
Contents1 Introduction 12 The Time Domain 12.1 Structure : 12.2 Dimensionality : 22.3 Indeterminacy : 52.4 Representation : 62.4.1 Interpretation. : 62.4.2 Physical Realization. : 83 Associating Facts with Time 93.1 Underlying Data Model : 93.2 Attribute Variability : 103.3 Representational Alternatives : 103.3.1 Data Models. : 113.3.2 Valid Time. : 123.3.3 Transaction Time. : 123.3.4 Attribute Value Structure. : 123.3.5 Separating Semantics from Representation. : 134 Querying 144.1 Language Proposals : 144.2 Types of Temporal Queries : 154.2.1 Schema De�nition. : 154.2.2 Quel Retrieval Statements. : 164.2.3 Rollback (Transaction-time Slice). : 164.2.4 Valid-time Selection. : 164.2.5 Valid Time Projection. : 174.2.6 Aggregates. : 174.2.7 Historical Indeterminacy. : 174.2.8 Schema Evolution. : 184.3 Standards : 185 System Architecture 185.1 DDL Statements : 195.2 System Catalog : 195.3 Query Processing : 205.3.1 Local Query Optimization. : 205.3.2 Global Query Optimization. : 215.4 Query Evaluation : 215.4.1 Domain Operations. : 215.4.2 A Straightforward Implementation. : 215.4.3 Joins. : 225.4.4 Temporal Indexes. : 225.5 Stored Data Manager : 226 Conclusion 247 Acknowledgements 25Bibliography 25i

1 IntroductionTime is an important aspect of all real-world phenomena. Events occur at speci�c points in time; objects andthe relationships among objects exist over time. The ability to model this temporal dimension of the real woldis essential to many computer applications, such as econometrics, banking, inventory control, accounting, law,medical records, land and geographical information systems, and airline reservations.Conventional databases represent the state of an enterprise at a single moment of time. Although the contentsof the database continue to change as new information is added, these changes are viewed as modi�cations to thestate, with the old, out-of-date data being deleted from the database. The current contents of the database maybe viewed as a shapshot of the enterprise. In such systems the attributes involving time are manipulated solelyby the application programs; the database management system (DBMS) interprets dates as values in the basedata types. No conventional system interprets temporal domains when deriving new relations.Application-independent DBMS support for time-varying information has been an active area of research forabout 15 years, with approximately 400 papers generated thus far [Bolour et al. 1982, McKenzie 1986, Soo 1991,Stam & Snodgrass 1988]. This paper attempts to capture and summarize the major concepts, approaches, andimplementation strategies that have been generated by that research.We �rst examine the time domain: its structure, dimensionality (interestingly, there are several time dimen-sions) and temporal indeterminacy, followed by issues in representing values in this domain. We demonstratethat time is actually more complex than the spatial domain, as the former's dimensions are non-homogeneous.Section 3 follows a similar organization in examining how facts may be associated with time. Data modelingissues are �rst examined, then representational alternatives are explored, with frequent comparisons with space.We brie
y consider how facts may be simultaneously associated with both space and time, a common phenomenain land and geographic information systems.We next consider languages for expressing temporal queries. We illustrate the various types of queries throughexamples in the temporal query language TQuel, and brie
y appraise various standards e�orts.Temporal DBMS implementation is the topic of Sec. 5. We examine the impact to each of the components ofa DBMS of adding temporal support, discussing query optimization and evaluation in some detail.We conclude with a summary of the major accomplishments and disappointments of research into temporaldatabases.We omit one major aspect, that of database design, due to lack of space.2 The Time DomainIn this section we focus on time itself: how it is modeled and how it is represented. The next section will thencombine time with facts, to model time-varying information.2.1 StructureWe initially assume that there is one dimension of time. The distinctions we address here will apply to each ofthe several dimensions we consider in the next section.Early work on temporal logic centered around two structural models of time, linear and branching [Van Benthem1982]. In the linear model, time advances from the past to the future in a totally ordered fashion. In the branchingmodel, also termed the possible futures model, time is linear from the past to now, where it then divides intoseveral time lines, each representing a potential sequence of events [Worboys 1990]. Along any future path,additional branches may exist. The structure of branching time is a tree rooted at now. The most general modelof time in a temporal logic represents time as an arbitrary set with a partial order imposed on it. Additionalaxioms introduce other, more re�ned models of time. For example, linear time can be speci�ed by adding anaxiom imposing a total order on this set. Recurrent processes may be associated with a cyclic model of time[Chomicki & Imelinski 1989, Lorentzos 1988, Lorentzos & Johnson 1988].In spatial models, there is much less diversity, and a linear model is generally adequate.Axioms may also be added to temporal logics to characterize the density of the time line [Van Benthem 1982].Combined with the linear model, discrete models of time are isomorphic to the natural numbers, implying thateach point in time has a single successor [Cli�ord & Tansel 1985]. Dense models of time are isomorphic to either1

the rationals or the reals: between any two moments of time another moment exists. Continuous models of timeare isomorphic to the reals, i.e., they are both dense and unlike the rationals, contain no \gaps."In the continuous model, each real number corresponds to a \point" in time; in the discrete model, each naturalnumber corresponds to a nondecomposable unit of time with an arbitrary duration. Such a nondecomposableunit of time is refered to as a chronon [Ariav 1986, Cli�ord & Rao 1987] (other, perhaps less desirable, termsinclude \time quantum" [Anderson 1982], \moment" [Allen & Hayes 1985], \instant" [Gadia 1986] and \timeunit" [Navathe & Ahmed 1987, Tansel & Arkun 1986]). A chronon is the smallest duration of time that can berepresented in this model. It is not a point, but a line segment on the time line.Although time itself is generally perceived to be continuous, most proposals for adding a temporal dimensionto the relational data model are based on the discrete time model. Several practical arguments are given inthe literature for this preference for the discrete model over the continuous model. First, measures of timeare inherently imprecise [Anderson 1982, Cli�ord & Tansel 1985]. Clocking instruments invariably report theoccurrence of events in terms of chronons, not time \points." Hence, events, even so-called \instantaneous"events, can at best be measured as having occurred during a chronon. Secondly, most natural language referencesto time are compatible with the discrete time model. For example, when we say that an event occurred at 4:30p.m., we usually don't mean that the event occurred at the \point" in time associated with 4:30 p.m., but at sometime in the chronon (perhaps minute) associated with 4:30 p.m. [Anderson 1982, Cli�ord & Rao 1987, Dyreson &Snodgrass 1992A]. Thirdly, the concepts of chronon and interval allow us to naturally model events that are notinstantaneous, but have duration [Anderson 1982]. Finally, any implementation of a data model with a temporaldimension will of necessity have to have some discrete encoding for time (Sec. 2.4).Space may similarly be regarded as discrete, dense, or continuous. Note that, in all three of these alternatives,two separate space-�lling objects cannot be located in the same point in space and time: they can be located inthe same place at di�erent times, or at the same time in di�erent places.Axioms can also be placed on the boundedness of time. Time can be bounded orthogonally in the past and inthe future. The same applies to models of space.Models of time may include the concept of distance (most temporal logics do not do so, however). Bothtime and space are metrics, in that they have a distance function satisfying four properties: (1) the distance isnonnegative, (2) the distance between any two non-identical elements is non-zero, (3) the distance from time �to time � is identical to the distance from � to �, and (4) the distance from � to
 is equal to or greater thanthe distance from � to � plus the distance from � to
 (the triangle inequality).With distance and boundedness, restrictions on range can be applied. The scienti�c cosmology of the \BigBang" posits that time begins with the Big Bang, 14 � 4 billion years ago. There is much debate on when itwill end, depending on whether the universe is open or closed (Hawking provides a readable introduction to thiscontroversy [Hawking 1988]). If the universe is closed then time will have an end when the universe collapsesback onto itself in what is called the \Big Crunch." If it is open then time will go on forever.Similar considerations apply to space. In particular, an open universe implies unbounded space. However,many applications assume a bound as well as a range; geographical information systems don't need to contendwith values greater than approximately 70 million meters.Finally, one can di�erentiate relative time from absolute time (more precise terms are unachored and anchored).For example, \9A.M., January 1, 1992" is an absolute time, whereas \9 hours" is a relative time. This distinction,though, is not as crisp as one would hope, because absolute time is with respect to another time (in this example,midnight, January 1, A.D. 1). We will show in Sec. 2.4 how to exploit this interaction. Relative time di�ers fromdistance in that the former has a direction, e.g., one could envision a relative time of -9 hours, whereas a distanceis unsigned.One can also di�erentiate between relative and absolute space, with the same provisos.2.2 DimensionalitySpace is multi-dimensional. Land information systems (LIS) manage units of land which are two-dimensionalareas [Vrana 1989]. The more general geographical information systems (GIS) must deal with four types of data[Mark et al. 1989].� Type 0: point data Here a two dimensional grid is applied to the surface, and point locations and associatedattributes are reported to the nearest center of a grid cell. Note that this data type emphasizes a discrete2

model, with the grid size being the space granularity.� Type 1: lines Lines in two-space, such as region boundaries, are explicitly represented.� Type 2: coverage data Coverage data, such as land use, soils or rock types, are represented as two-dimensional regions.� Type 3: surface data Here, a surface in three-space is represented. Generally, the two-dimensional projec-tion is decomposed into quadrants, and surface variation within the quadrant is represented by a polynomialsurface. An especially simple representation of surface data records as point data the average elevation withineach grid cell.GIS's must more properly be considered to support at most 212 dimensions, since arbitrary three-dimensionalstructures cannot be represented even as surface data, Two very di�erent applications require of a true thirddimension. The extensive use of computers in oil and mining exploration has led to the availability, and the needfor further processing, of digital geological information. This encompasses three dimensions [Jones 1989], thethird dimension descends into the Earth. Secondly, interest in global weather patterns has generated the needfor storing and analyzing data about the Earth's atmosphere and oceans [CES 1989], with the third dimensionextending from the lithosphere to the troposphere. both up and down.Time is also multi-dimensional [Snodgrass & Ahn 1986]. Valid time concerns the time a fact was true in reality.The valid time of an event is the wall clock time at which the event occurred in the real world, independent ofthe recording of that event in some database. Valid times can also be in the future, if it is known that some factwill be true at a speci�ed time in the future. Transaction time concerns the time the fact was present in thedatabase as stored data. The transaction time (an interval) of an event identi�es the transactions that insertedthe information about the event into the database and removed this information from the database. As withspace, these two dimensions are orthogonal. A data model supporting neither is termed snapshot, as it capturesonly a single snapshot in time of both the database and the enterprise that the database models. A date modelsupporting only valid time is termed historical; one that supports only transaction time is termed rollback; andone that supports both valid and transaction time is termed bitemporal (temporal is a generic term implying somekind of time support).Figure 1 illustrates a single bitemporal relation (i.e., table) composed of a sequence of historical states indexedby transaction time. It is the result of four transactions starting from an empty relation: (1) three tuples (i.e.,rows) were added, (2) one tuple was added, (3) one tuple was added and an existing one terminated (logicallydeleted), and (4) the starting time of a previous tuple [the middle one added in transaction (1)] was changed to asomewhat later time (presumably the original starting time was incorrect) and a recently added tuple (the bottomone) was deleted (presumably it should not have been there in the �rst place.) Each update operation involvescopying the historical state, then applying the update to the newly created state. Of course, less redundantrepresentations than the one shown are possible. While we'll consider only linear time, branching transactiontime provides a useful model for versioning in computer-aided design tasks [Dittrich & Lorie 1988] such as CAD[Ecklund et al. 1987, Katz et al. 1986] and CASE [Bernstein 1987, Hsieh 1989].A di�erent depiction that has proven useful is to time-stamp each fact with a bitemporal element1, which is aset of bitemporal chronons. Each bitemporal chronon represents a tiny rectangle in valid-time/transaction-timespace. Figure 2 shows the bitemporal element associated with the middle tuple of Fig. 1. Historical and rollbackdatabases e�ectively record historical chronons and rollback chronons, respectively.While valid time may be bounded or unbounded (as we saw, cosmologists feel that it is at least bounded in thepast), transaction time is bounded on both ends. Speci�cally, transaction time starts when the database is created(before which time, nothing was stored), and doesn't extend past now (no facts are known to have been stored inthe future). Changes to the database state are required to be stamped with the current transaction time. Hence,rollback and bitemporal relations are append-only, making them prime candidates for storage on write-once opticaldisks. As the database state evolves, transaction times grow monotonically. In contrast, successive transactionsmay mention widely varying valid times. For instance, the fourth transaction in Fig. 1 added information to thedatabase that was transaction time-stamped with time 4, while changing a valid time of one of the tuples to 2.1This term is a generalization of temporal element, previously used to denotes a set of single dimensional chronons [Gadia 1988].An alternative, equally desirable term is bitemporal lifespan [Cli�ord & Croker 1987].3

Figure 1: A bitemporal relation

Figure 2: A bitemporal element4

The three dimensions in space are truly orthogonal and homogeneous, the one exception being the specialtreatment sometimes accorded elevation. In contrast, the two time dimensions are not homogeneous; transactiontime has a di�erent semantics than valid time. Valid and transaction time are orthogonal, though there aregenerally some application dependent correlations between the two times. As a simple example, consider thesituation where a fact is recorded as soon as it becomes valid in reality. In such a specialized bitemporal database,termed degenerate [Jensen & Snodgrass 1993], valid and transaction time are identical. As another example, ifa cloud cover measurement is recorded at most two days after it was valid in reality, and if it takes at least sixhours from the measurement time to record the measurement, then such a relation is delayed strongly retroactivelybounded with bounds six hours and two days.Multiple transaction times may also be stored in the same relation, termed temporal generalization [Jensen& Snodgrass 1993]. These times may also be related to each other, or to the valid time, in various specializedways. For example, a particular value for the re
ectivity of a cloud over a point on the Earth may be recordedby an Earth Sensing Satellite at a particular time. Here, the valid time and transaction time are correlated, andthe satellite's database may be considered to be a degenerate bitemporal database. Later, this data is sent toa ground station and stored; the transaction time of the stored data will be di�erent from the valid time; thisdatabase may be classi�ed as a bounded retroactive database. Later still, the data from several ground stationsare merged into a central database, storing the original valid time, the transaction time of the recording into thecentral database, and the inherited transaction time when the data was stored in the ground station database. Allthree times may be needed, for instance, if data massaging was done with algorithms that were being improvedover time. Such multiple transaction time dimensions do not have a spatial analogue.2.3 IndeterminacyInformation that is historically indeterminate can be characterized as \don't know exactly when" information.This kind of information is prevalent; it arises in various situations, including the following.� Finer system granularity | In perhaps most cases, the granularity of the database does not match theprecision to which an event time is known. For example, an event time known to within one day andrecorded on a system with time-stamps in the granularity of a millisecond happened sometime during thatday, but during which millisecond is unknown.� Imperfect dating techniques | Many dating techniques are inherently imprecise, such as radioactive andCarbon-14 dating. All clocks have an inherent imprecision [Dyreson & Snodgrass 1992A].� Uncertainty in planning { Projected completion dates are often inexactly speci�ed, e.g., the project willcomplete three to six months from now.� Unknown or imprecise event times | In general, event times could be unknown or imprecise. For example,if we do now know when an individual was born, the individual's date of birth could be recorded in thedatabase as either unknown (she was born between now and the beginning of time) or imprecise (she wasborn between now and 100 years ago).There have been several proposals for adding historical indeterminacy to the time model [Gadia et al. 1992,Kahn & Gorry 1977], as well as more speci�c work on accommodating multiple time granularities [Ladkin 1987,Wiederhold et al. 1991]. The possible chronons model uni�es treatment of both aspects [Dyreson & Snodgrass1992A]. In this model, an event is determinate if it is know when (i.e., during which chronon) it occurred. Adeterminate event cannot overlap two chronons. If it is unknown when an event occurred, but known that it didoccur, then the event is historically indeterminate. The indeterminacy refers to the time when the event occurred,not whether the event did or did not occur.Two pieces of information completely describe an indeterminate event: a set of possible chronons and an eventprobability distribution. A single chronon from the set of possible chronons denotes when the indeterminate eventactually occurred. However, it is unknown which possible chronon is the actual one. The event probabilitydistribution gives the probability that the event occurred during each chronon in the set of possible chronons.The implementation of the possible chronons model supports a �xed, minimal chronon size. Multiple gran-ularities are handled by representing the indeterminacy explicitly. For example, if the underlying chronon is a5

microsecond and an event is known to within a day, then this indeterminate event would be associated with a setof 86,400,000 possible chronons, and perhaps a uniform event probability distribution.As a practical matter, events that occurred in the prehistoric past cannot be dated as precisely as events thatoccur in the present. There is an implicit \telescoping view" of time. Dating of recent events can often be doneto the millisecond while events that occurred 400 million years ago can be dated to, perhaps at best the nearest100,000 years. Dating future events is also problematic. It is impossible to say how many seconds will be betweenMidnight January 1, 1992 and Midnight January 1, 2300 because we don't know how many leap second will beadded to correct for changes in the rotational clock. We can guess at the number of seconds, but \leap shifts" tothe current clock are likely to invalidate our guess.Historical indeterminacy occurs only in valid time. The granularity of a transaction time time-stamp is thesmallest inter-transaction time. Transaction times are always determinate since the chronon during which atransaction takes place is always known.Most of the above may be applied to space. Information that is spatially indeterminate can be characterizedas \don't know exactly where" information. It is also prevalent, due to granularity concerns, measurementtechniques, and unknown or imprecise location speci�ers. One could envision an analogous \possible spacequanta" model that could capture the variety of spatial indeterminacy. The telescoping view phenomenon alsooccurs in space, as distant locations are less precisely known.As with time, a spatial data granularity coarser than the database management system (DBMS) granularityis often adopted. One of the more common models, Type 0 (Sec. 2.2), covers the two-dimensional space with agrid, with point locations and associated attributes reported to the nearest cell center. In this model, the data isa multiple of the underlying DBMS granularity. For example, the DBMS granularity might be a meter, with alllocation speci�ers being expressed in this unit, while the grid cells may be 2 kilometers on a side.2.4 RepresentationSince time and space are metrics, a system of units is required to represent particular events or locations. Atime-stamp or location speci�er has a physical realization and an interpretation. The physical realization is apattern of bits while the interpretation is the meaning of each bit pattern, that is, the time or location eachpattern represents.2.4.1 Interpretation.For time, the central unit is the second. However, there are at least seven di�erent de�nitions of this fundamentalunit [Dyreson & Snodgrass 1992A].Apparent solar | 1=86400 of the interval from noon to noon; varies from day to day.Mean solar (UT0) | 1=86400 of a mean solar day, averaged over a year; varies from year to year.Mean sidereal | 1=86400 of a mean sidereal day, measuring the rotation of the Earth with respect to a distantstar; varies from year to year.UT1 | UT0 corrected for polar wander.UT2 | UT1 corrected for seasonal variations.Ephemeris | mean solar second for the year 1900; does not vary. This was the standard de�nition from 1960to 1967.International System of Units (SI) | the duration of 9,192,631,770 periods of the radiation correspondingto the transition between the two hyper�ne levels of cesium-133 atoms [Petley 1991].When a range of less than 10,000 years is supported, the di�erences between these de�nitions are generallyinconsequential, except for the apparent solar second, which varies by 1% over the course of a year. When rangesof several billion years are supported, however, all of these de�nitions di�er signi�cantly.Di�erent regions of the time line are used by di�erent communities. For example, apparent solar time isimportant to historians, who care about whether something happened in the daylight or in darkness, as well as6

 Dawn of Time
 (The Big Bang)
(14,000,000,000 B.C.
 +/- 4,000,000,000)

 Past
 Synchronization
 Point
 (1/1/9,000 B.C.)

 UTC/TAI
 Synchronization
 Point
 (A.D. 1/1/1972)

 Future (Moving)
 Synchronization
 Point
(Currently A.D. 7/1/1992)

 End of Time?

Ephemeris
 Time

Mean Solar Days UTC TDT

Figure 3: The base-line clockto users of cadastral (real estate) databases, which utilize civil calendars [Hunter & Williamson 1990]. Ephemeristime is used by astronomers, while the SI second is the basis for radioactive dating used by geochronologists.Because of these di�erent needs, as well as the telescoping view of time, we have proposed a speci�c temporalinterpretation termed the base-line clock that constructs a time-line by using di�erent well-de�ned clocks indi�erent periods. This clock, shown in Fig. 3 (not to scale), partitions the time line into a set of contiguousperiods. Each period runs on a di�erent clock. A synchronization point , where two clocks are correlated, delimitsa period boundary. The synchronization points occur at Midnight on the speci�ed date.From the Big Bang until Midnight January 1, 9000 B.C. the base-line clock runs on ephemeris time. Thisclock is preferable to the solar clock since ephemeris time is independent of the formation of the Earth and theSolar System. Also, we prefer using the ephemeris clock to the solar clock because an ephemeris year is a �xedduration, unlike the tropical year. For historic events, 9000 B.C. to January 1, 1972, the base-line clock followsthe mean solar day clock. Historic events are usually dated with calendars. Calendar dates invariably count daysand use an intercalation rule to relate the number of days to longer-term celestial clocks, e.g., the Gregoriancalendar relates days to months and tropical years. At Midnight January 1, 1972 the base-line clock switchesto Universal Coordinated Time (UTC). Midnight January 1, 1972 is when UTC was synchronized with the SIde�nition of second and the current system of leap seconds was adopted. The base-line clock runs on UTC untilone second before Midnight, July 1, 1992. This is the next time at which a leap second may be added (a leapsecond will be added on this date according to the latest International Earth Rotation Service bulletin [USNO1992]). After Midnight July 1, 1992, until the \Big Crunch" or the end of our base-line clock, the base-line clockfollows Terrestrial Dynamic Time (TDT), an \idealized atomic time" [Guinot & Seidelmann 1988] based on theSI second, since both UTC and mean solar time are unknown and unpredictable.The situation is much simpler for space. Here, the (SI) meter is the commonly accepted unit, with a singleaccepted de�nition, the length of the path traveled by light in vacuum during a time interval of 1/299,792,458 ofa second [Petley 1991]. Distance is de�ned in terms of time, rather than the other way around, because time canbe measured more accurately (1 part in 1010 over long intervals and 1 part in 1015 for between a minute and aday [Quinn 1991, Ramsey 1991]).The base-line clock and its representation are independent of any calendar. We used Gregorian calendar datesin the above discussion only to provide an informal indication of when the synchronization points occurred. Manycalendar systems are in use today; example calendars include academic (years consists of semesters), common�scal (�nancial year beginning at the New Year), federal �scal (�nancial year beginning the �rst of October) andtime card (8 hour days and 5 day weeks, year-round). The usage of a calendar depends on the cultural, legal,and even business orientation of the user [Soo & Snodgrass 1992A]. A DBMS attempting to support time valuesmust be capable of supporting all the multiple notions of time that are of interest to the user population.Space also has multiple notions, though with less variability. The metric, U.S., and nautical unit systems arethe most prevalent. Both time and space have precisely de�ned underlying semantics that may be mapped tomultiple display formats. The spatial base-line is less complex than that for time; it consists of a single measure,the meter. 7

SYSTEM Size Range Granularity Number of Bytes Space(bytes) Components Needed E�ciencyOS (several) 4 � 136 years second 1 4 100%DB2 |date 4 10,000 years day 3 2.9 71%DB2 |time 3 24 hours second 3 2.2 72%DB2 |timestamp 10 10,000 years microsecond 7 7.3 73%SQL2 |datetime 20 10,000 years second 5 4.8 24%SQL2 |fractional datetime 27 10,000 years microsecond 6 7.3 27%Low Resolution 8 � 36 billion years second 1 7.6 95%High Resolution 8 � 17400 years microsecond 3 7.5 93%Extended Resolution 12 � 36 billion years nanosecond 4 11.3 94%Table 1: A comparison Of some physical layouts2.4.2 Physical Realization.The base-line clock de�nes the meaning of each time-stamp bit pattern in the physical realization of a time-stamp.The chronons of the base-line clock are the chronons in its constituent clocks. We assume that each chronon is onesecond in the underlying constituent clock. A chronon may be denoted by an integer, corresponding to a single(DBMS) granularity, or it may be denoted by a sequence of integers, corresponding to a nested granularity. Forexample, if we assume a granularity of a second relative to Midnight, January 1, 1980, then in a single granularitythe integer 164,281,022 denotes 9:37:02AM March 15, 1985. If we assume a nested granularity of hyear, month,day, hour, minute, secondi, then the sequence h6,3,15,9,37,2i denotes that same time.Various time-stamps are in use in commercial database management systems and operating systems; a summaryis provided in Table 1. This table compares formats from operating systems (speci�cally Unix, MSDOS, and theMacIntosh operating systems), the database systems DB2 [Date & White 1990], SQL2 [Date 1989A, Melton1990], and several proposed formats to be discussed shortly. The SQL2 datetime time-stamp appears twice inthe comparison, once with its optional fractional second precision �eld set to microseconds, and once without theoptional �eld. The last three representations have recently been proposed, and will be discussed shortly.Size is the number of bytes devoted to the representation, while range refers to the di�erence between theyoungest and oldest time values that can be represented. The granularity of a time-stamp is the precision to whicha time value can be represented. If a representation has more than one component, it is of a nested granularity. Theextreme is the DB2 timestamp representation, in which the year, month, day, hour, minute, second, and numberof microseconds are individually represented. Space e�ciency is a measure of how much of the representationis actually needed. It is computed as a percentage of the number of bits needed to represent every chronon inthe temporal interpretation (DB2 and SQL2 both use the Gregorian calendar temporal interpretation) versus thenumber of bits devoted to the physical realization. The minimumnumber of bytes needed to store the number ofchronons dictated by a time-stamp's granularity and range is shown as a separate column. For instance, SQL2'sdatetime time-stamp uses 20 bytes, but only 4.8 bytes of space are needed to store a range of 10,000 years tothe granularity of a second.The evaluated time-stamps fall into two camps: OS-style time-stamps and database-style time-stamps. OS-style time-stamps have a limited range and granularity; these limitations are dictated by the size of the time-stamp.OS-style time-stamps are maximally space e�cient, having a single granularity. The time-stamp itself is merelya count of the number of chronons that have elapsed since the origin in the temporal interpretation. But optimalspace e�ciency is attained at the expense of some time e�ciency .In contrast, database-style time-stamps, as exempli�ed by the DB2 timestamp format, are generally largerthan OS-style time-stamps; they have a wider range and �ner granularity. But, as a group, they also have poorerspace utilization, having a nested granularity. The advantage of representing values separately is that they can bequickly accessed. Extracting the number of years from an OS-style time-stamp is more involved than performinga similar task on an DB2 timestamp.These existing time-stamp representations su�er from inadequate range, too coarse a granularity, excessivespace requirements, or a combination of these drawbacks. Finally, none of the time-stamps are able to representhistorical indeterminacy . Consequently, we recently proposed new time-stamp formats, incorporating featuresfrom both the OS-style and database-style time-stamps. These formats combine high space e�ciency with high8

time e�ciency for frequent time-stamp operations [Dyreson & Snodgrass 1992A].There is a natural tradeo� between range and granularity in time-stamp development. Using the same numberof bits, a time-stamp designer can make the granularity coarser to extend the range, or she can limit the range tosupport �ner granularities. These observations imply that a format based on a single 32 bit word is inadequatefor our purposes; there are simply not enough bits. Since we wanted to keep the time-stamp formats on 32 bitword boundaries, we allocated the next word increment, 64 bits, to our basic format. Using 64 bits, it is possibleto represent all of time (that is, a range of 34 billion years) to the granularity of a second, and a range of historicaltime to granularities much �ner than a second.There are three basic types of time-stamps: events, spans, and intervals [Soo & Snodgrass 1992A].We developedthree new event time-stamp formats, with di�erent resolutions, high, low, and extended. Resolution is a roughmeasure of a time-stamp precision. The low resolution format can represent times to the precision of a second.High resolution narrows the precision to a microsecond while extended resolution is even more precise; it canrepresent times to the precision of a nanosecond. High resolution has limited range but extended precision whilelow resolution has extended range but limited precision. Extended resolution handles those uncommon caseswhere the user wants both an extended range and an extended precision, at the cost of an extra word of storage.Interval time-stamp formats are simply two event time-stamps, one for the starting event of the interval andone for the terminating event of the interval. We use this representation because all operations on intervals areactually operations on their delimiting events [Soo et al. 1992]. There are sixteen interval time-stamp formats intoto. The type �elds in the delimiting event time-stamps distinguish each format.Spans are relative times. There are two kinds of spans, �xed and variable [Soo & Snodgrass 1992A]. A �xedspan is a count of chronons. It represents a �xed duration (in terms of chronons) on the base-line clock betweentwo time values. The �xed span formats use exactly the same layouts as the standard event formats, with adi�erent interpretation. The chronon count in the span representation is independent of the origin, instead ofbeing interpreted as a count from the origin. The sign bit indicates whether the span is positive or negative ratherthan indicating the direction from the origin.A variable span's duration is dependent on an associated event. A common variable span is a month. Theduration represented by a month depends on whether that month is associated with an event in June (30 days)or in July (31 days), or even in February (28 or 29 days). Variable spans use a specialized format requiring 64bits.To represent indeterminate events, we added nine formats, three of each resolution. There are three analogousformats for low resolution, and three for extended resolution. The most common, for high resolution with auniform distribution, requires only 64 bits.As we have seen in other areas, the considerations for space are similar, yet considerably simpler. A spatialrepresentation of 32 bits (per dimension) for a range required to map the Earth results in a granularity of onedecimeter, and of one centimeter for the third dimension (the atmosphere, the oceans, and the Earth's interior)or for restricted areas such as the United States or Europe. Moving up to 64 bits makes spatial indeterminacyrepresentations feasible, and reduces the granularity to a nanometer, which should be adequate for quite a while.3 Associating Facts with TimeThe previous section explored models and representations for the time domain. We now turn to associating timewith facts.3.1 Underlying Data ModelTime has been added to many data models: the entity-relationship model [DeAntonellis et al. 1979, Klopprogge1981], semantic data models [Hammer & McLeod 1981, Urban & Delcambre 1986], knowledge-based data models[Dayal & Smith 1986], deductive databases [Chomicki & Imelinski 1988, Chomicki & Imelinski 1989, Chomicki1990, Kabanza et al. 1990], and object-oriented models [Dayal & Wuu 1992, Manola & Dayal 1986, Narasimhalu1988, Rose & Segev 1991, Sciore 1991, Sciore 1991, Wuu & Dayal 1992]. However, by far the majority of workin temporal databases is based on the relational model. For this reason, we will assume this data model insubsequent discussion. 9

3.2 Attribute VariabilityThere are several basic ways in which an attribute associated with an object can interact with time and space. Atime-invariant attribute [Navathe & Ahmed 1989] does not change over time. Some temporal data models requirethat the key of a relation be time-invariant; some others identify the object(s) participating in the relation witha time-invariant surrogate, a system-generated, unique identi�er of an item that can be referenced and comparedfor equality, but not displayed to the user [Hall et al. 1976]. Secondly, the value of an attribute may be drawnfrom a temporal domain. An example is date stamping, where cadastral parcel records in a land informationsystem contain �elds that note the dates of registration of deeds, transfers of titles, and other pertinent historicalinformation [Vrana 1989]. Such temporal domains are termed user-de�ned time [Snodgrass & Ahn 1986]; otherthan being able to be read in, displayed, and perhaps compared, no special semantics is associated with suchdomains. Interestingly, most such attributes are time-invariant. For example, the transfer date for a particulartitle transfer is valid over all time.An analogous sitation exists for space. There are space-invariant attributes as well as attributes that are drawnfrom spatial domains, an example being an attribute recording the square feet of a residence, which is a relativespatial measure in two dimensions.Time- and space-varying attributes are more interesting. There are �ve basic cases to consider.� The value of an attribute associated with a space-invariant object may vary over time, termed attributetemporality [Vrana 1989]. An example is percentage of cloud cover over the Earth, which has a single valueat each point in time, but varies over time. The value is uniquely speci�ed by the temporal coordinate(s)(either valid time, or a combination of valid and transaction time).� The value of an attribute associated with a region in space may be time invariant. An example is elevation:the value varies spatially but not temporally (assuming historical time; certainly the elevation varies overgeologic time!). The value is unique given spatial coordinates.� The value of an attribute associated with a region in space may vary over time. An example is the percentageof cloud cover over each 10-kilometer square grid element. Here, the object is identi�ed spatially, and eachobject is associated with a time-varying sequence of values. Both the temporal and the spatial coordinatesare required to uniquely identify a value.� The boundary lines identifying a cadastral object, e.g., a particular land packet, may vary over time, termedtemporal topology [Vrana 1989]. The orientation and interaction of spatial objects change over time; suchobjects could nevertheless have time-invariant attributes, such as initial purchase price. The temporal andspatial coordinates are required to uniquely identify a value, but this identi�cation is indirect, via thetopology.� The �nal case is the most complex: the value of an attribute, which varies over time, is associated with acartographic feature that also varies over time [Langran & Chrisman 1988]. An example is the appraisedvalue of a land packet. The appraised value may change yearly, and the boundary of the land packetchanges as it is reapportioned and parts sold to others. As with the previous two cases, both temporaland spatial coordinates are required to identify a value, but the temporal coordinate(s) are utilized twice,�rst to identify a cartographic feature and then to select a particular attribute value associated with thatfeature.A further categorization is possible concerning which temporal domains are involved (only valid time, only trans-action time, or both) and which spatial domains are involved (two dimensions, 212 dimensions, or a full threedimensions).The �rst case is the traditional domain of temporal DBMS's. The second case is the domain of conventionalLIS's and GIS's. While there has been some conceptual work on merging temporal and spatial support, asdiscussed throughout this paper, current implemented systems are fairly weak in this regard.3.3 Representational AlternativesOver two dozen extensions to the relational model to incorporate time have been proposed over the last 15 years.These models may be compared by asking four basic questions: how is valid time represented, how is transaction10

Data Model Citation Temporal Homogeneous Identi�erDimension(s)| [Snodgrass & Ahn 1986] both yes AhnTemporally Oriented Data Model [Ariav 1986] both yes AriavTime Relational Model [Ben-Zvi 1982] both yes Ben-ZviHistorical Data Model [Cli�ord & Warren 1983] valid yes Cli�ord-1Historical Relational Data Model [Cli�ord & Croker 1987] valid no Cli�ord-2Homogeneous Relational Model [Gadia 1988] valid yes Gadia-1Heterogeneous Relational Model [Gadia & Yeung 1988] valid no Gadia-2TempSQL [Gadia 1992] both yes Gadia-3DM/T [Jensen et al. 1991] transaction N/A JensenLEGOL 2.0 [Jones et al. 1979] valid yes JonesDATA [Kimball 1978] transaction N/A Kimball| [Lomet & Salzberg 1989] transaction N/A LometTemporal Relational Model [Lorentzos 1988] valid no Lorentzos| [Lum et al. 1984] transaction yes Lum| [McKenzie & Snodgrass 1991B] both no McKenzieTemporal Relational Model [Navathe & Ahmed 1989] valid yes NavatheHQL [Sadeghi 1987] valid yes SadeghiHSQL [Sarda 1990A] valid yes SardaTemporal Data Model [Segev & Shoshani 1987] valid yes ShoshaniTQuel [Snodgrass 1987] both yes SnodgrassPostgres [Stonebraker 1987] transaction no StonebrakerHQuel [Tansel 1986] valid no TanselAccounting Data Model [Thompson 1991] both yes ThompsonTime Oriented Databank Model [Wiederhold et al. 1975] valid yes WiederholdTable 2: Temporal Data Modelstime represented, how are attribute values represented, and is the model homogeneous, i.e., are all attributesrestricted to be de�ned over the same valid time(s) [Gadia 1988].3.3.1 Data Models.Table 2 lists most of the temporal data models that have been proposed to date. If the model is not given a name,we appropriate the name given the associated query language, where available. Many models are described inseveral papers; the one referenced is the initial journal paper in which the model was de�ned. Some models arede�ned only over valid time or transaction time; others are de�ned over both. Whether the model is homogeneousis indicated in the next column. Tuple-timestamped data models, to be identi�ed in the next section, and datamodels that use single chronons as time-stamps are of necessity homogeneous. The issue of homogeneity is notrelevant for those data models supporting only transaction time. The last column indicates a short identi�erwhich denotes the model; the table is sorted on this column.We omit a few intermediate data models, speci�cally Gadia's multihomogeneous model [Gadia 1986], whichwas a precursor to his heterogeneous model (Gadia-2), and Gadia's two-dimensional temporal relational databasemodel [Bhargava & Gadia 1989], which is a precursor to Gadia-3. We also do not include the data model used asthe basis for de�ning temporal relational completeness [Tuzhilin and Cli�ord 1990], because it is a generic datamodel that does not force decisions on most of the aspects to be discussed here.More detail on these data models, including a comprehensive comparison, may be found elsewhere [McKenzie& Snodgrass 1991A, Snodgrass 1987]. 11

Single chronon Interval Historical element(pair of chronons) (set of chronons)Time-stamped Lorentzos Gadia-2 Cli�ord-2attribute Thompson McKenzie Gadia-1values Tansel Gadia-3Ariav AhnCli�ord-1 Ben-ZviTime-stamped Lum Jonestuples Sadeghi NavatheShoshani SardaWiederhold SnodgrassTable 3: Representation of Valid Time3.3.2 Valid Time.Two fairly orthogonal aspects are involved in representing valid time. First, is valid time represented with singlechronon identi�ers (i.e., event time-stamps, Sec. 2.4), with intervals (i.e., as interval time-stamps, Sec. 2.4.2), oras historical elements (i.e., as a set of chronon identi�ers, or equivalently as a �nite set of intervals)? Second, isvalid time associated with entire tuples or with individual attribute values? A third alternative, associating validtime with sets of tuples, i.e., relations, has not been incorporated into any of the proposed data models, primarilybecause it lends itself to high data redundancy. The data models are elevated on these two aspects in Table 3.Interestingly, only one quadrant, time-stamping tuples with an historical element, has not been considered (butsee Sec. 3.3.5)3.3.3 Transaction Time.The same general issues are involved in transaction time, but there are about twice as many alternatives. Trans-action time may be associated with� a single chronon, which implies that tuples inserted on each transaction signify the termination (logicaldeletion) of previously current tuples with identical keys, with the time-stamps of these previously recordedtuples not requiring change.� an interval. A newly inserted tuple would be associated with the interval starting at now and ending at thespecial value U.C., until-changed.� three chronons. Ben-Zvi's model records (1) the transaction time when the valid start time was recorded,(2) the transaction time when the valid stop time was recorded, and (3) the transaction time when the tuplewas logically deleted.� a transaction-time element, which is a set of not-necessarily-contigous chronons.Another issue concerns whether transaction time is associated with individual attribute values, with tuples, orwith sets of tuples.The choices made in the various data models are characterized in Table 4. Gadia-3 is the only data model totime-stamp attribute values; it is di�cult to e�ciently implement this alternative directly. Gadia-3 also is theonly data model that uses transaction-time elements (but see Sec. 3.3.5). Ben-Zvi is the only one to use threetransaction-time chronons. All of the rows and columns are represented by at least one data model.3.3.4 Attribute Value Structure.The �nal major decision to be made in designing a temporal data model is how to represent attribute values.There are six basic alternatives. In some models, the time-stamp appears as an explicit attribute; we do notconsider such attributes in this analysis. 12

Single chronon Interval Three Transaction-time element(pair of chronons) Chronons (set of chronons)Time-stampedattribute Gadia-3values AriavTime-stamped Jensen Snodgrass Ben-Zvituples Kimball StonebrakerLometTime-stamped Ahn McKenziesets of tuples ThompsonTable 4: Representation of Transaction Time� Atomic valued|values do not have any internal structure. Ariav, Ben-Zvi, Cli�ord-1, Jensen, Jones, Kim-ball, Lomet, Lorentzos, Lum, Navathe, Sadeghi, Sarda, Shoshani, Snodgrass, Stonebraker and Thompsonall adopt this approach. Tansel allows atomic values, as well as others, listed below.� Set valued|values are sets of atomic values. Tansel supports this representation.� Functional, atomic valued|values are functions from the (generally valid) time domain to the attributedomain. Cli�ord-2, Gadia-1, Gadia-2, and Gadia-3 adopt this approach.� Ordered pairs|values are an ordered pair of a value and a (historical element) time-stamp. McKenzieadopts this approach.� Triplet valued|values are a triple of attribute value, valid from time, and value to time. This is similar tothe ordered pairs representation, except that only one interval may be represented. Tansel supports thisrepresentation.� Set-triplet valued|values are a set of triplets. This is more general than ordered pairs, in that more thanone value can be represented, and more general than functional valued, since more than one attribute valuecan exist at a single valid time [Tansel 1986]. Tansel supports this representation.In the conventional relational model, if attributes are atomic-valued, they are considered to be in �rst normal form[Codd 1972A]. Hence, only the data models placed in the �rst category may be considered to be strictly in �rstnormal form. However, in several of the other models, the non-atomicity of attribute values comes about becausetime is added. It turns out that the property of \all snapshots are in �rst normal form" is closely associated withhomogeneity (Sec. 3.3.1).3.3.5 Separating Semantics from Representation.It is our contention that focusing on data presentation (how temporal data is displayed to the user), on datastorage, with its requisite demands of regular structure, and on e�cient query evaluation has complicated thecentral task of capturing the time-varying semantics of data. The result has been, as we have seen, a plethora ofincompatible data models, with many query languages (Sec. 4.1), and a corresponding surfeit of database designand implementation strategies that may be employed across these models.We advocate instead a very simple conceptual temporal data model that captures the essential semantics of time-varying relations, but has no illusions of being suitable for presentation, storage, or query evaluation. Existingdata model(s) may be used for these latter tasks. This conceptual model time-stamps tuples with bitemporalelements, sets of bitemporal chronons, which are rectangles in the two-dimensional space spanned by valid timeand transaction time (see Fig. 2). Because no two tuples with mutually identical explicit attribute values (termedvalue-equivalent tuples) are allowed in a bitemporal relation instance, the full time history of a fact is containedin a single tuple. 13

In Table 3, the conceptual temporal data model occupies the un�lled entry corresponding to time-stampingtuples with historical elements, and occupies the entry in Table 4 corresponding to time-stamping tuples withtransaction-time elements. An important property of the conceptual model, shared with the conventional re-lational model but not held by the representational models, is that relation instances are semantically unique;distinct instances model di�erent realities and thus have distinct semantics.It is possible to demonstrate equivalence mappings between the conceptual model and several representationalmodels [Jensen et al. 1992]. Mappings have already been demonstrated for three data models: Gadia-3 (attributetime-stamping), Jensen (tuple time-stamping with a single transaction chronon), and Snodgrass (tuple time-stamping, with interval valid and transaction times). This equivalence is based on snapshot equivalence, whichsays that two relation instances are equivalent if all their snapshots, taken at all times (valid and transaction),are identical. Snapshot equivalence provides a natural means of comparing rather disparate representations. Anextension to the conventional relational algebraic operators may be de�ned in the conceptual data model, andcan be mapped to analogous operators in the representational models. Finally, we feel that the conceptual datamodel is the appropriate location for database design and query optimization.In essence, we advocate moving the distinction between the various existing temporal data models from asemantic basis to a physical, performance-relevant basis, utilizing the proposed conceptual data model to capturethe time-varying semantics. Data presentation, storage representation, and time-varying semantics should beconsidered in isolation, utilizing di�erent data models. Semantics, speci�cally as determined by logical databasedesign, should be expressed in the conceptual model. Multiple presentation formats should be available, asdi�erent applications require di�erent ways of viewing the data. The storage and processing of bitemporalrelations should be done in a data model that emphasizes e�ciency.4 QueryingA data model consists of a set of objects with some structure, a set of constraints on those objects, and a set ofoperations on those objects [Tsichritzis & Lochovsky 1982]. In the two previous sectins we have investigated indetail the structure of and constraints on the objects of temporal relational databases, the temporal relation. Inthis section, we complete the picture by discussing the operations, speci�cally temporal query languages.Many temporal query languages have been proposed. In fact, it seems obligatory for each researcher to de�netheir own data model and query language (we return to this issue at the end of this section). We �rst summarizethe twenty-odd query languages that have been proposed thus far. We then brie
y discuss the various activitiesthat should be supported by a temporal query language, using a speci�c language in the examples. Finally, wetouch on work being done in the standards arena that is attempting to bring highly needed order to this confusingcollection of languages.We do not consider the related topic of temporal reasoning (also termed inferencing or rule-based search)[Chomicki 1990, Kahn & Gorry 1977, Karlsson 1986, Lee et al. 1985, Sheng 1984, Sripada 1988] that usesarti�cial intelligence techniques to perform more sophisticated analyses of temporal relationships, generally withmuch lower query processing e�ciency.4.1 Language ProposalsTable 5 lists the major temporal query language proposals to date. While many of these languages each haveseveral associated papers, we have indicated the most comprehensive or most readily available reference. Theunderlying data model is a reference to Table 2. The next column lists the conventional query language thetemporal proposal is based on, from the following.SQL Structured Query Language [Date 1989B], a tuple calculus-based language; the lingua franca of conventionalrelational databases.Quel The tuple calculus based query language [Held et al. 1975] originally de�ned for the Ingres relationalDBMS [Stonebraker et al. 1976].QBE Query-by-Example [Zloof 1975], a domain calculus based query language.14

Name Citation Underlying Based Formal EquivalentData Model On Semantics AlgebraHQL [Sadeghi et al. 1987] Sadeghi DEAL partial [Sadeghi 1987]HQuel [Tansel 1986] Tansel Quel yes [Tansel 1986]HSQL [Sarda 1990A] Sarda SQL no [Sarda 1990B]HTQuel [Gadia 1988] Gadia-1 Quel yes [Gadia 1988]Legol 2.0 [Jones et al. 1979] Jones relationalalgebra no N/APostquel [Stonebraker et al. 1990] Stonebraker Quel no noneTDM [Segev & Shoshani 1987] Shoshani SQL no noneTemporal Rela-tional Algebra [Lorentzos 1988] Lorentzos relationalalgebra yes N/ATempSQL [Gadia 1992] Gadia-3 SQL partial noneTime-By-Example [Tansel et al. 1989] Tansel QBE yes [Tansel 1986]TOSQL [Ariav 1986] Ariav SQL no noneTQuel [Snodgrass 1987] Snodgrass Quel yes [McKenzie &Snodgrass 1991B]TSQL [Navathe & Ahmed 1989] Navathe SQL no none| [Ben-Zvi 1982] Ben-Zvi SQL yes [Ben-Zvi 1982]| [Cli�ord & Warren 1983] Cli�ord-1 ILs yes N/A| [Cli�ord & Croker 1987] Cli�ord-2 relationalalgebra yes N/A| [Gadia 1986] Gadia-2 Quel no none| [Jensen & Mark 1991] Jensen relationalalgebra yes N/A| [McKenzie & Snodgrass 1991B] McKenzie relationalalgebra yes N/A| [Thompson 1991] Thompson relationalalgebra yes N/A| [Tuzhilin and Cli�ord 1990] several relationalalgebra yes N/ATable 5: Temporal query languagesILs An intensional logic formulated in the context of computational linguistics [Montague 1973].relational algebra A procedural language with relations as objects [Codd 1972B].DEAL An extension of the relational algebra incorporating functions, recursion, and deduction [Deen 1985].Most of the query languages have a formal de�nition. Some of the calculus-based query languages have anassociated algebra that provides a means of evaluating queries.More comprehensive comparisons may be found elsewhere [McKenzie & Snodgrass 1991A, Snodgrass 1987].4.2 Types of Temporal QueriesWe now examine the types of temporal queries that each of the above-listed query languages support to varyingdegrees. We'll use TQuel [Snodgrass et al. 1993] in the examples, as it is the most completely de�ned temporallanguage [Snodgrass 1987].4.2.1 Schema De�nition.We will use one relation in these examples.Example. De�ne the Cities relation. 15

create persistent interval Cities(Name is char, State is char,Population is I4, IncorporationDate is event,Size is area)Cities has �ve explicit attributes: two strings (denoted by char), a 4-byte integer (denoted by I4), a user-de�nedevent, and a user-de�ned area. The persistent and interval keywords specify a bitemporal relation, with fourimplicit time-stamp attributes: a valid start time, a valid end time, a transaction start time, and a transaction endtime. The valid time-stamps de�ne the interval when the attribute values were true in reality, and the transactiontime-stamps specify the interval when the information was current in the database. 24.2.2 Quel Retrieval Statements.Since TQuel is a strict superset of Quel, all Quel queries are also TQuel queries [Snodgrass 1987]. Here we giveone such query, as a review of Quel.The query uses a range statement to specify the tuple variable C, which will remain active for use in subsequentqueries.Example. What is the current population of the cities in Arizona?range of C is Citiesretrieve (C.Name, C.Population)where C.State = "Arizona"The target list speci�es which attributes of the qualifying tuples are to be retained in the result, and the whereclause speci�es which underlying tuples from the underlying relation(s) qualify to participate in the query. Becausethe defaults have been de�ned appropriately, each TQuel query yields the same result as its Quel counterpart. 24.2.3 Rollback (Transaction-time Slice).The as of clause rolls back a transaction-time relation (consisting of a sequence of snapshot relation states) ora bitemporal relation (consisting of a sequence of valid-time relation states) to the state that was current at thespeci�ed transaction time. It can be considered to be a transaction time analogue of the where clause, restrictingthe underlying tuples that participate in the query.Example. What was the population of Arizona's cities as best known in 1980?retrieve (C.Name, C.Population)where C.State = "Arizona"as of begin of |January 1, 1980|This query uses an event temporal constant, delimited with vertical bars, \|� � �|". TQuel supports multiplecalendars and calendric systems [Soo & Snodgrass 1992A, Soo & Snodgrass 1992B, Soo et al. 1992]. In this case,the default is the Gregorian calendar with English month names. 24.2.4 Valid-time Selection.The when clause is the valid-time analogue of the where clause: it speci�es a predicate on the event or intervaltime-stamps of the underlying tuples that must be satis�ed for those tuples to participate in the remainder of theprocessing of the query.Example. What was the population of the cities in Arizona in 1980 (as best known right now)?retrieve (C.Name, C.Population)where C.State = "Arizona"when C overlap |January 1, 1980|as of presentA careful examination of the prose statement of this and the previous query illustrates the fundamental di�erencebetween valid time and transaction time. The as of clause selects a particular transaction time, and thus16

rolls back the relation to its state stored at the speci�ed time. Corrections stored after that time will not beincorporated into the retrieved result. The particular when statement given here selects the facts valid in realityat the speci�ed time. All corrections stored up to the time the query was issued are incorporated into the result.In this case, all corrections made after 1980 to the census of 1980 will be included in the resulting relation. 2Example. What was the population of the cities in Arizona in 1980, as best known at that time?retrieve (C.Name, C.Population)where C.State = "Arizona"when C overlap |January 1, 1980|as of |January 1, 1980|The result of this query, executed any time after January 1, 1980, will be identical to the result of the �rst queryspeci�ed, \What is the current population of the cities in Arizona?", executed exactly on midnight of that date.24.2.5 Valid Time Projection.The valid clause serves the same purpose as the target list; it speci�es some aspect of the derived tuples, in thiscase, the valid time of the derived tuple.Example. For what date is the most recent information on Arizona's cities valid?retrieve (C.All)valid at begin of Cwhere C.State = "Arizona"This query extracts relevant events from an interval relation. 24.2.6 Aggregates.As TQuel is a superset of Quel, all Quel aggregates are still available [Snodgrass et al. 1993].Example. What is the current population of Arizona?retrieve (sum(C.Population where C.State = "Arizona"))Note that this query only counts city residents. 2This query applied to a bitemporal relation yields the same result as its conventional analogues, that is, asingle value. With just a little more work, we can extract its time-varying behavior.Example. How has the population of Arizona
ucuated over time?retrieve (sum(C.Population where C.State = "Arizona"))when true 2New, temporally-oriented aggregates are also available in TQuel. One of the most useful computes the intervalwhen the argument was rising in value. This aggregate may be used wherever an interval expression is expected.Example. For each growing city, when did it start growing?retrieve (C.Name)valid at begin of rising(C.Population by C.Namewhere C.State = "Arizona") 24.2.7 Historical Indeterminacy.Indeterminacy aspects can hold for individual tuples, or for all the tuples in a relation.Example. The information in the Cities relation is known only to within thirty days.17

modify cities to indeterminate span = %30 days%%30 days% is a span, an unanchored length of time [Soo & Snodgrass 1992B]. Spans can be created by taking thedi�erence of two events; spans can also be added to an event to obtain a new event. 2Example. What cities in Arizona de�nitely had a population over 500,000 at the beginning of 1980?retrieve (C.Name)where C.State = "Arizona" and C.Population > 500000when C overlap |January 1, 1980|The default is to only retrieve tuples that fully satisfy the predicate. This is consistent with the Quel semantics.2 Historical indeterminacy enters queries at two places, specifying the credibility of the underlying informationto be utilized in the query, and specifying the plausibility of temporal relationships expressed in the when andvalid clauses. We'll only illustrate plausibility here.Example. What cities in Arizona had a population over 500,000 probably at the beginning of 1980?retrieve (C.Name)where C.State = "Arizona" and C.Population > 500000when C overlap |January 1, 1980| probablyHere, \probably" is syntactic sugar for \with plausibility 70". 24.2.8 Schema Evolution.Often the database schema needs to be modi�ed to accommodate a changing set of applications. The modifystatement has several variants, allowing any previous decision to be later changed or undone. Schema evolutioninvolves transaction time, as it concerns how the data is stored in the database [McKenzie & Snodgrass 1990].As an example, changing the type of a relation from a bitemporal relation to an historical relation will causefuture intermediate states to not be recorded; states stored when the relation was a temporal relation will stillbe available.Example. The Cities relation should no longer record all errors.modify Stocks to not persistent 24.3 StandardsSupport for time in conventional data base systems (e.g., [Oracle 1987, Tandem 1983]) is entirely at the level ofuser-de�ned time (i.e., attribute values drawn from a temporal domain). These implementations are limited inscope and are, in general, unsystematic in their design [Date & White 1990, Date 1988]. The standards bodies(e.g., ANSI) are somewhat behind the curve, in that SQL includes no time support. Date and time supportvery similar to that in DB2 is currently being proposed for SQL2 [Melton 1990]. SQL2 corrects some of theinconsistencies in the time support provided by DB2 but inherits its basic design limitations [Soo & Snodgrass1992B].An e�ort is currently underway within the research community to consolidate approaches to temporal datamodels and calculus-based query languages, to achieve a consensus extension to SQL and an associated data modelupon which future research can be based. This extension is termed the Temporal Structured Query Language, orTSQL (not to be confused with an existing language proposal of the same name).5 System ArchitectureThe three previous sections in concert sketched the boundaries of a temporal data model, by examining thetemporal domain, how facts may be associated with time, and how temporal information may be queried. Wenow turn to the implementation of the temporal data model, as encapsulated in a temporal DBMS.18

Figure 4: Components of a data base management systemAdding temporal support to a DBMS impacts virtually all of its components. Figure 4 provides a simpli�edarchitecture for a conventional DBMS. The database administrator (DBA) and her sta� design the database,producing a physical schema speci�ed in a data de�nition language (DDL), which is processed by the DDLCompiler and stored, generally as system relations, in the System Catalog. Users prepare queries, either adhoc or embedded in procedural code, which is submitted to the Query Processor. The query is �rst lexically andsyntactically analyzed, using information from the system catalog, then optimized for e�cient execution. A queryevaluation plan is sent to the Query Evaluator. For ad hoc queries, this occurs immediately after processing; forembedded queries, this occurs when the cursor associated with a particular query is opened. The query evaluatoris usually an interpreter for a form of the relational algebra annotated with access methods and operator strategies.While evaluating the query, this component accesses the database via a Stored Data Manager, which implementsconcurrency control, transaction management, recovery, bu�ering, and the available data access methods.In the following, we visit each of these components in turn, reviewing what changes need to be made to addtemporal support.5.1 DDL StatementsRelational query languages such as Quel and SQL actually do much more than simply specify queries; they alsoserve as data de�nition languages (e.g., through Quel's create statement, c.f., Sec. 4.2.1) and as data manipula-tion languages (e.g., through SQL's INSERT, DELETE and UPDATE statements). The changes to support time involveadding temporal domains, such as event, interval, and span [Soo & Snodgrass 1992B] and adding constructs tospecify support for transaction and valid time, such as the TQuel keywords persistent and interval.5.2 System CatalogThe big change here is that the system catalog must consist of transaction-time relations. Schema evolutionconcerns only the recording of the data, and hence does not involve valid time. The attributes and their domains,the indexes, even the names of the relations all vary over transaction time.19

5.3 Query ProcessingThere are two aspects here, one easily extended (language analysis) and one for which adding temporal supportis much more complex (query optimization).Language analysis needs to consider multiple calendars, which extend the language with calendar-speci�cfunctions. An example is monthof, which only makes sense in calendars for which there are months. Thechanges to language processing, primarily involving modi�cations to semantic analysis (name resolution and typechecking), have been worked out in some detail [Soo et al. 1992].Optimization of temporal queries is substantially more involved than that for conventional queries, for severalreasons. First, optimization of temporal queries is more critical, and thus easier to justify expending e�ort on,than conventional optimization. The relations that temporal queries are de�ned over are larger, and are growingmonotonically, with the result that unoptimized queries take longer and longer to execute. This justi�es tryingharder to optimize the queries, and spending more execution time to perform the optimization.Second, the predicates used in temporal queries are harder to optimize [Leung & Muntz 1990, Leung & Muntz1991A]. In traditional database applications, predicates are usually equality predicates (hence the prevalenceof equi-joins and natural joins); if a less-than join is involved, it is rarely in combination with other less-thanpredicates. On the other hand, in temporal queries, less-than joins appear more frequently, as a conjunctionof several inequality predicates. As an example, the TQuel overlap operator is translated into two less-thanpredicates on the underlying time-stamps. Optimization techniques in conventional databases focus on equalitypredicates, and often implement inequality joins as cartesian products, with their associated ine�ciency.And third, there is greater opportunity for query optimization when time is present [Leung & Muntz 1991A].Time advances in one direction: the time domain is continuous expanding, and the most recent time point is thelargest value in the domain. This implies that a natural clustering or sort order will manifest itself, which canbe exploited during query optimization and evaluation. The integrity constraint beginof (t) < endof (t) holds forevery time-interval tuple t. Also, for many relations it is the case that the intervals associated with a key arecontiguous in time, with one interval starting exactly when the previous interval ended. An example is salary data,where the intervals associated with the salaries for each employee are contiguous. Semantic query optimizationcan exploit these integrity constraints, as well as additional ones that can be inferred [Shenoy & �Ozsoyo�glu 1989].In this section, we �rst examine local query optimization, of a single query, then consider global query opti-mization, of several queries simultaneously. Both involve the generation of a query evaluation plan, which consistsof an algebraic expression annotated with access methods.5.3.1 Local Query Optimization.A single query can be optimizing by replacing the algebraic expression with an equivalent one that is more e�cient,by changing an access method associated with a particular operator, or by adopting a particular implementationof an operator. The �rst alternative requires a de�nition of equivalence, in the form of a set of tautologies.Tautologies have been identi�ed for the conventional relational algebra [Enderton 1977, Smith & Chang 1975,Ullman 1988], as well as for many of the algebras listed in Table 5. Some of these temporal algebras support thestandard tautologies, enabling existing query optimizers to be used.To determine which access method is best for each algebraic operator, meta-data, that is, statistics on the storedtemporal data, and cost models, that is, predictors of the execution cost for each operator implementation/accessmethod combination, are needed. Temporal data requires additional meta-data, such as lifespan of a relation(the time interval over which the relation is de�ned), the lifespans of the tuples, the surrogate and tuple arrivaldistributions, the distributions of the time-varying attributes, regularity and granularity of temporal data, andthe frequency of null values, which are sometimes introduced when attributes within a tuple aren't synchronized[Gunadhi et al. 1989]. Such statistical data may be updated by random sampling or by a scan through the entirerelation.There has been some work in developing cost models for temporal operators. An extensive analytical model hasbeen developed and validated for TQuel queries [Ahn & Snodgrass 1988, Ahn & Snodgrass 1989], and selectivityestimates on the size of the results of various temporal joins have been derived [Gunadhi & Segev 1989, Gunadhiet al. 1989]. 20

5.3.2 Global Query Optimization.In global query optimization, a collection of queries is simultaneously optimized, the goal being to produce asingle query evaluation plan that is more e�cient than the collection of individual plans [Satoh et al. 1985,Sellis 1986]. A state transition network appears to be the best way to organize this complex task [Jensen etal. 1993]. Materialized views [Blakeley et al. 1986, Blakeley & Martin 1990, Roussopoulos 1982, Roussopoulos1991] are expected to play an important role in achieving high performance in the face of temporal databasesof monotonically increasing size. For an algebra to utilize this approach, incremental forms of the operators arerequired (c.f., [Jensen et al. 1991, McKenzie 1988]).5.4 Query EvaluationAchieving adequate e�ciency in query evaluation is very important. We �rst examine operations on time-stamps,some of which are critical to high performance. We then review a study that showed that a straightforwardimplementation would not result in reasonable performance. Since joins are the most expensive, yet very common,operations, they have been the focus of a signi�cant amount of research. Finally, we will examine the manytemporal indexes that have been proposed.5.4.1 Domain Operations.In Sec. 2 we outlined the domain of time-stamps. Query evaluation performs input, comparison, arithmetic, andoutput operations on values of this domain. Ordered by contribution to execution e�ciency, they are comparison(which is often in the \inner loop" of join processing), arithmetic (which is most often performed during creationof the resulting tuple), output (which is only done when transferring results to the screen or to paper, a muchslower process than execution or even disk I/O), and �nally input (which is done exactly once per value). However,the SQL2 format, with its �ve components (see Table 1) is optimized for the relatively infrequent operations of(Gregorian) input and output, and is rather slow at comparison and addition. The proposed formats insteadoptimize comparison at the expense of input and output. For a sequence of operations that inputs two relationsand computes and outputs the overlap (favoring input and output more than expected), the high resolutionformat is more e�cient, with only 50 tuples, than the SQL2 format, even though the high resolution format hasmuch greater range and smaller granularity [Dyreson & Snodgrass 1992B].Performing these operations e�ciently in the presence of historical indeterminacy is more challenging. Forthe default range credibility and ordering plausibility, and for comparing events whose sets of possible chrononsdo not overlap, there is little overhead even when historical indeterminacy is supported [Dyreson & Snodgrass1992A]. The average worse case for comparison, over all plausibilities, when the sets of possible chronons overlapsign�cantly, is less than 100 microseconds on a Sun-4, or about the time to transfer a 100-byte tuple from disk.5.4.2 A Straightforward Implementation.The importance of e�cient query optimization and evaluation for temporal databases was underscored by aninitial study that analyzed the performance of a brute-force approach to adding time support to a conventionalDBMS. In this study, the university Ingres DBMS was extended in a minimal fashion to support TQuel querying[Ahn & Snodgrass 1986]. The results were very discouraging for those who might have been considering such anapproach. Sequential scans, as well as access methods such as hashing and ISAM, su�ered from rapid performancedegradation due to ever-growing over
ow chains. Because adding time creates multiple tuple versions with thesame key, reorganization does not help to shorten over
ow chains. The objective of work in temporal queryevaluation then is to avoid looking at all of the data, because the alternative implies that queries will continue toslow down as the database accumulates facts.There were four basic responses to this challenge. The �rst was a proposal to separate the historical data, whichgrew monotonically, from the current data, whose size was fairly stable and whose accesses were more frequent[Lum et al. 1984]. This separation, termed temporal partitioning, was shown to signi�cantly improve performanceof some queries [Ahn & Snodgrass 1988], and was later generalized to allow multiple cached states, which furtherimproves performance [Jensen et al. 1993]. Second, new query optimization strategies were proposed (Sec. 5.3).21

Third, new join algorithms, to be discussed next, were proposed. And �nally, new temporal indexes, also to bediscussed, were proposed.5.4.3 Joins.Three kinds of temporal joins have been studied: binary joins, multiway joins, and joins executed on multipro-cessors.A wide variety of binary joins have been considered, including time-join, time-equijoin (TE-join) [Cli�ord &Croker 1987], event-join, TE-outerjoin [Gunadhi & Segev 1991], contain-join, contain-semijoin, intersect-join[Leung & Muntz 1991A], and contain-semijoin [Leung & Muntz 1992]. The various algorithms proposed for thesejoins have generally been extensions to nested loop or merge joins that exploit sort orders or local workspace.Leung argues that a checkpoint index (Sec. 5.4.4) is useful when stream processing is employed to evaluateboth two-way and multi-way joins [Leung & Muntz 1992].Finally, Leung has explored in depth partitioning strategies and temporal query processing on multiprocessors[Leung & Muntz 1991B].5.4.4 Temporal Indexes.Conventional indexes have long been proposed to reduce the need to scan an entire relation to access a subsetof its tuples. Indices are even more important in temporal relations that grow monotonically in size. In table 6we summarize the temporal index structures that have been proposed to date. Most of the indexes are basedon B+-Trees [Comer 1979], which index on values of a single key; the remainder are based on R-Trees [Guttman1984], which index on ranges (intervals) of multiple keys. There has been considerable discussion concerningthe applicability of point-based schemes for indexing interval data. Some argue that structures that explicitlyaccommodate intervals, such as R-Trees and their variants, are preferable; others argue that mapping intervalsto their endpoints is e�cient for spatial search [Lomet 1991].If the structure requires that exactly one record with each key value exist at any time, or if the data recordsthemselves are stored in the index, then it is designated a primary storage structure; otherwise, it can be usedeither as a primary storage structure or as a secondary index. The checkpoint index is associated with a particularindexing condition, making it suitable for use during the processing of queries consistent with that condition.A majority of the indexes are tailored to transaction time, exploiting the append-only nature of such infor-mation. Most utilize as a key the valid-time or transaction-time interval (or possibly both, in the case of theMixed Media R-Tree). Lum's index doesn't include time at all; rather it is a means of accessing the history,represented as a linked list of tuples, of a key value. The Append-only Tree indexes the transaction-start time ofthe data, and the Lop-Sized B+-Tree is most suited for indexing events such as bank transactions. About half theindexes utilize only the time-stamp as a key; some include a single non-temporal attribute; and the two based onR-Trees can exploit its multi-dimensionality to support an arbitrary number of non-temporal attributes. Of theindexes supporting non-temporal keys, most treat such keys as a true separate dimension, the exceptions beingthe indexes discussed by Ahn, which support a single composite key with the interval as a component.While preliminary performance studies have been carried out for each of these indexes in isolation, therehas been little e�ort to compare them concerning their space and time e�ciency. Such a comparison wouldhave to consider the di�ering abilities of each (those supporting no non-temporal keys would be useful for doingtemporal cartesian products, but perhaps less useful for doing temporal joins that involved equality predicates onnon-temporal attributes) as well as various underlying distributions of time and non-temporal keys (the indexespresume various non-uniform distributions to achieve their performance gains over conventional indexes, whichgenerally assume a uniform key distribution).5.5 Stored Data ManagerWe examine three topics, storage structures (including page layout), concurrency control, and recovery. Pagelayout for temporal relations is more complicated than conventional relations if non-�rst normal form (i.e., non-atomic attribute values) are adopted, as is proposed in many of the temporal data models listed in Sec. 3.3.1.Often such attributes are stored as linked lists, for example representing a valid-time element (set of valid-time22

Non-Name Citation Based On Primary/ Temporal Temporal TemporalSecondary Dimension(s) Key(s) Key(s)Append-only [Gunadhi & Segev 1993] B+-Tree primary transaction event 0TreeCheckpoint [Leung & Muntz 1992] B+-Tree secondary transaction event 0IndexLop-Sided [Kolovson 1990] B+-Tree both transaction event 0B+-TreeMonotonic [Elmasri et al. 1992] Time Index both transaction interval 0B+-Tree| [Lum et al. 1984] B+-Tree or primary transaction none 1HashingTime-Split [Lomet & Salzberg 1990] B+-Tree primary transaction interval 1B-TreeMixed Media [Kolovson & Stonebraker1989] R-Tree both transaction, interval, k ranges,R-Tree trans+valid pairs of k � 1intervalsTime Index [Elmasri et al. 1990] B+-Tree both both interval 0Two-level Combined [Elmasri et al. 1991] B+-Tree both both interval 1Attribute/Time +Time IndexIndex| [Ahn & Snodgrass 1988] B+-Tree, various various interval 1HashingSR-Tree [Kolovson & Stonebraker1990] Segment Index both both interval, k ranges,+ R-Tree pairs of k � 1intervalsTable 6: Temporal Indexes
23

chronons) as a linked list of intervals. Hsu has developed an analytical model to determine the optimal block sizefor such linked lists [Hsu & Snodgrass 1991].Many structures have been proposed, including reverse chaining (all history versions for a key are linked inreverse order) [Ben-Zvi 1982, Dadam et al. 1984, Lum et al. 1984], accession lists (a block of time values andassociated tuple id's between the current store and the history store), clustering (storing history versions togetheron a set of blocks), stacking (storing a �xed number of history versions), and cellular chaining (linking blocks ofclustered history versions), with analytical performance modeling [Ahn 1986] being used to compare their spaceand time e�ciency [Ahn & Snodgrass 1988].Several researchers have investigated adapting existing concurrency control and transaction management tech-niques to support transaction time. The subtle issues involved in choosing whether to time-stamp at the beginningof a transaction (which restricts the concurrency control method that can be used) or at the end of the transaction(which may require data earlier written by the transaction to be read again to record the transaction) have beenresolved in favor of the latter through some implementation tricks [Dadam et al. 1984, Lomet 1990, Stonebraker1987]. The Postgres system is an impressive prototype DBMS that supports transaction time [Stonebraker etal. 1990]. Time-stamping in a distributed setting has also been considered [Lomet 1990]. Integrating temporalindexes with concurrency control to increase the available concurrency has been studied [Lomet & Salzberg 1991].Finally, since a transaction-time database contains all past versions of the database, it can be used to recoverfrom media failures that cause a portion or all of the current version to be lost [Lomet 1991].6 ConclusionWe conclude with a list of accomplishments, a list of disappointments, and a pointer to future work.There have been many signi�cant accomplishments over the past �fteen years of temporal database research.� The semantics of the time domain, including its structure, dimensionality, and indeterminacy, is well-understood.� Representational issues of time-stamps have recently been resolved.� Operations on time-stamps are now well-understood, and e�cient implementations exist.� A great amount of research has been expended on temporal data models, addressing this extraordinarilycomplex and subtle design problem.� Many temporal query languages have been proposed. The numerous types of temporal queries are fairlywell-understood. Half of the proposed temporal query languages have a strong formal basis.� Temporal joins are well-understood, and a multitude of implementations exist.� Approximately a dozen temporal index structures have been proposed.� The interaction between transaction time support and concurrency control and transaction managementhas been studied to some depth.� Several prototype temporal DBMS implementations have been developed.There have also been some disappointments.� The user-de�ned time support in the SQL2 standard is poorly designed. The representation speci�ed inthat standard su�ers from inadequate range, excessive space requirements, and ine�cient operations.� There has been almost no work done in comparing the two dozen temporal data models, to identify commonfeatures and de�ne a consensus data model upon which future research and commercialization may bebased. It is our feeling that expecting a data model to simultaneously express time-varying semantics whileoptimizing data presentation, data storage, and query evaluation is unrealistic. We advocate a two-tiereddata model, with a conceptual data model expressing the semantics, and with several representational datamodels serving these other objectives. 24

� There is also a need to consolidate approaches to temporal query languages, identify the best features ofeach of the proposed languages, and incorporate these features into a consensus query language that couldserve as the basis for future research into query optimization and evaluation. Also, more work is needed onadding time to so-called fourth generation languages that are revolutionizing user interfaces for commerciallyavailable DBMS's.� It has been demonstrated that a straightforward implementation of a temporal DBMS will exhibit poorperformance.� More empirical studies are needed to compare join algorithms, and to possibly suggest even more e�cientvariants.� While there are a host of individual approaches to isolated portions of a DBMS, no coherent architecturehas arisen. While the analysis given in Sec. 5 may be viewed as a starting point, much more work is neededto integrate these approaches into a cohesive structure.� There has been little e�ort to compare the relative performance of temporal indexes, making selection inspeci�c situations di�cult or impossible.� Temporal database design is still in its infancy, hindered by the plethora of temporal data models.� There are as yet no prominent commercial temporal DBMS's, despite the obvious need in the marketplace.Obviously these disappointments should be addressed. In addition, future work is also needed on adding time tothe newer data models that are gaining recognition, including object-oriented data models and deductive datamodels. Finally, there is a great need for integration of spatial and temporal data models, query languages, andimplementation techniques.7 AcknowledgementsThis work was supported in part by NSF grant ISI-8902707. James Cli�ord was helpful in understanding structuralaspects of models of time. Curtis Dyreson, Christian S. Jensen, Nick Kline and Michael Soo provided usefulcomments on a previous draft.Bibliography[Ahn 1986] Ahn, I. Performance Modeling and Access Methods for Temporal Database Management Systems.PhD. Diss. Computer Science Department, University of North Carolina at Chapel Hill, July 1986.[Ahn & Snodgrass 1986] Ahn, I. and R. Snodgrass. Performance Evaluation of a Temporal Database ManagementSystem, in Proceedings of ACM SIGMOD International Conference on Management of Data. Ed. C.Zaniolo. Association for Computing Machinery. Washington, DC: May 1986, pp. 96{107.[Ahn & Snodgrass 1988] Ahn, I. and R. Snodgrass. Partitioned Storage for Temporal Databases. InformationSystems, 13, No. 4 (1988), pp. 369{391.[Ahn & Snodgrass 1989] Ahn, I. and R. Snodgrass. Performance Analysis of Temporal Queries. InformationSciences, 49 (1989), pp. 103{146.[Allen & Hayes 1985] Allen, J. F. and P. J. Hayes. A Common-Sense Theory of Time, in Proceedings of theInternational Joint Conference on Arti�cial Intelligence. Los Angeles, CA: Aug. 1985, pp. 528{531.25

[Anderson 1982] Anderson, T. L. Modeling Time at the Conceptual Level, in Proceedings of the InternationalConference on Databases: Improving Usability and Responsiveness. Ed. P. Scheuermann. Jerusalem,Israel: Academic Press, June 1982, pp. 273{297.[Ariav 1986] Ariav, G. A Temporally Oriented Data Model. ACM Transactions on Database Systems, 11, No. 4,Dec. 1986, pp. 499{527.[Ben-Zvi 1982] Ben-Zvi, J. The Time Relational Model. PhD. Diss. Computer Science Department, UCLA, 1982.[Bernstein 1987] Bernstein, P. A. Database System Support for Software Engineering- An Extended Abstract, inNinth International Conference on Software Engineering. IEEE, ACM. Monterey, CA: Computer SocietyPress, Mar. 1987, pp. 166{178.[Bhargava & Gadia 1989] Bhargava, G. and S. K. Gadia. A 2-dimensional Temporal Relational Database Modelfor Querying Errors and Updates, and for Achieving Zero Information-loss. Technical Report TR#89-24.Department of Computer Science, Iowa State University. Dec. 1989.[Blakeley et al. 1986] Blakeley, J.A., P.-A. Larson and F.W. Tompa. E�ciently Updating Materialized Views,in Proceedings of ACM SIGMOD International Conference on Management of Data. Ed. C. Zaniolo.Association for Computing Machinery. Washington, DC: May 1986, pp. 61{71.[Blakeley & Martin 1990] Blakeley, Jose A. and Nancy L. Martin. Join Index, Materialized View, and Hybrid-HashJoin: A Performance Analysis, in Proceedings of the Sixth International Conference on Data Engineering.February 1990, pp. 256{263.[Bolour et al. 1982] Bolour, A., T. L. Anderson, L. J. Dekeyser and H. K. T. Wong. The Role of Time inInformation Processing: A Survey. SigArt Newsletter, 80, Apr. 1982, pp. 28{48.[Chomicki & Imelinski 1988] Chomicki, J. and T. Imelinski. Temporal Deductive Databases and In�nite Objects, inProceedings of the Seventh ACM SIGAct-SIGMod-SIGArt Symposium on Principles of Database Systems.Austin, Texas: Association for Computing Machinery, Mar. 1988, pp. 61{73.[Chomicki & Imelinski 1989] Chomicki, J. and T. Imelinski. Relational Speci�cations of In�nite Query Answers,in Proceedings of ACM SIGMOD International Conference on Management of Data. May 1989, pp.174{183.[Chomicki 1990] Chomicki, J. Polynomial Time Query Processing in Temporal Deductive Databases, in 9th AnnualACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. Nashville, TN: Apr.1990.[Cli�ord & Warren 1983] Cli�ord, J. and D. S. Warren. Formal Semantics for Time in Databases. ACM Trans-actions on Database Systems, 8, No. 2, June 1983, pp. 214{254.[Cli�ord & Tansel 1985] Cli�ord, J. and A. U. Tansel. On an Algebra for Historical Relational Databases: TwoViews, in Proceedings of ACM SIGMOD International Conference on Management of Data. Ed. S.Navathe. Association for Computing Machinery. Austin, TX: May 1985, pp. 247{265.[Cli�ord & Croker 1987] Cli�ord, J. and A. Croker. The Historical Relational Data Model (HRDM) and AlgebraBased on Lifespans, in Proceedings of the International Conference on Data Engineering. IEEE Computer26

Society. Los Angeles, CA: IEEE Computer Society Press, Feb. 1987, pp. 528{537.[Cli�ord & Rao 1987] Cli�ord, J. and A. Rao. A Simple, General Structure for Temporal Domains, in Proceedingsof the Conference on Temporal Aspects in Information Systems. AFCET. France: May 1987, pp. 23{30.[Codd 1972A] Codd, E. F. Further Normalization of the Data Base Relational Model, in Data Base Systems. Vol.6 of Courant Computer Symposia Series. Englewood Cli�s, N.J.: Prentice Hall, 1972.[Codd 1972B] Codd, E. F. Relational Completeness of Data Base Sublanguages, in Data Base Systems. Vol. 6 ofCourant Computer Symposia Series. Englewood Cli�s, N.J.: Prentice Hall, 1972. pp. 65{98.[Comer 1979] Comer, D. The Ubiquitous B-tree. Computing Surveys, 11, No. 2 (1979), pp. 121{138.[Dadam et al. 1984] Dadam, P., V. Lum and H.-D. Werner. Integration of Time Versions into a RelationalDatabase System, in Proceedings of the Conference on Very Large Databases. Ed. U. Dayal, G. Schlageterand L.H. Seng. Singapore: Aug. 1984, pp. 509{522.[Date 1989A] Date, C. J. An Overview of SQL2. Info. Database, 4, No. 1, Spring 1989, pp. 8{12.[Date 1989B] Date, C. J. A Guide to the SQL Standard (Second Edition). Addison-Wesley, 1989.[Date & White 1990] Date, C. J. and C. J. White. A Guide to DB2. Reading, MA: Addison-Wesley, 1990. Vol.1, 3rd edition.[Date 1988] Date, C.J. A Proposal for Adding Date and Time Support to SQL. SIGMOD Record, 17, No. 2, June1988, pp. 53{76.[Dayal & Smith 1986] Dayal, U. and J. M. Smith. PROBE: A Knowledge-Oriented Database Management System,in On Knowledge Base Management Systems: Integrating Arti�cial Intelligence and Database Technolo-gies. Springer-Verlag, 1986.[Dayal & Wuu 1992] Dayal, U. and G. Wuu. A Uniform Approach to Processing Temporal Queries. TechnicalReport. Bellcore. 1992.[DeAntonellis et al. 1979] DeAntonellis, V., A. Degli, G. Mauri and B. Zonta. Extending the Entity-RelationshipApproach to Take Into Account Historical Aspects of Systems, in Proceedings of the International Con-ference on the E-R Approach to Systems Analysis and Design. Ed. P. Chen. North Holland, 1979.[Deen 1985] Deen, S.M. DEAL: A Relational Language with Deductions, Functions and Recursions. Data andKnowledge Engineering, 1 (1985).[Dittrich & Lorie 1988] Dittrich, Klaus R. and Raymond A. Lorie. Version Support for Engineering DatabaseSystems. IEEE Transactions on Software Engineering, 14, No. 4, April 1988, pp. 429{437.[Dyreson & Snodgrass 1992A] Dyreson, C. E. and R. T. Snodgrass. Time-stamp Semantics and Representation.Technical Report TR 92-16a. Computer Science Department, University of Arizona. July 1992.[Dyreson & Snodgrass 1992B] Dyreson, C. E. and R. T. Snodgrass. Time-stamp Semantics and Representation.TempIS Technical Report 33. Computer Science Department, University of Arizona. Revised May 1992.27

[Ecklund et al. 1987] Ecklund, D. J., E. F. Ecklund, R. O. Eifrig and F. M. Tonge. DVSS: A DistributedVersion Storage Server for CAD Applications, in Proceedings of the Conference on Very Large Databases.Brighton, England: 1987, pp. 443{454.[Elmasri et al. 1990] Elmasri, R., G. Wuu and Y. Kim. The Time Index - An Access Structure for TemporalData, in Proceedings of the Conference on Very Large Databases. Brisbane, Australia: Aug. 1990.[Elmasri et al. 1991] Elmasri, R., Y.-J. Kim and G. T. J. Wuu. E�cient Implementation Techniques for the TimeIndex, in Proceedings of the Seventh International Conference on Data Engineering. 1991, pp. 102{111.[Elmasri et al. 1992] Elmasri, R., M. Jaseemuddin and V. Kouramajian. Partitioning of Time Index for OpticalDisks, in Proceedings of the International Conference on Data Engineering. Ed. F. Golshani. IEEE.Phoenix, AZ: Feb. 1992, pp. 574{583.[Enderton 1977] Enderton, H.B. Elements of Set Theory. New York, N.Y.: Academic Press, Inc., 1977.[Gadia 1986] Gadia, S. K. Toward a Multihomogeneous Model for a Temporal Database, in Proceedings of the In-ternational Conference on Data Engineering. IEEE Computer Society. Los Angeles, CA: IEEE ComputerSociety Press, Feb. 1986, pp. 390{397.[Gadia 1988] Gadia, S. K. A Homogeneous Relational Model and Query Languages for Temporal Databases. ACMTransactions on Database Systems, 13, No. 4, Dec. 1988, pp. 418{448.[Gadia & Yeung 1988] Gadia, S. K. and C. S. Yeung. A Generalized Model for a Relational Temporal Database,in Proceedings of ACM SIGMOD International Conference on Management of Data. Association forComputing Machinery. Chicago, IL: June 1988, pp. 251{259.[Gadia 1992] Gadia, S. K. A Seamless Generic Extension of SQL for Querying Temporal Data. Technical ReportTR-92-02. Computer Science Department, Iowa State University. May 1992.[Gadia et al. 1992] Gadia, S. K., S. Nair and Y.-C. Poon. Incomplete Information in Relational TemporalDatabases, in Proceedings of the Conference on Very Large Databases. Vancouver, Canada: Aug. 1992.[Guinot & Seidelmann 1988] Guinot, B. and P. K. Seidelmann. Time scales: their history, de�nition and inter-pretation. Astronomy & Astrophysics, 194 (1988), pp. 304{308.[Gunadhi & Segev 1989] Gunadhi, H. and A. Segev. A Framework For Query Optimization In Temporal Databases,in Fifth International Conference on Statistical and Scienti�c Database Management Systems. 1989.[Gunadhi et al. 1989] Gunadhi, H., A. Segev and G. Shantikumar. Selectivity Estimation in Temporal Databases.Technical Report LBL-27435. Lawrence Berkeley Laboratories. 1989.[Gunadhi & Segev 1991] Gunadhi, H. and A. Segev. Query Processing Algorithms for Temporal IntersectionJoins, in Proceedings of the 7th International Conference on Data Engineering. Kobe, Japan: 1991.[Gunadhi & Segev 1993] Gunadhi, H. and A. Segev. E�cient Indexing Methods for Temporal Relations. IEEETransactions on Knowledge and Data Engineering, 5, No. 3, June 1993, pp. 496{509.[Guttman 1984] Guttman, A. R-Trees: A Dynamic Index Structure For Spatial Searching, in Proceedings of28

ACM SIGMOD International Conference on Management of Data. Ed. B. Yormack. Association forComputing Machinery. Boston, MA: June 1984, pp. 47{57.[Hall et al. 1976] Hall, P., J. Owlett and S. J. P. Todd. Relations and Entities, in Modelling in Data BaseManagement Systems. Ed. G. M. Nijssen. North-Holland, 1976. pp. 201{220.[Hammer & McLeod 1981] Hammer, M. and D. McLeod. Database Description with SDM: A Semantic DatabaseModel. ACM Transactions on Database Systems, 6, No. 3, Sep. 1981, pp. 351{386.[Hawking 1988] Hawking, S. A Brief History of Time. New York: Bantam Books, 1988.[Held et al. 1975] Held, G.D., M. Stonebraker and E. Wong. INGRES{A Relational Data Base ManagementSystem, in Proceedings of the AFIPS National Computer Conference. Anaheim, CA: AFIPS Press, May1975, pp. 409{416.[Hsieh 1989] Hsieh, D. Generic Computer Aided Software Engineering (CASE) Databases Requirements, in Pro-ceedings of the Fifth International Conference on Data Engineering. Los Angeles, CA: Feb. 1989, pp.422{423.[Hsu & Snodgrass 1991] Hsu, S. H. and R. T. Snodgrass. Optimal Block Size for Repeating Attributes. TempISTechnical Report No. 28. Department of Computer Science, University of Arizona. Dec. 1991.[Hunter & Williamson 1990] Hunter, G. and I. Williamson. The Development of a Historical Digital CadastralDatabase. International Journal of Geographical Information Systems, 4, No. 2 (1990), pp. 169{179.[Jensen & Mark 1991] Jensen, C. S. and L. Mark. Queries on Change in an Extended Relational Model. IEEETransactions on Knowledge and Data Engineering, (to appear) (1991).[Jensen et al. 1991] Jensen, C. S., L. Mark and N. Roussopoulos. Incremental Implementation Model for RelationalDatabases with Transaction Time. IEEE Transactions on Knowledge and Data Engineering, 3, No. 4,Dec. 1991, pp. 461{473.[Jensen et al. 1992] Jensen, C. S., M. D. Soo and R. T. Snodgrass. Uni�cation of Temporal Relations. TechnicalReport 92-15. Computer Science Department, University of Arizona. July 1992.[Jensen & Snodgrass 1993] Jensen, C. S. and R. Snodgrass. Temporal Specialization and Generalization. IEEETransactions on Knowledge and Data Engineering, (to appear) (1993).[Jensen et al. 1993] Jensen, C. S., L. Mark, N. Roussopoulos and T. Sellis. Using Di�erential Techniques toE�ciently Support Transaction Time. The VLDB Journal, 2, No. 1, Jan. 1993, pp. 75{111.[Jones 1989] Jones, C. B. Data structures for three-dimensional spatial information systems in geology. Interna-tional Journal of Geographical Information Systems, 3, No. 1 (1989), pp. 15{31.[Jones et al. 1979] Jones, S., P. Mason and R. Stamper. LEGOL 2.0: A Relational Speci�cation Language forComplex Rules. Information Systems, 4, No. 4, Nov. 1979, pp. 293{305.[Kabanza et al. 1990] Kabanza, F., J-M Stevenne and P. Wolper. Handling In�nite Temporal Data, in 9th AnnualACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. Nashville, TN: Apr.29

1990.[Kahn & Gorry 1977] Kahn, K. and G. A. Gorry. Mechanizing Temporal Knowledge. Arti�cial Intelligence,(1977), pp. 87{108.[Karlsson 1986] Karlsson, T. Representation and Reasoning about Temporal Knowledge. SYSLAB Working PaperNr 105. The Systems Development and Arti�cial Intelligence Laboratory, University of Stockholm. 1986.[Katz et al. 1986] Katz, R. H., E. Chang and R. Bhateja. Version Modeling Concepts for Computer-Aided DesignDatabases, in Proceedings of ACM SIGMOD International Conference on Management of Data. Ed. C.Zaniolo. Association for Computing Machinery. Washington, DC: May 1986, pp. 379{386.[Kimball 1978] Kimball, K. A. The DATA System. Master's Thesis, University of Pennsylvania, 1978.[Klopprogge 1981] Klopprogge, M. R. TERM: An Approach to Include the Time Dimension in the Entity-Relationship Model, in Proceedings of the Second International Conference on the Entity RelationshipApproach. Washington, DC: Oct. 1981, pp. 477{512.[Kolovson & Stonebraker 1989] Kolovson, C. and M. Stonebraker. Indexing Techniques for Historical Databases,in Proceedings of the Fifth International Conference on Data Engineering. Los Angeles, CA: Feb. 1989,pp. 127{137.[Kolovson 1990] Kolovson, C. Indexing Techniques for Multi-Dimensional Spatial Data and Historical Data inDatabase Management Systems. PhD. Diss. University of California, Berkeley, Nov. 1990.[Kolovson & Stonebraker 1990] Kolovson, C. and M. Stonebraker. S-Trees: Database Indexing Techniques forMulti-Dimensional Interval Data. Technical Report UCB/ERL M90/35. University of California. Apr.1990.[Ladkin 1987] Ladkin, P. The Logic of Time Representation. PhD. Diss. University of California, Berkeley, Nov.1987.[Langran & Chrisman 1988] Langran, G. and N. Chrisman. A Framework for Temporal Geographic Information.Cartographica, 25, No. 3 (1988), pp. 1{14.[Lee et al. 1985] Lee, R. M., H. Coelho and J. C. Cotta. Temporal Inferencing on Administrative Databases.Information Systems, 10, No. 2 (1985), pp. 197{206.[Leung & Muntz 1990] Leung, T. Y. and R. Muntz. Query Processing for Temporal Databases, in Proceedings ofthe 6th International Conference on Data Engineering. Los Angeles, California: Feb. 1990.[Leung & Muntz 1991A] Leung, T. Y. and R. Muntz. Stream Processing: Temporal Query Processing andOptimization. Technical Report CSD-910079. University of California, Los Angeles. Dec. 1991.[Leung & Muntz 1991B] Leung, T. Y. and R. Muntz. Temporal Query Processing and Optimization in Multipro-cessor Database Machines. Technical Report CSD-910077. Computer Science Department, UCLA. Nov.1991.[Leung & Muntz 1992] Leung, T. Y. and R. Muntz. Generalized Data Stream Indexing and Temporal Query30

Processing, in Second International Workshop on Research Issues in Data Engineering: Transaction andQuery Processing. Feb. 1992.[Lomet & Salzberg 1989] Lomet, D. and B. Salzberg. Access Methods for Multiversion Data, in Proceedings ofACM SIGMOD International Conference on Management of Data. June 1989, pp. 315{324.[Lomet 1990] Lomet, D. Consistent Timestamping for Transactions in Distributed Systems. Technical ReportCRL90/3. Digital Equipment Corporation. Sep. 1990.[Lomet & Salzberg 1990] Lomet, D. and B. Salzberg. The Performance of a Multiversion Access Method, inProceedings of ACM SIGMOD International Conference on Management of Data. Atlantic City: May1990, pp. 353{363.[Lomet 1991] Lomet, D. Grow and Post Index Trees: Role, Techniques and Future Potential, in Proc. of theSecond Symposium on Large Spatial Databases. 1991.[Lomet & Salzberg 1991] Lomet, D. and B. Salzberg. Concurrency and Recovery for Index Trees. TechnicalReport CRL 91/8. Digital Equipment Corporation. Aug. 1991.[Lorentzos 1988] Lorentzos, N. A. A Formal Extension of the Relational Model for the Representation of GenericIntervals. PhD. Diss. Birkbeck College, 1988.[Lorentzos & Johnson 1988] Lorentzos, N. A. and R. G. Johnson. Requirements Speci�cation for a TemporalExtension to the Relational Model. Data Engineering, 11, No. 4 (1988), pp. 26{33.[Lum et al. 1984] Lum, V., P. Dadam, R. Erbe, J. Guenauer, P. Pistor, G. Walch, H. Werner and J. Wood�ll.Designing DBMS Support for the Temporal Dimension, in Proceedings of ACM SIGMOD InternationalConference on Management of Data. Ed. B Yormark. Association for Computing Machinery. Boston,MA: June 1984, pp. 115{130.[Manola & Dayal 1986] Manola, F. and U. Dayal. PDM: An Object-Oriented Data Model, in Proceedings of theInternational Workshop on Object-Oriented Database Systems. 1986.[Mark et al. 1989] Mark, D. M., J. P. Lauzon and J. A. Cebrian. A review of quadtree-based strategies forinterfacing coverage data with digital elevation models in grid form. International Journal of GeographicalInformation Systems, 3, No. 1 (1989), pp. 3{14.[McKenzie 1986] McKenzie, E. Bibliography: Temporal Databases. ACM SIGMOD Record, 15, No. 4, Dec. 1986,pp. 40{52.[McKenzie 1988] McKenzie, E. An Algebraic Language for Query and Update of Temporal Databases. PhD. Diss.Computer Science Department, University of North Carolina at Chapel Hill, Sep. 1988.[McKenzie & Snodgrass 1990] McKenzie, E. and R. Snodgrass. Schema Evolution and the Relational Algebra.Information Systems, 15, No. 2, June 1990, pp. 207{232.[McKenzie & Snodgrass 1991A] McKenzie, E. and R. Snodgrass. An Evaluation of Relational Algebras Incorpo-rating the Time Dimension in Databases. ACM Computing Surveys, 23, No. 4, Dec. 1991, pp. 501{543.31

[McKenzie & Snodgrass 1991B] McKenzie, L. and R. T. Snodgrass. Supporting Valid Time in an HistoricalRelational Algebra: Proofs and Extensions. Technical Report TR{91{15. Department of ComputerScience, University of Arizona. Aug. 1991.[Melton 1990] Melton, J. (ed.) Solicitation of Comments: Database Language SQL2. American National Stan-dards Institute, Washington, DC, 1990.[Montague 1973] Montague, R. The proper treatment of quanti�cation in ordinary English, in Approaches toNatural Language. Dordrecht, Holland: D. Reidel Publishing Co., 1973.[Narasimhalu 1988] Narasimhalu, A. A Data Model for Object-Oriented Databases with Temporal Attributes andRelationships. Technical Report. National University of Singapore. 1988.[Navathe & Ahmed 1987] Navathe, S. B. and R. Ahmed. TSQL-A Language Interface for History Databases, inProceedings of the Conference on Temporal Aspects in Information Systems. AFCET. France: May 1987,pp. 113{128.[Navathe & Ahmed 1989] Navathe, S. B. and R. Ahmed. A Temporal Relational Model and a Query Language.Information Sciences, 49 (1989), pp. 147{175.[USNO 1992] Observatory, U.S. Naval Time Service Announcement. Series 14. Washington, D.C.. Feb. 1992.[Oracle 1987] Oracle Computer, Inc. ORACLE Terminal User's Guide. Oracle Corporation, 1987.[Petley 1991] Petley, B. W. Time and Frequency in Fundamental Metrology. Proceedings of the IEEE, 79, No. 9,July 1991, pp. 1070{1077.[Quinn 1991] Quinn, T. J. The BIPM and the Accurate Measurement of Time. Proceedings of the IEEE, 79, No.9, July 1991, pp. 894{906.[Ramsey 1991] Ramsey, N. F. The Past, Present, and Future of Atomic Time and Frequency. Proceedings of theIEEE, 79, No. 9, July 1991, pp. 936{943.[Rose & Segev 1991] Rose, E. and A. Segev. TOODM - A Temporal Object-Oriented Data Model with TemporalConstraints, in Proceedings of the 10th International Conference on the Entity Relationship Approach.Oct. 1991.[Roussopoulos 1982] Roussopoulos, N. View Indexing in Relational Databases. ACM Transactions on DatabaseSystems, 7, No. 2, June 1982, pp. 258{290.[Roussopoulos 1991] Roussopoulos, N. An Incremental Access Method for ViewCache: Concept, Algorithms, andCost Analysis. ACM Transactions on Database Systems, 16, No. 3, september 1991, pp. 535-563.[Sadeghi 1987] Sadeghi, R. A Database Query Language for Operations on Historical Data. PhD. Diss. DundeeCollege of Technology, Dec. 1987.[Sadeghi et al. 1987] Sadeghi, R., W. B. Samson and S. M. Deen. HQL | A Historical Query Language. TechnicalReport. Dundee College of Technology. Sep. 1987.32

[Sarda 1990A] Sarda, N. Extensions to SQL for Historical Databases. IEEE Transactions on Knowledge and DataEngineering, 2, No. 2, June 1990, pp. 220{230.[Sarda 1990B] Sarda, N. Algebra and Query Language for a Historical Data Model. The Computer Journal, 33,No. 1, Feb. 1990, pp. 11{18.[Satoh et al. 1985] Satoh, K., M. Tsuchida, F. Nakamura and K. Oomachi. Local and Global Query OptimizationMechanisms for Relational Databases, in Proceedings of the Conference on Very Large Databases. Ed. A.Pirotte and Y. Vassiliou. Stockholm, Sweden: Aug. 1985, pp. 405{417.[CES 1989] Sciences, Committee on Earth Our Changing Planet: A U.S. strategy for global change research. 1989.(Unpublished paper.)[Sciore 1991] Sciore, E. Versioning and Con�guration management in an Object-Oriented Data Model. TechnicalReport BCCS 91-12 revised. Computer Science Department, Boston College. 1991.[Sciore 1991] Sciore, E. Multidimensional Versioning for Object-Oriented databases. Proc. Second InternationalConf. on Deductive and Object-Oriented Databases, , Dec. 1991.[Segev & Shoshani 1987] Segev, A. and A. Shoshani. Logical Modeling of Temporal Data, in Proceedings of theACM SIGMOD Annual Conference on Management of Data. Ed. U. Dayal and I. Traiger. Associationfor Computing Machinery. San Francisco, CA: ACM Press, May 1987, pp. 454{466.[Sellis 1986] Sellis, T.K. Global Query Optimization, in Proceedings of ACM SIGMOD International Conferenceon Management of Data. Ed. C. Zaniolo. Association for Computing Machinery. Washington, DC: May1986, pp. 191{205.[Sheng 1984] Sheng, R. L. A Linguistic Approach to Temporal Information Analysis. PhD. Diss. University ofCalifornia, Berkeley, May 1984.[Shenoy & �Ozsoyo�glu 1989] Shenoy, S. and Z. �Ozsoyo�glu. Design and Implementation of a Semantic QueryOptimizer. IEEE Transactions on Data and Knowledge Engineering, 1, No. 3, Sep. 1989, pp. 344{361.[Smith & Chang 1975] Smith, J.M. and P.Y-T. Chang. Optimizing the Performance of a Relational AlgebraDatabase Interface. Communications of the Association of Computing Machinery, 18, No. 10, Oct. 1975,pp. 568{579.[Snodgrass et al. 1993] Snodgrass, R., S. Gomez and E. McKenzie. Aggregates in the Temporal Query LanguageTQuel. IEEE Transactions on Knowledge and Data Engineering, (to appear) (1993).[Snodgrass & Ahn 1986] Snodgrass, R. T. and I. Ahn. Temporal Databases. IEEE Computer, 19, No. 9, Sep.1986, pp. 35{42.[Snodgrass 1987] Snodgrass, R. T. The Temporal Query Language TQuel. ACM Transactions on Database Sys-tems, 12, No. 2, June 1987, pp. 247{298.[Soo 1991] Soo, M. D. Bibliography on Temporal Databases. ACM SIGMOD Record, 20, No. 1, Mar. 1991, pp.14{23. 33

[Soo & Snodgrass 1992A] Soo, M. D. and R. Snodgrass. Multiple Calendar Support for Conventional DatabaseManagement Systems. Technical Report 92-7. Computer Science Department, University of Arizona.Feb. 1992.[Soo & Snodgrass 1992B] Soo, M. D. and R. Snodgrass. Mixed Calendar Query Language Support for TemporalConstants. TempIS Technical Report 29. Computer Science Department, University of Arizona. RevisedMay 1992.[Soo et al. 1992] Soo, M. D., R. Snodgrass, C. Dyreson, C. S. Jensen and N. Kline. Architectural Extensions toSupport Multiple Calendars. TempIS Technical Report 32. Computer Science Department, University ofArizona. Revised May 1992.[Sripada 1988] Sripada, S. A Logical Framework for Temporal Deductive Databases, in Proceedings of the Confer-ence on Very Large Databases. Los Angeles, CA: 1988, pp. 171{182.[Stam & Snodgrass 1988] Stam, R. and R. Snodgrass. A Bibliography on Temporal Databases. Database Engi-neering, 7, No. 4, Dec. 1988, pp. 231{239.[Stonebraker et al. 1976] Stonebraker, M., E. Wong, P. Kreps and G. Held. The Design and Implementation ofIngres. ACM Transactions on Database Systems, 1, No. 3, Sep. 1976, pp. 189{222.[Stonebraker 1987] Stonebraker, M. The Design of the POSTGRES Storage System, in Proceedings of the Con-ference on Very Large Databases. Ed. P. Hammersley. Brighton, England: Sep. 1987, pp. 289{300.[Stonebraker et al. 1990] Stonebraker, M., L. Rowe and M. Hirohama. The Implementation of POSTGRES.IEEE Transactions on Knowledge and Data Engineering, 2, No. 1, Mar. 1990, pp. 125{142.[Tandem 1983] Tandem Computers, Inc. ENFORM Reference Manual. Cupertino, CA, 1983.[Tansel 1986] Tansel, A. U. Adding Time Dimension to Relational Model and Extending Relational Algebra.Information Systems, 11, No. 4 (1986), pp. 343{355.[Tansel & Arkun 1986] Tansel, A. U. and M. E. Arkun. HQuel, A Query Language for Historical RelationalDatabases, in Proceedings of the Third International Workshop on Statistical and Scienti�c Databases.July 1986.[Tansel et al. 1989] Tansel, A.U., M.E. Arkun and G. �Ozsoyo�glu. Time-By-Example Query Language for HistoricalDatabases. IEEE Transactions on Software Engineering, 15, No. 4, Apr. 1989, pp. 464{478.[Thompson 1991] Thompson, P. M. A Temporal Data Model Based on Accounting Principles. PhD. Diss. De-partment of Computer Science, University of Calgary, Mar. 1991.[Tsichritzis & Lochovsky 1982] Tsichritzis, D.C. and F.H. Lochovsky. Data Models. Software Series. Prentice-Hall, 1982.[Tuzhilin and Cli�ord 1990] Tuzhilin, A. and J. Cli�ord. A Temporal Relational Algebra as a Basis for TemporalRelational Completeness, in Proceedings of the Conference on Very Large Databases. Brisbane, Australia:Aug. 1990. 34

[Ullman 1988] Ullman, Je�rey David Database and Knowledge - Base Systems | II: The New Technologies. Vol.II of Principles of Computer Science. 1803 Research Boulevard, Rockville, MD 20850: Computer SciencePress, 1988.[Urban & Delcambre 1986] Urban, S. D. and L. M. L. Delcambre. An Analysis of the Structural, Dynamic,and Temporal Aspects of Semantic Data Models, in Proceedings of the International Conference on DataEngineering. IEEE Computer Society. Los Angeles, CA: IEEE Computer Society Press, Feb. 1986, pp.382{389.[Van Benthem 1982] Van Benthem, J. F. K. A. The Logic of Time. Reidel, 1982.[Vrana 1989] Vrana, R. Historical Data as an Explicit Component of Land Information Systems. InternationalJournal of Geographical Information Systems, 3, No. 1 (1989), pp. 33{49.[Wiederhold et al. 1975] Wiederhold, G., J.F. Fries and S. Weyl. Structured Organization of Clinical Data Bases,in Proceedings of the AFIPS National Computer Conference. AFIPS. 1975, pp. 479{485.[Wiederhold et al. 1991] Wiederhold, G., S. Jajodia and W. Litwin. Dealing with Granularity of Time in TemporalDatabases, in Proc. 3rd Nordic Conf. on Advanced Information Systems Engineering. Trondheim,Norway: May 1991.[Worboys 1990] Worboys, M. F. Reasoning About GIS Using Temporal and Dynamic Logics, in Temporal GISWorkshop. University of Maine. Oct. 1990.[Wuu & Dayal 1992] Wuu, G. and U. Dayal. A Uniform Model for Temporal Object-Oriented Databases, inProceedings of the International Conference on Data Engineering. Tempe, Arizona: Feb. 1992, pp.584{593.[Zloof 1975] Zloof, M. Query By Example, in Proceedings of the National Computer Conference. AFIPS. 1975.
35

