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Abstract—We show how to extend temporal support of SQL
to the Turing-complete portion of SQL, that of persistent stored
modules (PSM). Our approach requires minor new syntax
beyond that already in SQL/Temporal to define and to invoke
PSM procedures and functions, thereby extending the current,
sequenced, and non-sequenced semantics of queries to such
routines. Temporal upward compatibility (existing applications
work as before when one or more tables are rendered temporal)
is ensured. We provide a transformation that converts Temporal
SQL/PSM to conventional SQL/PSM. To support sequenced eval-
uation of stored functions and procedures, we define two different
slicing approaches, maximal slicing and per-statement slicing. We
compare these approaches empirically using a comprehensive
benchmark and provide a heuristic for choosing between them.

I. INTRODUCTION

Temporal query languages are now fairly well understood,

as indicated by 80-some encyclopedia entries on various as-

pects of time in databases and query languages [1] and through

support in prominent DBMSes. Procedures and functions in

the form of Persistent Stored Modules (PSM) have been

included in the SQL standard and implemented in numerous

DBMSes [2]. However, no work to date has appeared on the

combination of stored procedures and temporal data.

The SQL standard includes stored routines in Part 4: control

statements and persistent stored modules (PSM) [3]. Although

each commercial DBMS has its own idiosyncratic syntax and

semantics, stored routines are widely available in DBMSes and

are used often in database applications, for several reasons.

Stored routines provide the ability to compile and optimize

SQL statements and the corresponding database operations

once and then execute them many times on demand, within

the DBMS and thus close to the data. This represents a

significant reduction in resource utilization and savings in the

time required to execute those statements. The computational

completeness of the language enables complex calculations

and allows users to share common functionality and encourage

code reuse, thus reducing development time [2].

It has been shown that queries on temporal data are often

hard to express in conventional SQL: the average temporal

query/modification is three times longer in terms of lines of

SQL than its nontemporal equivalent [4]. There have been a

large number of temporal query languages proposed in the

literature [1], [5], [6], [7]. Previous change proposals [8], [9]

for the SQL/Temporal component of the SQL standard showed

how SQL could be extended to add temporal support while

guaranteeing that the new temporal query language was com-

patible with conventional SQL. That effort is now moving into

commercial DBMSes. Oracle 10g added support for valid-time

tables, transaction-time tables, bitemporal tables, sequenced

primary keys, sequenced uniqueness, sequenced referential

integrity, and sequenced selection and projection, in a manner

quite similar to that proposed in SQL/Temporal. Oracle 11g

enhanced support for valid-time queries [10]. Teradata recently

announced support in Teradata Database 13.10 of most of these

facilities as well [11], as did IBM for DB2 10 for z/OS [12].

These DBMSes all support PSM, but not invocation of stored

routines within sequenced temporal queries. For completeness

and ease of use, temporal SQL should include stored modules.

The problem addressed by this paper is thus quite relevant:

how can SQL/PSM be extended to support temporal relations,

while easing migration of legacy database applications and

enabling complex queries and modifications to be expressed

in a consistent fashion? Addressing this problem will enable

vendors to further their implementation of temporal SQL.

In this paper, we introduce minimal syntax that will enable

PSM to apply to temporal relations; we term this new language

Temporal SQL/PSM. We then show how to transform such

routines in a source-to-source conversion into conventional

PSM. Transforming sequenced queries turn out to be the

most challenging. We identify the critical issue of supporting

sequenced queries (in any query language), that of time-slicing

the input data while retaining period timestamping. We then

define two different slicing approaches, maximally-fragmented

slicing and per-statement slicing. The former accommodates

the full range of PSM statements, functions, and procedures in

temporal statements in a minimally-invasive manner. The latter

is more complex, supports almost all temporal functions and

procedures, utilizes relevant compile time analysis, and often

provides a significant performance benefit, as demonstrated

by an empirical comparison using DB2 on a wide range of

queries, functions, procedures, and data characteristics.

To our knowledge, this is the first paper to propose temporal

syntax for PSM, the first to show how such temporally en-

hanced queries, functions, and procedures can be implemented,

and the first to provide a detailed performance evaluation.

II. SQL/PSM

Persistent stored modules (PSM) are compiled and stored in

the schema, then later run within the DBMS. PSM consists of

stored procedures and stored functions, which are collectively

called stored routines. Stored routines can be written in



CREATE FUNCTION get_author_name (aid CHAR(10))
RETURNS CHAR(50)
READS SQL DATA
LANGUAGE SQL
BEGIN
DECLARE fname CHAR(50);
SET fname = (SELECT first_name

FROM author
WHERE author_id = aid);

RETURN fname;
END;

Fig. 1. PSM function get_author_name()

SELECT i.title
FROM item i, item_author ia
WHERE i.id = ia.item_id

AND get_author_name(ia.author_i) = 'Ben';

Fig. 2. An SQL query calling get_author_name()

either SQL or one of the programming languages with which

SQL has defined a binding (such as Ada, C, COBOL, and

Fortran). Stored routines written entirely in SQL are called

SQL routines; stored routines written in other programming

languages are called external routines.

As mentioned above, each commercial DBMS has its own

idiosyncratic syntax and semantics of PSM. For example, the

language PL/SQL used in Oracle supports PSM and control

statements. Microsoft’s Transact-SQL (similar to Sybase’s)

provides extensions to standard SQL that permit control

statements and stored procedures. IBM, MySQL, Oracle,

PostgreSQL, and Teradata all have their own implementation

of features similar to those in SQL/PSM.

We’ll use a running example through the paper of a stored

routine written in SQL and invoked in a query. This example

is from a bookstore application with tables item (that is, a

book) and publisher. In Figure 1, the conventional (non-

temporal) stored function get_author_name() takes a

book author ID as input and returns the first name of the author

with that ID. The SQL query in Figure 2 returns the title of the

item that has a matching author whose first name is Ben. This

query calls the function in its where clause. Of course, this

query can be written without utilizing stored functions; our

objective here is to show how a stored routine can be used to

accomplish the task.

III. SQL/TEMPORAL

SQL/Temporal [8], [9] was proposed as a part of the

SQL:1999 standard [3]. Many of the facilities of this pro-

posal have been incorporated into commercial DBMSes,

specifically IBM DB2 10 for z/OS, Oracle 11g and Teradata

13.10. Hence, SQL/Temporal is an appropriate language defi-

nition for considering temporal support of stored routines. In

the context of databases, two time dimensions are of general

interest: valid time and transaction time [13]. In this paper,

we focus on valid time, but everything also applies to trans-

action time. (Previous work by the authors on temporal query

language implementation has shown that the combination of

valid and transaction time to bitemporal tables and queries is

straightforward, but the details of supporting bitemporal data

in the PSM transformations to be discussed later have not yet

been investigated.)

We have identified two important features that provide

easy migration for legacy database applications to temporal

systems: upward compatibility (UC) and temporal upward

compatibility (TUC) [14]. Upward compatibility guarantees

that the existing applications running on top of the temporal

system will behave exactly the same as when they run on

the legacy system. Temporal upward compatibility ensures

that when an existing database is transformed into a temporal

database, legacy queries still apply to the current state.

To ensure upward compatibility and temporal upward com-

patibility [14], SQL/Temporal classifies temporal queries into

three categories: current queries, sequenced queries, and

nonsequenced queries [8]. Current queries only apply to

the current state of the database. Sequenced queries apply

independently to each state of the database over a specified

temporal period. Users don’t need to explicitly manipulate the

timestamps of the data when writing either current queries or

sequenced queries. Nonsequenced queries are those temporal

queries that are not in the first two categories. Users explicitly

manipulate the timestamps of the data when writing nonse-

quenced queries.

Two additional keywords are used in SQL/Temporal to

differentiate the three kinds of queries from each other.

Queries without temporal keywords are considered to be cur-

rent queries; this ensures temporal upward compatibility [14].

Hence, the query in Figure 2 is a perfectly reasonable

current query when one or more of the underlying ta-

bles is time-varying. Suppose that the item, author, and

item_author tables mentioned above are now all temporal

tables with valid-time support. That is, each row of each table

is associated with a valid-time period. As before, the semantics

of this query is, “list the title of the item that (currently) has

a matching author whose (current) first name is Ben.”

Sequenced and nonsequenced queries are signaled with

the temporal keywords VALIDTIME and NONSEQUENCED

VALIDTIME, respectively, in front of the conventional

queries. The latter in front of the SQL query in Figure 2

requests “the title of items that (at any time) had a matching

author whose first name (at any—possibly different—time)

was Ben.” These keywords modify the semantics of the

entire SQL statement (whether a query, a modification, a

view definition, a cursor, etc.) following them; hence, these

keywords are termed temporal statement modifiers [15].

The sequenced modifier (VALIDTIME) is the most inter-

esting. A query asking for “the history of the title of the item

that has a matching author whose first name is Ben” could

be written as the sequenced query in Figure 3. It is important

to understand the semantics of this query. (Ignore for now

that this query invokes a stored function. Our discussion here

is general.) Effectively the query after the modifier (which is

just the query of Figure 2) is invoked at every time granule

(in this case, every day, assuming a valid-time granularity of

DATE) over the entire time line, independently. So the query

of Figure 2 is evaluated for January 1, 2010, using the rows



VALIDTIME SELECT i.title
FROM item i, item_author ia
WHERE i.id = ia.item_id

AND get_author_name(ia.author_id) = 'Ben';

Fig. 3. A sequenced query calling get_author_name()

SELECT i.title,
LAST_INSTANCE(i.begin_time,ia.begin_time),
FIRST_INSTANCE(i.end_time,ia.end_time)

FROM item i, item_author ia
WHERE i.id = ia.item_id

AND get_author_name(ia.author_i) = 'Ben'
AND LAST_INSTANCE(i.begin_time,ia.begin_time)

< FIRST_INSTANCE(i.end_time,ia.end_time);

Fig. 4. The transformed query corresponding to Figure 3 (note: incomplete)

valid on that day in the item and item_author tables, to

evaluate a result for that day. The query is then evaluated for

January 2, 2010, using the rows valid on that day, and so forth.

The challenge is to arrive at this semantics via manipulations

on the period timestamps of the data.

A variant of a sequenced modifier includes a specific period

(termed the temporal context) such as the year 2010 after the

keyword, restricting the result to be within that period.

One approach to the implementation of SQL/Temporal is

to use a stratum, a layer above the query evaluator that

transforms a temporal query defined on temporal table(s)

into a (generally more complex) conventional SQL query

operating on conventional tables with additional timestamp

columns [16]. Implementing nonsequenced queries in the stra-

tum is trivial. Current queries are special cases of sequenced

queries. SQL/Temporal defined temporal algebra operators for

sequenced queries [8]. When the stratum receives a temporal

query, it is first transformed into temporal algebra, then into

the conventional algebra, and finally into conventional SQL.

Hence, the sequenced query of Figure 3 (again, ignoring the

function invocation for the moment) would be transformed

into the conventional query shown in Figure 4. This query

uses a temporal join. The semantics of joins operating inde-

pendently on each day is achieved by taking the intersection

of the validity periods. (Note that FIRST_INSTANCE() and

LAST_INSTANCE() are stored functions, defined elsewhere,

that return the earlier or later, respectively, of the two argument

times.) Other SQL constructs, such as aggregates and sub-

queries, can also be transformed, manipulating the underlying

validity periods to effect this illusion of evaluating the entire

query independently on each day.

While SQL/Temporal extended the data definition state-

ments and data manipulation statements in SQL, it never men-

tioned PSM. The central issue before us is how to extend PSM

in a coherent and consistent fashion so that temporal upward

compatibility is ensured and that the full functionality of PSM

can be applied to tables with valid-time and transaction-time

support. Specifically, what should be done with the invocation

of the stored function get_author_name(), a function that

itself references the (now temporal) table item_author?

What syntactic changes are needed to PSM to support time-

varying data? What semantic changes are needed? How can

Temporal SQL/PSM be implemented in an efficient manner?

Does the stratum approach even work in this case? What

optimizations can be applied to render a more efficient imple-

mentation? In this paper, we will address all of these questions.

IV. SQL/TEMPORAL AND PSM

In this section, we first define the syntax and semantics of

Temporal SQL/PSM informally, provide the formal structure

for a transformation to conventional SQL/PSM, then consider

current queries. We then turn to sequenced queries.

A. Motivation and Intuition

We considered three approaches to extend stored routines,

discussed elsewhere [17]. The basic role of a DBMS is to

move oft-used data manipulation functionality from a user-

developed program, where it must be implemented anew for

each application, into the DBMS. In doing so, this function-

ality need be implemented once, with attendant efficiency

benefits. This general stance favors having the semantics of a

stored routine to be implied by the context of that invocation.

Hence, for example, the temporal modifier of the SQL query

that invoked a stored function would specify the semantics

of that invocation. This approach assigns the most burden to

the DBMS implementor and imposes the least burden on the

application programmer.

As an example, the conventional query in Figure 2 will

be acceptable whether or not the underlying tables are time-

varying. Say that all three tables have valid-time support. In

that case, this query requests the title of the item that currently

has a matching author whose first name is Ben. (This is the

same semantics that query had before, when the tables were

not temporal, instead stating just the current information. This

is exactly the highly valuable property of temporal upward

compatibility [14].)

If we wish the history of those titles over time, as Ben

authors more books, we would use the query in Figure 3,

which employs the temporal modifier VALIDTIME. This

modifies the entire query, and thus the invocation of the stored

function get_author_name(). Conceptually, this function

is invoked for every day, potentially resulting in different

results for different authors and for different days. (Essentially,

the result for a particular author_id will be time-varying,

with a first name string value for each day.)

What this means is that there are no syntax extensions

required to effect the current, sequenced, and non-sequenced

semantics of queries (and modifications, views, etc.) that

invoke a stored function. Upward compatibility (existing ap-

plications work as before) and temporal upward compatibility

(existing applications work as before when one or more tables

are rendered temporal) are both ensured.

Since a stored routine can be invoked from another such

routine, it is natural for the context to also be retained. This

implies that a query within a stored routine should normally

not have a temporal modifier, as the context provides the

semantics. (For example, a query within a stored routine

called from a sequenced query would necessarily also be

sequenced.) This feature of stored routines eases the reuse



of existing modules written in conventional SQL. But what

if the user specifies a temporal modifier on a query within a

stored routine? In that case, that routine can only be invoked

within a nonsequenced context, which assumes that the user

is manually managing the validity periods. So it is perfectly

fine for the user to specify, e.g., VALIDTIME within a stored

routine, but then that routine will generate a semantic error

when invoked from anything but a non-sequenced query.

B. Formal Semantics

We now define the formal syntax and semantics of temporal

SQL/PSM query expressions. The formal syntax is specified

in conventional BNF. The semantics is defined in terms of

a transformation from Temporal SQL/PSM to conventional

SQL/PSM. While this source-to-source transformation would

be implemented in a stratum within the DBMS, we specify this

transformation using a syntax-directed denotational semantics

style formalism [18] to specify the transformation from tem-

poral SQL/PSM to conventional SQL/PSM. Such semantic

functions each take a syntax sequence (with terminals and

nonterminals) and transform that sequence into a string, often

calling other semantic functions on the non-terminals from the

original syntax sequence.

In SQL/Temporal, there are three kinds of SQL queries in

which PSMs can be invoked. The production of a temporal

query expression can be written as follows.

〈Temporal Q〉 ::= ( VALIDTIME ([〈BT〉, 〈ET〉])?|

NONSEQUENCED VALIDTIME )?〈Q〉

In this syntax, the question marks denote optional clauses. 〈Q〉
is a conventional SQL query. 〈BT〉 and 〈ET〉 are the beginning

and ending times of the query, respectively, if it is sequenced.

A query in SQL/Temporal is a current query by default (that is,

without the temporal keyword(s)), or a sequenced query if the

keyword VALIDTIME is used, or a nonsequenced query if the

keyword NONSEQUENCED VALIDTIME is used. Note that

〈Q〉 may invoke one or more stored functions. The semantics

of 〈Temporal Q〉 is expressed with the semantic function

TSQLPSM [[]]. cur [[]], seq [[]], and nonseq [[]] are the semantic

functions for current queries, sequenced queries, and nonse-

quenced queries, respectively. The traditional SQL semantics

is represented by the semantic function SQL [[]]; this semantic

function just emits its argument literally, in a recursive descent

pass over the parse tree. (We could express this in denotational

semantics with definitions such as

SQL [[SELECT 〈Q〉...]] = SELECT SQL [[〈Q〉]]...

but will omit such obvious semantic functions that mirror the

BNF productions.)

TSQLPSM [[〈Q〉]] = cur [[〈Q〉]]

TSQLPSM [[VALIDTIME [〈BT〉, 〈ET〉] 〈Q〉]]

= seq [[〈Q〉]] [〈BT〉, 〈ET〉]

TSQLPSM [[NONSEQUENCED VALIDTIME 〈Q〉]]

= nonseq [[〈Q〉]]

SQL/Temporal proposed definitions for the cur [[]] and seq [[]]
semantic functions [8], [9] used above. The temporal relational

algebra defined for temporal data statements cannot express

the semantics of control statements and stored routines. There-

fore, we need to use different techniques.

We first show how to transform current queries, then

present two techniques transforming sequenced queries,

namely, maximally-fragmented slicing and per-statement slic-

ing. Nonsequenced queries require only renaming of time-

stamp columns and so will not be presented here.

C. Current Semantics

The semantics of a current query on a temporal database

is exactly the same as the semantics of a regular SQL query

on the current timeslice of the temporal database. The formal

semantics of current query can be defined as taking the existing

SQL semantics followed by an additional predicate.

cur [[〈Q〉]] (r1, r2, ..., rn) = SQL [[〈Q〉]] τvt
now

(r1, r2, ..., rn)

In this transformation, r1, r2, ..., rn denote tables that are

accessed by the query 〈Q〉. We borrow the temporal operator

τvt
now

from the proposal of SQL/Temporal [9]. τvt
now

extracts

the current timeslice value from one (or more) tables with

valid-time support.

Calculating the current timeslice of a table is equivalent to

performing a selection on the table. To transform a current

query (with PSM) in SQL, we just need to add one predicate

for each table to the where clauses of the query and queries

inside the PSM. Assume r1, ..., rn are all the tables that are

accessed by the current query. The following predicate needs

to be added to all the where clauses whose associated from

clause mentions a temporal table.

r1.begin_time <= CURRENT_TIME AND

r1.end_time > CURRENT_TIME AND

. . .

rn.begin_time <= CURRENT_TIME AND

rn.end_time > CURRENT_TIME

As an example, the current version of the function in

Figure 1 should be transformed to the SQL query in Figure 5

and the current query in Figure 2 is transformed to the SQL

query in Figure 6.

V. MAXIMALLY-FRAGMENTED SLICING

Maximally-fragmented slicing applies small, isolated

changes to the routines by adding simple predicates to the SQL

statements inside the routines to support sequenced queries.

The idea of maximally-fragmented slicing is similar to that

used to define the semantics of τXQuery queries [19], which

adapted the idea of constant periods originally introduced to

evaluate (sequenced) temporal aggregates [20].

The basic idea is to first collect at compile time all the

temporal tables that are referenced directly or indirectly by

the query, then compute all the constant periods over which

the result will definitely not change, and then independently

evaluate the routine (and any routines invoked indirectly) for





max [[〈select statement〉]] =
SELECT max [[〈select list〉]], cp.begin_time,

cp.end_time

FROM max [[〈table reference list〉]], cp
[ WHERE max [[〈search condition〉]] AND
overlap [[tables [[〈select statement〉]]]], cp.begin_time ]
[ max [[〈group by clause〉]], cp.begin_time ]
[ HAVING max [[〈search condition〉]] ]

A sequenced query always returns a temporal table, i.e., each

row of the table is timestamped. Therefore, cp.begin_time

and cp.end_time are added to the select list and cp is

added to the from clause. A search condition is added to the

where clause to ensure that tuples from every table overlaps

the beginning of the constant period. (By definition, no table

will change during a constant period, so checking overlaps

with the start of the constant period, which is quicker than the

more general overlaps, is sufficient.) The semantic function

tables [[ ]] returns an array of strings, each is a table reference

appearing in the input query. The semantic function overlap [[ ]]
returns a series of search conditions represented as a string.

If there are n tables referenced in the statement, overlap [[ ]]
returns n conditions, each of the form

tname.begin_time <= cp.begin_time AND

cp.begin_time < tname.end_time

where tname is the table name.

In the above transformation, four nonterminals need to

be transformed: (〈select list〉, 〈table reference list〉, and two

〈search condition〉s). If the select statement is not a nested

query, the only aspect that need to be transformed in these

four nonterminals are the function calls that occur in these

nonterminals, using the maxf [[ ]] semantic function.

max [[〈function call〉]] = max_〈function name〉(
maxf [[〈parameter list〉]])

maxf [[〈parameter list〉]] = 〈parameter list〉, begin_time

C. Stored Functions Invoked in SQL Queries

The body of the definition of F also needs to be transformed.

All the SQL queries inside F are transformed in max_F to

a temporal query at the input time point cp.begin_time.

This transformation is done by adding a condition of overlap-

ping cp for each temporal table in the where clause.

max [[〈function definition〉]] = maxf [[〈function definition〉]]

maxf [[〈search condition〉]] = 〈search condition〉 AND

overlap [[tables [[〈select statement〉]], begin_time]]

The select statement could be a nested query having a

subquery in either the from clause or the where clause. In this

case, the subquery (a select statement) should be transformed

to a temporal query at the time point cp.begin_time.

Therefore, the transformation of a subquery is similar to the

transformation of a query inside a function.

If another function is called inside a function, the constant

period passed into the original function is also passed into the

SELECT i.title, cp.begin_time, cp.end_time
FROM item i, item_author ia, cp
WHERE i.id = ia.item_id

AND max_get_author_name(ia.author_i,
cp.begin_time) = 'Ben'

AND i.begin_time <= cp.begin_time
AND cp.begin_time < i.end_time
AND ia.begin_time <= cp.begin_time
AND cp.begin_time < ia.end_time;

Fig. 9. Figure 3 using maximally-fragmented slicing

CREATE FUNCTION max_get_author_name
(aid CHAR(10),
begin_time_in DATE)

RETURNS CHAR(50)
READS SQL DATA
LANGUAGE SQL
BEGIN
DECLARE fname CHAR(50);
SET fname = (SELECT first_name

FROM author
WHERE author_id = aid
AND author.begin_time <= begin_time_in
AND begin_time_in < author.end_time);

RETURN fname;
END;

Fig. 10. Figure 1 using maximally-fragmented slicing

nested function. If a procedure is invoked inside the original

function, the same constant period is passed to the procedure.

The output parameters of the procedure remain unchanged.

As a useful optimization, if the function does not involve

any temporal data, then cp.begin_time does not need to

be passed as a parameter. Again, compile-time reachability

analysis can propagate such an optimization.

As an example, let’s look at our sequenced query in

Figure 3. This query is transformated into the SQL query

shown in Figure 9, which calls the function in Figure 10.

D. External Routines

For external routines written in other programming lan-

guages such as C/C++ and Java, the same transformation

applies to the source code of the routine. When the external

routine has SQL data manipulation statements, its source code

is usually available to DBMS for precompiling and thus the

transformation can be performed. In the case that a PSM is

a compiled external routine, the routine must not access any

database tables, and thus there is no need to transform it.

VI. PER-STATEMENT SLICING

Maximally-fragmented slicing evaluates a stored routine

many times when the base tables change frequently over time,

each time at a single point in time. We therefore developed

a second transformation approach, termed per-statement slic-

ing, which separately slices each construct that references a

temporal result, whether it be a temporal table or the result

of an routine that ultimately references a temporal table. The

idea of per-statement slicing is to transform each sequenced

routine into a semantically-equivalent conventional routine that

operates on temporal tables. Therefore, each SQL control

statement inside the routines should also operate on temporal

tables. This transformation produces more complex code, but

that code only iterates over the partial slicing to that point.



Figure 7(c) shows the slicing that would be done in the

SQL statement (between item and item_author), with

six calls (the asterisks, fewer than maximal slicing) to the

get_author_name() function. Three of those calls require

further slicing on the author relation within the function.

We illustrate the per-statement transformation on the

get_author_name() function and then briefly summarize

more complex transformations. Recall from Figure 1 that this

function consists of a function signature, a declaration of the

fname variable, a SET statement, and a RETURN statement.

Each of these constructs is transformed separately. We use

the semantic function ps [[ ]] to show the transformation of

per-statement slicing. p is an input parameter of the semantic

function indicating the period of validity of the return data of

the input query.

A. The Function Signature

In per-statement slicing, each routine being invoked in a

sequenced query has the sequenced semantics. Hence the

output and return values are all temporal tables. This requires

the signature of the routine to be changed. Each sequenced

function is evaluated for a particular temporal period and the

return value of the sequenced function is a temporal table over

that temporal period. Therefore, a temporal period is added to

the input parameter list. The return value is a sequence of

return values, each associated with a valid-time period. The

formal transformation of a function definition is as follows.

The nonterminal 〈function specification〉 defines the signa-

ture of the function and includes three non-terminals, namely

〈routine name〉, 〈declaration list〉, and 〈returns clause〉. The

transformation differentiates the name of the sequenced func-

tion from the original function with current semantics with a

prefix.

ps [[〈routine name〉]] = ps 〈routine name〉
While maximally-fragmented slicing adds only a single in-

put parameter (the begin time of the constant period), per-

statement slicing adds two input parameters (the begin and

end times of the period itself, named to differentiate from the

returned periods).

ps [[〈parameter declaration list〉]] =
〈parameter declaration list〉, min_time DATE,

max_time DATE

The 〈returns clause〉 has the following syntax.

〈returns clause〉 ::= RETURNS 〈data type〉
The data type of the return value is transformed to a temporal

table derived by a collection type. A collection type is a set

of rows that have the same data structure.

ps [[〈return clause〉]] =
RETURNS ROW(taupsm_result 〈data type〉,
begin_time DATE,

end_time DATE) ARRAY

This returned temporal table is then joined with other

temporal tables in the invoking query. We can then integrate

the result of this function in a way very similar to that shown

in Figure 3, with the only change being the use of both

begin_time and end_time.

B. The Function Body

The returned value is always a temporal table (the array of

rows just stated). We need to add to the function’s declaration

list a declaration of this table.

ps [[〈decl list〉]] =
〈decl list〉
DECLARE psm_return

ROW(taupsm_result〈data type〉,
begin_time DATE,

end_time DATE) ARRAY

We now turn to the body of the get_author_name()

function. The first statement declares the fname variable,

which must now be time-varying. The second statement sets

the value of fname to the result of a select statement, which

must be transformed to its sequenced equivalent. The third

statement returns this variable. We employ a compile-time

optimization that aliases the fname variable to the return

variable, so that we can use the same temporal table for both.

〈assignment statement〉 ::= SET 〈assignment target〉 =
〈value expression〉

The 〈assignment target〉 is usually a variable. A variable

inside a routine is transformed to a temporal table. Therefore

a sequenced assignment statement tries to insert tuples into or

update the temporal table for a certain period. Intuitively the

assignment statement should be transformed to a sequenced

insert or update. Here we transform it to a sequenced delete

followed by an insert to the target temporal table. If there are

tuples valid in the input time period, they are first deleted, then

new tuples are inserted. It is the same as sequenced update. If

there are no tuples valid in the input time period, a new tuple is

inserted. The inserted tuples are returned from the sequenced

〈value expression〉.
ps [[〈assignment statement〉]] =

ps [[DELETE FROM TABLE 〈assignment target〉]] p;
INSERT INTO TABLE 〈assignment target〉

ps [[〈value expression〉]]
In our example, we don’t need a deletion statement in the

transformed code because this is the first assignment to that

variable. The transformation of the SELECT is simple, because

it only contains selection (the where clause) and projection (the

select clause). However, we only want the values valid within

the period passed to the function.

The final statement is the return statement. Each

〈return statement〉 is transformed to an INSERT statement that

inserts some tuples into the temporal table that stores all the re-

turn values. At the end of the function, one 〈return statement〉
is added to return the temporal table. The invoking query will

then get the return value and use it as a temporal table.

ps [[〈return statement〉]] =
INSERT INTO TABLE ps_return_tb

ps [[〈value expression〉]]
The sequenced 〈value expression〉 returns a temporal table

that has three columns: one value with the same type of the

〈value expression〉, one begin_time, and one end_time

of the valid-time period of the value. 〈value expression〉 could

be a literal, a variable, a select statement that returns a single



CREATE FUNCTION ps_get_author_name(
aid CHAR(10),
min_time DATE,
max_time DATE)

RETURNS ROW (taupsm_result CHAR(50),
begin_time DATE,
end_time DATE) ARRAY

READS SQL DATA
LANGUAGE SQL
BEGIN
DECLARE psm_result

ROW (taupsm_result CHAR(50),
begin_time DATE,
end_time DATE) ARRAY;

INSERT INTO psm_result
SELECT a.first_name,

LAST_INSTANCE(a.begin_time, min_time),
FIRST_INSTANCE(a.end_time, max_time),

FROM author a
WHERE a.author_id = aid AND

LAST_INSTANCE(a.begin_time, min_time)
< FIRST_INSTANCE(a.end_time, max_time)

RETURN psm_result;
END;

SELECT i.title,
LAST_INSTANCE(

LAST_INSTANCE(i.begin_time,ia.begin_time),
t.begin_time) as begin_time,

FIRST_INSTANCE(
FIRST_INSTANCE(i.end_time,ia.end_time),
t.end_time) as end_time

FROM item i, item_author ia,
ps_get_author_name(ia.author_id,

LAST_INSTANCE(i.begin_time,ia.begin_time),
FIRST_INSTANCE(i.end_time,ia.end_time)) t

WHERE i.id = ia.item_id AND
t.taupsm_result = 'Ben' AND
LAST_INSTANCE(

LAST_INSTANCE(i.begin_time,ia.begin_time),
t.begin_time)

< FIRST_INSTANCE(
FIRST_INSTANCE(i.end_time,ia.end_time),
t.end_time)

Fig. 11. Per-statement transformation for Figure 3

value, or a function that returns a single value. It is trivial to

transform a literal into a temporal tuple: we just need to add

the valid period for the literal. A variable is transformed to

a select statement that retrieves the tuples from the temporal

table (the sequenced variable). The transformation of the se-

quenced select statement is given in previous research [9], and

the transformation of a sequenced function call was defined

above.

In this case, we are returning just a single variable, a variable

that has been aliased to the return value already. So we just

have to return that temporal table.

The result of transforming both the function and its invo-

cation within SQL is shown in Figure 11. It is interesting to

compare this result with that for maximal slicing (Figures 8,

10, and 9). In maximal slicing, we need to first do all the

work of computing the (potentially many) constant periods, but

then things are pretty easy from there on out: the transformed

function needs to evaluate only within a constant period, where

things are by definition not time-varying. In per statement

slicing, on the other hand, the function caller states a somewhat

restricted evaluation period, and the function itself further

slices, in this case within the SELECT on the author periods,

within the evaluation period.

C. Transforming Other SQL Statements

Denotational semantics for the transformations of all of the

statements are given elsewhere [17]. Transformations for the

signature, assignment statement, and return statement were

discussed above in some detail. We now end with a summary

of the other statements.

As befits its name, per-statement slicing will slice on time

whenever a time-varying relation is involved, either directly or

indirectly as the return value of a function call or SQL state-

ment or through a time-varying value in a variable. (Indeed, a

time-varying relation is generally encountered through a time-

varying variable such as a cursor, so all of the alternatives

come down to time-varying variables.) As PSM is a block-

structured language, slicing is also block structured. Compile-

time analysis is used determine the scope of each time-varying

variable. Upon encountering such a variable, the transforma-

tion inserts a WHILE loop that iterates over the constant

periods of that variable. The extent of that loop is the portion of

the block in which that variable is active. (Some optimizations

can eliminate the WHILE loop, as in the example above: the

while loop is implicitly resident in the INSERT statement.) A

WHILE statement over a time-varying SQL statement will thus

be transformed to two WHILE statements, the outer one over

constant periods (of the SQL statement and the time-varying

context thus far) and an inner one over the tuples within that

particular constant period. On the other hand, if no new time-

varying activity is introduced by any portion of the statement,

the statement can remain as is. Finally, external routines are

mapped as they are in maximal slicing.

VII. PERFORMANCE STUDY

How might these two quite different time-slicing techniques

perform? Intuitively, there should be queries and data that

favor each approach. If a sequenced query specifies a very

short valid-time period as its temporal context, maximally-

fragmented slicing should perform better because it has the

less complex statements in the routine and a few calls to

each routine. On the other hand, if a sequenced query re-

quires the result for a very long valid-time period and the

data changes frequently in this period, the number of calls

to the routine could be large for the maximally-fragmented

slicing. In this case, per-statement slicing may outperform

maximally-fragmented slicing. We now empirically evaluate

the performance.

A. The τPSM Benchmark

To perform our evaluation, we create and use the τPSM

benchmark, which is now part of τBench [21]. τBench

is a set of temporal and non-temporal benchmarks in

the XML and relational formats, created by the authors.

τBench is built upon XBench, a family of benchmarks with

XML documents, XML Schemas, and associated XQuery

queries [22]. One of the benchmarks in XBench, called the

document-centric/single document (DC/SD) benchmark, de-

fines a book store catalog with a series of books, their authors

and publishers, and related books. XBench can randomly



generate the DC/SD benchmark in any of four sizes: small

(10MB), normal (100MB), large (1GB), and huge (10GB).

1) Data Sets: τBench provides a family of temporal and

non-temporal benchmarks, all based on the original DC/SD

XBench benchmark, including the PSM and τPSM bench-

marks [21]. For the former, τBench shreds the data into tables.

For the latter, τBench begins with a simulation to transform

the DC/SD dataset into a temporal dataset. This simulation

step involves randomly changing data elements at specific

points in time. A set of user-supplied parameters controls

the simulation, such as how many elements to change and

how often to change them. Then τBench shreds this XML

data into the following six temporal tables: item (books),

author, publisher, related_items, item_author

(to transform items to authors), and item_publisher (to

transform items to publishers).

We used three datasets in our experiments: DS1, DS2, and

DS3. DS1 contains weekly changes, thus it contains 104 slices

over two years, with each item having the same probability

of being changed. Each time step experiences a total of 240

changes; thus there are 25K changes in all. DS2 contains

the same number of slices but with rows in related tables

associated with particular items changed more often (using a

Gaussian distribution), to simulate hot-spot items. DS3 returns

to the uniform model for the related tuples to be changed, but

the changes are carried out on a daily basis, or 693 slices

in all, each with 240 changes, or 25K changes in all (the

number of slices was chosen to render the same number of

total changes). These datasets come in different sizes: SMALL

(e.g., DS1.SMALL is 12MB in six tables), MEDIUM (34MB),

and LARGE (260MB).

2) Queries: The PSM benchmark contains 16 queries

drawn from the 19 queries in XBench (some of the XBench

queries were too specific to XML to be transformed to PSM).

Each PSM query highlights a feature. Query q2 highlights

the construct of SET with a SELECT row, 2b multiple SET

statements, q3 a RETURN with a SELECT row, q5 a function in

the SELECT statement, q6 the CASE statement, q7 the WHILE

statement, q7b the REPEAT statement, q8 a loop name with

the FOR statement, q9 a CALL within a procedure, q10 an IF

without a CURSOR, q11 creation of a temporary table, q14 a

local cursor declaration with associated FETCH, OPEN, and

CLOSE statements, q17 the LEAVE statement, q17b a non-

nested FETCH statement, q19 a function called in the FROM

clause, and q20 a SET statement. (Some queries, such as q2,

were also changed to highlight a different feature, such as

multiple SET statements in q2b. See also q7b and q17b.)

We extended each of these queries by prepending the

keyword VALIDTIME to render a sequenced variant. We

then transformed each according to the maximally-fragmented

slicing (abbreviated here as MAX) and per-statement slicing

(abbreviated here as PERST) approaches discussed above. Fi-

nally, we transformed each of these versions to their equivalent

in DB2’s syntax. The entire set of queries is available on the

fourth author’s website [21].

Query q2 is the SQL query in Figure 3 along with the

associated stored function get_author_name() given in

Figure 1. The MAX version is shown in Figures 9 and 10; the

PERST version is provided in Figure 11.

Query q17b is notable in that it has a non-nested FETCH

statement. There is an outer loop that includes a fetch from

the all_items_cur cursor at the very end of the loop. But

within the loop is a call to has_canadian_author, which

returns a temporal result, and a call to is_small_book,

which also returns a temporal result. Both of these require

a FOR loop. The effect is that there is a while loop on the

original cursor enclosing nested for loops on the temporal

results, enclosing code including a fetch of the outer cursor.

It is that last piece that cannot be accommodated by the per-

statement transformation. Hence, there are no timings for q17b

for the per-statement transformation in any of the experiments.

(We emphasize that MAX always applies, so the entire PSM

language is accommodated.)

B. Experiments

We performed a series of experiments to examine the fea-

sibility of utilizing the transformation strategy. We compared

the performance between MAX and PERST over a range of

several factors: data set (which considers both distribution of

changes and number of changes per time step), data set size

(small, medium, large), length of the temporal context, and

query (which gets at impact of language constructs).

All experiments were conducted on a 2.4GHz Intel Core 2

machine with 2GB of RAM and one 320GB hard drive running

Fedora 6 64bit. We chose DB2 (Version 9.1) as the underlying

SQL engine, primarily because its PL/SQL supports most

of the functions in standard SQL/PSM. However, we had

to modify some of the queries to make them acceptable to

DB2. For example, queries q3, q11, and q14 all use the SQL

keyword BETWEEN; this predicate needs to be transformed to

two less-than-or-equal predicates. The list of about a dozen

inconsistences is provided elsewhere [21, Appendix D]. For

all the database settings, we used default settings provided by

DB2. We performed the experiments with a warm cache to

focus on CPU performance.

We started with the sixteen nontemporal PSM queries in

τBench. The original queries totalled 500 lines of SQL. We

first transformed these queries into the DB2 PSM syntax,

adding about forty lines. We then transformed each into its

maximal slicing (1600 lines) and per-statement slicing variants

(2000 lines). Hence, the nontemporal queries, at about 30

lines each, expanded to 100 lines (maximal) to 125 lines (per-

statement). (Recall that all the user had to do was to prepend

VALIDTIME to the SQL query.)

To ensure that our transformations were correct, we com-

pared the result of evaluating each nontemporal query on a

timeslice of the temporal database on each day with the result

of a timeslice on that day of the result of both transformations

of the temporal version of the query on the temporal database,

termed commutativity [23]. We also ensured that the results

of maximal slicing and per-statement slices were equivalent,

and were also equivalent to the union of slices produced



by their nontemporal variant. These tests indicate that the

transformations accurately reflected the sequenced semantics.

Query 2 asks for author “Ben.” However, the generated data

does not contain any records with Ben. To avoid the query

returning an empty result set, in which case the DBMS could

apply some optimization and thus invalidate meaningful run

time measurements, we change the query to look for a valid

author that is present in the data.

C. Length of Temporal Context

First, we varied the length of the temporal context used in

the sequenced query, selected from one day, one week, one

month, and one year. (Recall that the data sets contain two

years of data.) We performed experiments with both large and

small datasets. The results for DS1-SMALL are presented in

Figure 12 and for DS1-LARGE in Figure 13, respectively.

In these plots, the x-axis is the length of the temporal

context (“d” denotes one day; “y” denotes one year) and the

y-axis shows running time in seconds on a logarithmic scale.

Two plots are given for each query: MAX with a solid line and

circles for points and PERST with a dotted line and triangles

for points. So MAX for q2 for a temporal scope of one day on

DS1-SMALL took about 10−0.7 or 200 milliseconds, whereas

that query with a temporal scope of one year ran about 100.8

or six seconds. (The actual values in seconds were 0.21, 0.19,

0.67, and 6.6 seconds for MAX and 0.31, 0.29, 0.34, and 0.32

seconds for PERST. )

Examining the trends in Figure 12, using DS1-SMALL, four

classes of queries are observed. For class A, per-statement

slicing is always faster: queries q7, q7b, q11, q14, and q19.

Class B is more interesting: for queries q2, q2b, q3, q6,

and q8, PERST becomes faster than MAX for a temporal

context of between one week and one month. For q17, MAX

is always faster than PERST; we call this class C. For the

remaining queries, comprising class D, MAX starts off faster,

but approaches or meets PERST at a long temporal context:

q5, q9, q10, and q20.

Similar trends can be observed for data set DS1-LARGE

(260MB versus 12MB), shown in Figure 13, with some queries

about two orders of magnitude slower, which is to be expected.

(For q5, both perform almost identically.) A few queries move

between classes. Queries q3 and q6 move from class B to

class A. q9 and q10 move from class D to class B, all due

to MAX getting relatively slower. Interestingly, q7 and q7b

change from class A to class C. We provide an explanation

of such behavior shortly. With the large dataset, PERST is

relatively flat, whereas for most queries MAX has what appears

to be a linear component as the temporal context grows from

1 day to 7 days to 30 days to 365 days.

It seems that two effects are in play. We observe a break-

even point between the two strategies, which can be explained

in that for a very short query time period, the overhead of

creating all the constant periods is low and given the simplicity

of maximal slicing, the running time of MAX could be faster

than a more complicated PERST query.

We also postulate that the execution time of MAX increases

significantly because the routine is repeatedly invoked from

the WHERE clause in the SQL query. The number of times a

routine is invoked is determined by the number of satisfying

tuples. Therefore, a routine can be called many times. On the

other hand, in PERST the routine is called only once. As shown

by both figures, running time for PERST is fairly constant.

PERST versions of queries q7 and q7b are quite slow on

the large dataset. Interestingly, as shown in Figure 12, these

two queries show significant increase in running time even for

PERST. The reason is these two queries require cursors to be

processed on a per-period basis. Specifically, for each time pe-

riod, the records need to be processed individually from other

periods. Therefore, an auxiliary table is needed to temporarily

store the period-based records. As rows are inserted into this

auxiliary table for each time period, the transaction log in the

DBMS rapidly fills up. Especially when the temporal context

is longer, the number of time periods to be processed is higher

and writing the logs takes longer. Query q17 is similar to

these two queries. Therefore, the requirement of writing logs

significantly impacts the performance of these queries.

In summary, we found that PERST in general outperforms

MAX, especially with a long temporal context and for larger

data sets, probably because PERST only invokes a routine once

while MAX invokes a routine many times. For certain types

of queries, MAX is required.

D. Scalability

While Figure 13 somewhat gets at scalability, the plots in

Figure 14 do so directly. Here the x-axis is dataset size: ‘S’

denotes SMALL, ‘M’, MEDIUM, and ‘L’, LARGE. For most

of the queries, we observe that as the dataset size increases,

the running time of a query also increases. There are two

exceptions, q7b and q17b, showing a decrease in running time

from small to medium, for the maximal slicing approach. Due

to the size difference of the datasets, a different query plan

can be used for each of these datasets, even with an identical

SQL query statement. MAX requires a routine to be executed

many times, which accentuates the performance difference. In

particular, if the plans for executing the SQL statements are

even a little slower in the small dataset than in the medium,

a significant performance difference can be expected.

E. Varying Number of Slices and Data Distribution

Figure 15 shows a comparison among the three datasets

(the SMALL version of each). Increasing the number of slices

(compare DS1 with DS3) appears to have a significant impact

on performance, especially for MAX. Increasing the skew

of the data (from uniform to Gaussian distribution: DS1

compared with DS2) produces a decrease in running time for

maximal slicing on queries q2 and q2b. For these two queries,

one of the predicates asks for a particular item that is not a

hot spot. There are thus fewer changes to this selected item,

and processing a fewer number of records results in a shorter

running time. (Presumably if the selected data was in a hot

spot, exactly the opposite would occur.)
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Fig. 12. Varying Time Period on the Small Dataset (DS1-SMALL).
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Fig. 13. Varying Time Period on the Large Dataset (DS1-LARGE).

Data Size

T
im

e
 (
lo
g

1
0
(s

))

−2

−1

0

1

2

3

4

q2

l

l

l

S M L

q2b

l

l

l

S M L

q3

l
l

l

S M L

q5

l
l

l

S M L

q6

l

l

l

S M L

q7

l l l

S M L

q7b

l

l l

S M L

q8

l
l

l

S M L

q9

l l

l

S M L

q10

l

l

l

S M L

q11

l

l

l

S M L

q14

l l

l

S M L

q17

l l

l

S M L

q17b

l

l

l

S M L

q19

l l

l

S M L

q20

l l

l

S M L

l Max

PerSt

Fig. 14. Varying Data Set Size (for Data Set DS1, S = 12MB; M = 34MB; L = 260MB).
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Fig. 15. Varying Data Characteristics (DS1-SMALL (Weekly, Uniform), DS2-SMALL (Weekly, Gaussian), and DS3-SMALL (Daily, Uniform)).

In general, DS1 and DS2 show no significant difference,

whereas DS3 causes longer running times. We conclude that

the number of slices is a dominant factor in determining the

performance of queries, especially for MAX.

F. Choosing the Approach

Of the 160 data points reported in Figures 12–15, PERST is

faster for about 70% of these. It appears that a query optimizer

should choose that slicing method unless (a) the transformation

rules don’t work for PERST, e.g., non-nested FETCHes as

discussed at the end of Section VII-A2 (15 data points),

(b) cursors are required on a per-period basis by PERST and

the data set is large, which as the case for queries q7 and

q7b (22 out of 28 data points), or (c) the query is on a small

database and has a short temporal context (27 out of 41 data

points). This multi-faceted heuristic works most of the time,

though it selects the wrong slicing method in about 13% of the

cases. Note though that some of the per-statement functions

are very complex and are being evaluated by a sophisticated

DBMS, making general statements about relative performance

difficult.



VIII. SUMMARY AND FUTURE WORK

PSM is now mature technology, and several DBMS vendors

now include substantial support for temporal queries. How

should PSM be extended so that temporal upward compati-

bility is ensured and that the full functionality of PSM can be

applied to tables with valid-time and transaction-time support?

Our proposal is to apply the notion of temporal modifier,

already in play in SQL/Temporal, full-force to PSM. How can

Temporal SQL/PSM be implemented in an efficient manner?

Does the stratum approach even work in this case? What

optimizations can be applied to render a more efficient imple-

mentation? The maximally-fragmented slicing transformation

is relatively simple. In fact, the routine is largely unaffected,

other than being passed a date to be used in queries contained

in it, and passed on to other routines. The bulk of the work is

done before the query itself is executed

The maximally-fragmented transformation always applies.

However, because it possibly renders many tiny snippets and

invokes the routine (and thus, subsequently-invoked other

routines) on a per constant basis, such a transformation might

be slow. Thus we developed per-statement slicing, which slices

at the statement level, involving fewer routine calls but more

complex routines. The per-statement mapping is not complete.

Our empirical study showed that the length of the temporal

context has a significant impact on the performance of MAX:

the shorter the query period, the fewer the slices, therefore,

the better the performance of MAX. This simple transforma-

tion could be better than PERST when the query period is

short enough. However, when the query period is longer, the

performance of MAX drops dramatically.

This paper offers for the first time a well-defined syntax and

semantics and at least two possible implementation strategies,

providing a way forward for vendors to extend their support

of temporal queries to include invocation of routines.

There are several avenues for further investigation. The

transformations should be automated, so that users don’t need

to see the complexities, and refined to work with the Oracle

and Teradata-specific variants of PSM. Also to be worked out

is support for bitemporal data. We are also considering further

optimizations to the transformation. While we have empirical

evidence that our transformations are correct, it would be

helpful to use a formal semantics of SQL and of PSM to prove

their correctness. It would also be useful to develop a cost

model that can predict which transformation will perform bet-

ter, to replace the heuristic in Section VII-F. We note that the

τBench queries form a micro-benchmark, in that each query

generally focuses on one construct. A more detailed analysis of

the performance figures for these queries might shed light on

how a complex routine containing multiple constructs might

perform. Finally, maximal and per-statement slicing provide

endpoints of a spectrum. Each statement provides a possible

location for slicing, with each location slicing on one or more

underlying temporal tables. Ideally the transformation would

decide exactly where and how aggressive each slicing should

be to maximize performance.

IX. ACKNOWLEDGMENTS

This research was supported in part by NSF grants

IIS-0415101 and IIS-0803229 and a grant from Microsoft.

REFERENCES
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[15] M. H. Böhlen, C. S. Jensen, and R. T. Snodgrass, “Temporal Statement
Modifiers,” ACM Transactions on Database Systems, vol. 25, no. 4, pp.
407–456, 2000.

[16] K. Torp, C. S. Jensen, and R. T. Snodgrass, “Stratum Approachs to
Temporal DBMS Implementation,” in Proceedings of IDEAS, Cardiff,
Wales, UK, 1998, pp. 4–13.

[17] D. Gao, “Supporting the procedural component of query languages over
time-varying data,” Ph.D. dissertation, Computer Science Department,
University of Arizona, Apr. 2009.

[18] J. E. Stoy, “Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory,” The MIT Press, 1979.

[19] D. Gao and R. T. Snodgrass, “Temporal Slicing in the Evaluation of
XML Queries,” in Proceedings of International Conference on Very

Large Data Bases, Berlin, Germany, September 2003, pp. 632–643.
[20] R. T. Snodgrass, S. Gomez, and L. E. McKenzie, “Aggregates in the

Temporal Query Language TQuel,” IEEE Transactions on Knowledge

and Data Engineering, vol. 5, no. 5, pp. 826–842, 1993.
[21] S. W. Thomas, R. T. Snodgrass, and R. Zhang, “τBench: Extending

XBench with Time,” TimeCenter, 2010, TR-92, accessed December
2010. [Online]. Available: http://cs.queensu.ca/∼sthomas
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