M

TD(TM (sortja1 (r1))��ja1;ja2 TM (sortja2 (r2)))
(T3) r1 ��

T
ja1;ja2

r2 !M

TD(TM (sortja1 (r1))��
T
ja1;ja2

TM (sortja2 (r2)))

(T4) TM (�P (r))!M �P (T
M (r))

(T5) TM (�f1;::: ;fn(r))!M �f1;::: ;fn(T
M (r))

(T6) TM (sortA(r))!L sortA(T
M (r))

Rules T1–T3 are applied only if the top operators of their left-
hand sides are assigned to processing in the DBMS. In these and
all subsequent rules,r may be a base relation or an operation tree
(query expression).

Heuristic Group 2.Eliminate redundant operations.
This group includes rules for removing sequences ofTM and

TD operations (caused be multiple applications of rules T1–T3),
and unnecessary projection and sort operations. A sorting opera-
tion can be removed if its argument is already ordered as needed,
or if only multiset equivalence is required (this may happen, for ex-
ample, if the relation will be sorted later, or if the end result does
not need to be ordered). For each given heuristic, we specify its
pre-condition (if any) following the heuristic.

(T7) TM (TD(r))!M r

(T8) TD(TM (r))!M r

(T9) �f1;::: ;fn(r)!L r ff1; : : : ; fng =
r
(T10) sortA(r)!L r IsPre�xOf (A;Order(r))
(T11) sortA(r)!M r

(T12) sortA(sortB(r))!L sortA(r) IsPre�xOf (B;A)

Rule T9 can be applied for projections on all attributes of the ar-
gument relation. We denote the attribute domain of the schema of
relationr by
r. PredicateIsPre�xOf takes two lists as argument
and returns True is the first is a prefix of the second.

4.2 Equivalences
In addition to the uni-directional heuristics given above, a num-

ber of bi-directional equivalences are employed, including moving
selections and projections down or up the operation tree and switch-
ing the order of Cartesian products. We mark pre-conditions that
apply only for the left-to-right and right-to-left transformation by
[lr] and[rl] , respectively.

(E1) �f1;::: ;fn(�P (r)) �L �P (�f1;::: ;fn(r))
[lr] attr(P) � attr(f1; : : : ; fn)

(E2) r1 op r2 �M r2 op r1 op 2 f�;��;��T g

(E3) (r1 op r2) op r3 �L r1 op (r2 op r3) op 2 f�;��;��T g

(E4) sortA(�P (r))�L �P (sortA(r))
(E5) sortA(�f1;::: ;fn(r)) �L �f1;::: ;fn(sortA(r))

[lr] attr(A) �
r; [rl] attr(A) � attr(f1; : : : ; fn)

Functionattr returns the set of attributes present in projection func-
tions or in a selection predicate. Equivalences E4 and E5 are used
only when their left-hand side operations are processed in the mid-
dleware. Because equivalent query parts assigned to processing in
the DBMS are subsequently translated into the same SQL code, it is
useful to apply transformation rules to the DBMS parts only when
this may help the middleware optimizer to more accurately estimate
their costs. Consequently, applicable rules include, e.g., introduc-
tion of extra projections or selections. Pushing sorting down or up
does not help the optimizer.

5. PERFORMANCE STUDIES
To validate TANGO, we conducted a series of performance ex-

periments. Objectives of the experiments and the data used are
described in Section 5.1, and the optimization and processing of
four queries is discussed in Section 5.2. Section 5.3 summarizes
performance study findings.

5.1 Objectives and Context
We set a number of objectives for performance experiments. First,

we wanted to determine if and when it is worth processing frag-
ments of queries in the middleware, and where and when the dif-
ferent operations should be evaluated. In addition, we wanted to
evaluate the robustness of the middleware optimizer, i.e., does it
return plans that fall within, say, 20% of the best plans. We also
attempted to validate the advantages of cost-based optimization,
including the proposed selectivity estimation technique for tempo-
ral selections. Finally, we sought to determine how significant the
overhead of TANGO is.

We performed a sequence of queries, where each query aims to
answer a number of the above-mentioned questions. The queries
were run on realistic dataset from a university information sys-
tem [7]. Specifically, two relations were used, namelyEMPLOYEE,
which maintains information about employees, andPOSITION, part
of which was used in Section 2.1 and which provides information
on job assignments to employees. The first relation has 49,972 tu-
ples of 31 attributes (about 13.8 megabytes of data) and the second
relation has 83,857 tuples of 8 attributes (about 6.7 megabytes of
data). We have also used eight other variants ofPOSITION with, re-
spectively, 8,000, 17,000, 27,000, 36,000, 46,000, 55,000, 64,000,
and 74,000 tuples from the original relation.

All queries were optimized using the middleware’s optimizer
and then run via its Execution Engine. All running times in the
graphs are given in seconds; for query plans involving middleware
algorithms, the middleware optimization time is included. To en-
able optimization in the middleware, we collected statistics on the
(DBMS) relations used via the Statistics Collector module, and we
calibrated the cost factors in the cost formulas via the Cost Estima-
tor module; for the latter procedure we used a mechanism similar
to that of Du et al. [4] and described it in more detail in [20].

5.2 Queries
We have examined closely the plans for a number of queries

to ensure that the optimizer identifies the portions of queries that
are appropriate for execution in the DBMS and in the middleware.
Here, we consider four such queries in some detail. For each, we
show several of the plans that were enumerated by the optimizer,
and we measure the evaluation time for these selected plans over a
range of data. In most cases, the optimizer does select the best plan
among the enumerated ones; we elaborate on how it does so.

133

The Volcano optimizer [8] is based on a specific notion of equiv-
alence class. Each equivalence class represents equivalent subex-
pressions of a query, by storing a list of elements, where each ele-
ment is an operator with pointers to its arguments (which are also
equivalence classes). The number of equivalence classes and el-
ements for a query directly correspond to the complexity of the
query; we give these measures for each query.

Query 1. “For each position inPOSITION, get the number of
employees occupying that position at each point of time. Sort the
result by the position number.”

This temporal aggregation query was used as subquery in the
example query in Section 2.2. Figure 7 shows three of the query
evaluation plans for this query. The first sorts the base relation in
the DBMS on the grouping attribute and the starting time, then per-
forms the temporal aggregation in the middleware. SinceTAGGRM

preserves order on the grouping attributes, additional sorting is not
needed at the end. The second plan is similar, but performs sorting
in the middleware. The third performs everything in the DBMS.
Due to space constraints, we omit the complete SQL query here.

TAGGRM

TRANSFERM

GroupBy:PosID
Aggregate:COUNT(PosID)

Query:
SELECT PosID, T1, T2
FROM POSITION
ORDER BY PosID, T1

Plan 1

SORTM

TAGGRM

TRANSFERM

OrderBy:PosID, T1

GroupBy:PosID
Aggregate:COUNT(PosID)

Query:
SELECT PosID, T1, T2
FROM POSITION

Plan 2

TRANSFERM

Query:
[temporal aggregation in SQL]

Plan 3

Figure 7: Plans for Query 1

We compare the three plans for varying sizes of the argument
relation. For all queries, the optimizer selects the first plan. The
optimizer generated 12 equivalence classes with 29 class elements.

The running times of all plans are shown in Figure 8, where it can
be seen that the first two significantly outperform the third. This is
because temporal aggregation in the DBMS is very slow. While
not reported here, experiments with similar queries, where the the
grouping attribute(s) and relation size are also varied, show similar
results.

This experiment shows that processing in the middleware can be

50

100

150

200

250

300

350

400

450

500

8K 17K 27K 36K 46K 55K 64K 74K 84K

T
im

e,
 s

ec

Table size, rows

Plan 1
Plan 2
Plan 3

Figure 8: Results of Query 1

up to ten times faster, if a query involves temporal aggregation.
Temporal aggregation in the DBMS can compete with temporal
aggregation in the middleware only when a very small number of
records (a few hundreds) have to be aggregated (see Query 2).

Query 2. “Produce a time-varying relation that provides, for
eachPOSITION tuple with pay rate greater than$10, the count
of employees that were assigned to the position. Consider the time
period between January 1, 1983 and January 1, 1984 and sort the
result by position number.”

This query corresponds to the query presented in Section 2.2, but
we introduce the time period and the $10 pay rate condition.

Six plans were used, four of which are given in Figure 9. The
first plan performs temporal aggregation in the middleware and the
rest in DBMS. The next three plans also assign temporal join to the
middleware (Plan 2); temporal join and sorting to the middleware
(Plan 3); and temporal join, sorting, and selection to the middle-
ware (Plan 4). The fifth plan (not shown) is the same as the first,
but no selection is performed on the argument to the temporal ag-
gregation (this selection is not needed for correctness, but it reduces
the argument size). The sixth plan (not shown) performs everything
in the DBMS.

We ran all six plans a number of times, each time increasing the
end time of the time period given in the query by one year, thus
relaxing the predicate. Since most of thePOSITION data is con-
centrated after 1992, the running times are similar for the queries
with the time period ending before 1992 (see Figure 10), but they
increase rapidly after that time (see Figure 10(b)). In Figure 10(a),
we also observe that Plans 4 and 5 perform poorly; this is because
of the high cost of theTRANSFERM operation, which takes the
whole base relation as its argument (without applying selection
first). Plan 6, which performs temporal aggregation in the DBMS,
is competitive because the selection predicates are very selective.

For larger time periods (Figure 10(b)), the performances of the
plans vary more. Plans 4 and 5 are slow due to the expensive
TRANSFERM operations, and Plan 6 also deteriorates rapidly
when the argument to the temporal aggregation increases. Plan
1 deteriorates faster than Plans 2 and 3 because it includes the
TRANSFERD algorithm, which becomes significantly slower
when its argument’s size increases (due to the increase of the se-
lection time period).

We optimized this query running the middleware optimizer with
and without histograms on the time attributes. When used with-
out histograms, the optimizer returned the second plan for the six

134

TRANSFERM

TRANSFERD

FILTERM

TAGGRM

TRANSFERM

Query:
SELECT A.PosID, B.EmpID, GREATEST(A.T1,B.T1) AS T1,

LEAST(A.T2,B.T2) AST2, COUNTofPosID
FROM TMP A, POSITION B
WHERE A.PosID= B.PosID AND B.PayRate > 10
AND A.T1< B.T2 AND A.T2> B.T1
AND B.T1< ’1984-01-01’
AND B.T2> ’1983-01-01’

ORDER BY A.PosID

TableName:TMP

Cond:T1< ’1984-01-01’AND
T2> ’1983-01-01’

GroupBy:PosID
Aggregate:COUNT(PosID)

Query:
SELECT PosID, T1, T2
FROM POSITION
WHERE T1< ’1984-01-01’AND T2> ’1983-01-01’
ORDER BY PosID, T1

Plan 1

PROJECTM

TJOINM

SORTM

TRANSFERM

FILTERM

TAGGRM

SORTM

TRANSFERM

Attrs: PosID, EmpID,
COUNTofPosID, T1, T2

Join On:PosID= PosID

OrderBy:PosID

Query:
SELECT PosID, EmpID,

T1, T2
FROM POSITION
WHERE T1< ’1984-01-01’
AND T2> ’1983-01-01’
AND PayRate > 10

Cond:
T1< ’1984-01-01’AND
T2> ’1983-01-01’

OrderBy:PosID, T1

GroupBy:PosID
Aggregate:COUNT(PosID)

Query:
SELECT PosID, T1, T2
FROM POSITION
WHERE T1< ’1984-01-01’AND T2> ’1983-01-01’

Plan 3

PROJECTM

TJOINM

TRANSFERMFILTERM

TAGGRM

TRANSFERM

Attrs: PosID, EmpID, T1
T2, COUNTofPosID

Join On:PosID= PosID

Query:
SELECT PosID, EmpID, T1, T2
FROM POSITION
WHERE T1< ’1984-01-01’
AND T2> ’1983-01-01’
AND PayRate > 10

ORDER BY PosID

Cond:T1< ’1984-01-01’AND
T2> ’1983-01-01’

GroupBy:PosID
Aggregate:COUNT(PosID)

Query:
SELECT PosID, T1, T2
FROM POSITION
WHERE T1< ’1984-01-01’AND T2> ’1983-01-01’
ORDER BY PosID, T1

Plan 2

PROJECTM

TJOINM

SORTM

FILTERM

TRANSFERM

FILTERM

TAGGRM

SORTM

FILTERM

TRANSFERM

Attrs: PosID, EmpID, T1
T2, COUNTofPosID

Join On:PosID= PosID

OrderBy:PosID

Cond:
T1< ’1984-01-01’AND
T2> ’1983-01-01’

Query:
SELECT PosID, EmpID, T1, T2
FROM POSITION
WHERE PayRate > 10

Cond:T1< ’1984-01-01’AND
T2> ’1983-01-01’

GroupBy:PosID
Aggregate:COUNT(PosID)

OrderBy:PosID, T1

Cond:T1< ’1984-01-01’
AND
T2> ’1983-01-01’

Query:
SELECT PosID, T1, T2
FROM POSITION

Plan 4

Figure 9: Plans for Query 2

135

20

40

60

80

100

120

1984 1985 1986 1987 1988 1989 1990

T
im

e,
 s

ec

Selection time-period end

Plan 1
Plan 2
Plan 3
Plan 4
Plan 5
Plan 6

50

100

150

200

250

300

1991 1992 1993 1994 1995 1996 1997 1998

T
im

e,
 s

ec

Selection time-period end

Plan 1
Plan 2
Plan 3
Plan 4
Plan 5
Plan 6

(a) (b)

Figure 10: Results of Query 2 when the Selection Time-Period End Value was 1990 or Smaller (a) and 1991 or Bigger (b)

queries with the time-period end varying from January 1, 1984 to
January 1, 1989, and the first plan for all other queries. When used
with histograms, the optimizer always returned the second plan
(which is better than the first plan, as is clear from Figure 10(b)),
because it could more accurately estimate the result size of the tem-
poral selection. The optimizer generated 142 classes with 452 ele-
ments in total.

This query shows that temporal join can be as much as two times
faster in the middleware if at least one of its arguments resides there
(as does, in this case, the result of temporal aggregation). Other
experiments [20] show that the same holds for regular join. In ad-
dition, this experiment confirms that the cost-based selectivity esti-
mation helps the middleware optimizer return better plans.

Query 3. “For each position inPOSITION starting before Jan-
uary 1, 1990, show all pairs of employees that occupied that posi-
tion during the same time. Sort the result by the position number.”

This query is a temporal self-join. We tested two plans: the first
performs everything in the DBMS, while the second performs tem-
poral join in the middleware. In the experiment, we have varied the
condition constraining the time-period start. The running times are
shown in Figure 11(a).

When the maximum allowed time for the time-period start in-
creases, Plan 2 performs better than Plan 1 because the result is
bigger than the arguments, leading to high costs of sorting within
the DBMS and transfer of the result in Plan 1. The difference in per-
formance becomes obvious when the maximum time-period start
reaches year 1996, since about 65% of thePOSITION tuples have
time-periods starting at 1995 or later.

The middleware optimizer returned Plan 1 for the first six queries
and Plan 2 for the last three. The errors for the middle three queries—
where Plan 2 is already better than Plan 1—occur because the se-
lectivity estimation for join and temporal join assumes uniform dis-
tribution of the join-attribute values (PosID), which is not the case
for the data used. The optimizer generated 104 equivalence classes
with 301 element.

This query illustrates that allocating processing (in this case, of
temporal join) to the middleware can be advantageous if the result
size is bigger than the argument sizes. It also demonstrates that the
cost-based optimization leads to selecting a better plan for the last
three queries.

Query 4. “For each position, list the employee name and ad-
dress.”

This query is a regular join of thePOSITION andEMPLOYEE re-
lations. We tested three plans: the first plan performs sorting and
join in the middleware, the second plan performs a nested-loop
join in the DBMS, and the third plan performs a sort-merge join
in the DBMS (the DBMS join methods were set explicitly using
Oracle hints). We executed the plans while varying the size of the
POSITION relation. The results in Figure 11(b) show that Plan 2
yields the best performance while the other two plans are competi-
tive. The middleware optimizer suggested to perform the join in the
DBMS (plans 2 and 3; since the optimizer does not consider differ-
ent DBMS join algorithms, both plans were considered as one). It
generated 13 equivalence classes with 30 elements in total.

This experiment shows that the DBMS is faster when perform-
ing queries involving regular operations. The fact that similar algo-
rithms are competitive in the DBMS and middleware (both plans 1
and 3 include sort-merge joins) indicates that the run-time overhead
introduced by TANGO is insignificant.

5.3 Summary of Performance Study Findings
The performance experiments demonstrate that the middleware

can be very effective when processing queries involving temporal
aggregation. Temporal join is faster in the middleware if at least
one its arguments already resides there (Query 2), or if its result size
is bigger than its argument sizes (Query 3); other experiments [20]
show that there are cases when temporal join is more efficient in
the DBMS.

In addition, we showed that the cost-based optimization with its
simplified cost formulas is effective in dividing the processing be-
tween the middleware and the DBMS. The proposed selectivity
estimation techniques for temporal selection was shown to more
accurately estimate sizes of intermediate relations, which generally
results in better plans being selected. Plans allocating all evaluation
for the DBMS (including temporal aggregation) perform well for
highly selective queries, but deteriorate rapidly as selection predi-
cates are relaxed (Figure 10(b)).

For the tested queries, the middleware optimization overhead
was very small. We have not implemented the parser and Translator-
To-SQL middleware modules, but we do not expect them to signif-
icantly slow down the processing. They will use standard language
technology and are independent of the database size. It should be
noted, though, that we have not tested queries involving many joins;

136

50

100

150

200

250

300

350

400

450

1990 1991 1992 1993 1994 1995 1996 1997 1998

T
im

e,
 s

ec

Selection time-period start maximum value

Plan 1
Plan 2

20

40

60

80

100

120

140

8K 17K 27K 36K 46K 55K 64K 74K 84K

T
im

e,
 s

ec

Table size, rows

Plan 1
Plan 2
Plan 3

(a) (b)

Figure 11: Results of Query 3 (a) and Query 4 (b)

for such queries, it is likely that join-order heuristics should be in-
troduced instead of the join equivalences used (Section 4.2).

6. RELATED WORK
The general notion of software external to the DBMS partici-

pating in query processing is classic. Much work has been done
on heterogeneous databases(e.g., [15]), in which data resident in
multiple, not necessarily consistent, databases is queried and up-
dated [28]. There has also been a great deal of work in the related
area ofmediators[26] and, more generally, onintegration architec-
tures. Roughly, a mediator offers a consistent data model and ac-
cessing mechanism to disparate data sources, which may not be tra-
ditional databases. At an abstract level, this approach shares much
with the notion of temporal middleware: the underlying databases
cannot be changed, the data models and query languages exposed
to the users may differ from those supported by the underlying
databases, the exported schema may be different from the local
schema(s), significant query processing occurs outside the under-
lying DBMS, and a layer (also termed awrapper[16]) is often in-
terposed that changes the data model or allows new query facilities
to access the data. However, there are also differences. A heteroge-
neous database by definition involves several underlying databases,
whereas the temporal middleware is connected to but one underly-
ing database and does not need to address issues of data fusion and
schematic discrepancies, or of access to semi-structured data.

Several papers discuss layered architectures for a temporal
DBMS, e.g., [22], and several prototype temporal DBMSs have
been implemented, e.g., [3]. That work is based on a pure trans-
lation of temporal query language statements to SQL and does
not provide systematic solutions on how to divide the processing
of temporal queries between the layer and the underlying DBMS.
Vassilakis et al. [25] discuss techniques for adding transaction and
concurrency-control support to a layered temporal DBMS; they
propose a layer that accepts queries written in VT-SQL, identifies
the regular-SQL parts of such queries, and sends these parts to the
DBMS for processing. Their layer is able to evaluate temporal con-
structs at the end of a query, if needed. The TANGO system pre-
sented here is more flexible in apportioning the processing.

In this paper, we extend our previous foundation for temporal
query optimization [19], which included a temporal algebra that
captured duplicates and order, defined temporal operations, and of-
fered a comprehensive set of transformation rules. However, that

foundation did not cover optimization heuristics, the implementa-
tion of temporal operations, or their cost formulas, which are foci of
the present paper. Other work on temporal query optimization [9,
14] primarily considers the processing of joins and semijoins. Per-
haps most prominently, Gunadhi and Segev [9] define several kinds
of temporal joins and discuss their optimization. They do not delve
into the general query optimization considered here. Vassilakis [24]
presents an optimization scheme for sequences of coalescing and
temporal selection; when introducing coalescing to our framework,
this scheme can be adopted in the form of transformation rules.
Related work in selectivity estimation for temporal operators in-
cludes [9, 17, 18]; we use some of their techniques for estimat-
ing the selectivity of temporal predicates (when histograms are not
available), and we also show how selectivity can be estimated by
using solely statistics available from conventional DBMSs.

Several papers have considered cost estimation in heterogeneous
systems. Du et al. [4] propose a cost model for different selections
and joins. Cost factors used in the formulas are deduced in acali-
brationphase, where a number of sample queries are run. We use a
similar approach, but we assume that we do not know the specific
algorithms used by the DBMS.

TANGO is implemented using the Volcano extensible query op-
timizer [8] and the XXL library of query processing algorithms [1].
Volcano was significantly extended to include new operators, al-
gorithms, and transformation rules, as well as different types of
equivalences (Section 4). Available XXL algorithms for regular
operators, as well as our own algorithms for temporal operators,
were used in TANGO’s Execution Engine.

7. CONCLUSIONS
This paper offers a temporal middleware approach to building

temporal query language support on top of conventional DBMSs.
Unlike previous approaches, this middleware performs some query
optimization, thus dividing the query processing between itself and
the DBMS, and then coordinates and takes part in the query evalu-
ation. Performance experiments show that performing some query
processing in the middleware in some cases improves query per-
formance up to an order of magnitude over performing it all in the
DBMS. This is because complex operations, such as temporal ag-
gregation, which DBMSs have difficulty in processing efficiently,
have efficient implementations in the middleware.

The paper’s contributions are several. It proposes an architecture

137

for a temporal middleware with query optimization and processing
capabilities. The middleware query optimization and processing
explicitly and consistently address duplicates and order. Heuristics,
cost formulas, and selectivity estimation techniques for temporal
operators (using available DBMS statistics) are provided. The tem-
poral middleware architecture is validated by an implementation
that extends the Volcano optimizer and the XXL query processing
system. Performance experiments validate the utility of the shared
processing of queries, as well as of the cost-based optimization.

The result is a middleware-based system, TANGO, which cap-
tures the functionality of previously proposed temporal stratum ap-
proaches, and which is more flexible.

The proposed transformation rules and selectivity estimation tech-
niques may also be used in an integrated DBMS, e.g., when adding
temporal functionality to object-relational DBMSs via user-defined
functions. For this to work, the user-defined functions must manip-
ulate relations and must be able to specify the cost functions and
transformation rules relevant to them to the optimizer.

Several directions for future work exist. The current middleware
algorithms should be enhanced to support very large relations. In
addition, new operators may be added to TANGO. To add an op-
erator, one needs to specify relevant transformation rules, formulas
for derivation of statistics, and algorithm(s) implementing the op-
erator. If the operator is to be implemented in the middleware, its
algorithm has to be added to the Execution Engine.

DBMS query processing statistics, such as the running times of
query parts, may be used to update the cost factors used in the mid-
dleware’s cost formulas. It is an interesting challenge to be able
to divide the running time between theTRANSFERM algorithm
and, possibly, several DBMS algorithms. A number of other re-
finements are also possible. For example, if a query is to access
the same DBMS relation twice (even if the projected attributes are
different), it would be beneficial to issue only oneTM operation.

Acknowledgments
This research was supported in part by the Danish Technical Re-
search Council through grant 9700780, by the U.S. National Sci-
ence Foundation through grant IIS-9817798, and by a grant from
the Nykredit Corporation.

8. REFERENCES
[1] J. Van der Bercken, J. P. Dittrich, and B. Seeger. javax.XXL:

A Prototype for a Library of Query Processing Algorithms.
In Proceedings of ACM SIGMOD, Dallas, TX, p. 588 (2000).

[2] M. H. Böhlen. Temporal Database System Implementations.
ACM SIGMOD Record, 24(4): 53–60 (1995).

[3] M. H. Böhlen. The Tiger Temporal Database System.
URL: <www.cs.auc.dk/ ˜tigeradm/ > (current as of
February 23, 2001).

[4] W. Du, R. Krishnamurthy, and M.-C. Shan. Query
Optimization in a Heterogeneous DBMS. InProceedings of
VLDB, Vancouver, Canada, pp. 277–291 (1992).

[5] R. Elmasri and S. B. Navathe.Fundamentals of Database
Systems. Third Edition. Addison-Wesley (2000).

[6] O. Etzion, S. Jajodia, and S. Sripada (eds.).Temporal
Databases: Research and Practice. LNCS 1399.
Springer-Verlag (1998).

[7] J. A. G. Gendrano, R. Shah, R. T. Snodgrass, and J. Yang.
University Information System (UIS) Dataset.TIMECENTER

CD-1, September, 1998.
[8] G. Graefe and W. J. McKenna. The Volcano Optimizer

Generator: Extensibility and Efficient Search. InProceedings

of IEEE ICDE, Vienna, Austria, pp. 209–218 (1993).
[9] H. Gunadhi and A. Segev. A Framework for Query

Optimization in Temporal Databases. InProceedings of
SSDBM, Charlotte, NC, pp. 131–147 (1990).

[10] W. H. Inmon.Building the Data Warehouse. Second Edition.
John Wiley and Sons (1996).

[11] M. Jarke and J. Koch. Query Optimization in Database
Systems.ACM Computing Surveys, 16(2): 111–152 (1984).

[12] C. S. Jensen and R. T. Snodgrass. Temporal Data
Management.IEEE Transactions on Knowledge and Data
Engineering, 11(1):36–45, 1999.

[13] N. Kline and R. T. Snodgrass. Computing Temporal
Aggregates. InProceedings of IEEE ICDE, Taipei, Taiwan,
pp. 222–231 (1995).

[14] T. Y. C. Leung and R. R. Muntz. Stream Processing:
Temporal Query Processing and Optimization. InTemporal
Databases: Theory, Design, and Implementation,
A. U. Tansel et al. (eds.), Benjamin/Cummings, pp. 329–355
(1993).

[15] T. M. Ozsu and P. Valduriez.Principles of Distributed
Database Systems. Second Edition. Prentice Hall (1999).

[16] M. T. Roth and P. M. Schwarz. Don’t Scrap it, Wrap It! A
Wrapper Architecture for Legacy Data Sources. In
Proceedings of VLDB, Athens, Greece, pp. 266–275 (1997).

[17] A. Segev, G. Himawan, R. Chandra, and J. Shanthikumar.
Selectivity Estimation of Temporal Data Manipulations.
Information Sciences, 74(1-2): 111–149 (1993).

[18] I. Sitzmann and P. J. Stuckey. Improving Temporal Joins
Using Histograms. InProceedings of DEXA,
London/Greenwich, UK, pp. 488–498 (2000).

[19] G. Slivinskas, C. S. Jensen, and R. T. Snodgrass. Query
Plans for Conventional and Temporal Queries Involving
Duplicates and Ordering. InProceedings of IEEE ICDE, San
Diego, CA, pp. 547–558 (2000).

[20] G. Slivinskas, C. S. Jensen, and R. T. Snodgrass. Adaptable
Query Optimization and Evaluation in Temporal
Middleware. TIMECENTERTechnical Report TR-56,
URL: <www.cs.auc.dk/TimeCenter/ > (2001).

[21] R. T. Snodgrass.Developing Time-Oriented Database
Applications in SQL. Morgan Kaufmann (1999).

[22] K. Torp, C. S. Jensen, and R. T. Snodgrass. Stratum
Approaches to Temporal DBMS Implementation. In
Proceedings of IDEAS, Cardiff, Wales, pp. 4–13 (1998).

[23] K. Torp, C. S. Jensen, and R. T. Snodgrass. Effective
Timestamping in Databases.The VLDB Journal, 8(3-4):
267–288 (2000).

[24] C. Vassilakis. An Optimisation Scheme for Coalesce/Valid
Time Selection Operator Sequences.SIGMOD Record,
29(1): 38–43 (2000).

[25] C. Vassilakis, N. A. Lorentzos, and P. Georgiadis.
Implementation of Transaction and Concurrency Control
Support in a Temporal DBMS.Information Systems, 23(5):
335–350 (1998).

[26] G. Wiederhold. Mediation in Information Systems.ACM
Computing Surveys, 27(2): 265–267 (1995).

[27] J. Yang, H. C. Ying, and J. Widom. TIP: A Temporal
Extension to Informix. InProceedings of ACM SIGMOD,
Dallas, TX, p. 596 (2000).

[28] C. Yu and W. Meng.Principles of Database Query
Processing for Advanced Applications. Morgan Kaufmann
(1998).

138

