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Abstract—Valid-time indeterminacy is “don’t know when” indeterminacy, coping with cases in which one does not exactly know 
when a fact holds in the modeled reality. In this paper, we first propose a reference representation (data model and algebra) in 
which all possible temporal scenarios induced by valid-time indeterminacy can be extensionally modeled. We then specify a 
family of sixteen more compact representational data models. We demonstrate their correctness with respect to the reference 
representation and analyze several properties, including their data expressiveness. Then, we compare these compact models 
along several relevant dimensions. Finally, we also extend the reference representation and a representative of compact 
representations to cope with probabilities. 

Index Terms—H.2.4.m Temporal databases, I.2 Artificial Intelligence, H.2.0.b Database design, modeling and management, 
I.2.4 Knowledge Representation Formalisms and Methods.  
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1 INTRODUCTION

ime is pervasive and in many situations the dynamics 
over time is one of the most relevant aspects to be 
captured by a data model. Many representations for 

temporal databases (TDBs) have been developed over the 
last two decades. 

Valid-time indeterminacy (“don’t know when” infor-
mation [9]) comes into play whenever the valid time asso-
ciated with some piece of information in the database is 
not known in an exact way. Consider the following ex-
ample (at a granularity of hours).  

Example 1. On Jan 1 2010 between 1am (inclusive) and 
4am (exclusive) John had breathing problems. 

The fact “John had breathing problems” holds at an 
unknown number of time units (hours), ranging from 
hours 1 to 3 inclusive, i.e., it may hold on 1, 2, and 3, or on 
1 and 3, or on 2 only, and so on. (For the sake of brevity, 
in this paper we denote by n the hour from n to n+1, and 
we assume to start the numbering of hours on Jan 1 2010). 

As a border case, the fact that a given event might have 
occurred or not (i.e., indeterminacy about the existence of 
the fact) may be interpreted as a form of valid-time inde-
terminacy; consider:  

Example 2. On Jan 1 2010 between 1am (inclusive) and 
4am (exclusive) Mary might have had an ischemic stroke. 

Coping with valid-time indeterminacy is important in 
many database applications, since the time when facts 
happen is often partially unknown. However, the treat-
ment of valid-time indeterminacy has not received much 

attention in the TDB literature.  
A commonly agreed-upon strategy to cope with time 

in relational databases is to extend the data model to as-
sociate temporal elements (i.e., sets of time points, or, 
equivalently, sets of time intervals) with tuples, and to 
extend relational operators to cope with such an addi-
tional temporal component. Specifically, temporal rela-
tional operators usually perform “standard” operations 
on the non-temporal component, and apply set operators 
on temporal elements (e.g., Cartesian product involves 
the intersection of the temporal elements of the tuples be-
ing paired). However, to the best of our knowledge, such 
a methodology has not yet been fully explored in the con-
text of temporal indeterminacy (see the “Temporal Inde-
terminacy” entry in Liu and Tamer Özsu [19]). For exam-
ple, the work by Dyreson and Snodgrass [9] only copes 
with periods of indeterminacy and does not provide set 
operators on them, nor temporal relational operators 
working on the extended representation. Additionally, to 
the best of our knowledge, no current approach copes 
with indeterminacy about existence. 

We attempt here to overcome such limitations. Indeed, 
our goal is quite ambitious: we do not just aim to provide 
a specific representation for indeterminate temporal ele-
ments as well as set operators on them (plus the related 
temporal relational algebra), but to explore a wide range 
of representational possibilities. Indeed, in this paper we 
propose 17 different approaches to temporal indetermi-
nacy. We extensively study the main properties of such 
approaches: (i) expressiveness, (ii) closure and correctness 
of algebraic operators, and (iii) whether the approaches 
are a consistent extension of BCDM [14] [20], a semantics 
adopted by many temporal database approaches. Finally, 
we compare such approaches, considering their expres-
siveness, their capability to cope with existential indeter-
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minacy, their suitability [15], intended as the “intuitive no-
tion of expressiveness which takes the modelling effort 
into account” [22], and their computational cost. 

1.1 Methodology 
In this paper, we ground our approach on BCDM [14] 
[20]. We utilize a commonly-used methodology: (1) we 
first propose a reference approach coping with the phe-
nomenon; and only then (2) we devise more user-
friendly, compact, and efficient representations.   

Our reference approach (data model and algebra) al-
lows one to extensionally model (bringing to mind data 
expressiveness) and query (query expressiveness) all pos-
sible temporal scenarios induced by valid-time indeter-
minacy. We provide a consistent extension of BCDM, in 
the sense that determinate valid time can be easily coped 
with as a special case (thus granting for the compatibility 
and interoperability with existent approaches). However, 
(data/query) expressiveness is not the only criterion. It is 
also important to provide users with formalisms that 
model phenomena in a “suitable” and “compact” way.  

We first identify four refinements (for example, one of 
them emphasizes suitability and compactness in coping 
with constraints about valid-time minimal duration). 
Each refinement is independently satisfied (or not). On 
the basis of these refinements, we propose a family of six-
teen representations, each supporting a specific combina-
tion of such refinements in a more compact and user-
friendly way (with respect to the reference approach). 
Each representation is characterized (i) by a different 
formalism to represent valid time, (ii) by the definition of 
set operations (i.e., union, intersection and difference) on 
the given representation of valid time, and (iii) by the re-
lational algebra operations based on such set operations.  

For each data representation, we study its semantics 
and (data) expressiveness with respect to the reference 
approach. We have defined the set operators within the 
different representations in such a way that they are 
proven to be correct with respect to the reference ap-
proach. Roughly speaking, this means that, although such 
operators operate on a more compact representation, they 
provide the same results as the reference approach. How-
ever, we proved that not all the sixteen representations 
could support a closed definition of set operators: in some 
representations, the correct result of set operations cannot 
be expressed in the representation formalism. Of course, 
only representations which support a closed definition of 
set operators —a closed representation for short— are 
suitable for DB applications. 

For each “closed” representation, we define the rela-
tional algebraic operators as a polymorphic adaptation of 
the operators of the reference approach and determine 
whether each is a consistent extension of the BCDM oper-
ators. Finally, we also extend our approach to cope with 
probabilities. 

This paper thus provides a family of representations of 
temporal indeterminacy overcoming the limitations of 
current approaches, as well as a formal framework which 
can be used in order to analyze and classify extant and 
potential representations for valid-time indeterminacy. 

Users can choose between such representations the best-
suited approach to model their application domain. 

The paper is organized as follows. In Section 2, we pre-
sent our reference approach. In Section 3, we identify the 
four refinements for a compact representation, and we 
describe five representations: one for each refinement 
plus the representation resulting from the combination of 
all the refinements. Section 4 summarizes the results con-
cerning also the other representations in the family. In 
Section 5, we extend both the reference approach and one 
of the compact representations to deal with probabilities. 
Finally, in Section 6 we propose comparisons and in Sec-
tion 7 we draw some conclusions. 

2 REFERENCE APPROACH 
In this section, we introduce the reference approach we 
propose to cope with temporal indeterminacy. Our start-
ing point is BCDM [14]. 

2.1 BCDM 
BCDM (Bitemporal Conceptual Data Model) [14] is a uni-
fying data model, isolating the “core” semantics underly-
ing many temporal relational approaches, including 
TSQL2 [14] [20]. In BCDM, tuples are associated with val-
id time and transaction time. For both domains, a limited 
precision is assumed (the chronon is the basic time unit). 
Both time domains are totally ordered and isomorphic to 
the subsets of the domain of natural numbers. The do-
main of valid times DVT is given as a set DVT={c1,…,ck} of 
chronons, and the domain of transaction times DTT is giv-
en as DTT={c’1,…,c’j}∪{UC} (where UC –Until Changed– is 
a distinguished value). In general, the schema of a BCDM 
relation R=(A1,...,An|T) consists of an arbitrary number of 
non-timestamp (explicit henceforth) attributes A1, …, An, 
encoding some fact, and of a timestamp attribute T, with 
domain DTT×DVT; the explicit attributes and the 
timestamp attribute are separated by the symbol |. Thus, 
a tuple x=(v1,…,vn|tb) in a BCDM relation r(R) on the 
schema R consists of a number of attribute values associ-
ated with a set of bitemporal chronons cbl=(c’h, ci), with 
c’h∈DTT and ci∈DVT, to denote that the fact v1,…,vn is cur-
rent (present in the database) at time c’h and valid at time 
ci. An empty timestamp and value-equivalent [20] tuples 
are not admitted. Valid-time, transaction-time and atem-
poral tuples are special cases, in which either the transac-
tion time, or the valid time, or both of them are absent. In 
the following, we restrict our attention to valid time (in 
fact, temporal indeterminacy cannot affect transaction 
time), and extend this general model to deal with tem-
poral indeterminacy. 

2.2 Disjunctive temporal elements 
As in BCDM [14] (and in many approaches reviewed in 
[20]), in our approach time is totally ordered and isomor-
phic to the natural numbers. For the sake of simplicity, a 
single granularity (e.g., hour) is assumed.  
Definition 1 Chronon. The chronon is the basic time unit. 
The chronon domain TC, also called timeline, is the or-
dered set of chronons {c1, …, ci, …, cj, …} with ci<cj as i<j. 

As in BCDM, sets of chronons are used in order to as-
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sociate with each tuple its valid time.  
Definition 2 Temporal element. A temporal element 

is a set of chronons, i.e., an element of PS(TC), the power 
set of TC. 

Disjunctions of temporal elements are a natural way of 
coping with valid-time indeterminacy, in which each 
temporal element models one of the alternative possible 
temporal scenarios (any one of which could be valid).  

Definition 3 Disjunctive temporal element, termed 
DTE. A disjunctive temporal element is a disjunctive set 
of temporal elements. Given a temporal domain TC, a 
DTE is an element of PS(PS(TC)). 

For example, the following DTE models the valid time 
in Example 1: {{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}. 

Notice that indeterminacy about existence can be 
simply modeled by including the empty temporal ele-
ment within a DTE. Determinate times can be modeled 
through a DTE containing just one temporal element 
(called singleton DTE). 

Property 1 Consistent extension (DTE). Any determi-
nate temporal element can be modeled by a singleton 
DTE. 

2.2 Temporal tuples and relations 
To represent facts that are temporally indeterminate, 
DTEs are used as timestamps of the facts. Intuitively, 
DTEs cope with valid-time indeterminacy by explicitly 
modeling all the alternative temporal scenarios. 

Definition 4 (valid-time) indeterminate tuple and re-
lation. Given a schema (A1, …, An) (where each Ai repre-
sents a non-temporal attribute on the domain Di), a (val-
id-time) indeterminate relation r is an instance of the 
schema (A1, …, An | VT) defined over the domain  
D1 × … × Dn × PS(PS(TC)) in which empty valid times and 
value-equivalent tuples are not admitted (as in BCDM). 
Each tuple x = (v1, …, vn | d) ∈ r, where d is a DTE, is 
termed a (valid-time) indeterminate tuple. The DTE d = 
{{ci,…,cj}, …, {ch,…,ck}} within tuple x denotes that the tu-
ple x holds either at each chronon in {ci, …, cj} or … or at 
each chronon in {ch, …, ck}. 

Example 3. On Jan 1 2010 Sue might have had an is-
chemic stroke either at 1am or at 2am.  

Example 4. On Jan 1 2010 Tim had breathing problems 
certainly at 1am and possibly at 2am or 3am. 

CLINICAL_RECORD is a temporally indeterminate re-
lation representing Examples 1–4.  

CLINICAL_RECORD 
{ (John, breath | {{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}), 
   (Mary, stroke | {∅, {1}, {2}, {3}}), 
   (Sue, stroke | {∅, {1}, {2}}), 
   (Tim, breath |{{1}, {1,2}, {1,3}, {1,2,3}})  }   
The first tuple models Example 1. The second tuple 

models Example 2 considering the additional knowledge 
that the ischemic stroke, if any, has been unique and has 
occurred in –at most– one hour. ∅ represents that the fact 
might have not occurred. Finally, the third and fourth tu-
ples model Examples 3 and 4 respectively. 

2.3 Lattice of scenarios 
The elements of PS(TC) with the standard set inclusion 

relation form a lattice which represents the space of all 
possible alternative scenarios over the temporal domain 
TC. We term this a lattice of scenarios (over TC). 

Property 2 Expressiveness. By definition, the formal-
ism in this section allows one to express (i.e., to associate 
with each tuple) any combination of possible scenarios 
(i.e., any subset of the lattice of scenarios). 

In Figure 1 we represent the lattice of scenarios consid-
ering the chronons {1,2,3} and the subsets of the lattice of 
scenarios represented by Examples 1, 2 and 3. 

In Sections 3 and 4 we describe also less expressive 
(but more compact) formalisms, which in some cases 
cannot represent all possible combinations of scenarios 
(i.e., not all subsets of the lattice of scenarios).  

2.4 Algebraic operations 
Codd designated as complete any query language that 
was as expressive as his set of five relational algebraic op-
erators: relational union (∪), relational difference (–), se-
lection (σP), projection (πX), and Cartesian product (×) [6]. 
Here we generalize these operators to cover (valid-time) 
indeterminate relations. As in several TDB models, our 
temporal operators behave as standard non-temporal op-
erators on the non-temporal attributes, and apply set op-
erators on the temporal component of tuples (see, e.g., 
Snodgrass [20]). As in many TDB models, including 
TSQL2 and BCDM, in our proposal Cartesian product in-
volves the intersection of the temporal components, pro-
jection and union involve their union, and difference the 
difference of temporal components. (This definition can 
be motivated by a sequenced semantics [8]: results should 
be valid independently at each point of time.) 

Now we define the relational operators of union (∪TI), 
difference (–TI), projection (πXTI), selection (σXTI) and Car-
tesian product (×TI) between temporally indeterminate 
relations. But, before doing so, we define the (general-
ized) set operators of intersection (∩DTE), union (∪DTE) and 
difference (−DTE) applied to DTEs. 

Definition 5 ∪DTE, ∩DTE, and −DTE. Given two DTEs DA 
and DB, and denoting their temporal elements by A and B 
respectively ∪DTE, ∩DTE, −DTE between DA and DB are de-
fined as the DTE obtained through the pairwise applica-
tion of standard set operations on temporal elements:  

DA ∪DTE DB = {A ∪ B | A ∈ DA ∧ B ∈ DB } 

Figure 1. Lattice of scenarios over the chronons {1,2,3} ordered 
with respect to set inclusion. The solid-line oval, the dotted-line 
oval and the dashed-line oval represent the scenarios of Example 
1, of Example 2 and of Example 3, respectively. 

{1,3} {2,3} 

{3} 

∅ 

{1,2,3} 

{1} {2} 

{1,2} 
Ex.1 

Ex.2 Ex.3 
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DA ∩DTE DB = {A ∩ B | A ∈ DA ∧ B ∈ DB } 
DA −DTE DB = {A − B | A ∈ DA ∧ B ∈ DB }. 
Intuitively, DTEs represent valid-time indeterminacy 

by eliciting all possible alternative determinate scenarios. 
The rationale behind our definition is simply that the 
pairwise combination of each alternative scenario must be 
taken into account. For instance, considering the CLINI-
CAL_RECORD relation, {∅, {1}, {2}, {3}} ∩DTE {∅, {1}, {2}} 
identifies all times when both Mary and Sue had a stroke, 
and the final result is the set of scenarios obtained by 
combining each scenario for Mary and Sue through pair-
wise standard set intersection, i.e., {∅∩∅, ∅∩{1}, ∅∩{2}, 
{1}∩∅, {1}∩{1}, {1}∩{2}, {2}∩∅, {2}∩{1}, {2}∩{2}, {3}∩∅, 
{3}∩{1}, {3}∩{2}}, which yields {∅, {1}, {2}}. Hence, it is the 
case that (a) there was no time when both Mary and Sue 
had a stroke, or (b) they both had a stroke in hour 1, or (c) 
they both had a stroke during hour 2. 

Definition 6 Temporal relational algebraic operators. 
Let r and s denote two (temporal) indeterminate relations 
on the proper schema. The temporal algebraic operators 
of union, difference, projection, selection and Cartesian 
product of r and s are defined as follows. 
  r ∪TI s  =  { < v|t > |  

∃tr ( < v|tr >∈r ∧ ¬∃ts (< v|ts >∈s) ∧ t = tr )  
∨ ∃ts ( < v|ts >∈s  ∧ ¬∃tr (< v|tr >∈r) ∧ t = ts )  
∨ ( ∃tr ( < v|tr >∈r) ∧ ∃ts ( < v|ts >∈s ) ∧ t = tr  ∪DTE ts ) } 

 
  r –TI s  =  { < v|t >  |  

∃tr ( < v|tr >∈r ∧ ¬∃ts (< v|ts >∈s) ∧ t = tr )  
∨ ∃tr ∃ts (< v|tr >∈r  ∧ < v|ts >∈s ∧ t = tr  –DTE ts  ∧  

t ≠ {∅} ) }  
 
   πXTI(r)  =  { < v|t > |  

∃vr tr (< vr| tr >∈r ∧ v = πX(vr)) ∧  
t = ∪DTE

<vr|tr >∈r ∧ v = πX (vr) tr }  
 
  σPTI(r)  =  { < v|t > | < v|t >∈r ∧ P(v) } 
 
  r ×TI s   = { < vr · vs|t> |  

∃tr ∃ts ( < vr|tr >∈r ∧ <vs|ts >∈s ∧ t = tr ∩DTE ts ∧ t ≠ {∅} 
)  }. 

In addition to Codd operators, temporal selection can 
be added, to select tuples whose valid time t satisfies a 
selection condition ϕ. Interestingly, in the case of inde-
terminate temporal information, one may want to specify 
whether the condition ϕ(t) must necessarily (NEC) or 
possibly (POSS) hold (three-valued approaches have been 
widely used to cope with incomplete information in data-
bases; consider, e.g., Gadia et al. [11]). 
  σNEC ϕTI(r) = { < v|t > | < v|t >∈r ∧ NEC(ϕ(t)) }  
  σPOSS ϕTI(r) = { < v|t > | < v|t >∈r ∧ POSS(ϕ(t)) }. 

For instance, given the relation CLINICAL_RECORD 
and the condition t⊇{1} asking for valid times containing 
the chronon 1, σNEC(t⊇{1})TI(CLINICAL_RECORD) = {(Tim, 
breath | {{1}, {1,2}, {1,3}, {1,2,3}}) }, while 
σPOSS(t⊇{1})TI(CLINICAL_RECORD) = CLINI-
CAL_RECORD. We are not committed to any specific 
syntax for ϕ. Besides predicates asking for validity at (or 
before, or after) specific chronons, we also envision pred-

icates about duration, and about the relative temporal lo-
cation of tuples (based on Allen’s relations) as in [21]. 

As the DTE set operators are used in the definition 
above, it is useful to consider some nice properties of the 
DTE set operators which have bearing on the relational 
algebraic operators. 

Property 3 Closure of DTE set operators. The repre-
sentation language of DTEs is closed with respect to the 
operations of ∪DTE, ∩DTE and –DTE. 

Our approach is a consistent extension of BCDM’s one 
(considering valid time only). 

Property 4 Consistent extension (DTEs). Determinate 
time is represented by singleton DTEs. If only singleton 
DTEs are used, the set operators ∪DTE, ∩DTE, and −DTE are 
equivalent to the standard set operators ∪, ∩ and −, and 
the relational operators ∪TI, –TI, σPTI,  σϕ

t TI, πXTI and ×TI are 
equivalent to the standard BCDM valid-time relational 
operators ∪t, –t, σPt,  σϕ

t, πXt and ×t.  

3 COMPACT REPRESENTATIONS 

3.1 General methodology  
The above treatment of valid-time indeterminacy is ex-
pressive but has several limitations. It is not compact and 
thus possibly not suitable [15] nor user-friendly, since all 
possible scenarios need to be elicited. More compact (and 
possibly more efficient) representations of temporal inde-
terminacy can be devised, sometimes at the price of losing 
part of the data expressiveness of the reference extension-
al approach. However, the limited expressiveness may be 
acceptable in several real-world domains. Instead of pro-
posing a single compact representation, in this paper we 
explore (part of) the range of possibilities. Each possibility 
is characterized by a different way of representing in a 
compact way indeterminate temporal elements. On the 
other hand, it is worth stressing that, for all of our repre-
sentations, we polymorphically apply: 

i) the same way of defining tuples and relations; 
ii) the same general definition of algebraic relational 

operators proposed in Definition 6. 
Specifically, given a type X representation of the tem-

poral component we subsequently define (there are sev-
eral such representations we will consider), we adopt the 
following polymorphic definition of tuple and relation, an 
extension of Definition 4. 

Definition 7 (Valid-time) indeterminate tuple and re-
lation in a compact representation X. Given a schema 
(A1, …, An) (where each Ai represents a non-temporal at-
tribute on the domain Di), let VTX be the temporally inde-
terminate valid time attribute under representation X, let 
DX be the domain of VTX, and let a (valid-time) indeter-
minate relation r for the representation X be an instance 
of the schema (A1, …, An | VTX) defined over the domain 
D1 × … × Dn × DX in which empty valid times and value-
equivalent tuples are not admitted (as in BCDM). Each 
tuple x = (v1, …, vn | dX) ∈ r is termed a (valid-time) inde-
terminate tuple for the representation X. Additionally, in 
all the cases, we always adopt the same definition of the 
algebraic relational operators (Definition 6), in which the 
union, intersection and difference operators between the 
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temporal components have to be polymorphically instan-
tiated with the specific operators defined for the type X of 
the temporal components. 

As a consequence, in the following we focus only on 
the definition of representation formalisms for temporal 
components, and on the definition of intersection, union 
and difference set operators on temporal components. For 
each representation that we identify, we have adopted a 
uniform methodology: 

i) we specify its extensional semantics by defining a 
function Ext that associates with a temporal com-
ponent its extensional semantics represented as a 
DTE; 

ii) we analyze its data expressiveness, both in terms 
of the reference approach, and with respect to the 
standard determinate approach; 

iii) we define the intersection, union and difference 
set operators between temporal components, prov-
ing their correctness; and 

iv) we ascertain the properties of the operators, and of 
the induced algebraic operators. 

In particular, given a compact representation X, and 
given the set operations ∪X, ∩X, and −X on temporal com-
ponents in X, as regards the data representation formal-
ism (point (ii) above), we verify whether X is a consistent 
extension of the determinate temporal model, i.e., if X can 
express all the possible determinate temporal compo-
nents. As regards the set operations, we consider the fol-
lowing properties: 

- Closure. The set operations ∪X, ∩X, and −X are closed 
(with respect to the representation X) if any application of 
the operations on temporal components in X provides as 
output a temporal component expressible in X. 

-  Correctness. Temporal components in a representa-
tion X are compact representations of DTEs. Set operators 
∪X, ∩X, and −X  perform a “symbolic manipulation” on 
such representations, providing a compact representation 
as a result (i.e., the result is a temporal component in X). 
In other words, the result of any set operation T1X OpX T2X  
is a temporal component T3X in X which is directly com-
puted only on the basis of the input (i.e., of T1X OpX T2X) 
without resorting to their underlying semantics (i.e., to 
the DTEs Ext(T1X) and Ext(T2X)). This procedure is effi-
cient, since it only requires a symbolic manipulation on a 
compact representation, but demands a proof of correct-
ness. Indeed, we have to prove the correctness of our set 
operators with respect to the extensional semantics: the 
symbolic manipulation provides the same results (ex-
pressed in the representation X) that would be obtained 
by operating on the corresponding extensions in the ref-
erence approach (i.e., by operating on DTEs). Formally 
speaking, we have to prove that, given a compact repre-
sentation X, and any two temporal components T1X and 
T2X in X, we have that: 

   Ext(T1X ∪X T2X)= Ext(T1X) ∪DTE Ext(T2X) 
   Ext(T1X ∩X T2X) = Ext(T1X) ∩DTE Ext(T2X) 
   Ext(T1X –X T2X) = Ext(T1X) –DTE Ext(T2X). 
- Consistent extension of set operators.  For represen-

tations X that are a consistent extension of the determi-
nate temporal model, set operators ∪X, ∩X, and −X  are a 

consistent extension of the corresponding determinate-
time set operators (e.g., of BCDM’s operators ∪t, ∩t, and 
−t ) if, in case only temporal components TX’s expressing 
determinate temporal components (in the representation 
X) are considered, ∪X, ∩X, and −X and ∪t, ∩t, and −t are 
equivalent. 

- Consistent extension of the indeterminate relations 
and of the algebraic operators. Finally, given a compact 
representation X, tuples, relations and algebraic opera-
tions in X are polymorphically defined on the basis of 
temporal components TX and set operations ∪X, ∩X, and 
−X  in X (see Definition 7). Therefore, from the properties 
of consistent extension of the data model and of the set 
operators in a representation X, we can always induce 
that the relations and algebraic operations in X are a con-
sistent extension of determinate (e.g., BCDM’s) ones. 

The range of possible representations has been identi-
fied by considering several different refinements. Our 
choice has been driven by considerations on expressive-
ness and usefulness derived from our previous research 
experience in both Temporal Databases and Artificial In-
telligence, and in many applicative domain, ranging from 
medicine to geology. However, in no way do we claim 
that the refinements we have identified are the only ones 
worth investigating. 

We begin with a basic and simple representation, in 
which temporal components only consist of independent 
indeterminate chronons. This basic representation is then 
successively refined into four additional, more expressive 
refined representations: 

1. Possibility of expressing, besides indeterminate 
chronons, also a determinate component;  

2. Possibility of coping with  non-independent inde-
terminate chronons (i.e., capability of listing alter-
native sets of possibilities, possibly excluding 
some of the possible combinations); 

3. Possibility of expressing a minimum constraint on 
the number of chronons; 

4. Possibility of expressing a maximum constraint on 
the number of chronons. 

Refinement 1 is important to model several domains (e.g., 
medicine) in which valid time is usually only partially 
unknown. This possibility is present in several models, 
both in Artificial Intelligence (consider, e.g., Allen [1]) and 
in TDB (e.g., Dyreson and Snodgrass [9]). Refinement 2 
derives from the relevance of coping with alternatives in 
several domains (e.g., in planning), which is provided by 
many approaches, especially in Artificial Intelligence [1]. 
Refinements 3 and 4 support the treatment of minimal 
and maximal durations, as required in many domains 
(e.g., medicine). 

The rest of this section is organized as follows. First, 
Section 3.2 discusses the “basic” compact representation. 
Then, in Sections 3.3-3.5, the basic representation is ex-
tended to cope with the above possibilities, independent-
ly of each other (for the sake of brevity, the possibility of 
expressing minimum and maximum constraints is con-
sidered together). Finally, in Section 3.6 the combination 
of all the different possibilities is taken into account. 
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3.2 Independent indeterminate chronons 
In this section we present a compact representation useful 
in domains where one can identify a (possibly empty) set 
of chronons in which the fact may hold (indeterminate 
chronons), and such chronons are independent of each 
other, in the sense that all combinations of indeterminate 
chronons are possible alternative scenarios. For instance, 
consider the following. 

Example 5. On Jan 1 2010 Ann might have had breath-
ing problems between 1am (inclusive) and 4am (exclu-
sive). 

Here the fact may not hold, or it may hold in each of 
the hours 1, 2, and 3, considered independently of each 
other  (meaning that it may hold at ∅, {1}, {2}, {3}, {1,2}, 
{1,3}, {2,3}, {1,2,3}). In this section, we show that valid 
times of this type can be modeled by a representation 
formalism that is (strictly) less data expressive than the 
formalism of DTEs, yet supports a more compact and us-
er-friendly representation. 

Definition 9 Indeterminate temporal element, termed 
ITE. An ITE <i> is represented by a temporal element, i.e., 
i ⊆ TC. 

The extensional semantics of such a representation can 
be formalized taking advantage of the reference approach 
in Section 2. 

Definition 10 Extensional semantics of ITEs. The se-
mantics of an ITE <i> is the DTE consisting of all and only 
the combinations of the chronons in i, i.e., Ext(<i>)= PS(i). 

Example 5 can be represented by the indeterminate 
temporal element {1,2,3}, and its underlying semantics is 
the DTE Ext(<{1,2,3}>) = {∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, 
{1,2,3}}.1 

ITEs are less expressive than DTEs, since not all com-
binations of temporal scenarios can be expressed. 

Property 5 Expressiveness of ITE. Given a temporal 
domain TC, ITEs allow one to express all and only the el-
ements of PS(PS(TC)) of the form PS(INDET), where IN-
DET ⊆ TC. 

Intuitively, the formalism only allows one to cope with 
those subsets of TC in which all the possible combinations 
of indeterminate chronons are present. For instance, Ex-
ample 3 is not expressible, since there is a dependency be-
tween the indeterminate chronons 1 and 2, which are mu-
tually exclusive. 

We now define the set operators on ITEs. In one sense, 
we have already done so, in Definition 5. However, that 
definition is in terms of the extension, whereas we would 
like to operate directly at the level of the representation, 
which is a succinct characterization of a set of scenarios, 
as expressed by the extension. 

It turns out that the set operators are quite natural to 
express directly in the ITE representation. 

Definition 11 Set operators ∪ITE, ∩ITE, and –ITE on 
ITEs. Given two ITEs <i> and <i’>, 

      <i> ∪ITE <i’> = < i∪i’> 
      <i> ∩ITE <i’> = < i∩i’> 

 
1 Notice that, for the sake of efficiency, contiguous sets of chronons in 

each temporal element can be compactly represented by the periods cov-
ering them (e.g., {{1,2,3,4,6,7,8}, {8,9,10}} can be equivalently represented 
by {{[1-4],[6-8]},{[8-10]}}). 

      <i> –ITE <i’> = <i>. 
The union (intersection) of two ITEs is the ITE result-

ing from the union (intersection) of the sets of the chro-
nons in the ITEs. Interestingly, the difference between 
two ITEs is the minuend. Specifically, the chronons in the 
ITEs are only possible, not definite, so that the chronons in 
the subtrahend may not exist, and so, they must not be 
subtracted from the indeterminate chronons in the minu-
end. 

ITE tuples and relations can be polymorphically de-
fined as shown by Definition 7. In particular, an ITE tuple 
is a non-temporal tuple paired with an ITE, and an ITE 
relation is a set of non-value equivalent ITE tuples. To de-
fine the relational temporal algebraic operators on ITE re-
lations, we polymorphically adopt the definition of rela-
tional algebraic temporal operators of the extensional se-
mantics (see Definition 6), in which the set operators ∪DTE, 
∩DTE and –DTE on DTEs are substituted by the set opera-
tors ∪ITE, ∩ITE and –ITE on ITEs. 

Property 6. Properties of the ITE representation. ITE 
set operators are closed and correct. No consistent exten-
sion property holds in ITE. 

Proof. Correctness of intersection (∩ITE):  
Since, by definition, <i> ∩ITE <i’> = < i∩i’>, we have to 

prove that Ext(<i>) ∩DTE Ext(<i’>) = Ext(< i∩i’>). By the 
semantics of ITEs, Ext(<i>)=PS(i) and, by the definition of 
intersection between DTEs and by the distributive law of 
intersection over power sets, Ext(<i>) ∩DTE Ext(<i’>) = 
PS(i) ∩DTE PS(i’) = { a ∩ b | a∈PS(i) and b∈PS(i’) } = 
PS(i∩i’) = Ext(<i∩i’>).  

As regards the consistent extension property, let us 
consider the DTE {{1}}, containing just the determinate-
time temporal element {1}: it is not possible to model it 
with an ITE because the extension of any ITE necessarily 
contains also the empty temporal element ∅. 

A drawback of ITEs is that they represent only inde-
terminate chronons. Thus, ITEs cannot represent deter-
minate time. An ITE can represent that Ann might have 
had breathing problems between 1am and 4am (Example 
5), but not that Ann definitely had breathing problems at 
5am. This limitation implies that ITE relations are not a 
consistent extension of BCDM, and ITE relational opera-
tors are not a consistent extension of BCDM operators. 
However, such properties will hold for the representation 
to be described in the following Section. 

3.3 Determinate chronons 
In this section we present a compact representation 

useful in domains where, besides independent indeter-
minate chronons, one can identify a (possibly empty) set 
of chronons in which the fact certainly holds (termed de-
terminate chronons). For instance, consider Example 4 in 
Section 2.2.Valid times of this type can be modeled by a 
representation formalism that is (strictly) less data expres-
sive than the formalism of DTEs, yet supports a more 
compact and user-friendly representation. 

Definition 12 Determinate+Indeterminate temporal 
element, termed DITE. A DITE is a pair <d,i>, where d 
and i are temporal elements. 

Intuitively, the first element of the pair identifies the 
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determinate chronons, and the second element the inde-
terminate ones. The extensional semantics of such a rep-
resentation can be formalized taking advantage of the 
general approach in Section 2. 

Definition 13 Extensional semantics of DITEs. The 
semantics of a DITE <d,i> is the DTE consisting of all and 
only the sets that contain d and the combinations of the 
chronons in i, i.e., Ext(<d,i>) = { d ∪ e | e ⊆ i }. 

Example 4  can be represented by the determi-
nate+indeterminate temporal element <{1},{2,3}>, and its 
underlying semantics is the DTE Ext(<{1},{2,3}>) = {{1}, 
{1,2}, {1,3}, {1,2,3}}. 

DITEs are less expressive than DTEs, since not all 
combinations of temporal scenarios can be expressed.  

Definition 14 Set operators ∪DITE, ∩DITE, and –DITE. 
Given two DITEs <d,i> and <d’,i’>, 

      <d,i> ∪DITE <d’,i’> = <d∪d’, i∪i’> 
      <d,i> ∩DITE <d’,i’> = <d∩d’, (d∪i) ∩ (d’∪i’)> 
      <d,i> –DITE <d’,i’> = <d  – (d’∪i’), (d∪i) – d’>. ■ 
Property 7. Properties of the DITE representation. 

DITE set operators are closed and correct. The consistent 
extension properties hold in DITE. 

A detailed treatment of DITEs, of the related algebra 
and of its properties is reported in the preliminary ver-
sion of this work in [2]. 

3.4 Dependent indeterminate chronons 
Coping with non-independent indeterminate chronons 
involves the necessity of preventing some combinations 
of indeterminate chronons from being included in the ex-
tensional semantics of the temporal components. Consid-
er Example 3, where not all the combinations of the chro-
nons are allowed because hours 1 and 2 are mutually ex-
clusive. In this section, we augment the basic representa-
tion (which only considers independent indeterminate 
chronons) to model also dependent indeterminate chro-
nons and we describe a representation formalism that is 
(strictly) less data expressive than the formalism of DTEs, 
yet more compact and user friendly. 

Definition 15 Dependent Indeterminate temporal el-
ement, termed DeITE. A DeITE is a set {i1, …, in}, where 
each ij is a temporal element, i.e., ij ⊆ TC. 

Intuitively, the semantics of a DeITE is the union of the 
semantics of the ITEs i1, …, in. 

Definition 16 Extensional semantics of DeITEs. The 
semantics of a DeITE {i1, …, in} is the DTE consisting of all 
and only the sets that contain the combinations of the 
chronons in each ij, i.e., Ext({i1, …, in}) = { e | e⊆i1 ∨ … ∨ 
e⊆in }. 

Example 3 can be represented by the dependent inde-
terminate temporal element {{1},{2}} and its underlying 
semantics is the DTE Ext({{1},{2}}) = {∅, {1}, {2}}. 

DeITEs are less expressive than DTEs, since not all 
combinations of temporal scenarios can be expressed. 

Property 8 Expressiveness of DeITE. Given a tem-
poral domain TC, DeITEs allow one to express all and on-
ly the subsets of PS(PS(TC)) of the form PS(INDET1) ∪ … 
∪ PS(INDETn), where INDETj ⊆ TC, j=1, …, n. 

This property states that DeITEs are less expressive 
than DTEs, since not all combinations of temporal scenar-

ios can be expressed. For instance, Example 1 cannot be 
expressed with a DeITE: in fact John certainly had breath-
ing problems, so that the empty temporal element ∅ must 
not be in the extensional semantics of the DeITE, but with 
a DeITE it is not possible to exclude ∅. 

Definition 17 Set operators ∪DeITE, ∩DeITE, and –DeITE. 
Given two DeITEs {i1, …, in} and {i’1, …, i’h}, 

{i1, …, in} ∪DeITE {i’1, …, i’h} = {ij ∪ i’k | 1≤j≤n, 1≤k≤h} 
{i1, …, in} ∩DeITE {i’1, …, i’h} = {ij ∩ i’k | 1≤j≤n, 1≤k≤h} 
{i1, …, in} –DeITE {i’1, …, i’h} = {i1, …, in}. 
The union, intersection and difference between two 

DeITEs is the pairwise union, intersection and difference 
of the ITEs that compose the DeITEs (see the definition of 
∪ITE, ∩ITE, and –ITE). 

The following properties hold for DeITE: 
Property 9. Properties of the DeITE representation. 

DeITE set operators are closed and correct. No consistent 
extension property holds in DeITE. 

As regards consistent extension, since ITEs are a spe-
cial case of DeITEs with one component, the same coun-
terexample provided for ITEs is applicable here. 

3.5 Minimum and maximum cardinality 
Minimum and maximum cardinality constraints are use-
ful in order to explicitly model constraints about temporal 
duration. For instance, the constraint that ischemic stroke 
happened in at most one hour (see Example 2) can be 
stated by setting the maximum cardinality constraint to 1. 

In this section, we augment the basic representation 
with independent indeterminate chronons to model min-
imum and maximum constraints on the components. 

Definition 18 Independent Indeterminate temporal 
element with minimum/maximum constraints, termed 
mMITE. An mMITE is a triple <i, m, M>, where i is a 
temporal element, m and M are non-negative integers, 
specifying the minimum and maximum cardinalities, re-
spectively, with m≤M. 

Definition 19 Extensional semantics of mMITEs. The 
semantics of an mMITE <i, m, M> is the DTE consisting of 
all and only the combinations of the chronons in i with 
cardinality between m and M, i.e., Ext(<i, m, M>) = { e | 
e⊆i ∧ m ≤ |e| ≤ M }. 

Consider the following example. 
Example 6. On Jan 1 2010 between 2am (inclusive) and 

5am (exclusive) Sue had breathing problems for two 
hours within that three-hour period. 

Example 6 can be compactly represented by the 
mMITE <{2,3,4},2,2>, and its underlying semantics is the 
DTE Ext(<{2,3,4},2,2>) = {{2,3}, {2,4}, {3,4}}. 

mMITEs are less expressive than DTEs, since not all 
combinations of temporal scenarios can be expressed. 

Property 10 Expressiveness of mMITE. Given a tem-
poral domain TC, a subset INDET of TC and two non-
negative integers m and M with m≤M, mMITEs allow one 
to express all and only the subsets of PS(PS(TC)) of the 
form PS(INDET), whose cardinalities are between m and 
M. 

Example 4 cannot be represented with a mMITE: in 
fact, if the component i of the mMITE has to contain the 
chronons 1, 2 and 3 (since Tim had breathing problems in 
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such hours) and if the extension of the mMITE has to con-
tain the chronon 1 alone, it must also contain all the other 
temporal elements with cardinality 1 (i.e., the chronons 2 
and 3 alone), while they are not possible. 

Unfortunately, this representation is not closed with 
regard to the set operators and, thus, also the relative re-
lational algebra is not closed. For instance, we show that 
the difference set operator is not closed. In order to be 
correct, the mMITE difference set operator should satisfy: 

Ext(<i, m, M> –mMITE <i’, m’, M’>) = Ext(<i, m, M>) –DTE 
Ext(<i’, m’, M’>). 

Let us consider <{1, 2, 3},1,3> –mMITE <{2,3},1,2>. If the 
difference is defined correctly (with respect to the refer-
ence approach), the result of the above operation must be 
Ext(<{1, 2, 3},1,3>) –DTE Ext({2,3},1,2>) = {∅, {1}, {2}, {3}, 
{1,2}, {1,3}}. However, this DTE is not expressible by an 
mMITE; in fact, the temporal element of cardinality 2 {2,3} 
is missing (see Property 10). 

3.6 Combinations 
We have explored all possible combinations of the 

above refinements (indeed, we have also considered the 
minimum and the maximum constraints as independent 
refinements, to be combined with the other ones). For the 
sake of brevity, in this section we only consider the repre-
sentation that includes all the refinements: determinate 
and indeterminate chronons, dependent indeterminate 
chronons, and minimum and maximum cardinality. A 
systematic analysis of all the representations we explored 
is given in the next section. 

Definition 20 Determinate+Dependent Indetermi-
nate temporal element with minimum/maximum cardi-
nality, termed mMDDeITE. An mMDDeITE is a pair <d, 
{<i1,m1,M1>, …, <in,mn,Mn>}>, where d is a temporal ele-
ment, and for j=1, …, n ij are temporal elements, mj and 
Mj are non-negative integers, and mj≤Mj. 

Definition 21 Extensional semantics of mMDDeITEs. 
The semantics of a mMDDeITE <d, {<i1,m1,M1>, …, 
<in,mn,Mn>}> is the DTE consisting of all and only the sets 
that contain the chronons in d and the combinations of the 
chronons in each ij that satisfy the cardinality constraint, 
i.e., Ext(<d, {<i1,m1,M1>, …, <in,mn,Mn>}>) = { d ∪ e | (e⊆i1 
∧ m1≤|e|≤M1)  ∨ … ∨ (e⊆in ∧ mn≤|e|≤Mn) }. 

Consider the following example. 
Example 7. On Jan 1 2010 Ann-Marie had breathing 

problems at 1am, and then either for 1–2 hours between 
3am (inclusive) and 6am (exclusive) or for 1–2 hours be-
tween 8am (inclusive) and 10am (exclusive). 

Example 7 can be represented by the mMDDeITE <{1}, 
{<{3,4,5},1,2>, <{8,9},1,2>}> and its underlying semantics 
is the DTE Ext(<{1}, {<{3,4,5},1,2>, <{8,9},1,2>}>) = {{1,3}, 
{1,4}, {1,5}, {1,3,4}, {1,3,5}, {1,4,5}, {1,8}, {1,9}, {1,8,9}}. 

mMDDeITEs are as expressive as DTEs, thus all com-
binations of temporal scenarios can be expressed. 

Property 11 Expressiveness of mMDDeITE. Given a 
temporal domain TC, mMDDeITEs allow one to express 
all and only the subsets of PS(PS(TC)). 

In other words, mMDDeITEs have the same expres-
siveness of DTEs, that is, of the full extension. Intuitively, 
given a DTE dte = {{ch1, …, chk}, …, {ci1, …, cil}}, it is possible 

to define a mMDDeITE having dte as an extension by set-
ting each first component ij (j=1, …, n) of the triplets <ij, 
mj, Mj> of the mMDDeITE to one of the elements of dte, 
i.e., the mMDDeITE corresponding to dte is <∅, {<{ch1, …, 
chk},k,k>, …, <{ci1, …, cil},l,l>}>. 

Determinate valid time can be easily captured by 
means of mMDDeITEs. 

At this point, the set operations of union (∪mMDDeITE), 
intersection (∩mMDDeITE) and difference (−mMDDeITE) be-
tween mMDDeITEs can be defined. 

Definition 22 ∪mMDDeITE, ∩mMDDeITE, and –mMDDeITE. 
Given two mMDDeITEs <d, {<i1,m1,M1>, …, <in,mn,Mn>}> 
and <d’, {<i’1,m’1,M’1>, …, <i’h,m’h,M’h>}>, 

<d, {<i1,m1,M1>, …, <in,mn,Mn>}> ∪mMDDeITE  
<d’, {<i’1,m’1,M’1>, …, <i’h,m’h,M’h>}> =  

<d∪d’, { <a∪b,|a∪b|,|a∪b|> | a⊆ij, b⊆i’k | mj≤|a|≤Mj, 
mk≤|b|≤Mk |  j=1, …, n, k=1, …, h }> 

<d, {<i1,m1,M1>, …, <in,mn,Mn>}> ∩mMDDeITE  
<d’, {<i’1,m’1,M’1>, …, <i’h,m’h,M’h>}> = <d∩d’,  
{<(d∪a)∩(d’∪b), |(d∪a)∩(d’∪b)|, |(d∪a)∩(d’∪b)|> | a⊆ij, 
b⊆i’k | mj≤|a|≤Mj, mk≤|b|≤Mk |  j=1, …, n, k=1, …, h } > 

<d, {<i1,m1,M1>, …, <in,mn,Mn>}> –mMDDeITE  
<d’, {<i’1,m’1,M’1>, …, <i’h,m’h,M’h>}> = <d – (d’ ∪ i’1 ∪ … 
∪ i’h), { <(d∪a) – (d’∪b), |(d∪a) – (d’∪b)|, |(d∪a) – 
(d’∪b)|> | a⊆ij, b⊆i’k | mj≤|a|≤Mj, mk≤|b|≤Mk |  j=1, …, 
n, k=1, …, h}>. 

The definition of the mMDDeITE operators generalizes 
the operators described in the previous sections. The de-
terminate component of the output is evaluated as for the 
DITE [2] (obviously, for the determinate component of 
the difference, we exclude all the ITEs in the indetermi-
nate component of the subtrahend). 

For the indeterminate component, we consider the 
subsets a⊆ij, b⊆i’k of the input indeterminate components 
that satisfy the minimum and maximum constraints, and 
we perform pairwise union, intersection and difference 
(see the definition of the DeITE operators in Section 3.4) 
by considering also the determinate component (see the 
definition of the DITE operators in Section 3.2). The min-
imum/maximum cardinalities are the cardinalities of the 
resulting sets. 

Property 12. Properties of the mMDDeITE represen-
tation. mMDDeITE set operators are closed and correct. 
The consistent extension properties hold in mMDDeITE. 

4 COMPARISON OF THE REPRESENTATIONS 
Since the four refinements pointed out in Section 3.1 are 
orthogonal, implying that all possible combinations are 
feasible, in our overall approach we have identified six-
teen different languages to express valid-time indetermi-
nacy, plus the extensional one discussed in Section 2. We 
have considered five out of the sixteen languages in Sec-
tions 3.2–3.6. In this section, we provide a general over-
view of the whole family of representations, analyzing 
and comparing them. 

Notation. In the following, we use short tags to denote 
the refinements and, then, the seventeen formalisms. RA 
denotes the reference approach introduced in Section 2. I 
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denotes the treatment of indeterminate chronons, and 
D+I the treatment of both determinate and indeterminate 
chronons. Superscript * denotes the possibility of specify-
ing multiple alternatives concerning the indeterminate 
temporal element (i.e., of coping with non-independent 
indeterminate chronons). Finally, superscripts n and N 
denote the possibility of expressing minimality and max-
imality constraints respectively. Combinations of tags 
represent combinations of refinements. 

The seventeen languages thus are RA, I, D+I, I*, D+I*, 
In, D+In, In,*, D+In,*, IN, D+IN, IN,*, D+IN,*, In,N, D+In,N, In,N,*, 
and D+In,N,*. Specifically, I, D+I, I*, In,N, D+In,N,* correspond 
to the representations discussed through Sections 3.2–3.6. 
In the following, we discuss important properties that 
some of the languages share. 

4.1 Closure  
The first, fundamental property we consider is closure. In 
fact, if the temporal representation is not closed with re-
spect to the set operators of union, intersection and dif-
ference, the relational algebra itself (defined in Section 
2.4) is not closed. Hence, representations for which clo-
sure does not hold are not suitable in the DB context. 

Property 13 Closure. The formalisms RA, I, D+I, I*, In,*, 
D+In,*, IN,*, D+IN,*, In,N,*, D+In,N,* are closed with respect to 
set operators, while the formalisms D+I*, In, D+In, IN, 
D+IN, In,N, D+In,N are not. 

We have shown in Section 3.5 that In,N is not closed. In 
general, we can see that the addition of the minimal 
and/or maximal constraint, if it is not paired with the 
possibility of specifying multiple alternatives concerning 
the indeterminate temporal element (* symbol), leads to 
representation languages that are not closed, inde-
pendently of whether the treatment of determinate chro-
nons is considered. Intuitively, this is because, consider-
ing the lattice of scenarios introduced in Section 2.3, In, IN , 
In,N, D+In, D+IN, D+In,N can represent the entire part of the 
lattice from which we possibly exclude a bottom part (be-
cause of the minimum cardinality) and/or a top part (be-
cause of the maximum cardinality). However, the differ-
ence between two mMITEs can generate a region not de-
finable by simply cutting away a bottom or top part of the 
lattice (see the counterexample in Section 3.5). 

Moreover, it is interesting to notice that, even though 
the language D+I, described in Section 3.3, is closed, add-
ing the possibility of listing alternatives concerning inde-
terminate chronons (i.e., the language D+I*) results in a 
language that is not closed. For example, consider the set 
operator of difference and the operation in D+I* <{1,2}, 
∅> – <∅, {{1}, {2}}>. The extensional semantics of the re-
sult is the DTE {{1}, {2}, {1,2}}, which is not expressible in 
D+I* since it has an empty determinate component (be-
cause the temporal elements have no common chronon), 
but the empty temporal element is not present (and a De-
ITE cannot exclude ∅ when the determinate component is 
empty). 

In the remainder of this section, we further investigate 
the properties of the closed representations. 

4.2 Expressiveness 
Considering the closed representations, we compare their 
expressiveness in Figure 2. In this figure, the representa-
tions are denoted as rectangles. Solid arcs connect a less 
expressive to a more expressive language. Dotted arcs 
connect languages with equal expressiveness. The dashed 
arc connects two incomparable languages. The relations 
derivable by transitive closure are not represented. 

We have proven that four of the nine closed represen-
tations are as expressive as the reference approach RA. 

Property 14 Expressiveness. The representations 
D+In,*, D+In,N,*, In,*, In,N,* are as expressive as RA. I, D+I, I*, 
IN,*, D+IN,* are less expressive than RA. 

In general, the possibility of setting a minimum con-
straint, in addition to the possibility of specifying multi-
ple alternatives concerning the indeterminate temporal 
element (i.e., * plus n), renders a language as expressive 
as RA i.e., such that any DTE X can be represented by the 
formalisms. Intuitively, this is because through the alter-
native refinement (* feature) one can elicit all temporal 
elements in X. In principle, the extensional semantics of 
each alternative is not just one temporal element, but the 
power set of the chronons it contains. However, by im-
posing for each alternative the constraint that the mini-
mum constraint must be exactly the number of  chronons 
in that alternative, just all and only the sets that are the 
temporal elements in X are considered. 

Thus, D+In,*, D+In,N,*, In,*, In,N,* can express (possibly in 
a more compact way) all the possible combinations of al-
ternative scenarios. 

It is interesting to notice how the expressiveness 
changes as we add refinements to a language. For exam-
ple, starting from the D+I representation, if we add the 
possibility of expressing alternatives concerning the inde-
terminate component, we derive the representation D+I*, 
which is not closed, as commented above. However, if we 
add to D+I the possibility of expressing both alternatives 
concerning the indeterminate component and minimality 
constraints (refinements (2) and (3) in Section 3.1), we ob-
tain a closed language, D+In,*, which is strictly more ex-
pressive, and that is as expressive as RA. If we add to 

Figure 2. Graphical representation of the data expressive-
ness of the nine closed representations for expressing valid-
time indeterminacy studied in our work (as well as the refer-
ence approach, RA). 

RA 

D+In,N,* 

D+In,* D+IN,* 

D+I 

In,* IN,* 

I* 

I 

In,N,* 
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D+I* the possibility to express maximality constraints (ob-
taining D+IN,*), we obtain a closed language, with differ-
ent expressive power. In fact, D+IN,* cannot express arbi-
trary DTEs since all extensions have to include either the 
empty temporal element (since the determinate compo-
nent is empty) or a same temporal element (since the de-
terminate component is not empty). 

On the other hand, starting from the I* representation, 
if we add the possibility of expressing minimality con-
straints, we augment its expressivity resulting in a repre-
sentation that is as expressive as RA (see the discussion 
above); however, if we add to I* the possibility of express-
ing maximality constraints, the expressivity of the repre-
sentation does not change. Indeed, given a set of chro-
nons with maximum cardinality N, it can be equivalently 
represented by alternative sets of chronons. For instance, 
a set {1,2,3} with maximum cardinality 2 (whose extension 
is {∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}}) may be represented by 
the DeITE {{1,2}, {1,3}, {2,3}}. 

An asymmetry in Figure 2 can be observed in that the 
expressiveness of D+I cannot be compared with I*. For 
example, on the one hand the DTE {∅, {2}, {3}} can be ex-
pressed by I* as the set {{2},{3}} containing two alterna-
tives, but cannot be expressed by D+I, because, since the 
empty temporal element is present, the determinate com-
ponent must be empty, but including the chronons 2 and 
3 in the indeterminate component would necessarily in-
clude also the temporal element {2,3}. On the other hand, 
we cannot conclude that I* is more expressive than D+I, 
because, for example, the DTE {{2}, {2,3}} is expressible by 
D+I as <{2},{3}>, but cannot be expressed by I* because it 
does not contain the empty temporal element, which is 
necessarily contained in every DTE generated by I*. 

4.3 Consistent extension  
The property of consistent extension (of BCDM) is also 
important, to grant for the compatibility and interopera-
bility with existent BCDM-based representations. 

Property 15 Consistent extension. The representations 
D+I, D+In,*, D+IN,*, D+In,N,*, In,*, In,N,*, and RA are a con-
sistent extension of BCDM. I, I*, IN,* are not. 

Of course, all the representations that have a determi-
nate component are trivially a consistent extension of 
BCDM, since the determinate component models deter-
minate BCDM times. And, trivially, RA models determi-
nate time through singleton DTEs. Moreover, it is worth 
noticing that, while the representation I (i.e., independent 
indeterminate chronons, discussed in Section 3.2) is not a 
consistent extension, the addition of the possibility of ex-
pressing alternatives (*) and minimality constraint (n) to it 
grants the property. This is because—as discussed 
above—In,* is as expressive as RA and thus it can model 
determinate time as RA does. On the other hand, I* and 
IN,* are not consistent extensions of BCDM because they 
can represent only DTEs where the empty temporal ele-
ment is necessarily present. 

4.4 Existential indeterminacy 
Another relevant property about expressiveness regards 
how the different representations cope with the indeter-

minacy about the existence of a given tuple (termed exis-
tential indeterminacy). All the representations allow to state 
that the fact described by the tuple may also not occur 
(notice that this fact can be represented in RA by includ-
ing the empty set in the DTE; additionally, the empty set 
is necessarily included in the extensions of every ITE). On 
the other hand, not all the representations allow one to 
model the fact that there is no existential indeterminacy, 
i.e., that the tuple certainly exists (although we might not 
know exactly when).  

Property 16 Existential indeterminacy. All the repre-
sentations can represent existential indeterminacy. On the 
other hand, I, I*, and IN,* cannot represent certainty of ex-
istence. 

Of course, certainty of existence can be trivially repre-
sented by all representations that support determinate 
chronons. Similarly, the representations that do not pro-
vide certainty of existence cannot represent determinate 
time and, thus, are not consistent extensions of BCDM. 
Additionally, the possibility of specifying a minimum 
cardinality allows one to express certainty of existence, 
since the minimum cardinality allows one to exclude the 
empty set from the extensions. 

4.5 Compactness and suitability (base relations) 
Finally, it is worth stressing that expressiveness is not the 
only criterion worth to be considered when evaluating 
representations (otherwise RA could suffice). Compact-
ness is also important, as is suitability [15]. For instance, 
consider Example 4: it can be expressed in a more com-
pact way in D+I than in In,N,*, even though D+I is strictly 
less expressive than In,N,*. In fact, on the one hand in D+I 
it can be expressed —as described in Section 3.3— as 
<{1},{2,3}>. On the other hand, in In,N,* it can be expressed 
as the set of alternatives { <{1},1,1>, <{1,2},2,2>, 
<{1,3},2,2>, <{1,2,3},3,3> }, containing four alternatives.  

As another example, consider: 
Example 8. On Jan 1 2010 Tom might have had fever 

between 1am (inclusive) and 4am (exclusive) for at most 2 
hours. 

This example can be expressed in a more compact way 
in IN,* than in D+In,*, even though IN,* is strictly less ex-
pressive than D+In,*. In fact, in IN,* it can be expressed as 
{<{1,2,3},2>}, while in D+In,* it can be expressed as <∅, 
{<{1,2},0>, <{1,3},0>, <{2,3},0>}>. 

4.6 Evaluation of set operators 
Until now we have considered, besides closure (which is 
required for making queries possible), properties related 
to the expressiveness of the representations, and their ca-
pability to cope with certain phenomena (possibly, in a 
suitable way). However, such properties have a cost, both 
in terms of the storage needed to represent (temporal) da-
ta, and in term of the (temporal) complexity of perform-
ing algebraic operators. Note that in order to have the clo-
sure property the minimum and/or maximum cardinality 
refinements cannot come alone, but require that also the 
“*” (multiple alternatives) refinement is provided. 

Several factors can be considered to characterize the 
“cost” of refinements. In the following, we consider the 
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length of the output of set operators on the different types 
of temporal components, which, besides storage require-
ments, also gives an insight about the complexity needed 
to evaluate algebraic operations. The evaluation of set op-
erators (and thus of algebraic operators) for the represen-
tations I and D+I (i.e., for ITEs and DITEs) simply in-
volves union, intersection and difference on sets of chro-
nons, and the length of the output is linear with respect to 
the length of the input. The introduction of the “*” re-
finement demands for a pairwise combination of the in-
put alternatives for the evaluation of set operators, imply-
ing that the length of the output may be quadratic with 
respect to the length of the input. The introduction of the 
cardinality refinements further increases the complexity: 
by definition, all the subsets satisfying the cardinality 
constraints of the input sets of chronons must be taken 
into account. Thus, the output may grow exponentially 
with respect to the length of the input. 

4.7 Summary 
To wrap up, Table 1 compares along various aspects con-
sidered in this paper the ten representations that are 
closed with regard to set operators. The first four columns 
show the four refinements we identified in Section 3.1. 
Each column states whether it is possible to express a 
phenomenon in a compact/user-friendly way (e.g., RA 
allows one to express the minimal duration constraint, 
but only eliciting all possible cases; thus RA does not ex-
hibit such a property). Det stands for the possibility of ex-
pressing determinate chronons, Dep for coping with de-
pendent chronons, Min and Max for the possibility of ex-
pressing minimum and maximum constraints respective-
ly. The fifth column focuses on the possibility of coping 
with certainty of existence; the sixth column takes into 
account expressiveness (only the representations that 
have the full expressiveness of RA are marked); the sev-
enth column considers the consistent extension property2; 
Finally, the eighth column represents the cost of each rep-
resentation X, considering the length of the output of set 
operators with respect to the length of their input (as ex-
pressed in the representation X). Considering cost, it is 
worth noticing that (i) RA is the most “costly” approach 
(even if its output is at most quadratic with respect to the 
input). This is due to the fact that the representations (of 
the input and of the output) are not compact: all the sce-
narios are explicitly represented. Thus, for instance, the 
evaluation of union must consider all possible pairs of 
scenarios, which is the upper bound for the complexity 
for all the representations (provided that they are correct 
with respect to RA), and (ii) all set operators of represen-
tations considering the “D” refinement have been defined 
in such a way that, if only determinate chronons are used, 
no additional cost is incurred with respect to standard 
approaches to determinate time. 

 
2 In Table 1, Cert exist and Consist Ext coincide. However, this is not a 

general rule. For instance, a formalism providing for enumerators such as 
“one_of” or “at_least_one” associated with temporal elements allows one 
to express certainty of existence, but it is not a consistent extension of 
BCDM (since purely determinate time cannot be represented). 

5 PROBABILISTIC EXTENSION  
In some approaches in the literature, temporal indetermi-
nacy has been dealt with in conjunction to probabilities 
[9] [7]. Intuitively, probabilities, when available,  provide 
additional pieces of information for discriminating be-
tween alternative scenarios. In the following, we sketch 
how our approach can be extended to cope with probabil-
ities. We operate in two steps. First, we extend the refer-
ence approach to cope with probabilities. Then, we move 
towards compact representations. In particular, we only 
consider the formalism for independent indeterminate 
chronons (Section 3.2). The same methodology can be 
used to extend also the other representations. However, 
several challenging issues have to be taken into account, 
left for future work. 

5.1 Probabilistic Reference approach 
We assume that facts in the database are independent, 
and that for each fact temporal scenarios are exhaustive 
and mutually exclusive. For each fact in the database, we 
introduce a probability distribution function P, which 
gives the probability that the fact occurred in a scenario 
(i.e., in a temporal element associated with the fact). 

Definition 23 Probabilistic disjunctive temporal ele-
ment, termed PDTE. A probabilistic disjunctive temporal 
element is a disjunctive S set of temporal elements associ-
ated with a probability distribution function  
P: S  [0,1]. 

Notation. For the sake of simplicity, we annotate each 
temporal element with its probability and we term it as 
probabilistic temporal element. 

Example 9. (Sue, stroke | {∅0.4, {1}0.1, {2}0.4, {1,2}0.1}) rep-
resents the fact that on Jan 1 2010 Sue might have had an 
ischemic stroke either at 1am (with probability 0.1) or at 
2am (with probability 0.4) or from 1am to 2am included 
(with probability 0.1) or might not (with probability 0.4). 

As we did for DTEs, we define the (generalized) set 
operators of intersection, union and difference applied to 
PDTEs.  

Definition 24 ∪PDTE, ∩PDTE, and −PDTE. Given two 
PDTEs DA and DB, and denoting their probabilistic tem-
poral elements by Ap and Bp’ respectively, the operations 

TABLE 1.  
COMPARISON OF THE TEN APPROACHES. 

 Det Dep Min Max 
Cert 
exist 

Full 
Expr 

Consist 
Ext 

Size 
outp 

I        lin 
I*  X      quad 
In,*  X X  X X X exp 
IN,*  X  X    exp 
In,N,*  X X X X X X exp 
D+I X    X  X lin 
D+In,* X X X  X X X exp 
D+IN,* X X  X X  X exp 
D+In,N,* X X X X X X X exp 
RA  X   X X X quad 
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OpPDTE of union (∪PDTE), intersection (∩PDTE), and differ-
ence (−PDTE) between DA and DB are defined as the PDTE 
obtained through the pairwise application of standard set 
operations Op on A and B; the probability is the product 
p*p’ of the probabilities of Ap and Bp’. In the case that more 
than one pair of probabilistic temporal elements Ap and 
Bp’ gives rise to the same probabilistic temporal element 
Cp’’, we sum all their products p*p’:  
DA OpPDTE DB = {Cp’’ | ∃Ap∈DA ∃Bp’∈DB (C=A Op B) ∧ 
p’’=Σ

Ap
∈DA ∧ Bp’

∈DB ∧ C=(A Op B)
 p*p’}. 

Example 10. {∅0.4, {1}0.1, {2}0.4, {1,2}0.1} ∩PDTE  {∅0.3, {2}0.2, 
{3}0.3, {2,3}0.2} = {∅0.8, {2}0.2}. 

5.2 Probabilistic independent indeterminate 
chronons 
In the compact representation IP, as in I, we associate a set 
of chronons with a tuple. Since, as in I, there is no explicit 
representation of scenarios, in IP we associate probabili-
ties with each chronon. 

Definition 25 Probabilistic indeterminate temporal 
element, termed PITE. A PITE <i> is represented by a 
temporal element, i.e., i ⊆ TC, and a probability function 
PI: i  (0,1]. 

Notice that, for the sake of compactness, we do not 
admit chronons with null probability in PITEs. 

Notation. When there is ambiguity, we use the nota-
tion PIi(c) to represent the probability of the chronon c in 
the PITE <i>. 

Example 11.  <10.2, 20.5> represents that the fact holds in 
the hour 1am with probability 0.2, and in the hour 2am 
with probability 0.5. Notice that probabilities in a PITE do 
not necessarily sum up to 1, since they represent marginal 
probabilities with respect to the probabilities of the corre-
sponding PDTEs (see Definition 26 below).  

Definition 26 Extensional semantics of PITEs (ExtP 
function). The semantics of a PITE =<c1p1, …, ckpk> is the 
PDTE consisting of all and only the probabilistic temporal 
elements resulting from the combinations of the chronons 
in {c1, …, ck}; the probability of a probabilistic temporal 
element is the product of the probabilities that each chro-
non is or is not in the scenario, i.e.,  

ExtP(<c1p1, …, ckpk>) = {{ci, …, cj}p | {ci, …, cj}⊆{c1, …, ck} 
∧ p= p’1*…*p’k, where p’l=pl if cl∈{ci, …, cj}, p’l=(1–pl) if 
cl∉{ci, …, cj}. 

Example 12. ExtP(<10.2, 20.5>)={∅0.4, {1}0.1, {2}0.4, {1,2}0.1}, 
i.e., <10.2, 20.5> is the compact PITE representation of the 
PDTE in Example 9 above. 

For the sake of simplicity, in the following formulas we 
assume that, given a PITE i, if c∉i then PIi(c)=0. 

Definition 27 Set operators ∪PITE, ∩PITE, and –PITE on 
PITEs. Given two PITEs <i1> and <i2>, 

      <i1> ∪PITE <i2> = <{cp | (c∈i1 ∨ c∈i2) ∧ p=PIi1(c)*PIi2(c) 
+ PIi1(c)*(1–PIi2(c)) + (1–PIi1(c))*PIi2(c)}> 

      <i1> ∩PITE <i2> = <{cp | c∈i1 ∧ c∈i2 ∧ p=PIi1(c)*PIi2(c)}> 
      <i1> –PITE <i2> = <{cp | c∈i1 ∧ p=PIi1(c)*(1–PIi2(c)) ∧ 

p≠0}>. 
For intersection, we compute the set intersection of the 

chronons; the probability of each chronon in the result is 
the product of the input probabilities of the chronon in 
each set. For union, we compute the set union of the 

chronons; the probability of each chronon in the result is 
the sum of the probabilities that the chronon is in both the 
sets i1 and i2 or only in the set i1 or only in the set i2. For 
difference, the result is the minuend; the probability of 
each chronon is the probability that the chronon is in the 
minuend and is not in the subtrahend. If a chronon has 
null probability, it is not included in the result. 

Example 13. <10.2, 20.5> ∩PITE <20.4, 30.5> = <20.2>. Notice 
that ExtP(<20.4, 30.5>)={∅0.3, {2}0.2, {3}0.3, {2,3}0.2}, and 
ExtP(<20.2>) = {∅0.8, {2}0.2},  so that the above PITE intersec-
tion corresponds to the PDTE intersection in Example 10 
(and is, indeed, correct). 

The following property grants that the direct opera-
tions on PITEs are closed and correct with respect to the 
probabilistic reference approach PDTE. Notice that IP is a 
consistent extension of BCDM since determinate chro-
nons can be represented by associating them with the 
probability 1. 

Property 17. Properties of the PITE representation. 
PITE set operators are closed and correct. PITE is a con-
sistent extension of BCDM. 

Proof. Correctness of intersection (∩PITE):  
We have to prove that ExtP(<i1> ∩PITE <i2>) = ExtP (<i1>) 

∩PDTE ExtP(<i2>). 
The definition of ∩PITE consists of two parts, the former 

defining the output chronons, and the latter defining their 
probabilities. The first part of the definition is exactly the 
same as for ITEs, so that its proof of correctness has been 
already given. Let i1=<{c1p1, …, clpl, c’1p’1, …, c’mp’m}> and 
i2=<{c1q1, …, clql, c’’1q’’1, …, c’’nq’’n}>, where i1 and i2 have the 
common chronons c1, …, cl. We thus have that <{c1p1, …, 
clpl, c’1p’1, …, c’mp’m}> ∩PITE <{c1q1, …, clql, c’’1q’1, …, c’’nq’n}> = 
<{c1r1, …, clrl}> is correct for some probability values r1, …, 
rl. Now we have just to prove that r1=p1*q1, …, rl=pl*ql. 

Let us consider an arbitrary chronon cj∈{c1, …, cl}. 
First we notice that, for the semantics of IP (see the def-

inition of ExtP), PIi(cj) is the marginal probability of cj in 
the probability distribution P of ExtP(<i>), i.e.,  
PIi(cj)= ΣKp

∈ExtP(<i>) | cj∈K  p. 
Let DCcj∈(ExtP(<i1>) ∩PDTE ExtP(<i2>)) be the subset of 

ExtP(<i1>) ∩PDTE ExtP(<i2>) which contains only the proba-
bilistic temporal elements including the chronon cj. Let 
DCcj = { C1s1, …, Coso}. Then, for the definition of intersec-
tion ∩PDTE,  each C1s1, …, Coso is the intersection between a 
probabilistic temporal element Ap of ExtP(<i1>) which con-
tains cj and a probabilistic temporal  element Bp’ of 
ExtP(<i2>) which contains cj (i.e., DCcj = {Cp’’ | 
∃Ap∈ExtP(<i1>), ∃Bp’∈ExtP(<i2>) (cj∈A ∧ cj∈B ∧ C=A∩B) ∧  
p’’=ΣAp∈ExtP(<i1>) ∧ Bp’∈ExtP(<i2>) ∧ cj∈A ∧ cj∈B ∧ C=A∩B p*p’}). 

Thus, the probability rj of the chronon cj is the margin-
al probability of cj, i.e., rj = ΣCp∈DCcj p = ((1–p1)*…*pj*…*(1–
pl)*(1–p’1)*…*(1–p’m)) * ((1–q1)*…*qj*…*(1–ql)*(1–q’1)*…*(1–
q’n)) + … + (p1*…*pj*…*pl*p’1*…*p’m) * 
(q1*…*qj*…*ql*q’1*…*q’n) = pj*qj.  

6 RELATED WORK 
In general, temporal logics have been extensively used for 
representing and reasoning about propositions and pred-
icates whose truth depends on time. These systems are 



ANSELMA ET AL.:  VALID-TIME INDETERMINACY IN TEMPORAL RELATIONAL DATABASES: SEMANTICS AND REPRESENTATIONS 13 

 

usually developed around a set of temporal connectives, 
such as sometimes/always in the future, until etc. that pro-
vide implicit reference to time instants. First-order temporal 
logic is a variant of temporal logic that allows first-order 
predicate symbols, variables and quantifiers, in addition 
to connectives. Many temporal logics have been pro-
posed, differing in terms of expressiveness, order, time 
metric, temporal modalities, time model, and time struc-
ture (see, e.g., the survey in Emerson [10]). In the area of 
databases, some of such logics have been used as temporal 
query languages for timestamped temporal data (see, e.g., 
the survey by Chomicki and Toman – “Temporal Logic in 
Database Query Languages” entry in Liu and Tamer 
Özsu [19]).  

Probabilistic temporal logics have been developed to rea-
son about dynamic systems which include uncertainty 
and probabilistic assumptions. Both classical and non-
classical logics have been extended to cope with probabil-
ities. For instance, PCTL extends the branching time tem-
poral logic CTL and is interpreted over discrete-time 
Markov chains; PTCTL extends the real-time branching 
logic TCTL, PDC extends the duration calculus DC; PNL 
extends the Neighbourhood Logic; Generalised Probabil-
istic Logic (GPL) is a Mu-calculus-based modal logic (ref-
erences to these and other logics can be found in the re-
cent survey by Konur [16]). 

One of the earliest efforts to incorporate probabilistic 
information within a relational database is due to Cavallo 
and Pittarelli [4], who also proposed a partial relational 
algebra for the extended model.  Probabilistic approaches 
have been widely used to cope with probabilistic tem-
poral data and temporal indeterminacy (see, e.g., the re-
cent survey “Probabilistic Temporal Databases” entry in 
Liu and Tamer Özsu [19]). For instance, Dekhtyar et al. [7] 
introduce temporal probabilistic tuples to cope with data 
such as “data tuple d is in relation r at some point of time 
in the interval [ti,tj] with probability between p and p’.“ 
They also provide algebraic relational operators for their 
data model. However, they restrict their attention to 
events that are instantaneous, while our approach also 
considers events with duration (indeed, the minimum 
and maximum duration constraints would be meaning-
less with instantaneous events only). Another influent 
probabilistic approach to temporal indeterminacy has 
been proposed by Dyreson and Snodgrass [9]. Here, val-
id-time indeterminacy is coped with by associating a pe-
riod of indeterminacy with a tuple. A period of indeter-
minacy is a period between two indeterminate instants, 
each one consisting of a range of chronons and of a prob-
ability distribution over it. Since the ranges of chronons 
defining the starting and ending points of a period cannot 
overlap, periods of indeterminacy must have at least one 
“determinate” chronon. Thus, indeterminacy about exist-
ence cannot be expressed, and, disregarding probabilities, 
Snodgrass and Dyreson’s approach is strictly enclosed in 
our D+I representation as regards expressiveness.  

In the line of Artificial Intelligence research, Brusoni et 
al. [3] and Koubarakis [17] independently proposed a dif-
ferent approach, addressing indeterminacy in the context 
of temporal constraints between tuples, with specific at-

tention to relative times. 
Finally, it is worth mentioning that, indeed, temporal 

indeterminacy is just a specific case of incomplete infor-
mation. Many approaches have been developed to cope 
with incomplete information in relational databases (see, 
e.g., the extensive bibliography in Lipski [18] as regards 
early works, and Grahne [12]). For instance, Imielinski 
and Lipski [13] have identified precise conditions that 
should be satisfied by usual algebraic relational operators 
to meaningfully cope with relations where various kinds 
of “null values” are allowed. Gadia [11], e.g., provided a 
“bridge” between works on incomplete information and 
temporal relational databases. Interestingly, Gadia intro-
duced partial temporal elements (and set operators on them) 
to cope with temporally indeterminate information, that 
closely resemble our DITEs (and set operators on DITEs). 
Also, Gadia et al. cope with values whose occurrence is 
uncertain, thus considering a form of what we term exis-
tential indeterminacy.  

7 CONCLUSIONS 
Though temporal indeterminacy is inherent in many real-
world domains, it has received relatively limited attention 
within the database literature. In particular, the identifica-
tion and analysis of different representations and of set 
operators for indeterminate temporal elements has not 
been adequately explored within the specialized litera-
ture. In this paper, we address this limitation. We identify 
a spectrum of approaches (data models, each with set op-
erators and relational algebraic operators) to treat valid-
time indeterminacy, and analyze their properties and 
their suitability to model phenomena in a compact way. 

The incorporation of a refinement into a representation 
may improve not only the expressiveness of the represen-
tation, but also its compactness and suitability, thus pos-
sibly making it more “natural” to use. Therefore, among 
suitable representations, D+In,N,* seems to be the best 
choice if one wants to reconcile the full data expressive-
ness of RA with compactness, since D+In,N,* supports a 
determinate component, temporal dependence and car-
dinality constraints in a compact way. However, refine-
ments have their own cost, especially in terms of the 
evaluation of set operations on temporal components. 
Therefore, we think that there is no “best representation” 
per se: the main contribution of Table 1 is to indicate us-
ers and developers the representation “best suited” to 
model the specific application they work with. For exam-
ple, in case a user needs to compactly express determinate 
chronons, but she does not need to cope with either non-
independent indeterminate chronons, or cardinality con-
straints, Table 1 shows that, for that particular situation, 
the D+I representation is the “best suited” one. This 
choice of the “best suited” representation might be done 
by the DB administrator, on the basis of the specific do-
main/application. Specifically, we envision the develop-
ment of a user-friendly interface to help administrators in 
this choice (e.g., by exemplifying the choice criteria sum-
marized in Table 1). Indeed, the “best suited” representa-
tion could also be chosen at a finer granularity, i.e., on a 
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per-tuple basis. In such a context, additional operators 
must be provided to convert representations as needed 
based on their relative expressiveness. This is a goal of 
our future work. 

Also, the lattice in Figure 2 can be used as a framework 
to analyze the expressiveness of current and (possibly) 
future representations in the literature. 

As future work, we wish also to extend our approach 
to consider other refinements besides the ones described 
in Section 4. A practically relevant issue is convexity since 
in many domains indeterminacy at chronon c is correlat-
ed with indeterminacy near c. For instance, for convex 
ITEs, Ext(<{2,3,4}>) could be {∅, {2}, {3}, {4}, {2,3}, {3,4}, 
{2,3,4}} (thus excluding {2,4} which is not convex).  How-
ever, the problem of providing a semantically correct def-
inition of set operators for such representations requires 
further investigations. Additionally, a task of our future 
work is to extend also the other compact representations 
to cope with probabilities, applying the methodology of 
Section 5. Finally, our long-term goal is the development 
of suitable extensions to the SQL standard to treat the dif-
ferent forms of indeterminacy considered in this paper. 
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