
162 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

Application-Dependent Dynamic Monitoring
of Distributed and Parallel Systems

David M. Ogle, Karsten Schwan, and Richard Snodgrass, Senior Member, IEEE

Abstract- Achieving high performance for parallel or dis-
tributed programs often requires substantial amounts of infor-
mation about the programs themselves, about the systems on
which they are executing, and about specific program runs. The
monitoring system presented in this paper collects, analyzes, and
makes application-dependent monitoring information available to
the programmer and to the executing program. The system may
be used for off-line program analysis, for on-line debugging, and
for making on-line, dynamic changes to parallel or distributed
programs to enhance their performance. We employ a high-
level, uniform data model for the representation of program
information and monitoring data. We show how this model may
be used for the specification of program views and attributes for
monitoring, and we demonstrate how such specifications can be
translated into efficient, program-specific monitoring code that
uses alternative mechanisms for the distributed analysis and
collection to be performed for the specified views. The model’s
utility has been demonstrated on a wide variety of parallel
machines, including several kinds of multiprocessors and a local
area network.

Index Terms- Application-dependent monitoring, distributed
programs, dynamic monitoring, parallel programs, program
adaptation, program configuration, program monitoring, pro-
gram performance.

I. MONITORING THE PERFORMANCE OF PARALLEL PROGRAMS

NE goal of writing programs for distributed and parallel 0 architectures is enhanced performance. Attaining high
performance often requires acquisition and use of substantial
amounts of information about programs, about the systems on
which they are running, and about specific program runs. Since
such information is difficult to predict accurately prior to a
program’s execution [151, [72], programmers must experiment
with and measure their distributed or parallel programs. For
example, experimentation may be needed to determine the
performance effects of a program’s load on processors and
communication links or of a program’s usage of certain
operating system facilities [15], [12].

Manuscript received February 25, 1991; revised December 1, 1992. This
work was supported in part by the National Science Foundation under ECS-
8307216 and ISI-8902707 and by an internal grant from the Department of
Computer and Information Science at Ohio State. It was performed while D.
Ogle and K. Schwan were at the Ohio State University and R. Snodgrass was
at the University of North Carolina, Chapel Hill.

D. M. Ogle is with the Experimental Systems Department, IBM Corpora-
tion, Research Triangle Park, NC 27709.

K. Schwan is with the College of Computing, Georgia Institute of Tech-
nology, Atlanta, GA 30332.

R. Snodgrass is with the Department of Computer Science, University of
Arizona, Tucson, AZ 85721.

IEEE Log Number 9210515.

This paper discusses the program monitor used by a system
for experimental parallel programming. This programming
system, called the Issos system, was able to utilize moni-
toring information to modify a program during its execution
(dynamically) or prior to or after its execution (statically).
Such changes, henceforth termed adaptations, were initiated
by programmers, or were performed under program control
without programmer intervention (e.g., for dynamic load bal-
ancing). In this fashion, the monitor and program construction
system jointly facilitated the experimental evaluation of the
performance of parallel or distributed programs.

The three interesting attributes of the Issos monitor are the
following.

Application-dependent monitoring: The monitor allows
programmers to specify the information to be collected,
analyzed, and displayed for each application program,
resulting in the generation of efficient, program-specific
configurations of the monitor’s collection and analysis
mechanisms.
Dynamic, distributed data collection and analysis: The
monitor both collects and analyzes information regard-
ing the execution of a program in real-time. As a result,
the monitor may be used to generate on-line displays
of execution information, and it may be combined with
tools that use such on-line information in order to
change or steer the running program. Furthermore, for
dynamic program changes that concern the improvement
of program performance (program tuning), the overhead
and latency of distributed information collection and
analysis must not significantly reduce the performance
gains realized by those changes. In response to these
needs, the monitor is designed to permit tradeoffs in the
amount of information collected and analyzed, the extent
and the accuracy of analysis, and the extent of program
adaptation. Such tradeoffs are realized in part by use
of alternative means of information collection, such as
tracing versus sampling.
Use of a language-independent datu model: The monitor
is independent from specific target programming or
program execution systems. What is to be monitored is
specified via the entity-relationship (ER) model [9]. Such
monitoring specifications are stated with novel language
constructs that also specify the desired latency and preci-
sion of monitoring, thereby permitting the configuration
of collection and analysis mechanisms for different uses
of the monitoring system and for different distributed
and parallel execution environments. In addition, use of

1045-9219/93$03.00 0 1993 IEEE

OGLE et al. DYNAMIC MONITORING OF DISTRIBUTED AND PARALLEL SYSTEMS 763

the E-R model for description of all other information
required for program monitoring and program adaptation
(ie., compilation- and load-time program information,
hardware configuration knowledge, etc.) facilitates the
monitor’s integration with the other tools used for pro-
gram construction, execution, and adaptation. All tool
interactions for purposes of program adaptation and
information sharing are performed using a main-memory
database [fill, [62] , [49], [66] that implements the E-R
model.

Our approach builds upon research originally performed
with the Cm* multiprocessor at Carnegie Mellon University
[63] , [65] that explored the use of the relational database model
for representation of and access to monitoring information
collected for a parallel program. However, due to our focus
on the dynamic use of monitoring information, we are not
concerned with long-term information storage using temporal
databases [64]. Instead, our monitor must be able to analyze
collected data instantaneously or with tolerable delays, with ac-
ceptable and variable overheads. In this fashion, we are able to
meet the constraints in terms of both execution efficiency and
interactions between the monitor and the application program
(for dynamic adaptations) and the programming environment
(for static adaptations). Variable overheads and delays are at-
tained in part by variation of the distribution and parallelization
of the monitor’s collection and analysis functions across the
nodes of the parallel and distributed target hardware. Such
distribution and parallelization are performed automatically
by generation of application-specific, customized collection
and analysis code based on declarative language statements
specified by application programmers.

This paper discusses the monitor’s design and prototype
implementation for three hardware and operating system con-
figurations, thereby demonstrating the target machine indepe-
dence of our approach: a seven-node custom multiprocessor
running an experimental real-time operating system [57], a
ten-node Encore MultiMax multiprocessor, and a local area
network of Sun-3 workstations using a Pyramid mainframe as
a file server. The set of applications with which the monitoring
system is used includes several simple parallel and distributed
programs written with the Issos system, such as the distributed
quicksort program used as an example throughout this paper,
and it includes two substantial applications written outside
of Issos for evaluation of the monitoring system: 1) the on-
line monitoring of properties such as “job load” for more
than 100 Sun-3 workstations and 2) the on-line monitoring
of communication load on the various subnetworks used for
workstation connectivity.

In the remainder of this paper, we first present the low
level data collection, analysis, and storage mechanisms that
comprise the monitor. We then discuss the monitor in terms of
the information model presented to the user, emphasizing how
the user may specify monitoring at this fairly abstract level.
A significant challenge to the monitor is translating constructs
in the information model into the low level mechanisms. We
discuss this translation in detail, and examine heuristics that
are appropriate for each of the three hardware configurations
on which the monitor has been implemented. One use of

monitoring information, dynamic adaptation, is illustrated with
the sample distributed quicksort program. We conclude with a
summary, a comparison with related research, and a discussion
of future work.

11. A MONITORING SYSTEM

The monitor is responsible for the collection and analysis
of distributed program information. Its overall structure is
shown in Fig. 1 for one hardware configuration, a distributed
research network connected by an EtherNet network. The
resident monitor, residing on each network node, collects and
analyzes monitoring information about processes executing on
that node. The resident monitors report to a central monitor
executing on the network node on which the monitoring
database is stored. The central monitor collects and analyzes
distributed information, interacts with the other tools in Issos,
and provides a user interface.’

The monitor was operated stand-alone and it was used
within the Issos system for parallel programming and program
adaptation. The different components of the Issos system are
depicted in Fig. 2.2 The solid, labeled lines between the
modules indicate the information exchanged prior to program
execution. The dotted lines indicate some of the informa-
tion exchanges during program execution (e.g., when using
the system for dynamic load balancing). This figure depicts
the generation of an instrumented, compiled, and loaded
application; the run-time instrumentation of an application
during execution is depicted in Fig. 1. The function of each
component as it relates to the monitoring system is described
below (see [62] for a more extensive description of this
environment).

Program construction system (PCS): The PCS is used
for program entry, editing, compilation, and initiation
of linking and loading. It describes a parallel program
as a set of objects interacting via invocation, and it
provides the initial description of each program to be
monitored, in terms of the information model used within
the environment, rather than in terms of the object-based
program model. It also permits the specification of the
adaptations to be performed for each program compilation
and run [49].
Adaptation controller (AC): The AC performs and su-
pervises the specified program adaptations. It requests
and receives information from the monitor in order to
perform adaptations and it receives instructions from the
user concerning the adaptations to be performed.
Loader and operating system (OS): The Loader and OS
are responsible for distributed loading, linking, startup,
and execution of the object-based parallel program. They
are also responsible for making available to the monitor
and AC certain information regarding the distributed

‘As other monitoring or performance display systems (e.g., the Paragraph
system [22]), we have not been concerned with the system’s failsafe operation.
Redundancy or the use of stable storage would be required at the central
monitor and database if the system were used for on-line failure analyses in
distributed systems subject to network or workstation failures.

’We note that most parallel programming systems [63], [4] will contain
similar sets of tools.

764 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 4, NO. 7, JULY 1993

Sun Workstation

Fig. 1. The distributed monitoring system.

program, such as the mapping of objects to processes
and the mapping of names used in object invocations to
socket identifiers used by the processes implementing an
object’s operations [2] (see the dotted lines).
Monitor: The Monitor is responsible for collecting, an-
alyzing, and making available the program information
required by the AC (as indicated by the dotted lines).

We will discuss the additional information in Fig. 2 (e.g.,
sensors and probes) in the next section. Also note that collected
and analyzed monitoring information as well as initialization-
time program information available from the loader and op-
erating system (see the dotted lines in the figure) may be
shared with the adaptation controller either directly or via the
database.

A. Collection and Analysis Mechanisms

Information can be collected either by sampling or by
tracing. Tracing consists of the reporting of all occurrences
of an event within a certain interval of time. Tracing is
synchronous with the occurrence of an event; it is performed
when all occurrences of an event must be known (e.g., when
collecting history information) or when each occurrence of
an event must be followed by a certain action [65]. On the
other hand, sampling is the collection of information at the
request of the monitor. Sampling may be asynchronous with
the occurrence of an event; it is useful when an immediate
reaction to an event is not necessary.

Sensors are small pieces of code residing within the program
being monitored. A sensor may perform either sampling or
tracing, and reports information, such as current value and
time, to the resident monitor. When to report such information
is determined in part by the user at the time of monitoring
specification. If a sensor also contains analysis code, it is
termed an extended sensor. Sensors are generated automati-
cally by the monitor based on the programmer’s specifications
of the events to be monitored. However, the insertion of the
generated sensors into the application code must be performed
manually; automatic placement requires the use of dependency
analyses like those used in parallelizing compilers.

A sample sensor implementation in Unix BSD 4.3 is shown
at the top of the next page.

This sensor traces the value of a program variable
bad-header-chksums in a network device driver. It
assumes the use of Unix sockets for the transmission of
information from the sensor to the monitor. Our multiprocessor
implementation of such a sensor uses shared memory to
implement the required message sending primitive.

A traced sensor begins tracing when it is enabled by the
resident monitor; it stops tracing when it is disabled. For
example, a sensor tracing the value of the variable Re-
quest-Queue-Size in some particular process of a dis-
tributed application using the monitor generates an output each
time the value of that variable is changed. The status of the
sensor (i.e., enabled or disabled) is kept in the address space

OGLE et al. DYNAMIC MONITORING OF DISTRIBUTED AND PARALLEL SYSTEMS 165

if(status[l] == 1)
{
sensor-struct.command = NEW-VAL;
sensor-struct.sensor-num = 1;
sensor-struct.sensor-time = gettimeofday();
sensor-struct.int-result = number-bad-header-chksums;
sendto(monitor~socket_send,&sendl&sensor~structlsizeof(sensor~struct)lOl

&monitor-sin-send,sizeof(monitor-sin-send));

of the sensor’s process and is checked when the sensor is
encountered during execution of the application code.

The resident monitor receives trace data via event records
generated by sensors. Event records contain 1) a command
identifier flagging the information as sensor data, 2) a sen-
sor number, identifying the reporting sensor, 3) the time at
which this event was recorded, and 4) a sensor-specific value.
Event records are communicated to the resident monitor by
notification or by message. Communication by notification
implies that the receipt of the record by the resident monitor is
synchronous with the execution of the sensor. Communication
by message implies that the composition and the receipt of
the event record are asynchronous, since the message may
be queued for an unknown period of time. For example, when
collecting history information regarding the values of the vari-
able Request-Queue-Size, event records can be received
asynchronously (by message) if the resident monitor need not
immediately know about the occurrence of each change in the
variable’s value. However, if the resident monitor has to react
immediately to the event that Request-Queue-Size has
exceeded some threshold value, then it must be interrupted
synchronously with the event (i.e., it should be notified).

A sampled sensor simply returns a single event record in
response to a sampling request from a resident monitor, again
by message or by notification.

Probes are a collection mechanism with behavior and per-
formance characteristics that differ from sensors (see Section
IV-B and [25]). Probes are code fragments residing within
the resident monitor (rather than the application) on each
network node. Probes directly access the address spaces of
individual processes on that node, thereby providing a conve-
nient mechanism for amp ling.^ The main advantage of probes
over sampled sensors is that the application code need not
be changed for probing, so that the information to be probed
may be defined dynamically. Furthermore, when monitoring
parallel programs executing on shared memory machines, the
use of probes versus sensors can reduce program perturbation
due to monitoring [65], [lo] (also see Section IV-B).

3As indicated in Fig. 2, the Unix implementation of probes with signal
operations requires that some probe code also resides in the target address
space (see [45] for a description of probe implementation in distributed Unix
systems).

B. Storage Mechanisms

Any monitoring system must address the storage of the
program information it produces. Since the primary use of our
monitor is dynamic monitoring, we first store all monitoring
information in data structures mapped to main memory using
the operating system’s virtual memory mechanisms, thereby
reducing the latency of access to such information. For per-
formance reasons, this collected data, termed the database,
does not contain raw data. It contains analyzed data derived
from the information collected using sensors and probes.
All information stored in the database is tagged with time
stamps and locations of occurrence, for use by dynamic and
post-execution analysis of monitoring information. The data
structures being used are straightforward template structures
derived from the information model used for description of
monitoring information. They are explained in detail elsewhere
[491, [451.

Although the virtual memory database can grow to signif-
icant size, for long-term persistent information storage, we
currently use ad hoc file structures, but would prefer using
a large-scale historical database [64] in order to be able to
perform efficient, additional post-execution analyses. Sample
post-execution analysis of such stored information may con-
cern additional analysis of interest to the programmer or the
adaptation algorithms, or it may concern the reproduction or
replay of program execution [32], [31]. However, note that
post-execution analysis in our system is restricted to those
queries that are possible to answer with the partially analyzed
information contained in the database.

C. Run-Time Monitor Interface

The monitor supports three execution-time operations, which
are ultimately invoked by programmer-stated monitoring spec-
ifications.

Turn a particular sensor on or off. This operation is
performed to trigger a sampled sensor, or to begin or
end the trace of a specific program attribute, such as
the values of one of its variables. The issuer of this
command may request to be notified when a condition or
set of conditions regarding the variable’s values becomes
true.
Probe the current value of a program attribute.

766 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

Construct ion
and Adaptation
Commands

/ View
Specification

Program Construction System

Adaptation
Cont ro 1 ler (AC)

and Probes

Analysis
Code Probes

Analysi

Load
.-

Operating Central Resident
System Monitor Monitor

and
. s Code

Fig. 2. The Issos parallel programming and program adaptation environment.

3) Retrieve the value of a program attribute which the
monitor is or has been tracing. The value is retrieved
from the monitor’s database.

The next section presents a model of information for use by
the monitoring system and shows that this model is an appro-
priate basis for monitoring specifications. Such specifications
are compiled into efficient collection and analysis mechanisms
that employ the operations just presented.

111. AN INFORMATION MODEL FOR PROGRAM MONITORING

In order to make the monitoring system independent of
specific languages, compilers, operating systems, etc., we
describe in terms of an abstract information model based on the
E-R information model [9] the programs for which monitoring
is to be performed, the hardware and software environment
in which the programs execute, the data to be collected, and
the calculations to be performed. Our model includes typed
entities, typed relationships between entities, and typed sets
of both. The model can incorporate static information about
parallel programs and about their execution environments [62],
thus capturing compile- and load-time program information,
hardware configuration, and others. Specifically, in the Issos
system, the program construction system generates an E-R
program description and records it in a main memory database
accessible to all system tools, based on the program’s language
specification and on its knowledge of the program’s run-time

representation. Other system components (e.g., the loader)
store information (e.g., hardware configuration information,
processor allocation maps [62]) in the same repository.

The objective of this paper is not to describe and defend the
E-R model, the database supporting it, and their usefulness
for tool integration. Elsewhere we provide details on the
Issos system and describe a more efficient, persistent and
distributed database implementation [49], [46], [17], [18].
Other approaches to tool integration also exist [69], [23], [50],
[51]. Here we simply describe a sample program represented
with the E-R model, so that the reader may understand the
monitor’s view of a parallel program.

A sample parallel program: Consider a parallel sort program
like the various versions of parallel quicksort described in the
literature [141. In the object-based Issos programming system,
this program is represented at run-time as objects interacting
via invocation messages, much like the representation of
distributed programs in Eden [2]. The sort program consists
of several objects, including a Queue object which contains
a process that maintains a queue of unsorted subranges of the
array being sorted and a Sort object which contains multiple
internal processes performing the actual sorting of the array.

While the Issos run-time system represents the program
as a set of objects, the monitor views the program with
the E-R model, thereby using a description that is indepen-
dent of the execution environment’s program representation.
With the E-R model, this program may be described as

OGLE er al. DYNAMIC MONITORING OF DISTRIBUTED‘AND PARALLEL SYSTEMS 767

consisting of entities of type process, each with a default
attribute Process-Id. These entities participate in the re-
lationship Communicate s -With, itself associated with the
attribute frequency. Thus, we permit the association of
attributes with entities and with relationships. The Commu-
nicates-With relationship describes all possible message
(or invocation) traffic within the program. If users desire to
use subsets of such information, such as the communications
between processes P1 and P2, or P4 and P5, views defining
such subsets may be created using E-R model operations.

Regarding monitoring, the values of some attributes (e.g.,
Process-Id) may be supplied automatically by the parallel
programming system. Other attributes must be defined by the
programmer. For example, in the sample quicksort program,
the user may wish to be notified when the size of the
Queue object exceeds some predefined threshold. In that case,
the programmer’s monitoring specification would explicitly
define the attribute queuesize of the Queue object. The
queuesize attribute may be mapped to a variable called
“q-size” in the application’s code. However, attributes may
also be defined in terms of multiple variables used in the
application program. In general, an attribute’s value is an
expression over one or more variables. Attributes are type-
checked by the PCS, through which the application was
originally coded. As an example, again consider the Queue
object of the sample quicksort program. In order to evaluate
workload balancing among multiple processes performing the
sort of unsorted queue subranges, the user may wish to monitor
the attribute requestDuration for each element of that
queue. This attribute is not predefined and is not maintained
as a variable in the code and therefore, cannot be generated by
the PCS. Instead, such an attribute must be computed for each
request from the source code variables beginRequestTime
and endRequestTime which are maintained in the code in
this case.

Monitoring specification: Two simple languages are used
for the specification of program monitoring in the context of
the E-R model: the attribute language and the view language.
All nondefault, monitorable attributes of a parallel program
must be explicitly defined with the attribute language. For
example, the following specification concerns the attributes
queuesize (mapped to C variable “Lsize”) and request-
Duration of the object called QueueManager.

ATTRIBUTE DEFINITION FOR OBJECT
QueueManager

requestDuration: (endRequestTime -

queuesize: %size;
beginRequestTime);

END ATTRIBUTE DEF

In our C-based implementation of the monitoring system, the
expression (endRequestTime - beginRequestTime)
must be a legal C expression.

As indicated in Fig. 2, all attribute specifications are com-
piled into probes and into attributes of entities stored in
the database. This is also the case for the attributes of
relationships that can be monitored. Probe implementations (as

code fragments in resident monitors and as code executed as
signal routines in target processes) are linked and loaded with
the target application’s processes and resident monitors, and
they are registered with the central monitor. Similar actions
are taken for the sensor implementations and the analysis code
derived from the view specifications explained next.

Attributes that can be monitored constitute the basis from
which the set of actual events to be monitored is drawn. That
set is specified with the view language by programmers as a
collection of monitoring views stated as entities, relationships,
and sets in the database. Each such view specifies 1) the
involved entities (or relationships) and attributes, 2) the time
at which the view is considered active, 3) performance and
correctness criteria, and 4) the action to be taken when the
view is active.

The sample view below concerns the queue sizes of two
QueueManager objects. The view language syntax accepted
by the prototype described later is similar to that appearing
below.

VIEW DEF Both-Queue-Limits-Exceeded
(thisqueuesize:
QueueManager[l].queueSize)

ACTIVE WHEN (QueueManager[l].
queuesize > 24)

queuesize > 24);
AND (QueueManager[Z].

CORRECT TO WITHIN 25 MS;
NOTIFY 119 OF seventh@cis.ohio-
state.edu WITHIN
1000 MS;

END VIEW DEF

This view is defined to be active when the value of queue-
Size is greater than 24 in both instantiations of QueueM-
anager; this boolean expression on attributes is termed the
ACTIVE predicate. When a view is active, the value of its
derived attributes, mentioned in the target list of the view
(in this case, the target list consists of the single attribute
thisqueuesize computed by the expression QueueMan-
ager [1] . queuesize), are computed and made available
by the monitor to other environment tools, such as the adapta-
tion controller and the graphical display. Since the monitoring
system need not collect, record, and display information at
times at which the view is not active (ie., when queuesize
5 24), the ACTIVE predicate reduces the amount of work the
monitor must do, thereby reducing monitoring perturbation.

The CORRECT clause potentially further reduces monitoring
perturbation by relaxing the timing constraints imposed on the
calculation of the active predicate. This clause allows users
to express allowable tolerances in monitoring due to network
delays and unsynchronized processor clocks. In this case, if
the queue size of each queue manager exceeded 24 within a
window of 25 ms, then the predicate is considered satisfied. If
the CORRECT clause is omitted, then the view is active only
when both queue sizes are simultaneously4 greater than 24.

41n a distributed system, the meaning of simultaneous may be defined in
terms of the maximum network delay incurred for message transmission [45].

http://state.edu

768 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

The NOTIFY clause instructs the monitor to directly com-
municate in some manner the new value of the view’s attribute
to the application or AC process at port address 119 on
machine seventh@cis . Ohio-state. edu whenever the
view becomes active. The maximum latency of this notification
can also be specified; here the process expects to be notified
within one second. Again, a long latency provides the monitor
flexibility in reducing its overhead. Monitoring message traffic
may be reduced by buffering values in user processes, resident
monitors, or the central monitor. For example, the large value
specified here allows the central monitor to buffer multiple
messages before performing a single message send to the AC
with the buffered messages. One implementation used in our
system simply “flushes” all buffers of any relevant resident
monitors after some maximum permissible delay in reporting
has occurred. If the NOTIFY clause is omitted, the monitor
is instructed to simply update the entry corresponding to the
view’s attribute(s) in the database when the view becomes
active.

Note that the analysis phase of monitoring often requires
the comparison of time fields among multiple events that may
have occurred on different nodes of the distributed system.
We have not explored any novel methods for event or time
synchronization [29]. For most of our applications, it has been
sufficient to assume that processor clocks are synchronized to
within tens of microseconds.

In conclusion, views as defined above are useful for speci-
fying dynamic monitoring for several reasons:

The real-time attributes of program monitoring, such as
maximum monitoring delays, etc., are easily specified.
Performance specifications regarding monitoring are eas-
ily stated, which results in the generation of efficient
collection and analysis using probes, extended sensors,
and analysis code in resident and central monitors. In
essence, the monitor can tailor its collection and anal-
ysis mechanisms to single applications or even single
execution runs of applications.
Language and system independence are achieved by
expressing views in terms of attributes rather than in
terms of program variables present in the application. In
addition, any program described with the E-R model may
be monitored, including operating system components and
systems software (e.g., the Unix network file system [45]).

See [27] for a more extensive discussion of language issues
in the specification of monitoring. The attachment of graphical
representations to monitoring views is the subject of other past
and future research performed by our group [60], [26].

Iv. DATA COLLECTION AND ANALYSIS

It should be apparent from the examples in the previous
section that the attribute and view languages permit users
to express application-dependent monitoring views in a high
level, declarative fashion. Important aspects like perturbation
and latency may be expressed as constraints, rather than
procedurally. This implies that programmers need not under-
stand the details of information collection and analysis, of
monitoring system setup and distribution, etc. However, it also

requires that such declarative specifications be automatically
mapped to the low level collection and evaluation mechanisms
discussed in Section I1 by the monitoring system’s compiler.
Such mappings must ensure that the information collection and
analysis meet possibly stringent real-time constraints, while
minimally perturbing the application as it executes. Fortu-
nately, mappings may be varied along several dimensions. This
section will describe how the monitoring system’s compiler
may determine appropriate mappings.

Recall the sample view given previously.

VIEW DEF Both-Queue-Limits-Exceeded
(thisqueuesize:
QueueManager[l].queueSize)

ACTIVE WHEN (QueueManager[l].
queuesize > 24)

queuesize > 24);
AND (QueueManager[2].

CORRECT TO WITHIN 25 MS;
NOTIFY 119 OF seventh@cis.ohio-
state. edu
WITHIN 1000 MS;

END VIEW DEF

Concerning such a view, the monitoring system’s compiler
must deal with the following questions.

For each attribute in the view’s target list and action pred-
icate (e.g., QueueManager [1] . queuesize), should
each variable mentioned in the expression providing the
attribute’s value (e.g., queuesize) be sampled, traced,
or probed?
When should sampled sensors be sampled, and when
should traced sensors be enabled and disabled (e.g.,
do we need to constantly sample both QueueM-
anager[l].queueSize and QueueManager[2].
queueSi ze)?
Where should each subexpression of the action predicate
and the expressions in the target list be performed: in the
relevant sensor, in the application code, in the resident
monitor, or in the central monitor? Note that in this
example, the target list does not contain an expression
to be computed-QueueManager [1] . queuesize.
Should the sensor send event records to the resident
monitor, or directly to the central monitor?
How long should event records be queued in the appli-
cation process, and in the resident monitor? How long
should notifications be queued?
Should notifications be generated only in the central
monitor, or also in the resident monitor, or even in the
application program?

We emphasize that these decisions are not independent,
and that some alternatives are not available for all views.
For instance, if the action predicate mentions two attributes
associated with objects residing on different processors served
by separate resident monitors, then the analysis must be
done in the central monitor, as neither the sensors nor the
resident monitors have sufficient information to evaluate the

OGLE er al. DYNAMIC MONITORING OF DISTRIBUTED AND PARALLEL SYSTEMS 769

action predicate. As another example, if the analysis is to
be performed in the resident monitor, then obviously event
records should not be sent directly to the central monitor.

A. Tradeoffs in the Generation of Collection and Analysis Code

The monitor must make the decisions listed above when
generating the sensor and probe code, using the following
information available to it.

The location of the resident monitor process in relation to
the application process(es), either on the same processor
or on a dedicated processor in the same multiprocessor.
The cost of event record generation in the application
process.
The communication cost between the application process
and the resident monitor, and between the resident and
central monitors, expressed as a fixed overhead plus the
cost per byte of event records sent.
The latency constraint of evaluating the action predicate,
as expressed in the CORRECT clause of the view.
The notification latency constraint, as expressed in the
WITHIN portion of the NOTIFY clause.
The relationship between program variables referenced
(indirectly through the attributes) in the target list and
the action predicate of the view, specifically, whether
one object or multiple objects are involved, the process
or processor co-residency (or lack thereof) of objects
involved, an estimate of the selectivity of subexpressions
in the action predicate, and the approximate evaluation
cost for the target list and action predicate.

To illustrate the manner in which these considerations
affect the decisions made during sensor generation, consider
the distributed monitoring system in Fig. 1, consisting of
sensors, probes, and central and resident monitors. In this
system, the analysis of data being collected may be performed
either by individual sensors, by the resident monitor, by
the central monitor, or by any combination thereof. Several
implementation tradeoffs result.

One tradeoff is monitoring overhead versus communication
cost. Analysis that is performed by an individual sensor, which
is then termed an extended sensor, reduces the sensor’s degree
of interaction with its resident monitor, thereby reducing
monitoring overhead. For simple analyses that are relatively
inexpensive compared to the cost of communication, extended
sensors may be preferred. More complex analysis must be
performed elsewhere, so that needless perturbation of the
process being monitored is avoided.

A second tradeoff involves computation within the resident
monitor. If the analysis is performed within a resident monitor,
its interactions with the central monitor are reduced. However,
excessive analysis within a specific resident monitor may
lead to an undue computational load and process switching
overhead being imposed on the same processor on which
the application processes being monitored are executing. This
may not be tolerable for certain multiprocessor or real-time
architectures [57], as shown below.

Additional tradeoffs concern the central monitor. If the
central monitor does not perform analysis and simply forwards

unanalyzed data to the agent that requires the monitoring
information (in the case of Issos, the user or the adaptation
controller-see Fig. l), excessive communication may result
between central monitor and the “user.” However, the agent
itself may decide what analyses should be performed; it retains
complete freedom regarding the questions that may be asked
about the data being collected (consider the post-execution
analysis performed in some monitoring systems). Altema-
tively, such freedom may be sacrificed by performing analysis
within the central monitor, thereby reducing the degree of
interaction with the “user.” However, such centralized analysis
is again limited due to restrictions in the bandwidths of sensor
to resident monitor to central monitor communications.

B. Generating the Collection and Analysis Code

A four step analysis, analogous to that used in query
optimization in traditional database management systems [71],
may be followed during the generation of collection and
analysis code distributed across the application program and
the monitoring system.

Step 1: Generate all possible view implementation plans
that preserve the semantics of the target list and of the
action predicate.
Step 2: Discard those plans that violate the latency
constraints expressed in the view definition, using a
simple analytical model that estimates the maximum
latency of a given plan [45].
Steps 3 and 4: Choose the plan from among the remain-
ing plans that minimizes the monitoring perturbation, as
predicted by the analytical perturbation model [45].

A view implementation plan generated by this process
provides answers for each specific view to the questions listed
above. Next, we examine each of these steps in more detail.

Step I : Plan generation. As an example, consider the view
given on page 768. A sample implementation plan for
view would be the following.

Install a traced sensor in QueueManager [1] in
the queueing routine. This sensor generates an event
record containing the value of the variable record-
ing the queue size whenever a queue operation is
invoked. Install a similar traced sensor in Queue-
Manager[21. Both sensors send event records to
the resident monitor, with no queueing, which sends
them to the central monitor, again without queueing.
The action predicate is evaluated in the central
monitor. If it is satisfied, the thisqueuesize
attribute for the view is recorded in the main memory
database, and a notification is sent to the proper
process, without queueing.

this

Another view implementation plan would be the following.
Install a traced sensor in Queuemanager [2] that
generates event records when the value of the vari-
able recording the queue size transitions above or
below the threshold 24. These event records are sent
directly to the central monitor, which then probes the
value of the same variable in QueueManager [1 1.
If that value is also above 24, it is recorded in the

770 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993

main memory database and a notification is added
to a notification queue, flushed every 750 ms.

A fundamental requirement of any generated view imple-
mentation plan, termed a feasible plan, is that it preserve
the semantics of the target list and action predicate (the
latency constraints are ignored in this step). While both of
the plans outlined above are fine in this regard, the following
is not, assuming an environment consisting of workstations
communicating via an Ethernet.

Trace the value of the variables recording the queue size
in both QueueManager [1] and Queuemanager [2 1 , and
evaluate the action predicate in the resident monitor.

Since QueueManager [1] and QueueManager [2] may
be executing on different workstations, event records from
both may never be present within any one resident monitor,
preventing the evaluation of the action predicate.

To generate all possible view implementation plans, the
monitor’s compiler should incorporate all of the following
choices in all possible combinations: sampling, tracing, or
probing the value of each attribute mentioned in the view;
performing each subexpression in the sensor, in the resident
monitor, or in the central monitor; having each sensor send
records to the resident monitor or directly to the central mon-
itor; and generating notifications only in the central monitor
or also in the resident monitor. In the sample view, there are
two attributes mentioned, and three possible subexpressions,
generating approximately 2000 view implementation plans.

Clearly, the space of all possible view implementation plans
may be very large for complex views or architectures. Enu-
merating the feasible plans may be simplified by eliminating
easily detected infeasible plans (and entire related collections
of plans) early, by postponing timing decisions (such as how
long event records should be queued) until the third step,
and by reorganizing the action predicate so that variables
from the same entity occur together in the subexpressions.
For example, simply recognizing that QueueManager [1]
and QueueManager [2] may be executing on different
workstations eliminates some 1500 plans. In most cases,
the feasible plans constitute a small subset of all possible
plans.

Step 2: Applying latency constraints. Two latency con-
straints may be specified: CORRECT WITHIN and NOTIFY
WITHIN. For each feasible view implementation plan
produced by the first step, the monitor applies a simple analytic
model to estimate the delay between the occurrence of the
event and either the evaluation of the action predicate (and
target list) or the receipt of notification. The model includes
estimates of CPU time to process messages and perform
analyses, as well as estimates of message transmission time.
Details of the analytical model, as well as its validation, are
given elsewhere [45], [25]. Here we will apply the model to
the two sample feasible view implementation plans discussed
above. For the first one, the latency involves the time to
execute the sensor, the time to transmit the event record to the
resident monitor and then to the central monitor, the processing
involved in the resident and central monitors for this message
transmission, and the time to perform the analysis at the central
monitor and to send a notification message.

For the distributed Unix implementation of the monitoring
system, message transmission was measured as roughly 3
ms between processes on the same machine, 4 ms between
processes on the same subnet, and 10 ms between processes
across multiple subnets under conditions of low Ethernet traffic
(using a 10 MBit Ethernet). Each event record is first sent to
the resident monitor on the same machine (3 ms) and then
to the central monitor (10 ms). The total processing cost,
dominated by several context switches, is less than 2 ms,
implying a total latency on the order of 15 ms, which is less
than the specified 25 ms. The notification latency is estimated
at 26 ms, significantly less than the 1000 ms requested. Similar
analyses for this view implementation plan mapped to the
Encore Multimax and to the GEM real-time operating system
executing on an Intel 8086-based multiprocessor would show
that the specified latency constraints would be met there as
well.

Now consider the second view implementation plan pre-
sented above, where the value in QueueManager[11 is
probed, when executed on the same local area network. When
the value of queuesize in QueueManager [2] exceeds
24, the sensor sends a message to the monitor, which takes
approximately 3.5 ms. The monitor then probes the value
of queuesize in QueueManager [1 1. If QueueMan-
ager[1 1 resides on a different node, then probing takes
approximately 3 messages, 1 intranode and 2 internode mes-
sages, or about 17 ms. Since 17 ms is less than the specified
correctness value of 25 ms, this plan also satisfies the latency
constraint. Note, however, if the user had instead specified
CORRECT TO WITHIN 1 5 MS, the first plan would have
been acceptable, but the second one would not have been.

The accuracy of the model is important only when the
estimate is similar to the latency constraint specified by the
user. In the example above, the model could have been off by
50% without changing the result of accepting both plans. Our
general strategy has been to apply the model conservatively,
recognizing that some plans may nevertheless be prematurely
rejected due to inaccuracies in the model, with another plan
chosen that also meets the latency constraint yet perhaps
exhibits greater perturbation. In this example, approximately
150 feasible plans also satisfy this latency constraint.

Step 3: Applying per event record perturbation analysis.
After steps 1 and 2 have been performed, the remaining
view implementation plans are correct, but they can differ
markedly in performance. In this step, the monitor applies a
simple analytical model, similar to that for latency, to estimate
the perturbation each plan would impose on the executing
application process. This model must be applied carefully,
as the absolute perturbation, expressed as the total CPU cost
added to the execution time of the application process, depends
on the total number of event records generated, which of
course is unknown a priori.

The perturbation model is applied by partitioning all re-
maining plans into collections. Each plan in a collection will
generate approximately the same number of event records
as other plans in that collection. Then, for each plan, the
CPU overhead is estimated for the processor on which the
application process is executing (CPU overhead on processors

OGLE et al. DYNAMIC MONITORING OF DISTRIBUTED AND PARALLEL SYSTEMS 771

dedicated to monitoring will not perturb the application).
This estimate is on a per event record basis, and is thus
quite accurate. Those plans with an estimate higher than the
minimum for the collection are eliminated, leaving one plan
per collection. In our example, there would be 24 collections,
with these two plans in different collections.

Step 4: Choosing the final plan. After Step 3, two plans
would remain feasible (the second plan may be eliminated
in favor of one that traced QueueManager[1] and then
probed QueueManager [2 1, which would have an identical
cost per event record). At this point, plans differ in both their
perturbation per event record and in the number of event
records generated. To make a final choice, the monitor must
estimate the relative number of event records generated among
the altemative plans (estimating the absolute number of event
records generated is not necessary or possible), then use this
to estimate the total relative perturbation, selecting the plan
with the lowest such perturbation. This analysis thus estimates
perturbation per notification generated, using subexpression
selectivities, that is, given the subexpressions in the action
predicate, the actual percentage of their evaluations resulting
in the value “true.”

For the first sample view implementation plan, the per-
turbation per notification will be K 2 times two sensor exe-
cutions plus four message sends (since the resident monitor
resides on the same processor as the application process, at
least for a LAN environment), where 1/K is the selectivity
of each subexpression (QueueManager [i] . queuesize
> 24) and the AND operator multiplies the selectivities. Here,
potentially many sensor executions will occur between each
notification (depending on the selectivity), perhaps resulting
in a large perturbation per notification. For the second plan,
the perturbation per notification will be K times the sensor
execution, which has a cost of one initial message plus
three message sends for the probe. Since K > 1 (probably
K >> l), the second view implementation plan is preferred,
how strongly depends on K , which is not known. In fact, the
second view implementation plan would be the one selected.

To summarize, we propose a four-step process to generate
code from a view specification. First, all feasible view imple-
mentation plans are generated. This is done either by simply
enumerating all possible plans and then eliminating those that
do not pass fairly simple correctness checks, or by applying
the checks during the enumeration to avoid enumerating entire
groups of incorrect plans. The second step filters out those
plans that do not meet latency constraints. This step employs
an analytical model that estimates the per event record latency.
Inaccuracies in the model may eliminate some plans that meet
these constraints. On the other hand, all remaining plans will
be correct. The third step partitions the remaining plans into
collections of plans that generate approximately the same
number of event records. The most efficient plan in each
collection is selected, based on a per event record analytical
model of the CPU overhead. This model is quite accurate. In
the fourth and final step, one plan is selected from those that
remain based on an informal analysis that takes into account
both the per event record perturbation and the number of
event records generated. Inaccuracies in this analysis are much

higher than in the previous steps. However, the inaccuracy
will manifest itself in less efficient data collection, rather than
incorrect data collection. Also, at this point, only a few plans
are being considered; the vast majority of initially generated
plans having been eliminated by application of more accurate
analyses.

C. Customizing Plan Generation

While the full four-step process presented in the previous
section may be automated, it can be be simplified significantly
for particular hardware and software configurations. In this
section, we present the plan simplifications used for the
three hardware configurations on which the monitor has been
implemented.

Local area networks: The first configuration is a local area
network containing Sun-3 machines and a Pyramid com-
municating over an Ethernet (see Fig. 1). As discussed in
Section IV-B, communication in such an environment is very
expensive compared with processing time. Hence, for this
configuration, we apply the following heuristic: push analyses
to the lowest level where they may be performed, thereby
reducing communication as much as possible. This decision is
motivated by the experimental results presented next, and is
justified elsewhere [45], [25]. In particular, this heuristic can be
shown to minimize perturbation and latency simultaneously for
this configuration with all but artificially complex view spec-
ifications. This heuristic ensures that analyses of monitoring
information possible within the same address space in which
the required sensors are located will be performed locally.
A resident monitor performs the analysis that requires event
records collected from different processes on its node, and
the central monitor performs the analysis that requires event
records from multiple machines.

The experimental results regarding the perturbation expe-
rienced in the distributed implementation of the monitoring
system described next rely on a distributed workload generator.
In the experiment below, the generator’s configuration consists
of two event generator processes, both of which are co-
located on a single Sun workstation. A resident monitor is also
located on the workstation, but the central monitor resides on a
different workstation on the same subnet. Each event generator
process generates up to 5000 randomly drawn events. At each
event time, the process may elect to generate or not generate
on actual event, where the generated event is an assignment
of the value 0 or 1 to a local variable mapped to a monitoring
attribute in the process (attribute1 and attribute2,
respectively, for each of the generator processes). The global
event to the evaluated by the monitoring system is

attributel> attribute2 ?

The global event’s frequency of change for each program
run is not known due to the randomness of the individual
event generators.

In the measurements below, generator processes are first
run without monitoring and then the event of interest is
analyzed with extended sensors, by the resident monitor, or
by the central monitor, respectively, each time measuring

112 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 1, JULY 1993

the resulting program perturbation. The table below depicts
the measurement results (in these measurements, the timing
method used was determined to have a 1% maximum error):

~~~ ~ 

Elapsed time (s) Perturbation 
Unmonitored 185 - 

Central 246 61% 
Local 233 48% 
Sensor 226 41% 

In all cases above, the actual overhead reported here is 
dominated by the use of Unix communication primitives. Thus, 
the exact amounts of the reported overhead percentages is 
not relevant. Instead, observe the differences in the amounts 
reported above. Specifically, the entry “Unmonitored” depicts 
the total time in seconds for the unmonitored execution 
of two generating processes located on the same machine. 
The entry “Central” assumes the generation of event records 
by generator processes each time an actual assignment to 
attributel or attribute2 is performed. Those event 
records are then sent to the nonlocal central monitor (via the 
resident monitor), which compares the values of the respective 
attributes. Compared to the measurements in row “Central,” 
it is apparent that a comparison of attribute values using a 
resident monitor on the generators’ workstation is preferable to 
central monitoring (see the entry labeled “Local”). This result 
holds despite the additional cost of context switching caused 
by the execution of the resident monitor on the generator 
processes’ workstation. 

Next, consider a different global event, which permits the 
system to use extended sensors for the event’s analysis. If the 
global event is 

attributel = 1 OR attribute2 = 1 ? 

then an extended sensor will generate events for the resident 
monitor only if its attribute’s respective value is 1, thereby 
reducing the total number of event records generated by the 
process from 5000 to 2500 total (on the average). This sensor- 
based analysis results in the lowest perturbation reported in 
the table above (see the entry “Sensor”). Further reductions in 
perturbation may be achieved in several ways, including the 
use of shared memory among user processes and the resident 
monitor to share monitoring information [66], [65], the use of 
threads versus processes for representation of resident moni- 
tors (thereby reducing context switch cost), or the delivery of 
monitoring information across additional communication links 
among workstations, much like with the monitoring hardware 
additions in the Intel Paragom machine. 

In conclusion, the measurements reported in the table are 
a simple illustration of the heuristic mentioned above: in the 
network environment, analysis should be moved as close to 
collection as possible. Note that this observation holds in 
computer networks, multicomputers [7] and multiprocessors 
[45], [25], as long as the communication costs significantly 
outweigh the costs of the analysis being performed. We 

conjecture that this result will also hold for the monitoring 
hardware provided with the new Intel Paragom multicomputer, 
since its communication bandwidths are significantly less 
that the computational power of the Intel 860 used as a 
communication co-processor. 

A real-time multiprocessor: An implementation of the moni- 
tor on a real-time multiprocessor system exhibits differences in 
several basic system parameters and therefore, dictates the use 
of different heuristics. This multiprocessor was composed of 
seven nodes, each containing an Intel 8086 processor, which is 
somewhat slower than the Motorola 68020 processors in our 
Sun-3 workstations. 

First, in this system, the relative cost of sending messages 
within and among different processors is lower than in Unix. 
Specifically, the GEM real-time operating system executing on 
this multiprocessor provides message sending primitives that 
can transmit small messages (i.e., event records) within 1 ms, 
compared with 4 to 10 ms between somewhat faster Sun-3 
workstations. Second, this message communication overhead 
is roughly equivalent to the overhead of process switching 
in GEM (also approximately 1 ms). Third, the bandwidth 
of the bus connecting different multiprocessor nodes is quite 
high and generally underutilized (measurements demonstrate 
bus utilization of less than 20% for the real-time robotics 
applications running on this machine). Fourth, the multipro- 
cessor’s link to the monitoring system’s user interface (on an 
attached Sun workstation) has comparatively low bandwidth 
and high latency compared to the intra-multiprocessor links. 
As a result, for this hardware configuration, we dedicated a 
single processor to the execution of a single resident monitor. 
Sensors and extended sensors send event records to this 
resident monitor at a cost of roughly 1 ms per event record. The 
resident monitor performs all analyses not done by extended 
sensors and it also performs those analyses done by the central 
monitor in the distributed system (in order to reduce the 
bandwidth of communication from resident to central monitor). 
The resident monitor communicates with the central monitor 
executing on a Sun-3 workstation and providing a graphical 
interface to the user. 

Commercial, small-scale multiprocessors: A similar mon- 
itoring architecture was adopted for an Encore Multimax 
multiprocessor, which could be used for execution of selected 
components of a parallel/distributed program mapped to a set 
of Sun workstations and the Encore Multimax [lo]. Here, a 
single Unix process acting as a resident monitor is responsible 
for all application processes executing on the Encore machine. 
This resident monitor sends event records to the central 
monitor executing on a Sun workstation, which may also 
communicate with resident monitors located on other Sun 
workstations. On the multiprocessor, monitoring overhead is 
reduced further by use of shared memory for the storage of 
event records [65], [lo]. Sensors and extended sensors may 
write event records directly into shared memory accessible to 
the resident monitor. When using NSC 032 processors with 
a shared memory access time of 10 ps, a pointer to an event 
record can be generated and queued in 144 ps, then retrieved 
from the queue in 250 ps. The actual record can be generated 
and read in approximately 900 ps, and a sensor is turned on or 



OGLE er al. DYNAMIC MONITORING OF DISTRIBUTED AND PARALLEL SYSTEMS 113 

off in 350 ps. These measurements imply that a single resident 
monitor may fully utilize its processor if all other processors 
on the ten-node Encore Multimax generate events at the fastest 
possible rate. Similar results should hold for the NSC 332 or 
432-based Encore machines now in use. However, as with the 
real-time multiprocessor, excessive communication with the 
central monitor will result in low utilization of the dedicated 
Encore node. We have observed similar results on a 32-node 
GP-1000 BBN Butterfly multiprocessor with another version 
of the monitoring system [26]. 

Summary of results: To summarize, it appears that both the 
configuration of the monitoring system in terms of resident and 
central monitors and the selection of appropriate monitoring 
plans using probes and sensors, depend on the characteristics 
of the underlying hardware and on application characteristics 
or requirements stated with the attribute and view languages. 
It would be interesting to consider the automatic derivation of 
such application requirements from information supplied by 
the programming environment or by the adaptation controller. 

v. MONITORING PROGRAMS FOR DYNAMIC ADAPTATION 

This section describes a program monitoring and adaptation 
example that highlights some of the design and implementation 
issues in distributed, dynamic monitoring. This example uses 
the Issos parallel programming environment (see Fig. 2 and 
[55], [61], [62], [49]). The sample parallel (and distributed) 
program is a game.5 This game shares one aspect with many 
parallel and distributed programs, including parallel branch- 
and-bound applications [58], parallel MultiLisp programs [52], 
and others. Namely, the game is subject to problems with 
workload balancing, since the program dynamically generates 
and consumes units of work that cannot be predicted statically 
(prior to program execution). 

The game consists of ships moving on a sea. The descrip- 
tion of the two-dimensional sea is partitioned into sections, 
with a section manager process responsible for each section. 
Ship manager processes are responsible for handling requests 
dealing with ships, such as moving and firing. All requests are 
placed into a single, logically centralized queue, maintained 
by a queue manager process. Ship managers take and process 
requests from this queue. The game is driven from a script, 
with multiple user processes reading this script and issuing 
requests to the queue manager. 

This distributed application illustrates several aspects of the 
monitoring system, including: 

the operation of the monitor’s distributed components; 
the interaction between the monitoring system and other 
Issos tools; 
the tradeoffs regarding the use of the monitor’s various 
collection mechanisms and the tradeoffs regarding the 
distribution of information analysis; and 
the tradeoffs between tracing and sampling of program 
execution. 

5The applications with which the monitor and the Issos system have been 
tested include the parallel quicksort program, a robotics application, and a 
synthetic workload generator. 

Dynamic monitoring-basic requirements: The usefulness 
of dynamic monitoring is demonstrated using a small version 
of the game, consisting of a user and a ship manager process 
executing on the Pyramid, and a queue manager process exe- 
cuting on a Sun workstation (see [56], [5], [6], [19] for studies 
of useful algorithms for dynamic program adaptation based on 
monitoring data). The monitoring system’s components are the 
central monitor, the PCS, and the AC executing on the Pyramid 
and the resident monitor executing on the Sun. This example 
demonstrates the dynamic, joint operation of the central and 
resident monitors with the AC and PCS. The purpose of this 
cooperation is to balance the rates of request generation by 
the user process and request processing by the ship manager. 
The monitoring statement 

VIEW DEF Queue-size (Queuesize: 
Queue-manager.Queuesize) 

ACTIVE WHEN (Queue-manager.Queuesize 

CORRECT TO WITHIN 25 MEC; 
NOTIFY 119 OF seventh@cis.ohio- 

>= 15); 

state. edu 
WITHIN 875 MS; 

END VIEW DEF 
instructs the monitor to notify the AC when the size of the 
request queue maintained by the queue manager process (the 
attribute Queuesize of the program component Queue- 
Manager) exceeds the statically specified threshold “15,” 
whereupon the AC causes the PCS to create a second ship 
manager process, then includes this process into the game on 
the Pyramid. The desired result of this adaptation is an increase 
in request processing and therefore, a decrease in the size of 
the request queue. 

The monitor’s collection and analysis mechanisms are ex- 
ercised as follows. For data collection, a traced, extended 
sensor is embedded into the queue manager’s code. This 
sensor computes the queue’s current size from the number 
of executions of queue element additions and deletions, and it 
notifies the resident monitor of each change in queue size. 
The resident monitor checks the current size of the queue 
against its threshold specified by the adaptation controller, in 
this case “15.” It notifies the central monitor only when the 
event “threshold exceeded” occurs, as shown in Fig. 3. The 
sensor is tumed on and off by the central and resident monitors 
in response to commands received from the AC. 

The distribution of analysis and collection is straightfor- 
ward. The analysis required for notification of the central 
monitor and of the AC regarding the event “threshold ex- 
ceeded” is performed within the user’s code and the resident 
monitor. As a result, the number of event records to be 
transferred from the resident to the central monitor is reduced 
by a factor of roughly fifty, thereby significantly reducing the 
network message traffic generated by monitoring. Specifically, 
two local messages and one network message are required to 
tum on the extended sensor (unless it is initialized to “on”): 
from AC to central monitor, from central monitor to resident 
monitor, and from resident monitor to user process. During 
game execution, the extended sensor generates approximately 



774 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993 

I I 

Local 
Messages 

Ship Manager Process 

CO& - 

I 
On/Off: Local Message 

5 7  Traced Extene Sensor 

Resident Monitor 
threshold: 15 

Threshold 
Exceeded On/Off Messages 
Message 

I Central Monitor 

I Threshold 
Exceeded 
Message 

On/Of f Messages -I 
I I Adaptation Controller 

Fig. 3. Monitoring with extended sensors and residentkentral monitors. 

fifty event records, each recording the addition or deletion of a 
queue element; these records are sent to the resident monitor as 
local messages. One message is sent by the resident monitor to 
notify the central monitor of the event “threshold exceeded.” 
These messages are identified in Fig. 3, as well. 

This example shows that the analysis of monitoring infor- 
mation must be distributed and parallelized across the central 
and resident monitors and the user processes being monitored. 
The analysis of monitoring information by resident monitors 
is essential in order to reduce the message traffic within the 
monitoring system and to reduce the workload imposed on 
the central monitor. Some analysis may also be shifted to the 
extended sensor itself. For example, a significant improvement 
in monitoring performance for this example is gained when the 
event “threshold exceeded” is computed within the extended 
sensor itself, so that only a single event record must be 
transferred from the user program to the resident monitor. 

Dynamic monitoring-run-time changes: To demonstrate 
the system’s dynamic variability regarding collection and 
analysis, and to indicate some tradeoffs between tracing and 
sampling, we continue monitoring after the addition of a 
second ship manager, and observe the performance effects of 
this adaptation. When doing this, the size of the request queue 
remains stable for some time after the second ship manager 
is added. However, due to the lack of actual parallelism in 
the execution of multiple ship managers on the Pyramid, a 
balance of request generation and processing is not achieved. 
To be notified of this imbalance, the AC dynamically changes 

the analysis performed by the resident monitor. In this case, it 
sets a new value for the queue threshold used by the resident 
monitor (e.g., from “15” to “20)  immediately after addition 
of the second ship manager. Upon being notified of the event 
“threshold of 20 exceeded,” the AC then slows down request 
generation by the user process by increasing the amount of 
time it waits between issuing two consecutive commands from 
its script. The result of this action is a balance of request 
generation and processing. 

Once this balance is achieved, continued monitoring by 
tracing queue size using the extended sensor discussed above 
would be inefficient. As a result, the AC turns this sensor off 
when it has not been notified of a “threshold exceeded” event 
for more than 1 min. However, since external conditions, such 
as changes in Pyramid or Sun loads due to the activities of 
other users, may change over time, the AC periodically polls 
the monitor for the queue’s size. This polling is achieved by 
means of a probe. 

The additional costs of monitoring in this example derive 
from two messages due to the AC’s dynamic change of the 
queue threshold to be used for its notification: one local 
message from AC to central monitor and one message from 
central to resident monitor, and three messages due to its 
dynamic deactivation of the sensor: one from the AC to central 
monitor, one from central to resident monitor, and one from the 
resident monitor to the user program. The cost of probing after 
the desired balance has been achieved is small. Each probe 
consists of one local message from AC to central monitor, 
one probe request across the network from central to resident 
monitor, one message from user process to resident monitor 
reporting the probe value, one return message from resident 
monitor to central monitor, and one local return message from 
central monitor to AC. 

To summarize, this example suggests that probes are an 
important element of any dynamic monitoring system that 
must be able to operate with variable overheads at different 
times during a program’s execution. Furthermore, the use of 
resident monitors for analysis is essential when such analysis 
must be changed dynamically, as in the case of the change 
of threshold values for the extended sensor. A change of the 
actual user program if such analysis were performed within 
the extended sensor embedded in this program would be 
difficult; it would require the full functionality of the dynamic 
program adaptation systems described in [6], [ 191. Finally, 
run-time program changes are generally not possible if the 
monitoring system cannot guarantee worst case delays between 
the occurrence of an event and its collection, analysis, and 
reporting. 

Dynamic monitoring-centralized analysis: It is clear from 
the simple examples above that a centralized monitor is needed 
for making dynamic changes in what is being monitored and in 
how such monitoring is being performed. In addition, certain 
monitoring queries must be analyzed centrally. For example, if 
the centralized queue manager process is eliminated from the 
game, an imbalance of 1) request generation by multiple user 
processes executing on different network nodes and 2) request 
processing by multiple, distributed ship managers can be 
observed only if the generation and processing of requests are 



OGLE er al. DYNAMIC MONITORING OF DISTRIBUTED AND PARALLEL SYSTEMS 175 

monitored locally for each process and then analyzed centrally. 
Since such central analysis requires that each resident monitor 
inform the central monitor of each occurrence of request 
generation and processing, the high cost of such sampling 
suggests that a less accurate means of information collection 
should be used in this case. For instance, the AC might sample 
the sizes of secondary message queues (e.g., UNIX message 
queues) using probes and make adaptation decisions based on 
this information. 

Summary: In this section, alternative methods for imple- 
mentation of monitoring have been shown possible based 
on simple monitoring specifications and on simple changes 
to those specifications. In addition, it has been shown that 
users (programs like the AC and human users via a user 
interface not presented in this paper) can interact with the 
monitoring system to effect changes in what is being mon- 
itored during program execution (e.g., a dynamic change of 
a queue threshold value from “15” to “20” determined by 
the AC and enacted by central and resident monitors). The 
change in the application effected by the AC in response to 
received monitoring information consisted of “throttling” one 
of the application’s processes. In general, many useful changes 
can be made to parallel and distributed application programs 
during their execution, including dynamic process or object 
migration [8] and the on-line creation of additional processes 
or the deletion of superfluous processes [6], [28]. Not all such 
changes are easily performed in the prototype of the Issos 
system, in part due to restrictions regarding object naming, but 
those restrictions are not relevant to the evaluation of the basic 
ideas driving the monitoring system described in this paper. 

VI. RELATED RESEARCH 

Data collection techniques were at the center of attention 
in early work on monitoring, including profiling in a variety 
of programming languages (e.g., [13], [54], [73], [75]), which 
involves collecting execution counts or performing timing at 
the procedure, statement or instruction level, using sampling 
or tracing. There have been few advances since the early 
1960’s when these techniques were first introduced [48], 
[47]. Techniques using special hardware have been more 
innovative. Since additional logic imposes no overhead on the 
computation, capabilities such as event counters, comparators, 
histogram generators and combinational and sequential logic 
on events [74], and even reconfiguration based on monitoring 
can be provided. 

Early monitors of multiprocessors and distributed systems 
emphasized performance evaluation issues and were, in gen- 
eral, confined to the techniques mentioned above [ l ] ,  [44], 
[72]. As a result, rudimentary measurement and timing tools 
are embedded within commercially available multiprocessors, 
such as the Sequent and Encore machines. 

In contrast to early work, we are not assuming hardware 
support is available for program monitoring. Instead, this 
research concerns a more integrated approach to monitoring, 
thereby attempting to facilitate the use of low-level informa- 
tion collection tools. This approach is shared by other recent 
efforts. For example, interesting user interfaces for some basic 

performance measurement tools are integrated into the front 
ends of the BBN Butterfly multiprocessor [ l l ] .  A unified set of 
facilities for monitoring a packet radio network was developed 
at U.C.L.A. [70]. Similarly, Gertner’s system facilitates the 
monitoring of a distributed system at the message passing 
level, focusing on message traffic, which is also the case for 
most of the systems described below. 

Another unified set of facilities has been developed by 
Malony and Reed, who specifically address perturbation and 
the analysis and display of performance information. They 
consider both analysis and display of the “constituent levels” 
of a parallel system, i.e., hardware design, system software 
design, algorithm design and application design. Two ways 
their approach differs from ours are 1) they identify a minimum 
set of events that should be captured by signals to a hardware 
monitor, operating system calls or flags to a compiler pre- 
processor and 2) they do not build on a uniform information 
model. 

The Computer Network Monitoring System (CNMS) uses a 
combination of hardware and software to monitor a geograph- 
ically distributed network [42]. The Jade monitoring system 
provides a set of tools to observe and control message traffic 
in a distributed system. This monitor separates the collection 
and detection of information from the analysis and display 
of information. However, in contrast to our approach, it does 
not have access to semantic information about the distributed 
programs being observed. Message monitoring is also the 
focus of IDD, which uses a single supervisor process for 
message analysis, thereby making it a potential bottleneck. 
IDD does support filtering as a final step by use of a time 
logic, similar to Snodgrass’ temporal query language. IDD 
also has some graphical capabilities, but does not address 
the simultaneous and graphical support of the specification of 
what is to be monitored, the actions to be taken with collected 
information, and the display of monitoring data. Furthermore, 
none of the systems mentioned in this paragraph address the 
monitoring of arbitrary program attributes, as done by the Issos 
monitor. 

Interestingly, some very recent work is now considering 
hardware support for the dynamic monitoring of arbitrary 
attributes. The event-based TMP [20] and the dynamic mon- 
itoring system described in [68] both assume the use of 
specialized co-processors for the collection and analysis of 
dynamic program information. TMP differs from our work 
in that it is based on the lower level notion of events rather 
than the program state-based approach offered by the Issos 
monitor. The work described in 1681 solely focuses on the nec- 
essary hardware support for the capture of arbitrary program 
attributes. 

Our research also shares some attributes with recent work on 
distributed or parallel program debugging, which is surveyed 
in [39]. Such debuggers typically perform a more intrusive 
form of monitoring. Bates [3] implements dynamic analysis 
using primitive and high-level events, where some filtering 
[65] is performed for high-level events in order to reduce the 
amounts of information presented to users. However, in con- 
trast to our approach, Bates performs filtering after collection 
has been completed. In addition, Bates does not allow the 



776 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993 

association of display information with event descriptions, so 
that it is hard to customize graphical displays of monitoring 
information. 

Some research on distributed debugging [41] is related to 
our work in that it is interested in posing higher level questions 
about a distributed program’s execution state. Recent work 
by such researchers addresses parallel systems, as well. In 
the IPS-2 system, multiple levels of abstraction concerning 
the target parallel hardware and application programs are 
identified. In addition, IPS-2 offers program analysis tools 
for user assistance in identification of performance-critical 
program components. Our system would associate such tools 
with the user interface, again using the information model 
as the basis for description of the required information. In 
contrast to our work, IPS-2 can automate the association of 
instrumentation with a target parallel program by requiring 
sensors to be associated with procedure calls. 

However, research in parallel or distributed debugging typ- 
ically focuses on asking questions after a program run, and 
in some instances, programs are instrumented only with re- 
spect to interprocess communication [41] (IPS-2 instruments 
at the procedure level). A program debugger for the BBN 
Butterfly [31] shares our approach of collecting only the 
information that is necessary for analysis and presentation. 
However, this system is more concerned with the replay of 
parallel programs than with dynamic monitoring. Also, it 
displays all program information being collected rather than 
specific views of such information. We conjecture that such 
an approach does not scale to large parallel machines or 
to distributed systems due to the excessively large amounts 
of monitoring information required for nonselective replay. 
Instead, the collection, analysis, and display of monitoring 
information should be based on some formalism like the E-R 
model able to easily manipulate large amounts of information. 
We share this approach with recent research by Gannon 
at Indiana [53]. In contrast, recent work by Casavant at 
Iowa concerns construction of a framework based on event- 
based formalisms for the automatic generation of application- 
dependent debuggers much like the Gandalf system is able to 
generate language-dependent syntax-directed editors [43]. 

Finally, research addressing the usefulness of dynamic pro- 
gram adaptation is reported elsewhere (see [34], [6] for a 
definition of the problem and [28], [5], [19], [33], [38] for 
interesting specific examples or algorithms). 

VII. CONCLUSIONS AND FUTURE WORK 

This paper describes a system for the specification and the 
dynamic collection and analysis of program and operating 
system information in concurrent systems. The monitoring 
system is itself parallelized and distributed; it consists of 
resident monitors on each network node, which collect and 
analyze information local to that node, and a logically central- 
ized monitor, which presents a user interface and correlates 
and stores distributed information, as necessary. The system’s 
novel attributes include 1) its multiplicity of information 
collection mechanisms: sensors, extended sensors, and probes, 
and 2) its use for dynamic or static adaptation of concurrent 

application programs. The utility of the system is demonstrated 
with a workload generator program and with the adaptation of 
a sample parallel (and distributed) program. 

A major contribution of this research is a demonstration 
that an entity-relationship (E-R) model may be used for 
1) the description of concurrent software and distributed 
or parallel hardware, 2) the specification of program views 
and attributes for monitoring, and 3) the determination of 
distributed analysis and collection to be performed for the 
specified views. This paper has focused on using the model for 
monitoring; other papers discuss information specification and 
display [27], [26], [62],  [60], [59], [19], [45], [25]. Entities, 
relationships, and their attributes are specified in the program 
construction system when the parallel application is designed 
and implemented. Later, views are specified on entities and 
relationships to describe the desired monitoring information, to 
be used, for example, for adaptation. The low level distributed 
collection and analysis mechanisms can then be generated 
automatically from these high level specifications. The model’s 
utility has been demonstrated in our own research on a wide 
variety of multicomputers, including a local area network 
[45], [25], [62], several kinds of multiprocessors, a hypercube 
multicomputer. 

To achieve high performance, monitoring information can- 
not be collected and analyzed separately, as also shown by 
recent research regarding the hardware assistance for the 
monitoring of arbitrary program attributes [68], [20]. In our 
prototype systems, this is evident from the gains in efficiency 
attained by the combined analysis and collection performed 
in extended sensors or resident monitors, where analysis can 
be pushed to the lowest level at which it may be performed, 
thereby reducing interprocess and interprocessor communica- 
tion. Thus, while the specification of what to monitor should be 
done using some information model describing a concurrent 
program or system, this specification must then be used to 
generate efficient information collection and analysis using 
a diverse set of mechanisms (in the systems presented here, 
probes, sensors, extended sensors, code in resident monitors, 
and code in central monitors). 

An interesting, resulting limitation of our system is that 
it achieves high performance by assuming that users specify 
monitoring queries statically (in contrast to research on post- 
execution analysis [30]), so that the collection and analysis 
required for answering such queries may be optimized and 
compiled “into” the application and monitoring system. This 
implies that users cannot dynamically ask the system to collect 
and analyze totally different program information. Further- 
more, significant extensions of the system are necessary to deal 
with objects whose dynamic creation cannot be anticipated by 
the monitoring system at the time of program compilation. 

Our current research continues to focus on dynamic pro- 
gram monitoring, using re-implementations of the monitoring 
system on a range of parallel machines, including a network of 
Sun workstations, a BBN Butterfly, a Sequent Symmetry, and a 
Kendall Square Research multiprocessor. Our current research 
is concentrating on the graphical display of monitoring infor- 
mation [27], based on the E-R information model, including 
the use of tools for the generation of program animations [67]. 



OGLE er al. DYNAMIC MONITORING OF DISTRIBUTED AND PARALLEL SYSTEMS 777 

In addition, we are beginning to understand the use of on-line 
program information for the interactive steering of large-scale 
scientific applications running on parallel machines. 

ACKNOWLEDGMENT 

In addition to the authors, R. Ramnath and S. Vasudevan 
were the other principal designers of the Issos adaptation 
system, prototypical parts of which were also developed by T. 
Bihari, M. Choudhary, S. Sarkar, J. Hollingsworth, and W. K. 
Varadhan. J. Gawkowski was partially responsible for a graph- 
ical user interface constructed for the monitor. P. Gopinath 
and M. Mandal designed, implemented, and measured the 
multiprocessor implementation of the monitoring system. D. 
Doerner, F. A. Fisher, E. MacHardy, S. Neuman, and S. 
Duncan of the University of North Carolina implemented the 
initial prototype of the Unix-based, resident monitor. 

REFERENCES 

M.D. Abrams and S. Treu, “A methodology for interactive computer 
service measurement,” Commun. ACM, vol. 20, no. 12, pp. 936-944, 
Dec. 1977. 
G. T. Almes, A. P. Black, E. D. Lazowska, and J. D. Noe, “The eden 
system: A technical review,” IEEE Trans. Software Eng., vol. SE-1 1 ,  
no. 1 ,  pp. 43-58, Jan. 1985. 
P. Bates, “Debugging heterogeneous distributed systems using event- 
based models of behavior,” in Proc. Workhop Parallel and Distributed 
Debugging, Univ. of Wisconsin, Madison, W1, May 1988. 
B. Bershad, E. Lazowska, H. Levy, and D. Wagner, “An open envi- 
ronment for building parallel programming systems,” in Proc. ACM 
SIGPLAN Parallel Programming: Experience with Applications, Lan- 
guages and Systems, SIGPLAN Notices, ACM SIGPLAN, Sept. 1988, 
pp. 1-9. 
T. Bihari and K. Schwan “A comparison of four adaptation algorithms 
for increasing the reliability of real-time software,” in Proc. Ninth 
Real-Time Syst. Symp., Huntsville, AL, IEEE, Dec. 1988, pp. 232-241. 
-, “Dynamic adaptation of real-time software,” ACM Trans. 
Comput. Syst., vol. 9, no. 2, pp. 143-174, May 1991. Older version 
available from the Dep. Comput. Inform. Sci., Ohio State Univ., OSU- 
CISRC-5/88-TR, newer version available from College of Comput., 
Georgia Inst. of Technol., Atlanta GA, GTRC-TR-90/67. 
W. Bo “Topologies-Distributed abstract objects in multicomputers,” 
Ph.D. dissertation, Dep. Comput. Inform. Sci., Ohio State Univ., Sept. 
1989. 
J. S.  Chase, F. G. Amador, E. Lazowska, H. Levy, and R. Littlefield, 
“The amber system: Parallel programming on a network of multiproces- 
sors,” in Twelfth ACM Symp. Operat. Syst. Principles, SIGOPS Notices, 
ACM SIGOPS, Dec. 1989, pp. 147-158. 
P. P .4 .  Chen, “The entity-relationship model-Toward a unified view 
of data,”ACM Trans. DatabaseSyst., vol. 1 ,  no. I ,  pp. 9-36, Mar. 1976. 
M. Choudhary, “Multi-weight objects and invocations for networks and 
multiprocessors; A run-time system for COOL,” Ph.D. dissertation, 
M.Sc thesis, Dep. Comput. Inform. Sci., Ohio State Univ., Apr. 1988. 
W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken, and T. 
Blackadar, “Performance measurements on a 128-node butterfly parallel 
processor,” in Proc. 1985 Int. Conf Parallel Processing, Aug. 1985, pp. 
531-540. 
A. K. Jones, E. F. Gehringer, and Z. Z. Segall, ”The cm* testbed,” IEEE 
Comput. Mag., vol. 15, no. 10, pp. 40-53, Oct. 1982. 
J.-Fitch, ”Profiling a large program,” Software -Practice and Experi- 
ence, vol. 7, pp. 511-518, 1977. 
G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, 
and D. W. Walker, Solving Problems On Concurrent Processors. En- 
glewood Cliffs, NJ: Prentice-Hall, 1988. 
E. F. Gehringer, D. P. Siewiorek, and Z. Segall, Parallel Processing: 
The Cm* Experience. Bedford, MA: Digital Press, Digital Equipment 
Corp., 1987. 
1. Gertner, “Performance evaluation of communicating processes.” Ph.D. 
dissertation, Univ. of Rochester, May 1980. 
P. Gopinath, R. Ramnath, and K. Schwan, “Entity-Relationship datase 
support for real-time applications,” in Proc. PARBASE-90, ACM, IEEE, 

and Euromicro, 1990. Also available as Philips Technical Note TN-89- 
135. 

[18] -, “Database design for real-time systems,” J .  Syst. Software, vol. 
17, no. 2), Feb. 1992. 

1191 P. Gopinath and K. Schwan, “Chaos: Why one cannot have only 
an operating system for real-time applications,” SIGOPS Notices, pp. 
106-125, July 1989. Also available as Philips Technical Note TN-89- 
006. 

[20] D. Haban and D. Wybranietz, ”A hybrid monitor for behavior and 
performance analysis of distributed systems,” IEEE Trans. Software 
Eng., vol. 16, no. 2, pp. 197-211, Feb. 1990. 

[21] P. Harter, D. Heimbigner, and R. King, “Idd: An interactive distributed 
debugger,” in Proc. 5th Int. Conf Distributed Syst., IEEE, Mar. 1985. 

[22] M. T. Heath and J. A. Etheridge, ”Visualizing the performance of 
parallel programs,” IEEE Software, vol. 8, no. 5, pp. 29-39, Sept. 1991. 

[23] S. E. Hudson and R. King, “The cactis project: Database support for 
software environments,” IEEE Trans. Software Eng., vol. 14, no. 6, pp. 
705-719, June 1988. 

[24] J. Joyce, G. Lomow, K. Slind, and B. Unger, “Monitoring distributed 
systems,” ACM Trans. Compu. Syst., vol. 5, no. 2, pp. 121-150, May 
1987. 

[25] M. J. Kaelbling and D. M. Ogle, “Minimizing monitoring costs: Choos- 
ing between tracing and sampling,” in Proc. 23rd Int. Hawaii Conf Syst. 
Sci., Vol. I, Jan. 1990, pp. 314-320. 

[ 261 C. Kilpatrick and K. Schwan, “Chaosmon - Application-specific mon- 
itoring and display of performance information for parallel and dis- 
tributed systems,” in Proc. ACM Workshop Parallel and Distributed 
Debugging, pp. 57-67. ACM SIGPLAN Notices, vol. 26, no. 12, May 
1991. 

[27] C. Kilpatrick, K. Schwan, and D. Ogle, “Using languages for describing 
capture, analysis, and display of performance information for parallel 
and distributed applications,” in Proc. Int. Con$ Comput. Languages 
‘90, New Orleans, LA, IEEE, Mar. 1990, pp. 180-189. 

[28] J. Kramer and J. MaGee, ”Dynamic configuration for distributed sys- 
tems,” IEEE Trans. Software Eng., vol. SE-11, no. 4, pp. 424-436, 
Apr. 1985. 

1291 L. Lamport, “Synchronizing time servers,” Tech. Rep. 18, Digital 
Systems Research Center, Palo Alto, CA, June 1987. 

[30]’ R. LeBlanc and A. Robbins, ”Event-driven monitoring of distributed 
programs,” in Proc. 5th Int. Conf Distributed Syst., IEEE, Mar. 1985. 

(311 T. Leblanc and J. Mellor-Crummey, ”Debugging parallel programs with 
instant replay,” IEEE Trans. Comput., vol. C-36, Apr. 1988. 

[32] T. J. LeBlanc and S .  A. Friedberg, “Hierarchical process composition 
in distributed operating systems,” in Proc. 5th Int. Conf Distributed 
Comput. Syst., Denver, CO, IEEE, ACM May 1985, pp. 26-34. 

1331 K.-J. Lin, S. Natarajan, and J. W. S. Liu, “lmprecise results: Utilizing 
partial computations in real-time systems,” in Proc. IEEE Real-Time 
Syst. Symp., 1987, pp. 210-217. 

[34] J. Magee and J. Kramer, “Dynamic configuration for distributed real- 
time systems,” in Proc. Int. Conf Parallel Processing, IEEE, ACM, 

[35] A. D. Malony, D. Reed, J. W. Arendt, R. A. Aydt, D. Grabas, and 
B. K. Totty, “ A n  integrated performance data collection, analysis, 
and visualization system,” Tech. Rep. l T R l l ,  Univ. of Illinois at 
Urbana-Champaign, Mar. 1989. 

(361 A. D. Malony, D. A. Reed, and H. A. G. Wijshoff, “Performance 
measurement intrusion and perturbation analysis,” IEEE Trans. Parallel 
Distributed Syst., vol. 3, no. 4, pp. 433-450, July 1992. 

137) D. C. Marinescu, J. E. Lumpp, T. L. Casavant, and H. J. Siegel, 
“Models for monitoring and debugging tools for parallel and distributed 
software,” J. Parallel Distributed Comput., vol. 9, no. 2, pp. 171-184, 
June 1990. 

[38] K. Marzullo and M. Wood , “Making real-time systems reactive,” ACM 
Operat. Syst. Rev., vol. 25, no. 1 ,  Jan. 1991. 

[39] C .E. McDowell and D. P. Helmbold, “Debugging concurrent pro- 
grams,” ACM Comput. Surveys, vol. 21, no. 4, pp. 593-623, Dec. 
1989. 

[40] B. P. Miller, M. Clark, J. Hollingsworth, S. Kirstead, S.-S. Lim, and 
T. Torzewski, “lps-2: The second generation of a parallel program 
measurement system,” IEEE Trans. Parallel Distributed Syst., vol. 1, 
no. 2, pp. 206-217, Apr. 1990. 

[41] B. P. Miller and C. Q. Yang, “Ips: An interactive and automatic 
performance measurement tool for parallel and distributed programs,” in 
Proc. Int. Conf: Distributed Comput. Syst., Berlin, Germany, Sept. 1987. 

1421 D. E. Morgan, W. Banks, D. P. Goodspeed, and R. Kolanko, “A 
computer network monitoring system,” IEEE Trans. Software Eng., vol. 
SE-1, no. 3, Sept. 1975. 

1431 D. Notkin, “The gandalf project,” J .  Syst. Sofrware, vol. 5, no. 2, pp. 

Aug. 1983, pp. 277-288. 



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 7, JULY 1993 

91-106, May 1985. 
G. J. Nutt, “A survey of remote monitors,” Tech. Rep. 500-542, National 
Bureau of Standards, Jan. 1979. 
D. Ogle, “The real-time monitoring of distributed and parallel systems,” 
Ph.D. dissertation, Dep. Comput. Inform. Sci., Ohio State Univ., Aug. 
1988. 
D. M. Ogle, P. Gopinath, and K. Schwan, “Tool integraton in dis- 
tributed programming and execution environments- Representing and 
using monitored information,” in Proc. IEEE Workshop Experimental 
Distributed Syst., Huntsville, AL, IEEE, 1990, pp. 83-90, 
B. Plattner, “Real-time execution monitoring,” IEEE Trans. Software 
Eng., vol. SE-10, no. 6, pp. 756-764, Nov. 1984. 
B. Plattner and J. Nievergelt, “Monitoring program execution: A sur- 
vey,” I€E€ Comput. Mag., vol. 16, no. 11, pp. 76-93, Nov. 1981. 
R. Ramnath, “ICE-An environment for constructing and tuning par- 
allel programs,” Ph.D. dissertation, Dep. Comput. Inform. Sci., Ohio 
State Univ., Aug. 1988. 
S. P. Reiss, “Pecan: Program development systems that support multiple 
views,” IEEE Trans. Software Eng., pp. 276-284, Mar. 1985. 
-, “Connecting tools using message passing in the field environ- 
ment,” IEEE Software, vol. 7, no. 4, pp. 57-67, July 1990. 
R. H. Halstead, Jr., “Multilisp: A language for concurrent symbolic 
computation,” ACM Trans. Programming Languages and Syst., vol. 7, 
no. 4, pp. 501-538, Oct. 1985. 
S. R. Sarukkai and D. Cannon, “Parallel program visualization using 
sieve.1,” in Proc. Int. Conf: Supercomput., ACM, July 1992. 
E. Satterthwaite, “Debugging tools for high level languages,” Software- 
Practice and Experience, vol. .2, pp. 197-217, 1972. 
K. Schwan, R. Ramnath, S. Sarkar, and S. Vasudevan, “Cool-Language 
constructs for constructing and tuning parallel programs,” in Proc. Inr. 
Conf: Comput. Languages, Miami Beach, FL, IEEE, Oct. 1986, pp. 
90-103. 
K. Schwan, T. E. Bihari, and B. Blake, “Adaptive. reliable software 
for distributed and parallel, real-time systems,” in Proc. Sath Symp. 
Reliability in Distributed Sofhvare, Williamsburg, VA, IEEE, Mar. 1987, 

K. Schwan, T. Bihari, B. W. Weide, and G. Taulbee, “High-performance 
operating system primitives for robotics and real-time control systems,” 
ACM Trans. Computer Syst., vol. 5, no. 3, pp. 189-231, Aug. 1987. 
K. Schwan, B. Blake, W. Bo, and J. Gawkowski, “Global data and con- 
trol in multicomputers: Operating system primitives and experimentation 
with a parallel branch-and-bound algorithm,” in Concurrency: Practice 
and Experience. 
K. Schwan and A. K. Jones, “Specifying resource allocation for the cm* 
multiprocessor,” IEEE Software. vol. 3, no. 3, pp. 60-70, May 1984. 
K. Schwan and J. Matthews, “Graphical views of parallel programs,” 
ACM SIGSOFT Notices, 1986. 
K. Schwan, R. Ramnath, S. Vasudevan, and D. Ogle, “A system for 
parallel programming,” in Proc. 9th Int. Conf Software Eng., Monterey, 
CA, IEEE, pp. 270-282, ACM, Mar. 1987. Awarded best paper. 
-, “A language and system for parallel programming,” IEEE Trans. 
Software Eng., vol. 14, no. 4, pp. 455-471, Apr. 1988. 
Z. Segall, A. Singh, R. Snodgrass, A. Jones, and D. Siewiorek, “An in- 
tegrated instrumentation enivronment for multiprocessors.” IEEE Trans. 
Comput., vol. C-32, no. 1, Jan. 1983. 
R. Snodgrass, “The temporal query language tquel,” ACM Trans. Data- 
baseSyst., vol. 12, no. 2, pp. 247-298, May 1987. 
__, “A relational approach to monitoring complex systems,” ACM 
Trans. Comput. Syst., vol. 6, no. 2, pp. 157-196, May 1988. 
D. C. Sowell and K. Schwan, “Supporting parallel programming envi- 
ronments with shared persistent data structures,” in Proc. Inr. Workshop 
Unit-Based Software Development Environments, Dallas, TX, Usenix, 
Jan. 1991. 
J. T. Stasko, “TANGO: A framework and system for algorithm anima- 
tion,” IEEE Comput. Mag., vol. 23, no. 9, pp. 27-39, Sept. 1990. 
J. J. P. Tasi, K.-Y. Fang, and H.-Y. Chen, “A noninvasive architecture 
to monitor real-time distributed systems,” IEEE Software, vol. 23, no. 
7 nn 11-77 Mar 1990 

pp. 32-44. 

New York: Wiley, Dec. 1989, pp. 191 -218. 

Software Development Environments, SIGPlan Notices, 2412, Feb. 1989, 
pp. 1-13. 

[70] D. A. Tobagi, S. E. Lieberson, and L. Kleinrock, “On measurement 
facilities in packet radio systems,” in Proc. Nat. Comput. Conf:, AFIPS, 

[71] J. D. Ullman Principles of Database Systems. Rockville, MD: Com- 
puter Science Press, 1989. 

(721 D. Vrsalovic, D. P. Siewiorek, Z. Z. Segall, and E. F. Gehringer, 
“Performance prediction for multiprocessor systems,’’ in Proc. Int. Con$ 
Parallel Processing, IEEE, ACM, Aug. 1984, pp. 139-147. 

[73] W. M. Waite, “A sampling for applications programs,” Software- 
Practice and Experience, vol. 3, pp. 75-79, 1973. 

[74] W. A. Wulf, R. Levin, and P. Harbison, HydralC.mmp: An Experimental 
Computer System. 

[75] G. Yuval, “Gathering run-time statistics without black magic,” Software- 
Practice and Experience, pp. 105-108, 1975. 

1976, pp. 589-596. 

New York: McGraw-Hill, 1981. 

David M. Ogle received the B.S., M.S., and Ph.D. 
degrees in computer and information science from 
the Ohio State University in 1981, 1984, and 1988, 
respectively. 

He joined the IBM Corporation, Research Tri- 
angle, Park, NC, in 1989 as a member of the 
Experimental Systems Department. He is actively 
involved in ad-tech projects in the areas of dis- 
tributed systems and multiprotocol networking. 

Karsten Schwan received the M.Sc. and Ph.D. 
degrees in computer science from Camegie-Mellon 
University. 

He is an Associate Professor in the College of 
Computing, Georgia Institute of Technology. His 
research addresses operating systems and program- 
ming support for parallel machines, including OS 
kernel structures and tools for program monitor- 
ing, tuning, and configuration. While at Ohio State 
University, he established the Parallel, Real-time 
Svstems (PARTS) Laboratory conducting research 

I 

focusing on real-time operating systems for parallel machines. At Georgia 
Institute of Technology, he is also co-director of the High Performance and 
Parallel Computing Experimentation Laboratory (HPPCEL) providing a 32- 
node Kendall Square supercomputer. 

Dr. Schwan is an associate editor of Concurrenty-Practice and Experi- 
ence. 

Richard Snodgrass (S’79 -M’81 -SM’87) received 
the Ph.D. degree from Carnegie-Mellon University 
in 1982. 

He joined the University of Arizona in 1989. His 
research interests include temporal databases and 
programming environments. He directed the design 
and implementation of the Scorpion Meta Software 
Development Environment, described in his hook, 
The Interface Description Language: Definition and 
Use (Rockville, MD: Computer Science Press). 

He is an associate editor of the ACM Transactions I, TT. _ _  _I) - 
(691 R. N. Taylor, F. C. Belz, L. A. Clarke, L. Osterweil, R. W. Selby, J. 

C. Wileden, A. L. Wolf, and M. Young, “Foundations for the arcadia 
environment architecture,” in Proc. ACM SIGSOFT ’88: Third Svmp. 

on Database Systems and is on the editorial board of the International Journal 
of Computer and Software Engineering. He will chair the program committee 
for the 1994 SIGMOD Conference. 


