
X. Zhou et al. (Eds.): WISE 2004, LNCS 3306, pp. 279–290, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Schema-Less, Semantics-Based Change Detection for
XML Documents

Shuohao Zhang1, Curtis Dyreson1, and Richard T. Snodgrass2

1 Washington State University, Pullman, Washington, U.S.A.
{szhang2, cdyreson}@eecs.wsu.edu

2 The University of Arizona, Tucson, Arizona, U.S.A.
rts@cs.arizona.edu

Abstract. Schema-less change detection is the processes of comparing succes-
sive versions of an XML document or data collection to determine which por-
tions are the same and which have changed, without using a schema. Change
detection can be used to reduce space in an historical data collection and to
support temporal queries. Most previous research has focused on detecting
structural changes between document versions. But techniques that depend on
structure break down when the structural change is significant. This paper de-
velops an algorithm for detecting change based on the semantics, rather than on
the structure, of a document. The algorithm is based on the observation that in-
formation that identifies an element is often conserved across changes to a
document. The algorithm first isolates identifiers for elements. It then uses
these identifiers to associate elements in successive versions.

1 Introduction

Change detection is a process that identifies changes between successive versions of a
document or data collection. At the logical level, change detection aids in under-
standing the temporal behavior of data. Putting data into the context of its evolution
usually entails more meaningful information. This is particularly true of data on the
web, which often has a high rate of change [2,6]. At the physical level, change detec-
tion helps an archival system reduce space by storing only the changes to a new ver-
sion because the size of the change is generally a small fraction of the entire version.
In systems where storage is not a concern but data is shipped across a network,
change detection can reduce network traffic, since often only the changes, and not the
entire document, can be transferred.

Change detection is also significant in temporal query support and incremental
query evaluation. In contrast to queries that are issued against a single version of the
data, temporal queries can involve both current and past versions [11,12]. Temporal
queries that access more than one version are important in mining historical facts and
predicting future trends. The semantics of many temporal queries depends on identi-
fying which data has changed and which has continued to reside unchanged in a data-
base. Incremental query evaluation, when applicable, can significantly reduce the cost

280 S. Zhang, C. Dyreson, and R.T. Snodgrass

of query evaluation. Some continuous (and non-continuous) queries can be incre-
mentally evaluated, just by using the change. A continuous query is re-evaluated
when new data arrives, for instance, as the query reads from a data stream [15,16].
For certain types of queries it is sufficient to combine the result of the query on the
changed data with the previous result, rather than re-evaluate the query on the entire
database.

This paper is organized as follows. Section 2 presents an example that motivates
this research. We show that when the structure of a document changes while the data
remains the same, a new method is needed to associate nodes in successive versions
of a document. Related work in structural change detection is presented in Section 3.
Section 4 formalizes the notion of semantic identifiers for Extensible Markup Lan-
guage (XML) documents and outlines an algorithm for computing identifiers. Next,
the paper shows how to use the semantic identifiers to detect changes in XML by
matching elements based on their identifiers. A match means that an element has
retained its semantic identity across successive versions. The paper then concludes
with a discussion of future work.

2 Motivation

Fig. 1 shows an XML document. Fig. 2 shows the next version of the document. The
change from the old version to the new version can be effected in two steps: an up-
date and an insertion. The underlined parts in Fig. 1 and Fig. 2 reflect the change.
The rest of the new version is an exact copy of the old version.

But consider a different, more substantial change. Fig. 3 shows an alternative ver-
sion of the document fragment in Fig. 1. It is an alternative version in the sense that it
has basically the same information, just arranged in a different schema. What has
changed from Fig. 1 to Fig. 3? The two fragments are far from identical. Intuitively,
it requires a significant number of element insertions and deletions.

The high cost of change in this particular situation, however, is not our primary
concern. Regardless of how large the change is, the cost is always an order of the size
of the document. The problem lies in the fact that significant structural change makes
it difficult to associate elements in different versions. An association is a correspon-
dence between elements in successive versions. The association establishes that an
element in one version has a successor in the next version of the document. The asso-
ciation is possibly a new version of the element. For instance, the Pocket Star <pub-
lisher> element in Fig. 3 should be associated with the Pocket Star <publisher> ele-
ment in Fig. 1; ostensibly, it is a new version of that element. But each <publisher> is
structurally very different and therefore cannot be associated by change detection
processes based on recognizing structural copies. This creates an obstacle for tempo-
ral query or incremental query evaluation. If we are unable to appropriately associate
elements in successive versions, these applications cannot be implemented correctly.
The example sketched above suggests that if the structural change is significant, even
though semantically the same data is present, it becomes difficult to associate ele-
ments.

Schema-Less, Semantics-Based Change Detection for XML Documents 281

At issue is how to define “change.” Previous research considered two documents,
or portions thereof, the same if and only if they are identical (see Section 3 for a re-
view of previous research). This requires not only textual equality but structural as
well. Some researchers have considered unordered trees as the basis of comparing
versions, which unlike the XML data model, ignores order among siblings.

This paper proposes a semantics-based change detection framework. Nodes that
are semantically equivalent are considered unchanged and will be associated, regard-
less of their structural contexts. Finding all such associations between two versions
has two important benefits: (1) it allows elements to exist across successive versions
of a document (thus providing good support for temporal queries, for example), and
(2) it detects semantic changes (which also includes “easier” changes, i.e., those that
do not involve significant amounts of structural change).

3 Related Work

Early work in change detection mainly deals with string matching [1,14,18,19,23].
The subject is thus “flat” (plain-text) documents without hierarchical structures like
those in SGML or XML. Plain-text change detection does not work well for XML
because it is insensitive to hierarchical structure. It is also poorly-suited to finding
semantic change, which is the goal of this paper. There has been some research in
change detection for HTML [8] and general hierarchical structured documents [5,7].
To achieve efficiency, some simplifying assumptions are made. For example, [7]
assumes that any leaf in one version has at most one leaf in another version “close”
enough to be its match. This may not be true for such XML documents, as illustrated
in Fig. 3.

<author>
<name>Dan Brown</name>
<book>

<title>The Da Vinci Code
</title>
<publisher>Doubleday
</publisher>
<listprice>$24.95
</listprice>

</book>
<book>

<title>Angels & Demons
</title>
<publisher>Pocket Star
</publisher>
<listprice>$7.99</listprice>

</book>
</author>

<author>
<name>Dan Brown</name>
<book>
<title>The Da Vinci Code
</title>
<publisher>Doubleday
</publisher>
<saleprice>$14.97</saleprice>
<isbn>0385504209</isbn>

</book>
<book>

<title>Angels & Demons
</title>
<publisher>Pocket Star
</publisher>
<listprice>$7.99</listprice>

</book>
</author>

<publisher>Doubleday
<book>

<title>The Da Vinci Code</title>
 <author>

<name>Dan Brown</name>
 </author>
 <listprice>$24.95</listprice>

</book>
</publisher>
<publisher>Pocket Star

<book>
<title>Angels & Demons</title>
<author>

<name>Dan Brown</name>
</author>
<listprice>$7.99</listprice>

</book>
</publisher>

Fig. 1. The original version Fig. 2. A new version Fig. 3. An alternative new
version

282 S. Zhang, C. Dyreson, and R.T. Snodgrass

In almost all research on XML, the data model is considered or presumed to be a
tree. It is thus natural to make use of the results from tree matching (sometimes also
called tree correction) [13,17,20] in XML change detection. It is important to point
out that most research adopts an ordered, labeled tree data model [4]. The best known
algorithm for general ordered labeled tree matching is by Zhang and Shasha [24]. To
the best of our knowledge, only a few papers have considered the scenario where
XML is modeled as an unordered labeled tree [22,26], in part because the tree
matching problem for unordered labeled trees is NP-complete [25]. Due to space
limitations, we omit presenting the complexities of the algorithms mentioned above
since they all consider structural equality for a match while we focus on semantic
equivalence.

Our semantic change detection technique is based on finding a (semantic) identi-
fier for each node in an XML data model. An identifier is like a key for XML, but
does not play a role in validation. Buneman et al. define a key as the pairing of a
target path with a set of key path expressions [3]. Both the target path and key path
expressions are regular expression queries (similar to XPath queries) on the data
model for the document. Our work on identifiers differs from Buneman et al.’s re-
search in that it is possible for the identifiers (but not keys) of two nodes to evaluate
to the same value (when they have the same semantics) and we focus on a method to
compute and use identifiers to associate nodes across multiple versions of a docu-
ment’s data model.

4 Semantic Identifiers

This section develops an algorithm for computing semantic identifiers. Basically, an
identifier is a query expression that can be used for element identity, that is, to distin-
guish one element from another. Semantic identity is related to identity based on
structure alone, but some elements can have exactly the same structure, yet be se-
mantically different.

4.1 Structural Identity

In a given XML data model, each element and text node is of a specific type, which
we will denote as T. The type is the concatenation of labels (element names) on the
path from the root to a node, separated by a ‘/’. The type has been referred to in the
literature as the signature [22]. A text node and its parent (an element node) will
have the same type, but they are distinguished by the fact that they are different kinds
of nodes. We will refer to the final label in the type as the abbreviated type. It suf-
fices to use the abbreviated type except when two types happen to have the same
abbreviation.

The structure of an element node is its type and the set of all its descendants (as-
suming lexical order is not important, a list of descendants otherwise). We will con-
sider a pair of elements to be structurally different if the elements are of different

Schema-Less, Semantics-Based Change Detection for XML Documents 283

types or if there is some descendant of one element that is structurally different from
every descendant of the other element. Otherwise, the elements are considered to be
structurally identical.

4.2 Relating Semantic to Structural Identity

This section develops a notion of semantic identity as different from, but related to,
structural identity. We give two axioms that capture the intuition with which we rea-
son about semantic identity. Thus these axioms serve as a bridge that connects intui-
tive understanding to the rigor necessary for computer processing.

Axiom I: Nodes that are structurally different are semantically different.

Let’s consider text nodes first, and then element nodes. The structure of a text node is
its type and value. Axiom I states that two text nodes are considered to be different,
semantically, when their structures are different. As an example, consider the docu-
ment in Fig. 3. The text nodes corresponding to “Angels & Demons” and “The Da Vinci
Code” are different in semantics because they are textually different. But the text
nodes corresponding to “Dan Brown” are structurally identical, and therefore could be
semantically identical. Each <book> element has <title>, <author> and <listprice> su-
belements. Since the two text children of title nodes are “The Da Vinci Code” and “An-
gels & Demons,” the two <book> nodes are semantically different regardless of the
<author> or <listprice> nodes.

If two element nodes are semantically different, it is not necessarily the case that
they are structurally different. In fact, it is possible for two element nodes to be
structurally identical but semantically different. This is stated in the following axiom.

Axiom II: Nodes that are structurally identical are semantically identical if and only
if their respective parents are semantically identical, or if they are both root nodes.

Axiom II states that nodes that have the same structure also have the same semantics
if and only if their parents are semantically the same. Axiom I distinguishes nodes
that have different content; but when nodes have exactly the same content, Axiom II
offers an alternative to distinguish them by their context. The context is the semantic
identity of the parent node. For example, the two <name> nodes in the data model for
the XML document in Fig. 3 both have a text child “Dan Brown” and are thus structur-
ally equivalent. Are they semantically equivalent? It depends on their context. If we
inspect their parents’ semantics, we find that the two <author> nodes are structurally
different (in the <book> subelement, or similarly, in <listprice>), and so by Axiom I are
semantically different. Therefore the two <name> nodes are structurally identical but
semantically different since each is in the context of a different book.

If two structurally equivalent nodes have semantically identical parents, then they
are regarded as identical. This is reasonable because we cannot semantically distin-
guish two exact copies when they are enclosed in the same context.

284 S. Zhang, C. Dyreson, and R.T. Snodgrass

4.3 Identifiers

This section defines several terms that are important to the algorithm for semantics-
based change detection presented in the next section.

An identifier is based on the evaluation of XPath expressions [21] so we first de-
fine what it means to evaluate an XPath expression.

Definition [XPath evaluation]. Let Eval(n, E) denote the result of evaluating an
XPath expression E from a context node n. Given a list of XPath expressions, L = (E1,
…, Ek), then Eval(n, L) = (Eval(n, E1), …, Eval(n, Ek)). █

Since an XPath expression evaluates to a list of nodes, Eval(n, L) evaluates to a list of
lists.

Definition [Identifier]. An identifier for a type, T, is a list of XPath expressions, L,
such that for any pair of type T nodes, x and y, x and y are semantically different if
and only if Eval(x, L) ≠ Eval(y, L). █

An identifier serves to distinguish nodes of the same type. Two nodes are considered
semantically the same if and only if their identifiers evaluate to the same result. Two
lists are considered equivalent if they have the same cardinality and are equal at each
position.

The choice of XPath expressions as the basis for specifying an identifier is a means
rather than an end. It could be any mechanism that is able to properly locate nodes in
a data model. We use XPath since it is widely adopted and supported.

Definition [Identifier map]. An identifier map (denoted M) is a relation that maps
each type to its corresponding identifier (an XPath expression list), i.e.,

M = {(T, L) | L is an identifier for type T }. █

Identifiers are constructed from XPath expressions that locate values (text nodes) in
the subtree rooted at a node.

Definition [Type-to-leaf path list]. The type-to-leaf path list for a type, T, denoted
typeL(T), is a list of XPath expressions such that typeL(T) is a sorted list of XPath
expressions, sort(S), where
• E = {e | e is of type T } is a set of all of the elements of type T in a document,
• D = {d | d is a text descendant of some e ∈ E} is a set of all of the text descen-

dants of type T elements (if T is a text type then self() is the only descendant),
and

• S = {s/text() | s = suffix(T, T) where T is the type of some d ∈ D} is a set of all of
the relative XPath expressions that locate a text descendant from a context node
of a type T element. (Note that if T and T are the same then S includes text().) █

A type-to-leaf path list is a specific list of XPath expressions that locate text values
that are descendants of nodes of a particular element type. In a given XML document,
each type T has exactly one typeL(T). In the document shown in Fig. 1, for example,
typeL(author/book) = (title/text(), publisher/text(), listprice/text()).

Schema-Less, Semantics-Based Change Detection for XML Documents 285

Note that for the document shown in Fig. 1, typeL(book) should contain one more
XPath expression: text(). We believe that trivial text nodes, i.e., text nodes whose
contents are all white-space characters, are insignificant in semantics. Thus the ex-
pression text() appears in a type-to-leaf path list typeL(T) only if there exists at least
one type T node with a non-trivial text child.

Definition [unique with respect to typeL(T)]. Suppose that node n is of type T.
Then n is unique with respect to typeL(T), if and only if typeL(T) is an identifier for
type T. That is, if and only if for any n' of type T ,

Eval(n, typeL(T)) ≠ Eval(n', typeL(T)). █

4.4 Computing Identifiers

The algorithm to compute identifiers will operate in a bottom-up fashion, working
from the leaves towards the root of the tree. The following definitions describe posi-
tions in the bottom-up traversal. We use the term “floor” to evoke the idea that the
algorithm ascends the tree like a person might climb floors in a building.

Definition [Floor-0 node]. All text nodes and only text nodes are floor-0 nodes. █

Definition [Floor-k node]. A node is a floor-k node if and only if the maximal floor
among its children is k-1. █

Note that not all nodes of a certain type are of the same floor, and not all nodes of the
same floor are of the same type. Types are computed top-down while floors bottom-
up in the data model tree. Both concepts are important in computing identifiers.

Definition [local identifier]. An identifier is a local identifier if the XPath expressions
evaluate to descendants of the context node; otherwise it is non-local. █

An identifier contains XPath expressions that evaluate to some leaf nodes in the
document tree. It is either a local identifier or a non-local identifier. A non-local
identifier locates at least one leaf node that is not a descendant of the context node.
For example, the <name> node in Fig. 1 is identified by its text content, Dan Brown; so
(text()) is a local identifier for <name>. On the other hand, the two <name> nodes in
Fig. 3 have identical contents. It is impossible for the identifier of this type to contain
only descendants of the <name> nodes. Thus <name>’s identifier must be non-local.

The algorithm for computing identifiers is shown in Fig. 4. The algorithm consists
of two phases. Phase 1 finds all local identifiers, working bottom-up from the floor-0
nodes. This phase corresponds to Axiom I. When Phase 1 terminates, all semantically
distinct nodes that Axiom I can determine are found. Phase 2 recursively computes
the identifiers for the remaining types. This corresponds to Axiom II. When Phase 2
terminates, all semantically distinct nodes are found. Any remaining node is a redun-
dant copy of another node in the document.

The total cost of the algorithm is bounded by O(n*log(n)) where n is size of the
document tree.

286 S. Zhang, C. Dyreson, and R.T. Snodgrass

Pre: M = {(T k, ()) } (1≤ k ≤number of different types)

Post: M = {(T k, Lk) | Lk is a identifier for type T k}

Phase 1: find local identifiers
1) i = 0;
2) For each floor-i node n of type T such that M(T)= (), if every type T node is

unique with respect to typeL(T), add (T , typeL(T)) to M and for each type
T ' that is a prefix of T , add (T ', suffix(T ', T)/typeL(T)) to M;

3) i = i + 1; terminate Phase 1 if the next floor is the root, or go to 2).
Phase 2: expand with non-local identifiers
Starting from the root and working down the tree, for each node n of type T such
that n is not unique with respect to typeL(T), add (T, Id) to M where Id is a list
obtained by appending to typeL(T) the identifier of n’s parent.

Fig. 4. Algorithm for computing identifiers

5 Semantic Change Detection

We are now able to semantically identify a node in an XML document. In this sec-
tion, we discuss how nodes in different versions can be matched based on their identi-
fiers. Once all semantically identical nodes are matched, we regard the unmatched
elements as change participants.

5.1 Semantic Node Matching

The following definitions assume that element nodes p and q are both of type T and
reside in different versions Vp and Vq of an XML document. ID(p) is p’s identifier.

Definition [Type Territory]. The territory of a type T, denoted TT, is the set of all text
nodes that are descendants of the least common ancestor, denoted lca(T), of all of the
type T nodes. █

Within the type territory is the territory controlled by individual nodes of that type.

Definition [Node Territory]. The territory of a type T node p, denoted Np, is TT ex-
cluding all text nodes that are descendants of other type T nodes. █

The type territory of T contains all the information that might be useful in identifying
any type T node. The territory of a specific node of that type is contained in the type
territory, but does not contain any node that is a descendant of another type T node.

Schema-Less, Semantics-Based Change Detection for XML Documents 287

Fig. 5 visualizes the idea of type territory and node territory. Suppose there are
three type T nodes, p, p' and p''. The type territory of T, TT, is the subtree rooted at the
node lca(T). The node territory of p，Np, is the area shaded dark in the figure. Np is
TT excluding the two subtrees rooted at p' and p'' (represented by the striped areas).

The type territory of book in Fig. 5, for example, is (Dan Brown, The Da Vinci Code,
Doubleday, $24.95, Angels & Demons, Pocket Star, $7.99). The node territory of the
leftmost book node is (Dan Brown, The Da Vinci Code, Doubleday, $24.95).

Now we are ready to match nodes in successive versions.

Definition [Admits]. q admits p if Eval(q, ID(q)) ⊆ Np. █

In general, Eval(p, ID(p)) is a list of lists because each XPath expression in the identi-
fier evaluates to a list of values. Here in semantic matching we implicitly convert
(flatten) it to a list of distinct values. This is because only the values are important in
our semantic matching.

Definition [Node match]. Nodes p and q are matched if and only if p and q admit
each other. █

Intuitively, admission and match can be described as follows. q is identified by a list
of text values q1, …, qn in Vq. If a node p in Vp has at least as much information as q
does, then p should have a group of text values q1, …, qn in its own territory Np. A
match implies semantic equality between two nodes, thus it requires admissions in
both directions.

5.2 Semantic Matching for Sample Documents

We now show how nodes are matched based on the criteria described above. Fig. 6
shows bib1.xml and the next version, bib2.xml, in which there has been significant
structural change. The document versions are displayed as tree diagrams rather than
textually to better illustrate how the nodes are matched. The change between the two
versions is similar to that presented in Fig. 1 and Fig. 3. Intuitively, we can tell that

book

bib

author
book

name
name

n2

author

book book

p1 t1t2

bib

name

book
title

t1
title

name t2

author

name
n1 n2n2

author

“book”
association

bib1.xml

bib2.xml

“author”
association

author

p1
pub

p2t1
titlen1 titletitle pub

pub

pub pub

p1 p2

Fig. 5. Node territory Fig. 6. Part of the match between bib1.xml and bib2.xml

288 S. Zhang, C. Dyreson, and R.T. Snodgrass

the semantics of the two versions are the same insofar as they contain the same in-
formation, but arranged to different schemas.

First we need to compute the identifiers for each node in both versions. We are
then able to evaluate the value of each node’s identifier. For example, the values of
<book>’s identifiers in both versions are shown in Table 1. The territory of the left-
most <book> in bib2.xml is (p1, t1, n1, n2, p2); the identifier of the leftmost <book> in
bib1.xml evaluates to (n1, t1). Hence the leftmost <book> in bib1.xml admits the leftmost
<book> in bib2.xml. Similarly, the first <book> in bib2.xml admits the first <book> in
bib1.xml. Therefore, the first <book> in bib1.xml and the first <book> in bib2.xml match.
This is represented in Fig. 6 by a dashed line connecting the two.

All matches for book and author are shown in Fig. 6. (Two matched author nodes
are connected by a dotted line.) To preserve the clarity of the figure, we do not show
matches for all of the nodes. It turns out that each node is matched to one or more
nodes in the other version. For a change (insertion, deletion or update) to occur, there
has to be at least one unmatched node in one version. We can thus conclude that there
is no semantic change from bib1.xml to bib2.xml for book and author elements.

Table 1. Values of identifiers for book

bib1.xml Value of Identifier
leftmost book ((n1), (t1))
middle book ((n2), (t2))

rightmost book ((n2), (t1))
bib2.xml Value of Identifier

leftmost book ((t1))
rightmost book ((t2))

5.3 Complexity Analysis

Let P and Q denote numbers of nodes in two documents to which nodes p and q be-
long, respectively. Deciding whether node q admits node p is bounded by
O(P*log(P)). Thus deciding whether q and p match takes O(P*log(P)+ Q*log(Q)).

For entire document matching, it would take O(P*Q*(P*log(P)+ Q*log(Q))) if we
try to directly match all possible pairings of nodes in two documents. To reduce the
time cost of matching, we use the following heuristic. If the identifier for a node type
remains the same, then we can base our matching solely on the values of the evalu-
ated identifiers, effectively skipping the expensive test to search for a match in the
node’s territory. The notion of node territory is crafted to help match nodes when
their identifiers are different; two nodes match if each node’s territory includes the
other’s evaluated identifier. However, if the identifier for a node type remains un-
changed, we can in fact base our matching solely on the evaluated identifiers. In this
case, two nodes match if and only if their evaluated identifiers are the same. There is
no need to compute node territories. In most real-world applications, the extent of
change over versions is usually small. Hence, it is reasonable to expect that the iden-
tifiers of most of the types remain the same over versions. Based on this assumption,

Schema-Less, Semantics-Based Change Detection for XML Documents 289

the number of direct matching attempts is often relatively small. For large documents,
computing node territories will take a major portion of the processing time.

6 Conclusions and Future Work

This paper proposes a new approach to detect changes in successive versions of XML
documents. The approach is novel because it utilizes semantic change; previous work
focused on structural change. We first define the notion of a semantic identifier,
which is an expression that serves to distinguish elements of a particular type. This
paper then sketches an algorithm to efficiently compute these identifiers. Changes in
successive versions are obtained by matching nodes based on their semantic identifi-
ers. Our approach is to observe that the information that identifies an element is con-
served across changes to a document. We provide an algorithm that matches a pair of
nodes by looking for the identifying information of one node in the territory of the
second node. The advantage of our approach is that we can match nodes even when
there has been significant structural change to a document. Compared to conventional
structural change detection, our semantics-based technique is able to detect semantic
change in various conditions, without prior knowledge of schema.

The next stage of this research is to implement the algorithm in C and integrate the
code into the Apache web server to support server-side versioning of XML docu-
ments [9]. Another task is to devise a metric to measure the quality of a semantic
match, and to develop an algorithm to compute the metric mechanically. With this
refined framework of semantics-based node association in place, we then plan to
build a transaction-time XML repository and implement a system such as TTXPath
[10] to support transaction-time XPath queries.

References

1. A. Apostolico and Z. Galil, editors. Pattern Matching Algorithms. Oxford University
Press, 1997.

2. B. Brewington and G. Cybenko. “How Dynamic is the Web?” In Proc. of the 9th Interna-
tional World Wide Web Conference, Amsterdam, Netherlands, May 2000, 257–276.

3. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. “Keys for XML”. In Proc. of the
10th International World Wide Web Conference, Hong Kong, China, 2001, 201–210.

4. G. Cobéna, S. Abiteboul, A. Marian. “Detecting Changes in XML Documents”. In Pro-
ceedings of ICDE, San Jose, February 2002, 41–52.

5. S. Chawathe and H. Garcia-Molina. “Meaningful Change Detection in Structured Data”.
In Proceedings of SIGMOD Conference, June 1997, 26–37.

6. Cho, J. and H. Garcia-Molina. “The Evolution of the Web and Implications for an Incre-
mental Crawler”. In Proc. of VLDB Conference, Cairo, Egypt, Sep. 2000, 200–209.

7. S. Chawathe, A. Rajaraman, H. Garcia-Molina and J. Widom. “Change Detection in Hier-
archically Structured Information”. In SIGMOD Conference, Montreal, Canada, June
1996, 493–504.

290 S. Zhang, C. Dyreson, and R.T. Snodgrass

8. F. Douglis, T. Ball, Y. F. Chen, E. Koutsofios. “The AT&T Internet Difference Engine:
Tracking and Viewing Changes on the Web”. World Wide Web, 1(1): 27–44, Jan. 1998.

9. C. Dyreson, H. Ling, Y. Wang. “Managing Versions of Web Documents in a Transaction-
time Web Server”. In Proc. of the 13th International World Wide Web Conference, New
York City, May 2004., 421–432.

10. C. Dyreson. “Observing Transaction-time Semantics with TTXPath”. In Proceedings of
WISE, Kyoto, Japan, December 2001, 193–202.

11. Fabio Grandi. “Introducing an Annotated Bibliography on Temporal and Evolution As-
pects in the World Wide Web”. SIGMOD Record, Volume 33, Number 2, June 2004.

12. D. Gao and R. T. Snodgrass. “Temporal Slicing in the Evaluation of XML Queries”. In
Proceedings of VLDB, 2003, 632–643.

13. C. M. Hoffmann, M. O’Donnell. “Pattern Matching in Trees”. JACM, 29: 68–95, 1982.
14. V. I. Levenshtein. “Binary codes capable of correcting deletions, insertions, and rever-

sals”. Cybernetics and Control Theory, 10: 707--710, 1966.
15. L. Liu, C. Pu, R. Barga, and T. Zhou. “Differential Evaluation of Continual Queries”.

Proc. of the International Conference on Distributed Computing Systems, 1996, 458–465.
16. L. Liu, C. Pu, and W. Tang. “Continual Queries for Internet Scale Event-Driven Informa-

tion Delivery”. IEEE Trans. Knowledge Data Engineering, 11(4), 610–628, 1999.
17. S. Lu. “A tree-to-tree distance and its application to cluster analysis”. IEEE Trans. Pattern

Analysis and Machine Intelligence, 1(2): 219–224, 1979.
18. W. Masek, M. Paterson. “A faster algorithm for computing string edit distances”. J. Com-

put. System Sci., 1980, 18–31.
19. E. Myers. “An O(ND) Difference Algorithm and Its Variations”. Algorithmica, 1(2): 251–

266, 1986.
20. K. C. Tai. “The Tree-to-Tree Correction Problem”. JACM, 26: 485–495, 1979.
21. “XML Path Language (XPath) 2.0”. W3C, www.w3c.org/TR/xpath20/, current as

of August 2004.
22. Y. Wang, D. DeWitt, J.-Y. Cai. “X-Diff: An Effective Change Detection Algorithm for

XML Documents”. www.cs.wisc.edu/niagara/papers/xdiff.pdf, current as
of August 2004.

23. R. A. Wagner, M. J. Fischer. “The string-to-string correction problem”. JACM, 21: 168–
173, 1974.

24. K. Zhang and D. Shasha. “Simple Fast Algorithms for the Editing Distance between Trees
and Related Problems”. SIAM Journal of Computing, 18(6): 1245–1262, 1989.

25. K. Zhang, R. Statman, D. Shasha. “On the Editing Distance between Unordered Labeled
Trees”. Information Processing Letters, 42: 133–139, 1992.

26. K. Zhang. “A Constrained Edit Distance between Unordered Labeled Trees”. Algorith-
mica, 205–222, 1996.

	1 Introduction
	2 Motivation
	3 Related Work
	4 Semantic Identifiers
	4.1 Structural Identity
	4.2 Relating Semantic to Structural Identity
	4.3 Identifiers
	4.4 Computing Identifiers

	5 Semantic Change Detection
	5.1 Semantic Node Matching
	5.2 Semantic Matching for Sample Documents
	5.3 Complexity Analysis

	6 Conclusions and Future Work

