Temporal Databases

Richard T. Snodgrass

Department of Computer Science, University of Arizona, Tucson, AZ 85721
rts@cs.arizona.edu

Abstract. This paper summarizes the major concepts, approaches, and
implementation strategies that have been generated over the last fif-
teen years of research into data base management system support for
time-varying information. We first examine the time domain, its struc-
ture, dimensionality, indeterminacy, and representation. We then discuss
how facts may be associated with time, and consider data modeling and
representational issues. We survey the many temporal query languages
that have been proposed. Finally, we examine the impact to each of the
components of a DBMS of adding temporal support, focusing on query
optimization and evaluation.

1 Introduction

Timeis an important aspect of all real-world phenomena. Events occur at specific
points in time; objects and the relationships among objects exist over time.
The ability to model this temporal dimension of the real wold is essential to
many computer applications, such as econometrics, banking, inventory control,
accounting, law, medical records, land and geographical information systems,
and airline reservations.

Conventional databases represent the state of an enterprise at a single mo-
ment of time. Although the contents of the database continue to change as new
information is added, these changes are viewed as modifications to the state,
with the old, out-of-date data being deleted from the database. The current
contents of the database may be viewed as a shapshot of the enterprise. In such
systems the attributes involving time are manipulated solely by the application
programs; the database management system (DBMS) interprets dates as values
in the base data types. No conventional system interprets temporal domains
when deriving new relations.

Application-independent DBMS support for time-varying information has
been an active area of research for about 15 years, with approximately 400 pa-
pers generated thus far @cite[Bolour82 mckenzie86A stam88,s0091]. This paper
attempts to capture and summarize the major concepts, approaches, and imple-
mentation strategies that have been generated by that research.

We first examine the time domain: its structure, dimensionality (interest-
ingly, there are several time dimensions) and temporal indeterminacy, followed
by issues in representing values in this domain. We demonstrate that time is
actually more complex than the spatial domain, as the former’s dimensions are
non-homogeneous.

Section 3 follows a similar organization in examining how facts may be asso-
ciated with time. Data modeling issues are first examined, then representational
alternatives are explored, with frequent comparisons with space. We briefly con-
sider how facts may be simultaneously associated with both space and time, a
common phenomena in land and geographic information systems.

We next consider languages for expressing temporal queries. We illustrate
the various types of queries through examples in the temporal query language
TQuel, and briefly appraise various standards efforts.

Temporal DBMS implementation is the topic of Sec. 5. We examine the im-
pact to each of the components of a DBMS of adding temporal support, dis-
cussing query optimization and evaluation in some detail.

We conclude with a summary of the major accomplishments and disappoint-
ments of research into temporal databases.

We omit one major aspect, that of database design, due to lack of space.

2 The Time Domain

In this section we focus on time itself: how 1t 1s modeled and how it is repre-
sented. The next section will then combine time with facts, to model time-varying
information.

2.1 Structure

We initially assume that there is one dimension of time. The distinctions we
address here will apply to each of the several dimensions we consider in the next
section.

Early work on temporal logic centered around two structural models of time,
linear and branching @cite[vanBenthem82]. In the linear model, time advances
from the past to the future in a totally ordered fashion. In the branching model,
also termed the possible futures model, time is linear from the past to now, where
it then divides into several time lines, each representing a potential sequence
of events @cite[Worboys90A]. Along any future path, additional branches may
exist. The structure of branching time is a tree rooted at now. The most general
model of time in a temporal logic represents time as an arbitrary set with a
partial order imposed on it. Additional axioms introduce other, more refined
models of time. For example, linear time can be specified by adding an axiom
imposing a total order on this set. Recurrent processes may be associated with
a cyclic model of time @cite[Chomicki89A, Lorentzos88C, Lorentzos88B].

In spatial models, there is much less diversity, and a linear model is generally
adequate.

Axioms may also be added to temporal logics to characterize the density of
the time line @cite[vanBenthem82]. Combined with the linear model, discrete
models of time are isomorphic to the natural numbers, implying that each point
in time has a single successor @cite[Clifford85]. Dense models of time are iso-
morphic to either the rationals or the reals: between any two moments of time

another moment exists. Continuous models of time are isomorphic to the reals,
i.e., they are both dense and unlike the rationals, contain no “gaps.”

In the continuous model, each real number corresponds to a “point” in time;
in the discrete model, each natural number corresponds to a nondecomposable
unit of time with an arbitrary duration. Such a nondecomposable unit of time
is refered to as a chronon Qcite[Ariav86A,Clifford87B] (other, perhaps less desir-
able, terms include “time quantum” @cite[Anderson82], “moment” @cite[Allen85B],
“instant” @cite[Gadia86A] and “time unit” @cite[Navathe87 Tansel86E]). A chronon
is the smallest duration of time that can be represented in this model. It is not
a point, but a line segment on the time line.

Although time itself 1s generally perceived to be continuous, most proposals
for adding a temporal dimension to the relational data model are based on the
discrete time model. Several practical arguments are given in the literature for
this preference for the discrete model over the continuous model. First, measures
of time are inherently imprecise @cite ANDERSON82, CLIFFORDS85]. Clock-
ing instruments invariably report the occurrence of events in terms of chronons,
not time “points.” Hence, events, even so-called “instantaneous” events, can at
best be measured as having occurred during a chronon. Secondly, most natural
language references to time are compatible with the discrete time model. For
example, when we say that an event occurred at 4:30 p.m., we usually don’t
mean that the event occurred at the “point” in time associated with 4:30 p.m.,
but at some time in the chronon (perhaps minute) associated with 4:30 p.m.
@Qcite] ANDERSONS&2, CLIFFORDS&7B, Dyreson92D]. Thirdly, the concepts of
chronon and interval allow us to naturally model events that are not instanta-
neous, but have duration @citelANDERSONS82]. Finally, any implementation of
a data model with a temporal dimension will of necessity have to have some
discrete encoding for time (Sec. 2.4).

Space may similarly be regarded as discrete, dense, or continuous. Note that,
in all three of these alternatives, two separate space-filling objects cannot be
located in the same point in space and time: they can be located in the same
place at different times, or at the same time in different places.

Axioms can also be placed on the boundedness of time. Time can be bounded
orthogonally in the past and in the future. The same applies to models of space.

Models of time may include the concept of distance (most temporal logics
do not do so, however). Both time and space are metrics, in that they have
a distance function satisfying four properties: (1) the distance is nonnegative,
(2) the distance between any two non-identical elements is non-zero, (3) the
distance from time « to time 3 is identical to the distance from 8 to «, and (4)
the distance from «a to v is equal to or greater than the distance from « to 3
plus the distance from § to v (the triangle inequality).

With distance and boundedness, restrictions on range can be applied. The
scientific cosmology of the “Big Bang” posits that time begins with the Big Bang,
14 44 billion years ago. There is much debate on when it will end, depending on
whether the universe is open or closed (Hawking provides a readable introduction
to this controversy @cite[Hawking88]). If the universe is closed then time will

have an end when the universe collapses back onto itself in what is called the
“Big Crunch.” If it is open then time will go on forever.

Similar considerations apply to space. In particular, an open universe im-
plies unbounded space. However, many applications assume a bound as well as
a range; geographical information systems don’t need to contend with values
greater than approximately 70 million meters.

Finally, one can differentiate relative time from absolute time (more precise
terms are unachored and anchored). For example, “9A M., January 1, 1992”7 is an
absolute time, whereas “9 hours” is a relative time. This distinction, though, is
not as crisp as one would hope, because absolute time is with respect to another
time (in this example, midnight, January 1, A.D. 1). We will show in Sec. 2.4 how
to exploit this interaction. Relative time differs from distance in that the former
has a direction, e.g., one could envision a relative time of -9 hours, whereas a
distance is unsigned.

One can also differentiate between relative and absolute space, with the same
Provisos.

2.2 Dimensionality

Time is multi-dimensional @cite[Snodgrass86A]. Valid time concerns the time a
fact was true in reality. The valid time of an event is the wall clock time at which
the event occurred in the real world, independent of the recording of that event
in some database. Valid times can also be in the future, if it is known that some
fact will be true at a specified time in the future. Transaction time concerns the
time the fact was present in the database as stored data. The transaction time
(an interval) of an event identifies the transactions that inserted the informa-
tion about the event into the database and removed this information from the
database. As with space, these two dimensions are orthogonal. A data model
supporting neither is termed snapshot, as it captures only a single snapshot in
time of both the database and the enterprise that the database models. A date
model supporting only valid time 1s termed historical; one that supports only
transaction time is termed rollback; and one that supports both valid and trans-
action time is termed bitemporal (temporal is a generic term implying some kind
of time support).

Figure 1 illustrates a single bitemporal relation (i.e., table) composed of a
sequence of historical states indexed by transaction time. It is the result of four
transactions starting from an empty relation: (1) three tuples (i.e., rows) were
added, (2) one tuple was added, (3) one tuple was added and an existing one
terminated (logically deleted), and (4) the starting time of a previous tuple [the
middle one added in transaction (1)] was changed to a somewhat later time
(presumably the original starting time was incorrect) and a recently added tu-
ple (the bottom one) was deleted (presumably it should not have been there
in the first place.) Each update operation involves copying the historical state,
then applying the update to the newly created state. Of course, less redundant
representations than the one shown are possible. While we’ll consider only lin-
ear time, branching transaction time provides a useful model for versioning in

computer-aided design tasks @cite[Dittrich88] such as CAD @cite[Ecklund87,
Katz86] and CASE @cite[Bernstein87A, Hsieh89].

Fig. 1. A bitemporal relation

A different depiction that has proven useful is to time-stamp each fact with
a bitemporal element, which is a set of bitemporal chronons. Each bitemporal
chronon represents a tiny rectangle in valid-time/transaction-time space. Fig-
ure 2 shows the bitemporal element associated with the middle tuple of Fig. 1.
Historical and rollback databases effectively record historical chronons and roll-
back chronons, respectively.

Fig.2. A bitemporal element

! This term is a generalization of temporal element, previously used to denotes a set of
single dimensional chronons @cite[Gadia88B]. An alternative, equally desirable term
is bitemporal lifespan Qcite[Clifford87A].

While valid time may be bounded or unbounded (as we saw, cosmologists
feel that it is at least bounded in the past), transaction time is bounded on both
ends. Specifically, transaction time starts when the database is created (before
which time, nothing was stored), and doesn’t extend past now (no facts are
known to have been stored in the future). Changes to the database state are
required to be stamped with the current transaction time. Hence, rollback and
bitemporal relations are append-only, making them prime candidates for storage
on write-once optical disks. As the database state evolves, transaction times grow
monotonically. In contrast, successive transactions may mention widely varying
valid times. For instance, the fourth transaction in Fig. 1 added information to
the database that was transaction time-stamped with time 4, while changing a
valid time of one of the tuples to 2.

The three dimensions in space are truly orthogonal and homogeneous, the one
exception being the special treatment sometimes accorded elevation. In contrast,
the two time dimensions are not homogeneous; transaction time has a different
semantics than valid time. Valid and transaction time are orthogonal, though
there are generally some application dependent correlations between the two
times. As a simple example, consider the situation where a fact is recorded as
soon as it becomes valid in reality. In such a specialized bitemporal database,
termed degenerate @cite[Jensen92], valid and transaction time are identical. As
another example, if a cloud cover measurement is recorded at most two days after
it was valid in reality, and if it takes at least six hours from the measurement time
to record the measurement, then such a relation is delayed strongly retroactively
bounded with bounds sixz hours and two days.

Multiple transaction times may also be stored in the same relation, termed
temporal generalization @cite[Jensen92]. These times may also be related to each
other, or to the valid time, in various specialized ways. For example, a particular
value for the reflectivity of a cloud over a point on the Earth may be recorded
by an Earth Sensing Satellite at a particular time. Here, the valid time and
transaction time are correlated, and the satellite’s database may be considered to
be a degenerate bitemporal database. Later, this data is sent to a ground station
and stored; the transaction time of the stored data will be different from the valid
time; this database may be classified as a bounded retroactive database. Later
still, the data from several ground stations are merged into a central database,
storing the original valid time, the transaction time of the recording into the
central database, and the inherited transaction time when the data was stored
in the ground station database. All three times may be needed, for instance, if
data massaging was done with algorithms that were being improved over time.
Such multiple transaction time dimensions do not have a spatial analogue.

2.3 Indeterminacy

Information that is historically indeterminate can be characterized as “don’t
know exactly when” information. This kind of information is prevalent; it arises
in various situations, including the following.

— Finer system granularity — In perhaps most cases, the granularity of the
database does not match the precision to which an event time is known. For
example, an event time known to within one day and recorded on a system
with time-stamps in the granularity of a millisecond happened sometime
during that day, but during which millisecond is unknown.

— Imperfect dating techniques — Many dating techniques are inherently impre-
cise, such as radioactive and Carbon-14 dating. All clocks have an inherent
imprecision @cite[Dyreson92D].

— Uncertainty wn planning — Projected completion dates are often inexactly
specified, e.g., the project will complete three to six months from now.

— Unknown or imprecise event times — In general, event times could be un-
known or imprecise. For example, if we do now know when an individual
was born, the individual’s date of birth could be recorded in the database
as either unknown (she was born between now and the beginning of time)
or imprecise (she was born between now and 100 years ago).

There have been several proposals for adding historical indeterminacy to
the time model @cite[Gadia92A Kahn77A], as well as more specific work on
accommodating multiple time granularities @cite[Ladkin87A Wiederhold91A].
The possible chronons model unifies treatment of both aspects @cite[Dyreson92D].
In this model, an event is determinate if it is know when (i.e., during which
chronon) it occurred. A determinate event cannot overlap two chronons. If it is
unknown when an event occurred, but known that it did occur, then the event is
historically indeterminate. The indeterminacy refers to the time when the event
occurred, not whether the event did or did not occur.

Two pieces of information completely describe an indeterminate event: a set
of possible chronons and an event probability distribution. A single chronon from
the set of possible chronons denotes when the indeterminate event actually oc-
curred. However, it is unknown which possible chronon is the actual one. The
event probability distribution gives the probability that the event occurred dur-
ing each chronon in the set of possible chronons.

The implementation of the possible chronons model supports a fixed, minimal
chronon size. Multiple granularities are handled by representing the indetermi-
nacy explicitly. For example, if the underlying chronon is a microsecond and an
event is known to within a day, then this indeterminate event would be asso-
ciated with a set of 86,400,000 possible chronons, and perhaps a uniform event
probability distribution.

As a practical matter, events that occurred in the prehistoric past cannot
be dated as precisely as events that occur in the present. There 1s an implicit
“telescoping view” of time. Dating of recent events can often be done to the
millisecond while events that occurred 400 million years ago can be dated to,
perhaps at best the nearest 100,000 years. Dating future events is also problem-
atic. It is impossible to say how many seconds will be between Midnight January
1, 1992 and Midnight January 1, 2300 because we don’t know how many leap
second will be added to correct for changes in the rotational clock. We can guess
at the number of seconds, but “leap shifts” to the current clock are likely to

invalidate our guess.

Historical indeterminacy occurs only in valid time. The granularity of a trans-
action time time-stamp is the smallest inter-transaction time. Transaction times
are always determinate since the chronon during which a transaction takes place
1s always known.

Most of the above may be applied to space. Information that is spatially in-
determinate can be characterized as “don’t know exactly where” information. It
is also prevalent, due to granularity concerns, measurement techniques, and un-
known or imprecise location specifiers. One could envision an analogous “possible
space quanta” model that could capture the variety of spatial indeterminacy. The
telescoping view phenomenon also occurs in space, as distant locations are less
precisely known.

As with time, a spatial data granularity coarser than the database manage-
ment system (DBMS) granularity is often adopted. One of the more common
models, Type 0 (Sec. 2.2), covers the two-dimensional space with a grid, with
point locations and associated attributes reported to the nearest cell center. In
this model, the data is a multiple of the underlying DBMS granularity. For ex-
ample, the DBMS granularity might be a meter, with all location specifiers being
expressed in this unit, while the grid cells may be 2 kilometers on a side.

2.4 Representation

Since time and space are metrics, a system of units is required to represent
particular events or locations. A time-stamp or location specifier has a physical
realization and an interpretation. The physical realization is a pattern of bits
while the interpretation is the meaning of each bit pattern, that is, the time or
location each pattern represents.

Interpretation. For time, the central unit is the second. However, there are at
least seven different definitions of this fundamental unit @cite[Dyreson92D)].

Apparent solar — 1/86400 of the interval from noon to noon; varies from day
to day.

Mean solar (UT0) — 1/86400 of a mean solar day, averaged over a year;
varies from year to year.

Mean sidereal — 1/86400 of a mean sidereal day, measuring the rotation of
the Earth with respect to a distant star; varies from year to year.

UT1 — UTO corrected for polar wander.

UT2 — UT1 corrected for seasonal variations.

Ephemeris — mean solar second for the year 1900; does not vary. This was
the standard definition from 1960 to 1967.

International System of Units (SI) — the duration of 9,192,631,770 peri-
ods of the radiation corresponding to the transition between the two hyper-
fine levels of cesium-133 atoms @cite[Petley91].

When a range of less than 10,000 years is supported, the differences between
these definitions are generally inconsequential, except for the apparent solar

second, which varies by 1% over the course of a year. When ranges of several
billion years are supported, however, all of these definitions differ significantly.

Different regions of the time line are used by different communities. For ex-
ample, apparent solar time is important to historians, who care about whether
something happened in the daylight or in darkness, as well as to users of cadastral
(real estate) databases, which utilize civil calendars @cite[Hunter90]. Ephemeris
time is used by astronomers, while the SI second is the basis for radioactive
dating used by geochronologists. Because of these different needs, as well as the
telescoping view of time, we have proposed a specific temporal interpretation
termed the base-line clock that constructs a time-line by using different well-
defined clocks in different periods. This clock, shown in Fig. 3 (not to scale),
partitions the time line into a set of contiguous periods. Each period runs on
a different clock. A synchronization point, where two clocks are correlated, de-
limits a period boundary. The synchronization points occur at Midnight on the
specified date.

~— Ephemeris — -« Mean Solar Days — > =-—UTC — =— TDT —

Time
| | | |
I I I I
Dawn of Time Past UTCITAI Future (Moving) End of Time?
(The Big Bang) Synchronization Synchronization Synchronization
(14,000,000,000 B.C. Point Point Point
+/- 4,000,000,000) (1/1/9,000 B.C.) (A.D. V11972) (Currently A.D. 7/1/1992)

Fig. 3. The base-line clock

From the Big Bang until Midnight January 1, 9000 B.C. the base-line clock
runs on ephemeris time. This clock is preferable to the solar clock since ephemeris
time is independent of the formation of the Earth and the Solar System. Also,
we prefer using the ephemeris clock to the solar clock because an ephemeris year
is a fixed duration, unlike the tropical year. For historic events, 9000 B.C. to
January 1, 1972, the base-line clock follows the mean solar day clock. Historic
events are usually dated with calendars. Calendar dates invariably count days
and use an intercalation rule to relate the number of days to longer-term celestial
clocks, e.g., the Gregorian calendar relates days to months and tropical years. At
Midnight January 1, 1972 the base-line clock switches to Universal Coordinated
Time (UTC). Midnight January 1, 1972 is when UTC was synchronized with
the SI definition of second and the current system of leap seconds was adopted.
The base-line clock runs on UTC until one second before Midnight, July 1,

1992. This is the next time at which a leap second may be added (a leap second
will be added on this date according to the latest International Earth Rotation
Service bulletin @cite[USNO92]). After Midnight July 1, 1992, until the “Big
Crunch” or the end of our base-line clock, the base-line clock follows Terrestrial
Dynamic Time (TDT), an “idealized atomic time” @cite[Guinot88] based on the
SI second, since both UTC and mean solar time are unknown and unpredictable.

The situation is much simpler for space. Here, the (SI) meter is the com-
monly accepted unit, with a single accepted definition, the length of the path
traveled by light in vacuum during a time interval of 1/299,792 458 of a second
@cite[Petley91]. Distance is defined in terms of time, rather than the other way
around, because time can be measured more accurately (1 part in 101° over long
intervals and 1 part in 10'° for between a minute and a day @cite[Quinn91,Ramsey91C]).

The base-line clock and its representation are independent of any calendar.
We used Gregorian calendar dates in the above discussion only to provide an
informal indication of when the synchronization points occurred. Many calendar
systems are in use today; example calendars include academic (years consists of
semesters), common fiscal (financial year beginning at the New Year), federal
fiscal (financial year beginning the first of October) and time card (8 hour days
and 5 day weeks, year-round). The usage of a calendar depends on the cultural,
legal, and even business orientation of the user @cite[S0092]. A DBMS attempt-
ing to support time values must be capable of supporting all the multiple notions
of time that are of interest to the user population.

Space also has multiple notions, though with less variability. The metric,
U.S., and nautical unit systems are the most prevalent. Both time and space
have precisely defined underlying semantics that may be mapped to multiple
display formats. The spatial base-line is less complex than that for time; it
consists of a single measure, the meter.

Physical Realization. The base-line clock defines the meaning of each time-
stamp bit pattern in the physical realization of a time-stamp. The chronons of
the base-line clock are the chronons in its constituent clocks. We assume that
each chronon is one second in the underlying constituent clock. A chronon may
be denoted by an integer, corresponding to a single (DBMS) granularity, or it
may be denoted by a sequence of integers, corresponding to a nested granularity.
For example, if we assume a granularity of a second relative to Midnight, January
1, 1980, then in a single granularity the integer 164,281,022 denotes 9:37:02AM
March 15, 1985. If we assume a nested granularity of (year, month, day, hour,
minute, second), then the sequence (6,3,15,9,37,2) denotes that same time.
Various time-stamps are in use in commercial database management sys-
tems and operating systems; a summary is provided in Table 1. This table com-
pares formats from operating systems (specifically Unix, MSDOS, and the Mac-
Intosh operating systems), the database systems DB2 @cite[Date90B], SQL2
@cite[Date89A Melton90], and several proposed formats to be discussed shortly.
The SQL2 datetime time-stamp appears twice in the comparison, once with its
optional fractional second precision field set to microseconds, and once without

the optional field. The last three representations have recently been proposed,

and will be discussed shortly.

SYSTEM Size Range Granularity
(bytes)
OS (several) 4 =~ 136 years second
DB2 —date 4 10,000 years day
DB2 —time 3 24 hours second
DB2 —timestamp 10 10,000 years |microsecond
SQL2 —datetime 20 10,000 years second
SQL2 —fractional datetime| 27 10,000 years |microsecond
Low Resolution 8 |a2 36 billion years| second
High Resolution 8 ~ 17400 years |microsecond
Extended Resolution 12 |~ 36 billion years|nanosecond
SYSTEM Number of | Bytes | Space
Components| Needed|Efficiency
OS (several) 1 4 100%
DB2 —date 3 2.9 71%
DB2 —time 3 2.2 72%
DB2 —timestamp 7 7.3 73%
SQL2 —datetime 5 4.8 24%
SQL2 —fractional datetime 6 7.3 27%
Low Resolution 1 7.6 95%
High Resolution 3 7.5 93%
Extended Resolution 4 11.3 94%

Table 1. A comparison of some physical layouts

Size is the number of bytes devoted to the representation, while range refers
to the difference between the youngest and oldest time values that can be rep-
resented. The granularity of a time-stamp is the precision to which a time value
can be represented. If a representation has more than one component, it is of a
nested granularity. The extreme is the DB2 timestamp representation, in which
the year, month, day, hour, minute, second, and number of microseconds are
individually represented. Space efficiency is a measure of how much of the rep-
resentation is actually needed. It is computed as a percentage of the number of
bits needed to represent every chronon in the temporal interpretation (DB2 and
SQL2 both use the Gregorian calendar temporal interpretation) versus the num-
ber of bits devoted to the physical realization. The minimum number of bytes
needed to store the number of chronons dictated by a time-stamp’s granularity
and range is shown as a separate column. For instance, SQL2’s datetime time-
stamp uses 20 bytes, but only 4.8 bytes of space are needed to store a range of
10,000 years to the granularity of a second.

The evaluated time-stamps fall into two camps: OS-style time-stamps and
database-style time-stamps. OS-style time-stamps have a limited range and gran-
ularity; these limitations are dictated by the size of the time-stamp. OS-style
time-stamps are maximally space efficient, having a single granularity. The time-
stamp itself is merely a count of the number of chronons that have elapsed since
the origin in the temporal interpretation. But optimal space efficiency is attained
at the expense of some time efficiency.

In contrast, database-style time-stamps, as exemplified by the DB2 timestamp
format, are generally larger than OS-style time-stamps; they have a wider range
and finer granularity. But, as a group, they also have poorer space utilization,
having a nested granularity. The advantage of representing values separately is
that they can be quickly accessed. Extracting the number of years from an OS-
style time-stamp is more involved than performing a similar task on an DB2
timestamp.

These existing time-stamp representations suffer from inadequate range, too
coarse a granularity, excessive space requirements, or a combination of these
drawbacks. Finally, none of the time-stamps are able to represent historical in-
determinacy. Consequently, we recently proposed new time-stamp formats, in-
corporating features from both the OS-style and database-style time-stamps.
These formats combine high space efficiency with high time efficiency for fre-
quent time-stamp operations @cite[Dyreson92D].

There is a natural tradeoff between range and granularity in time-stamp
development. Using the same number of bits, a time-stamp designer can make
the granularity coarser to extend the range, or she can limit the range to support
finer granularities. These observations imply that a format based on a single
32 bit word is inadequate for our purposes; there are simply not enough bits.
Since we wanted to keep the time-stamp formats on 32 bit word boundaries, we
allocated the next word increment, 64 bits, to our basic format. Using 64 bits,
it is possible to represent all of time (that is, a range of 34 billion years) to the
granularity of a second, and a range of historical time to granularities much finer
than a second.

There are three basic types of time-stamps: events, spans, and intervals
@cite[SO092]. We developed three new event time-stamp formats, with different
resolutions, high, low, and extended. Resolution is a rough measure of a time-
stamp precision. The low resolution format can represent times to the precision
of a second. High resolution narrows the precision to a microsecond while ex-
tended resolution is even more precise; it can represent times to the precision
of a nanosecond. High resolution has limited range but extended precision while
low resolution has extended range but limited precision. Extended resolution
handles those uncommon cases where the user wants both an extended range
and an extended precision, at the cost of an extra word of storage.

Interval time-stamp formats are simply two event time-stamps, one for the
starting event of the interval and one for the terminating event of the interval. We
use this representation because all operations on intervals are actually operations
on their delimiting events @cite[SOO92A]. There are sixteen interval time-stamp

formats in toto. The type fields in the delimiting event time-stamps distinguish
each format.

Spans are relative times. There are two kinds of spans, fixed and variable
@cite[SO092]. A fized span is a count of chronons. It represents a fixed duration
(in terms of chronons) on the base-line clock between two time values. The
fixed span formats use exactly the same layouts as the standard event formats,
with a different interpretation. The chronon count in the span representation
is independent of the origin, instead of being interpreted as a count from the
origin. The sign bit indicates whether the span is positive or negative rather
than indicating the direction from the origin.

A wvariable span’s duration is dependent on an associated event. A common
variable span is a month. The duration represented by a month depends on
whether that month is associated with an event in June (30 days) or in July
(31 days), or even in February (28 or 29 days). Variable spans use a specialized
format requiring 64 bits.

To represent indeterminate events, we added nine formats, three of each
resolution. There are three analogous formats for low resolution, and three for
extended resolution. The most common, for high resolution with a uniform dis-
tribution, requires only 64 bits.

As we have seen in other areas, the considerations for space are similar, yet
considerably simpler. A spatial representation of 32 bits (per dimension) for a
range required to map the FEarth results in a granularity of one decimeter, and
of one centimeter for the third dimension (the atmosphere, the oceans, and the
Earth’s interior) or for restricted areas such as the United States or Europe.
Moving up to 64 bits makes spatial indeterminacy representations feasible, and
reduces the granularity to a nanometer, which should be adequate for quite a
while.

3 Associating Facts with Time

The previous section explored models and representations for the time domain.
We now turn to associating time with facts.

3.1 Underlying Data Model

Time has been added to many data models: the entity-relationship model @cite[DeAntonellis79 Klopprogge81],
semantic data models @cite[Hammer81,Urban86], knowledge-based data models

@cite[Dayal86A], deductive databases @cite[Chomicki88,Chomicki89A ,Chomickid0 Kabanza90],

and object-oriented models @cite[Dayal92 Manola86 A Narasimhalu88,Rose91,Sciore91,Sciore91A, Wuu92].
However, by far the majority of work in temporal databases 1s based on the re-

lational model. For this reason, we will assume this data model in subsequent

discussion.

3.2 Attribute Variability

There are several basic ways in which an attribute associated with an object
can interact with time and space. A time-invariant attribute @cite[Navathe89]
does not change over time. Some temporal data models require that the key
of a relation be time-invariant; some others identify the object(s) participat-
ing in the relation with a time-invariant surrogate, a system-generated, unique
identifier of an item that can be referenced and compared for equality, but not
displayed to the user @cite[Hall76]. Secondly, the value of an attribute may be
drawn from a temporal domain. An example is date stamping, where cadastral
parcel records in a land information system contain fields that note the dates
of registration of deeds, transfers of titles, and other pertinent historical in-
formation @cite[Vrana89]. Such temporal domains are termed user-defined time
@cite[Snodgrass86A]; other than being able to be read in, displayed, and perhaps
compared, no special semantics is associated with such domains. Interestingly,
most such attributes are time-invariant. For example, the transfer date for a
particular title transfer is valid over all time.

An analogous sitation exists for space. There are space-invariant attributes
as well as attributes that are drawn from spatial domains, an example being
an attribute recording the square feet of a residence, which is a relative spatial
measure in two dimensions.

Time- and space-varying attributes are more interesting. There are five basic
cases to consider.

— The value of an attribute associated with a space-invariant object may vary
over time, termed attribute temporality Qcite[Vrana89]. An example is per-
centage of cloud cover over the Earth, which has a single value at each point
in time, but varies over time. The value is uniquely specified by the temporal
coordinate(s) (either valid time, or a combination of valid and transaction
time).

— The value of an attribute associated with a region in space may be time
invariant. An example is elevation: the value varies spatially but not tempo-
rally (assuming historical time; certainly the elevation varies over geologic
time!). The value is unique given spatial coordinates.

— The value of an attribute associated with a region in space may vary over
time. An example is the percentage of cloud cover over each 10-kilometer
square grid element. Here, the object is identified spatially, and each object
is associated with a time-varying sequence of values. Both the temporal and
the spatial coordinates are required to uniquely identify a value.

— The boundary lines identifying a cadastral object, e.g., a particular land
packet, may vary over time, termed temporal topology @cite[Vrana89]. The
orientation and interaction of spatial objects change over time; such objects
could nevertheless have time-invariant attributes, such as initial purchase
price. The temporal and spatial coordinates are required to uniquely identify
a value, but this identification is indirect, via the topology.

— The final case 1s the most complex: the value of an attribute, which varies
over time, 1s associated with a cartographic feature that also varies over time

@cite[Langran88]. An example is the appraised value of a land packet. The
appraised value may change yearly, and the boundary of the land packet
changes as it is reapportioned and parts sold to others. As with the previous
two cases, both temporal and spatial coordinates are required to identify a
value, but the temporal coordinate(s) are utilized twice, first to identify a
cartographic feature and then to select a particular attribute value associated
with that feature.

A further categorization is possible concerning which temporal domains are in-
volved (only valid time, only transaction time, or both) and which spatial do-
mains are involved (two dimensions, 2% dimensions, or a full three dimensions).

The first case is the traditional domain of temporal DBMS’s. The second case
is the domain of conventional LIS’s and GIS’s. While there has been some con-
ceptual work on merging temporal and spatial support, as discussed throughout
this paper, current implemented systems are fairly weak in this regard.

3.3 Representational Alternatives

Over two dozen extensions to the relational model to incorporate time have
been proposed over the last 15 years. These models may be compared by ask-
ing four basic questions: how is valid time represented, how is transaction time
represented, how are attribute values represented, and is the model homoge-
neous, i.e., are all attributes restricted to be defined over the same valid time(s)

@cite[Gadia88B].

Data Models. Table 2 lists most of the temporal data models that have been
proposed to date. If the model is not given a name, we appropriate the name
given the associated query language, where available. Many models are described
in several papers; the one referenced is the initial journal paper in which the
model was defined. Some models are defined only over valid time or transac-
tion time; others are defined over both. Whether the model is homogeneous is
indicated in the next column. Tuple-timestamped data models, to be identified
in the next section, and data models that use single chronons as time-stamps
are of necessity homogeneous. The i1ssue of homogeneity is not relevant for those
data models supporting only transaction time. The last column indicates a short
identifier which denotes the model; the table is sorted on this column.

We omit a few intermediate data models, specifically Gadia’s multihomo-
geneous model @cite[Gadia86A], which was a precursor to his heterogeneous
model (Gadia-2), and Gadia’s two-dimensional temporal relational database
model @cite[Bhargava89B], which is a precursor to Gadia-3. We also do not
include the data model used as the basis for defining temporal relational com-
pleteness @cite[Tuzhilin90], because it is a generic data model that does not
force decisions on most of the aspects to be discussed here.

More detail on these data models, including a comprehensive comparison,
may be found elsewhere @cite[McKenzie91B,Snodgrass87A].

Data Model Citation Temporal |Homogeneous| Identifier
Dimension(s)

— @cite[Snodgrass3GA] both yes Ahn
Temporally Oriented Data Model @cite[Ariav86A] both yes Ariav
Time Relational Model @cite[BenZvid2] both yes Ben-Zvi
Historical Data Model @cite[Clifford83] valid yes Clifford-1
Historical Relational Data Model | @cite[Clifford87A] valid no Clifford-2
Homogeneous Relational Model @cite[Gadia88B] valid yes Gadia-1
Heterogeneous Relational Model @cite[Gadia88A valid no Gadia-2
TempSQL @cite[Gadia92] both yes Gadia-3
DM/T @cite[Jensen91D] transaction N/A Jensen
LEGOL 2.0 @cite[Jones79] valid yes Jones
DATA @cite[Kimball78] transaction N/A Kimball

— @cite[Lomet89A] transaction N/A Lomet
Temporal Relational Model @cite[Lorentzos88B] valid no Lorentzos

— @cite[Lum&4] transaction yes Lum

— @cite[McKenzie91C] both no McKenzie
Temporal Relational Model @cite[Navatheg9] valid yes Navathe
HQL @cite[Sadeghi87B] valid yes Sadeghi
HSQL @cite[Sarda90 valid yes Sarda
Temporal Data Model @cite[Segev87] valid yes Shoshani
TQuel @cite[Snodgrass37A] both yes Snodgrass
Postgres @cite[Stonebraker87D]| transaction no Stonebraker
HQuel @cite[Tansel36B] valid no Tansel
Accounting Data Model @cite[Thompson91A] both yes Thompson
Time Oriented Databank Model | @cite[Wiederhold75] valid yes Wiederhold

Table 2. Temporal Data Models

Valid Time. Two fairly orthogonal aspects are involved in representing valid
time. First, is valid time represented with single chronon identifiers (i.e., event
time-stamps, Sec. 2.4), with intervals (i.e., as interval time-stamps, Sec. 2.4), or
as historical elements (i.e., as a set of chronon identifiers, or equivalently as a
finite set of intervals)? Second, is valid time associated with entire tuples or
with individual attribute values? A third alternative, associating valid time with
sets of tuples, i.e., relations, has not been incorporated into any of the proposed
data models, primarily because it lends itself to high data redundancy. The
data models are elevated on these two aspects in Table 3. Interestingly, only
one quadrant, time-stamping tuples with an historical element, has not been
considered (but see Sec. 3.3)

Transaction Time. The same general issues are involved in transaction time,
but there are about twice as many alternatives. Transaction time may be asso-
ciated with

Single chronon Interval Historical element
(pair of chronons)| (set of chronons)
Time-stamped| Lorentzos Gadia-2 Clifford-2
attribute Thompson McKenzie Gadia-1
values Tansel Gadia-3
Ariav Ahn
Clifford-1 Ben-Zwi
Time-stamped Lum Jones
tuples Sadeghi Navathe
Shoshani Sarda
Wiederhold Snodgrass

Table 3. Representation of Valid Time

a single chronon, which implies that tuples inserted on each transaction
signify the termination (logical deletion) of previously current tuples with
identical keys, with the time-stamps of these previously recorded tuples not
requiring change.

— an interval. A newly inserted tuple would be associated with the interval

starting at now and ending at the special value U.C., until-changed.

— three chronons. Ben-Zvi’s model records (1) the transaction time when the
valid start time was recorded, (2) the transaction time when the valid stop
time was recorded, and (3) the transaction time when the tuple was logically
deleted.

— atransaction-time element, which is a set of not-necessarily-contigous chronons.

Another issue concerns whether transaction time is associated with individual
attribute values, with tuples, or with sets of tuples.

The choices made in the various data models are characterized in Table 4.
Gadia-3 is the only data model to time-stamp attribute values; it is difficult
to efficiently implement this alternative directly. Gadia-3 also is the only data
model that uses transaction-time elements (but see Sec. 3.3). Ben-Zvi is the
only one to use three transaction-time chronons. All of the rows and columns
are represented by at least one data model.

Attribute Value Structure. The final major decision to be made in designing
a temporal data model is how to represent attribute values. There are six basic
alternatives. In some models, the time-stamp appears as an explicit attribute;
we do not consider such attributes in this analysis.

— Atomic valued—values do not have any internal structure. Ariav, Ben-Zvi,
Clifford-1, Jensen, Jones, Kimball, Lomet, Lorentzos, Lum, Navathe, Sadeghi,
Sarda, Shoshani, Snodgrass, Stonebraker and Thompson all adopt this ap-
proach. Tansel allows atomic values, as well as others, listed below.

Single chronon Interval Three |Transaction-time element
(pair of chronons)|Chronons (set of chronons)
Time-stamped
attribute Gadia-3
values
Ariav
Time-stamped Jensen Snodgrass Ben-Zwi
tuples Kimball Stonebraker
Lomet
Time-stamped Ahn McKenzie
sets of tuples| Thompson

Table 4. Representation of Transaction Time

— Set valued—values are sets of atomic values. Tansel supports this represen-
tation.

— Punctional, atomic valued—values are functions from the (generally valid)
time domain to the attribute domain. Clifford-2, Gadia-1, Gadia-2, and
Gadia-3 adopt this approach.

— Ordered pairs—values are an ordered pair of a value and a (historical ele-
ment) time-stamp. McKenzie adopts this approach.

— Triplet valued—values are a triple of attribute value, valid from time, and
value to time. This is similar to the ordered pairs representation, except that
only one interval may be represented. Tansel supports this representation.

— Set-triplet valued—values are a set of triplets. This is more general than
ordered pairs, in that more than one value can be represented, and more
general than functional valued, since more than one attribute value can exist
at a single valid time @cite[Tansel86B]. Tansel supports this representation.

In the conventional relational model, if attributes are atomic-valued, they are
considered to be in first normal form @cite[Codd72B]. Hence, only the data
models placed in the first category may be considered to be strictly in first normal
form. However, in several of the other models, the non-atomicity of attribute
values comes about because time is added. It turns out that the property of
“all snapshots are in first normal form” is closely associated with homogeneity

(Sec. 3.3).

Separating Semantics from Representation. It is our contention that fo-
cusing on data presentation (how temporal data is displayed to the user), on
data storage, with its requisite demands of regular structure, and on efficient
query evaluation has complicated the central task of capturing the time-varying
semantics of data. The result has been, as we have seen, a plethora of incom-
patible data models, with many query languages (Sec. 4.1), and a corresponding
surfeit of database design and implementation strategies that may be employed
across these models.

We advocate instead a very simple conceptual temporal data model that
captures the essential semantics of time-varying relations, but has no illusions
of being suitable for presentation, storage, or query evaluation. Existing data
model(s) may be used for these latter tasks. This conceptual model time-stamps
tuples with bitemporal elements, sets of bitemporal chronons, which are rectan-
gles in the two-dimensional space spanned by valid time and transaction time
(see Fig. 2). Because no two tuples with mutually identical explicit attribute
values (termed value-equivalent tuples) are allowed in a bitemporal relation in-
stance, the full time history of a fact is contained in a single tuple.

In Table 3, the conceptual temporal data model occupies the unfilled entry
corresponding to time-stamping tuples with historical elements, and occupies
the entry in Table 4 corresponding to time-stamping tuples with transaction-
time elements. An important property of the conceptual model, shared with the
conventional relational model but not held by the representational models, is
that relation instances are semantically unique; distinct instances model different
realities and thus have distinct semantics.

It is possible to demonstrate equivalence mappings between the conceptual
model and several representational models @cite[Jensen92A]. Mappings have
already been demonstrated for three data models: Gadia-3 (attribute time-
stamping), Jensen (tuple time-stamping with a single transaction chronon), and
Snodgrass (tuple time-stamping, with interval valid and transaction times). This
equivalence is based on snapshot equivalence, which says that two relation in-
stances are equivalent if all their snapshots, taken at all times (valid and transac-
tion), are identical. Snapshot equivalence provides a natural means of comparing
rather disparate representations. An extension to the conventional relational al-
gebraic operators may be defined in the conceptual data model, and can be
mapped to analogous operators in the representational models. Finally, we feel
that the conceptual data model is the appropriate location for database design
and query optimization.

In essence, we advocate moving the distinction between the various existing
temporal data models from a semantic basis to a physical, performance-relevant
basis, utilizing the proposed conceptual data model to capture the time-varying
semantics. Data presentation, storage representation, and time-varying seman-
tics should be considered in isolation, utilizing different data models. Semantics,
specifically as determined by logical database design, should be expressed in the
conceptual model. Multiple presentation formats should be available, as different
applications require different ways of viewing the data. The storage and process-
ing of bitemporal relations should be done in a data model that emphasizes
efficiency.

4 Querying

A data model consists of a set of objects with some structure, a set of constraints
on those objects, and a set of operations on those objects @cite[Tsichritzis82]. In
the two previous sectins we have investigated in detail the structure of and con-

straints on the objects of temporal relational databases, the temporal relation.
In this section, we complete the picture by discussing the operations, specifically
temporal query languages.

Many temporal query languages have been proposed. In fact, it seems oblig-
atory for each researcher to define their own data model and query language (we
return to this issue at the end of this section). We first summarize the twenty-
odd query languages that have been proposed thus far. We then briefly discuss
the various activities that should be supported by a temporal query language,
using a specific language in the examples. Finally, we touch on work being done
in the standards arena that is attempting to bring highly needed order to this
confusing collection of languages.

We do not consider the related topic of temporal reasoning (also termed infer-
encing or rule-based search) @cite[Chomicki90,Kahn77A Karlsson86A Lee85,Sheng84,Sripadady]
that uses artificial intelligence techniques to perform more sophisticated analyses
of temporal relationships, generally with much lower query processing efficiency.

4.1 Language Proposals

Table 5 lists the major temporal query language proposals to date. While many
of these languages each have several associated papers, we have indicated the
most comprehensive or most readily available reference. The underlying data
model is a reference to Table 2. The next column lists the conventional query
language the temporal proposal is based on, from the following.

SQL Structured Query Language @cite[Date89B], a tuple calculus-based lan-
guage; the lingua franca of conventional relational databases.

Quel The tuple calculus based query language Q@cite[Held75] originally defined
for the Ingres relational DBMS @cite[Stonebraker76A].

QBE Query-by-Example @cite[Zloof75], a domain calculus based query lan-
guage.

ILs; An intensional logic formulated in the context of computational linguistics
@cite[Montague73].

relational algebra A procedural language with relations as objects @cite[Codd72].

DEAL An extension of the relational algebra incorporating functions, recursion,
and deduction @cite[Deen85].

Most of the query languages have a formal definition. Some of the calculus-based
query languages have an associated algebra that provides a means of evaluating
queries.
More comprehensive comparisons may be found elsewhere @cite[McKenzie91B,Snodgrass87A].

4.2 Types of Temporal Queries

We now examine the types of temporal queries that each of the above-listed query
languages support to varying degrees. We’ll use TQuel @cite[Snodgrass93A] in
the examples, as it is the most completely defined temporal language @cite[Snodgrass87A].

Name Citation Underlying | Based Formal Equivalent
Data Model On Semantics Algebra
HQL @cite[Sadeghi87A] Sadeghi DEAL partial | Qcite[Sadeghi87B]
HQuel @cite[Tansel36B] Tansel Quel yes @cite[Tansel36B]
HSQL @cite[Sarda90] Sarda SQL no @cite[Sarda90B]
HTQuel @cite[Gadia88B] Gadia-1 Quel yes @cite[Gadia88B]
Legol 2.0 @cite[Jones79] Jones relational no N/A
algebra
Postquel @cite[Stonebraker90B]|Stonebraker| Quel no none
TDM @cite[Segev87] Shoshani SQL no none
Temporal Rela- | @cite[Lorentzos88B] | Lorentzos | relational yes N/A
tional Algebra algebra
TempSQL @cite[Gadia92] Gadia-3 SQL partial none
Time-By-Example @cite[Tansel89] Tansel QBE yes @cite[Tansel36B]
TOSQL @cite[Ariav86A] Ariav SQL no none
TQuel @cite[Snodgrass87A] | Snodgrass Quel yes |@cite[McKenzie91C]
TSQL @cite[Navatheg9] Navathe SQL no none
— @cite[BenZvid2] Ben-Zvi SQL yes @cite[BenZvid2]
— @cite[Clifford83] Clifford-1 IL, yes N/A
— @cite[Clifford87A] Clifford-2 | relational yes N/A
algebra
— @cite[Gadial6A] Gadia-2 Quel no none
— @cite[Jensen91A] Jensen | relational yes N/A
algebra
— @cite[McKenzie91C] | McKenzie | relational yes N/A
algebra
— @cite[Thompson91A] | Thompson | relational yes N/A
algebra
— @cite[Tuzhilin90] several | relational yes N/A
algebra

Table 5. Temporal query languages

Schema Definition. We will use one relation in these examples.

Example.

Define the Cities relation.

create persistent interval Cities(Name is char, State is char,
Population is I4, IncorporationDate is event,

Size

is area)

Cities has five explicit attributes: two strings (denoted by char), a 4-byte inte-
ger (denoted by I4), a user-defined event, and a user-defined area. The persis-
tent and interval keywords specify a bitemporal relation, with four implicit

time-stamp attributes: a valid start time, a valid end time, a transaction start
time, and a transaction end time. The valid time-stamps define the interval when

the attribute values were true in reality, and the transaction time-stamps specify
the interval when the information was current in the database. a

Quel Retrieval Statements. Since TQuel is a strict superset of Quel, all Quel
queries are also TQuel queries @cite[Snodgrass87A]. Here we give one such query,
as a review of Quel.

The query uses a range statement to specify the tuple variable C, which will
remain active for use in subsequent queries.

Example. What is the current population of the cities in Arizona?

range of C is Cities

retrieve (C.Name, C.Population)
where C.State = "Arizona"

The target list specifies which attributes of the qualifying tuples are to be retained
in the result, and the where clause specifies which underlying tuples from the
underlying relation(s) qualify to participate in the query. Because the defaults
have been defined appropriately, each TQuel query yields the same result as its
Quel counterpart. a

Rollback (Transaction-time Slice). The as of clause rolls back a trans-
action-time relation (consisting of a sequence of snapshot relation states) or a
bitemporal relation (consisting of a sequence of valid-time relation states) to the
state that was current at the specified transaction time. It can be considered to
be a transaction time analogue of the where clause, restricting the underlying
tuples that participate in the query.

Example. What was the population of Arizona’s cities as best known in 19807

retrieve (C.Name, C.Population)
where C.State = "Arizona"
as of begin of |January 1, 1980]|

This query uses an event temporal constant, delimited with vertical bars, “|---1”.
TQuel supports multiple calendars and calendric systems @cite[So092, S0092A,
S0092C]. In this case, the default is the Gregorian calendar with English month
names. O

Valid-time Selection. The when clause is the valid-time analogue of the where
clause: it specifies a predicate on the event or interval time-stamps of the under-
lying tuples that must be satisfied for those tuples to participate in the remainder
of the processing of the query.

Example. What was the population of the cities in Arizona in 1980 (as best
known right now)?

retrieve (C.Name, C.Population)

where C.State = "Arizona"
when C overlap |January 1, 1980]
as of present

A careful examination of the prose statement of this and the previous query
illustrates the fundamental difference between valid time and transaction time.
The as of clause selects a particular transaction time, and thus rolls back the
relation to its state stored at the specified time. Corrections stored after that time
will not be incorporated into the retrieved result. The particular when statement
given here selects the facts valid in reality at the specified time. All corrections
stored up to the time the query was issued are incorporated into the result. In
this case, all corrections made after 1980 to the census of 1980 will be included
in the resulting relation. ad

Example. What was the population of the cities in Arizona in 1980, as best
known at that time?

retrieve (C.Name, C.Population)
where C.State = "Arizona"

when C overlap |January 1, 1980]
as of |January 1, 1980]

The result of this query, executed any time after January 1, 1980, will be identical
to the result of the first query specified, “What s the current population of the
cities in Arizona?” | executed exactly on midnight of that date. a

Valid Time Projection. The valid clause serves the same purpose as the
target list; it specifies some aspect of the derived tuples, in this case, the valid
time of the derived tuple.

Example. For what date is the most recent information on Arizona’s cities
valid?

retrieve (C.All)
valid at begin of C
where C.State = "Arizona"

This query extracts relevant events from an interval relation. a

Aggregates. As TQuel is a superset of Quel, all Quel aggregates are still avail-
able @cite[Snodgrass92A].

Example. What is the current population of Arizona?
retrieve (sum(C.Population where C.State = "Arizona'))

Note that this query only counts city residents. a

This query applied to a bitemporal relation yields the same result as its
conventional analogues; that is, a single value. With just a little more work, we
can extract its time-varying behavior.

Example. How has the population of Arizona flucuated over time?

retrieve (sum(C.Population where C.State = "Arizona'))
when true a

New, temporally-oriented aggregates are also available in TQuel. One of the
most useful computes the interval when the argument was rising in value. This
aggregate may be used wherever an interval expression is expected.

Example. For each growing city, when did it start growing?

retrieve (C.Name)
valid at begin of rising(C.Population by C.Name
where C.State = "Arizona'") i

Historical Indeterminacy. Indeterminacy aspects can hold for individual tu-
ples, or for all the tuples in a relation.

Example. The information in the Cities relation is known only to within thirty
days.

modify cities to indeterminate span = %30 daysY%

%30 daysY% is a span, an unanchored length of time @cite[So092C]. Spans can
be created by taking the difference of two events; spans can also be added to an
event to obtain a new event. ad

Example. What cities in Arizona definitely had a population over 500,000 at
the beginning of 1980°¢

retrieve (C.Name)
where C.State = "Arizona" and C.Population > 500000
when C overlap |January 1, 1980]

The default is to only retrieve tuples that fully satisfy the predicate. This is
consistent with the Quel semantics. a

Historical indeterminacy enters queries at two places, specifying the credibil-
ity of the underlying information to be utilized in the query, and specifying the
plausibility of temporal relationships expressed in the when and valid clauses.
We'll only illustrate plausibility here.

Example. What cities in Arizona had a population over 500,000 probably at the
beginning of 19807

retrieve (C.Name)
where C.State = "Arizona" and C.Population > 500000
when C overlap |January 1, 1980| probably

Here, “probably” is syntactic sugar for “with plausibility T70”. ad

Schema Evolution. Often the database schema needs to be modified to ac-
commodate a changing set of applications. The modify statement has several
variants, allowing any previous decision to be later changed or undone. Schema
evolution involves transaction time, as it concerns how the data is stored in the
database @cite[McKenzie90A]. As an example, changing the type of a relation
from a bitemporal relation to an historical relation will cause future intermedi-
ate states to not be recorded; states stored when the relation was a temporal
relation will still be available.

Example. The Cities relation should no longer record all errors.

modify Stocks to not persistent O

4.3 Standards

Support for time in conventional data base systems (e.g., @citeENFORMS&3,
ORACLEST]) is entirely at the level of user-defined time (i.e., attribute values
drawn from a temporal domain). These implementations are limited in scope
and are, in general, unsystematic in their design @cite[DATES8, DATE90B].
The standards bodies (e.g., ANSI) are somewhat behind the curve, in that SQL
includes no time support. Date and time support very similar to that in DB2 is
currently being proposed for SQL2 @cite[MELTON90]. SQL2 corrects some of
the inconsistencies in the time support provided by DB2 but inherits its basic
design limitations @cite[S0092C].

An effort 1s currently underway within the research community to consolidate
approaches to temporal data models and calculus-based query languages, to
achieve a consensus extension to SQL and an associated data model upon which
future research can be based. This extension is termed the Temporal Structured
Query Language, or TSQL (not to be confused with an existing language proposal
of the same name).

5 System Architecture

The three previous sections in concert sketched the boundaries of a temporal
data model, by examining the temporal domain, how facts may be associated
with time, and how temporal information may be queried. We now turn to
the implementation of the temporal data model, as encapsulated in a temporal
DBMS.

Adding temporal support to a DBMS impacts virtually all of its compo-
nents. Figure 4 provides a simplified architecture for a conventional DBMS. The
database administrator (DBA) and her staff design the database, producing a
physical schema specified in a data definition language (DDL), which is processed
by the DDL Compiler and stored, generally as system relations, in the System
Catalog. Users prepare queries, either ad hoc or embedded in procedural code,
which is submitted to the Query Processor. The query is first lexically and syn-
tactically analyzed, using information from the system catalog, then optimized

for efficient execution. A query evaluation plan is sent to the Query Fvalua-
tor. For ad hoc queries, this occurs immediately after processing; for embedded
queries, this occurs when the cursor associated with a particular query is opened.
The query evaluator 1s usually an interpreter for a form of the relational algebra
annotated with access methods and operator strategies. While evaluating the
query, this component accesses the database via a Stored Data Manager, which
implements concurrency control, transaction management, recovery, buffering,
and the available data access methods.

Fig.4. Components of a data base management system

In the following, we visit each of these components in turn, reviewing what
changes need to be made to add temporal support.

5.1 DDL Statements

Relational query languages such as Quel and SQL actually do much more than
simply specify queries; they also serve as data definition languages (e.g., through
Quel’s create statement, c.f., Sec. 4.2) and as data manipulation languages
(e.g., through SQL’s INSERT, DELETE and UPDATE statements). The changes to

support time involve adding temporal domains, such as event, interval, and span
@cite[S0092C] and adding constructs to specify support for transaction and valid
time, such as the TQuel keywords persistent and interval.

5.2 System Catalog

The big change here 1s that the system catalog must consist of transaction-time
relations. Schema evolution concerns only the recording of the data, and hence
does not involve valid time. The attributes and their domains, the indexes, even
the names of the relations all vary over transaction time.

5.3 Query Processing

There are two aspects here, one easily extended (language analysis) and one for
which adding temporal support is much more complex (query optimization).

Language analysis needs to consider multiple calendars, which extend the
language with calendar-specific functions. An example is monthof, which only
makes sense in calendars for which there are months. The changes to language
processing, primarily involving modifications to semantic analysis (name resolu-
tion and type checking), have been worked out in some detail @cite[So092A].

Optimization of temporal queries is substantially more involved than that for
conventional queries, for several reasons. First, optimization of temporal queries
1s more critical, and thus easier to justify expending effort on, than conventional
optimization. The relations that temporal queries are defined over are larger,
and are growing monotonically, with the result that unoptimized queries take
longer and longer to execute. This justifies trying harder to optimize the queries,
and spending more execution time to perform the optimization.

Second, the predicates used in temporal queries are harder to optimize @cite[Leung90,Leung91A].
In traditional database applications, predicates are usually equality predicates
(hence the prevalence of equi-joins and natural joins); if a less-than join is in-
volved, it is rarely in combination with other less-than predicates. On the other
hand, in temporal queries, less-than joins appear more frequently, as a conjunc-
tion of several inequality predicates. As an example, the TQuel overlap operator
is translated into two less-than predicates on the underlying time-stamps. Opti-
mization techniques in conventional databases focus on equality predicates, and
often implement inequality joins as cartesian products, with their associated
inefficiency.

And third, there is greater opportunity for query optimization when time
is present @cite[Leung91A]. Time advances in one direction: the time domain
is continuous expanding, and the most recent time point is the largest value in
the domain. This implies that a natural clustering or sort order will manifest
itself, which can be exploited during query optimization and evaluation. The
integrity constraint beginof () < endof (t) holds for every time-interval tuple ¢.
Also, for many relations it is the case that the intervals associated with a key
are contiguous in time, with one interval starting exactly when the previous
interval ended. An example is salary data, where the intervals associated with

the salaries for each employee are contiguous. Semantic query optimization can
exploit these integrity constraints, as well as additional ones that can be inferred
@cite[Shenoy&9].

In this section, we first examine local query optimization, of a single query,
then consider global query optimization, of several queries simultaneously. Both
involve the generation of a query evaluation plan, which consists of an algebraic
expression annotated with access methods.

Local Query Optimization. A single query can be optimizing by replacing
the algebraic expression with an equivalent one that is more efficient, by changing
an access method associated with a particular operator, or by adopting a partic-
ular implementation of an operator. The first alternative requires a definition of
equivalence, in the form of a set of tautologies. Tautologies have been identified
for the conventional relational algebra @cite[Enderton77,Smith75B,Ullman88B],
as well as for many of the algebras listed in Table 5. Some of these temporal al-
gebras support the standard tautologies, enabling existing query optimizers to

be used.

To determine which access method is best for each algebraic operator, meta-
data, that 1s, statistics on the stored temporal data, and cost models, that is,
predictors of the execution cost for each operator implementation/access method
combination, are needed. Temporal data requires additional meta-data, such as
lifespan of a relation (the time interval over which the relation is defined), the
lifespans of the tuples, the surrogate and tuple arrival distributions, the distri-
butions of the time-varying attributes, regularity and granularity of temporal
data, and the frequency of null values, which are sometimes introduced when
attributes within a tuple aren’t synchronized @cite[Gunadhi89A]. Such statisti-
cal data may be updated by random sampling or by a scan through the entire
relation.

There has been some work in developing cost models for temporal opera-
tors. An extensive analytical model has been developed and validated for TQuel
queries @cite[Ahn88B,Ahn89], and selectivity estimates on the size of the results
of various temporal joins have been derived @cite[Gunadhi89D,Gunadhi89A].

Global Query Optimization. In global query optimization, a collection of

queries 1s simultaneously optimized, the goal being to produce a single query

evaluation plan that is more efficient than the collection of individual plans
@cite[Satoh85 A Sellis86A]. A state transition network appears to be the best way

to organize this complex task @cite[Jensen92G]. Materialized views @cite[Blakeley86B,Blakeley90, Roussopc
are expected to play an important role in achieving high performance in the

face of temporal databases of monotonically increasing size. For an algebra

to utilize this approach, incremental forms of the operators are required (c.f.,
@cite[McKenzie88,Jensen91D]).

5.4 Query Evaluation

Achieving adequate efficiency in query evaluation is very important. We first ex-
amine operations on time-stamps, some of which are critical to high performance.
We then review a study that showed that a straightforward implementation
would not result in reasonable performance. Since joins are the most expensive,
yet very common, operations, they have been the focus of a significant amount
of research. Finally, we will examine the many temporal indexes that have been
proposed.

Domain Operations. In Sec. 2 we outlined the domain of time-stamps. Query
evaluation performs input, comparison, arithmetic, and output operations on
values of this domain. Ordered by contribution to execution efficiency, they are
comparison (which is often in the “inner loop” of join processing), arithmetic
(which is most often performed during creation of the resulting tuple), output
(which is only done when transferring results to the screen or to paper, a much
slower process than execution or even disk I/0), and finally input (which is done
exactly once per value). However, the SQL2 format, with its five components (see
Table 1) is optimized for the relatively infrequent operations of (Gregorian) in-
put and output, and is rather slow at comparison and addition. The proposed
formats instead optimize comparison at the expense of input and output. For
a sequence of operations that inputs two relations and computes and outputs
the overlap (favoring input and output more than expected), the high resolu-
tion format is more efficient, with only 50 tuples, than the SQL2 format, even
though the high resolution format has much greater range and smaller granular-
ity @cite[Dyreson92C].

Performing these operations efficiently in the presence of historical inde-
terminacy is more challenging. For the default range credibility and ordering
plausibility, and for comparing events whose sets of possible chronons do not
overlap, there is little overhead even when historical indeterminacy is supported
@cite[Dyreson92D]. The average worse case for comparison, over all plausibil-
ities, when the sets of possible chronons overlap signficantly, is less than 100
microseconds on a Sun-4, or about the time to transfer a 100-byte tuple from

disk.

A Straightforward Implementation. The importance of efficient query op-
timization and evaluation for temporal databases was underscored by an initial
study that analyzed the performance of a brute-force approach to adding time
support to a conventional DBMS. In this study, the university Ingres DBMS
was extended in a minimal fashion to support TQuel querying @cite[Ahn86B].
The results were very discouraging for those who might have been considering
such an approach. Sequential scans, as well as access methods such as hashing
and ISAM, suffered from rapid performance degradation due to ever-growing
overflow chains. Because adding time creates multiple tuple versions with the
same key, reorganization does not help to shorten overflow chains. The objective

of work in temporal query evaluation then is to avoid looking at all of the data,
because the alternative implies that queries will continue to slow down as the
database accumulates facts.

There were four basic responses to this challenge. The first was a proposal to
separate the historical data, which grew monotonically, from the current data,
whose size was fairly stable and whose accesses were more frequent @cite[Lum84].
This separation, termed temporal partitioning, was shown to significantly im-
prove performance of some queries @cite[Ahn88B], and was later generalized to
allow multiple cached states, which further improves performance @cite[Jensen92G].
Second, new query optimization strategies were proposed (Sec. 5.3). Third, new
join algorithms, to be discussed next, were proposed. And finally, new temporal
indexes, also to be discussed, were proposed.

Joins. Three kinds of temporal joins have been studied: binary joins, multiway
joins, and joins executed on multiprocessors.

A wide variety of binary joins have been considered, including time-join, time-
equijoin (TE-join) Qcite[Clifford87A], event-join, TE-outerjoin Qcite[Gunadhi9l],
contain-join, contain-semijoin, intersect-join @cite[Leung91A], and contain-semijoin
@cite[Leung92]. The various algorithms proposed for these joins have generally
been extensions to nested loop or merge joins that exploit sort orders or local
workspace.

Leung argues that a checkpoint index (Sec. 5.4) is useful when stream pro-
cessing is employed to evaluate both two-way and multi-way joins @cite[Leung92].

Finally, Leung has explored in depth partitioning strategies and temporal
query processing on multiprocessors @cite[Leung91].

Temporal Indexes. Conventional indexes have long been proposed to reduce
the need to scan an entire relation to access a subset of its tuples. Indices are
even more important in temporal relations that grow monotonically in size. In
table 6 we summarize the temporal index structures that have been proposed to
date. Most of the indexes are based on B*-Trees @cite[Comer79], which index
on values of a single key; the remainder are based on R-Trees @cite[Guttman84],
which index on ranges (intervals) of multiple keys. There has been considerable
discussion concerning the applicability of point-based schemes for indexing in-
terval data. Some argue that structures that explicitly accommodate intervals,
such as R-Trees and their variants, are preferable; others argue that mapping
intervals to their endpoints is efficient for spatial search @cite[Lomet91].

If the structure requires that exactly one record with each key value exist
at any time, or if the data records themselves are stored in the index, then
it is designated a primary storage structure; otherwise, it can be used either
as a primary storage structure or as a secondary index. The checkpoint index is
associated with a particular indexing condition, making it suitable for use during
the processing of queries consistent with that condition.

A majority of the indexes are tailored to transaction time, exploiting the
append-only nature of such information. Most utilize as a key the valid-time or

transaction-time interval (or possibly both, in the case of the Mixed Media R-
Tree). Lum’s index doesn’t include time at all; rather it is a means of accessing
the history, represented as a linked list of tuples, of a key value. The Append-only
Tree indexes the transaction-start time of the data, and the Lop-Sized Bt-Tree
is most suited for indexing events such as bank transactions. About half the
indexes utilize only the time-stamp as a key; some include a single non-temporal
attribute; and the two based on R-Trees can exploit its multi-dimensionality to
support an arbitrary number of non-temporal attributes. Of the indexes support-
ing non-temporal keys, most treat such keys as a true separate dimension, the
exceptions being the indexes discussed by Ahn, which support a single composite
key with the interval as a component.

While preliminary performance studies have been carried out for each of these
indexes in isolation, there has been little effort to compare them concerning their
space and time efficiency. Such a comparison would have to consider the differing
abilities of each (those supporting no non-temporal keys would be useful for
doing temporal cartesian products, but perhaps less useful for doing temporal
joins that involved equality predicates on non-temporal attributes) as well as
various underlying distributions of time and non-temporal keys (the indexes
presume various non-uniform distributions to achieve their performance gains
over conventional indexes, which generally assume a uniform key distribution).

5.5 Stored Data Manager

We examine three topics, storage structures (including page layout), concurrency
control, and recovery. Page layout for temporal relations is more complicated
than conventional relations if non-first normal form (i.e., non-atomic attribute
values) are adopted, as is proposed in many of the temporal data models listed in
Sec. 3.3. Often such attributes are stored as linked lists, for example representing
a valid-time element (set of valid-time chronons) as a linked list of intervals. Hsu
has developed an analytical model to determine the optimal block size for such
linked lists @cite[Hsu91A].

Many structures have been proposed, including reverse chaining (all history
versions for a key are linked in reverse order) @cite[BenZvi82 Dadam84,Lum84],
accession lists (a block of time values and associated tuple id’s between the
current store and the history store), clustering (storing history versions together
on a set of blocks), stacking (storing a fixed number of history versions), and
cellular chaining (linking blocks of clustered history versions), with analytical
performance modeling @cite[Ahn86C] being used to compare their space and
time efficiency @cite[Ahn88B].

Several researchers have investigated adapting existing concurrency control
and transaction management techniques to support transaction time. The subtle
issues involved in choosing whether to time-stamp at the beginning of a transac-
tion (which restricts the concurrency control method that can be used) or at the
end of the transaction (which may require data earlier written by the transaction
to be read again to record the transaction) have been resolved in favor of the lat-
ter through some implementation tricks @cite[Dadam84,Stonebraker87D, Lomet90A].

Non-

Name Citation Based On | Primary/| Temporal |Temporal|Temporal
Secondary| Dimension(s)| Key(s) | Key(s)

Append-only Qcite[Gunadhi91A] [BT-Tree primary | transaction event 0
Tree

Checkpoint Qcite[Leung92] [BT-Tree secondary | transaction event 0

Index

Lop-Sided @cite[Kolovson90B]|BT-Tree both transaction event 0
Bt-Tree

Monotonic @cite[Elmasri92] |Time Index both transaction | interval 0
Bt-Tree
— @cite[Lum84] [BT-Tree or primary | transaction none 1

Hashing

Time-Split Qcite[Lomet90] [BT-Tree primary | transaction | interval 1
B-Tree

Mixed Media @cite[Kolovson89] |R-Tree both transaction, | interval, |k ranges,
R-Tree trans+valid | pairs of k>1

intervals

Time Index Qcite[Elmasrio0] [B¥-Tree both both interval 0

Two-level Combined| @cite[Elmasri91] |BT-Tree both both interval 1
Attribute/Time +Time Index
Index
— @cite[Ahn88B] [BT-Tree, various various interval 1

Hashing
SR-Tree @cite[Kolovson90] |Segment Index| both both interval, |k ranges,
+ R-Tree pairs of k>1
intervals

Table 6. Temporal Indexes

The Postgres system is an impressive prototype DBMS that supports transac-

tion time @cite[Stonebraker90B]. Time-stampingin a distributed setting has also

been considered @cite[Lomet90A]. Integrating temporal indexes with concur-

rency control to increase the available concurrency has been studied @cite[Lomet91B].
Finally, since a transaction-time database contains all past versions of the

database, 1t can be used to recover from media failures that cause a portion or

all of the current version to be lost @cite[Lomet91].

6 Conclusion

We conclude with a list of accomplishments, a list of disappointments, and a
pointer to future work.

There have been many significant accomplishments over the past fifteen years
of temporal database research.

The semantics of the time domain, including its structure, dimensionality,
and indeterminacy, is well-understood.

Representational issues of time-stamps have recently been resolved.
Operations on time-stamps are now well-understood, and efficient implemen-
tations exist.

A great amount of research has been expended on temporal data models,
addressing this extraordinarily complex and subtle design problem.

Many temporal query languages have been proposed. The numerous types of
temporal queries are fairly well-understood. Half of the proposed temporal
query languages have a strong formal basis.

Temporal joins are well-understood, and a multitude of implementations
exist.

Approximately a dozen temporal index structures have been proposed.

The interaction between transaction time support and concurrency control
and transaction management has been studied to some depth.

Several prototype temporal DBMS implementations have been developed.

There have also been some disappointments.

The user-defined time support in the SQL2 standard is poorly designed.
The representation specified in that standard suffers from inadequate range,
excessive space requirements, and inefficient operations.

There has been almost no work done in comparing the two dozen temporal
data models, to identify common features and define a consensus data model
upon which future research and commercialization may be based. It is our
feeling that expecting a data model to simultaneously express time-varying
semantics while optimizing data presentation, data storage, and query evalu-
ation is unrealistic. We advocate a two-tiered data model, with a conceptual
data model expressing the semantics, and with several representational data
models serving these other objectives.

There is also a need to consolidate approaches to temporal query languages,
identify the best features of each of the proposed languages, and incorporate
these features into a consensus query language that could serve as the basis
for future research into query optimization and evaluation. Also, more work
is needed on adding time to so-called fourth generation languages that are
revolutionizing user interfaces for commercially available DBMS’s.

It has been demonstrated that a straightforward implementation of a tem-
poral DBMS will exhibit poor performance.

More empirical studies are needed to compare join algorithms, and to pos-
sibly suggest even more efficient variants.

While there are a host of individual approaches to isolated portions of a
DBMS, no coherent architecture has arisen. While the analysis given in Sec. 5
may be viewed as a starting point, much more work is needed to integrate
these approaches into a cohesive structure.

There has been little effort to compare the relative performance of temporal
indexes, making selection in specific situations difficult or impossible.

— Temporal database design is still in its infancy, hindered by the plethora of
temporal data models.

— There are as yet no prominent commercial temporal DBMS’s, despite the
obvious need in the marketplace.

Obviously these disappointments should be addressed. In addition, future work
is also needed on adding time to the newer data models that are gaining recogni-
tion, including object-oriented data models and deductive data models. Finally,
there 1s a great need for integration of spatial and temporal data models, query
languages, and implementation techniques.

7 Acknowledgements
This work was supported in part by NSF grant ISI-8902707. James Clifford was
helpful in understanding structural aspects of models of time. Curtis Dyreson,

Christian S. Jensen, Nick Kline and Michael Soo provided useful comments on
a previous draft.

8 Bibliography

@bib

Table of Contents

1 Introduction 1
2 The Time Domain 2
2.1 Structure e 2
2.2 Dimensionality 4
2.3 Indeterminacy e 6
2.4 Representation e 8
Interpretation. e 8
Physical Realization. 10

3 Associating Facts with Time 13
3.1 Underlying Data Model L. 13
3.2 Attribute Variabilityo Lo 14
3.3 Representational Alternatives L. 15
Data Models. oo 15

Valid Time. oo o e 16
Transaction Time. L 16
Attribute Value Structure. Lo oo 17
Separating Semantics from Representation. 18

4 Querying 19
4.1 Language Proposals L oo 20
4.2 Types of Temporal Queries 20

Schema Definition. 21

Quel Retrieval Statements. 22

Rollback (Transaction-time Slice). 22
Valid-time Selection. Lo oo 22

Valid Time Projection. 23
Aggregates. Lo Lo e e 23
Historical Indeterminacy. 24
Schema Evolution. oo 25

4.3 Standardso Lo Lo 25

5 System Architecture 25
5.1 DDL Statements L L L e 26
5.2 System Catalog L 27
5.3 Query Processing L L L e 27
Local Query Optimization. 28

Global Query Optimization. 28

5.4 Query Evaluation o 29
Domain Operations. 29

A Straightforward Implementation. 29

Joins. . .o 30
Temporal Indexes. 30

5.5 Stored Data Manager o 31

6 Conclusion L 32

7 Acknowledgements Lo Lo Lo 34

8 Bibliography

This article was processed using the IATEX macro package with LLNCS style

