
E. Bertino et al. (Eds.): EDBT 2004, LNCS 2992, pp. 348–365, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Tale of Two Schemas: Creating a Temporal XML
Schema from a Snapshot Schema with τXSchema

Faiz Currim1, Sabah Currim1, Curtis Dyreson2, and Richard T. Snodgrass1

1 University of Arizona, Tucson, AZ, USA
{fcurrim,scurrim}@bpa.arizona.edu, rts@cs.arizona.edu

2 Washington State University, Pullman, WA, USA
cdyreson@wsu.edu

Abstract. The W3C XML Schema recommendation defines the structure and
data types for XML documents. XML Schema lacks explicit support for time-
varying XML documents. Users have to resort to ad hoc, non-standard
mechanisms to create schemas for time-varying XML documents. This paper
presents a data model and architecture, called τXSchema, for creating a
temporal schema from a non-temporal (snapshot) schema, a temporal
annotation, and a physical annotation. The annotations specify which portion(s)
of an XML document can vary over time, how the document can change, and
where timestamps should be placed. The advantage of using annotations to
denote the time-varying aspects is that logical and physical data independence
for temporal schemas can be achieved while remaining fully compatible with
both existing XML Schema documents and the XML Schema recommendation.

1 Introduction

XML is becoming an increasingly popular language for documents and data. XML
can be approached from two quite separate orientations: a document-centered
orientation (e.g., HTML) and a data-centered orientation (e.g., relational and object-
oriented databases). Schemas are important in both orientations. A schema defines the
building blocks of an XML document, such as the types of elements and attributes.
An XML document can be validated against a schema to ensure that the document
conforms to the formatting rules for an XML document (is well-formed) and to the
types, elements, and attributes defined in the schema (is valid). A schema also serves
as a valuable guide for querying and updating an XML document or database. For
instance, to correctly construct a query, e.g., in XQuery, a user will (usually) consult
the schema rather than the data. Finally, a schema can be helpful in query
optimization, e.g., in constructing a path index [24].

Several schema languages have been proposed for XML [22]. From among these
languages, XML Schema is the most widely used. The syntax and semantics of XML
Schema 1.0 are W3C recommendations [35, 36].

Time-varying data naturally arises in both document-centered and data-centered
orientations. Consider the following wide-ranging scenarios. In a university, students
take various courses in different semesters. At a company, job positions and salaries
change. At a warehouse, inventories evolve as deliveries are made and good are

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595 842] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

A Tale of Two Schemas: Creating a Temporal XML Schema 349

shipped. In a hospital, drug treatment regimes are adjusted. And finally at a bank,
account balances are in flux. In each scenario, querying the current state is important,
e.g., “how much is in my account right now”, but it also often useful to know how the
data has changed over time, e.g., “when has my account been below $200”.

An obvious approach would have been to propose changes to XML Schema to
accommodate time-varying data. Indeed, that has been the approach taken by many
researchers for the relational and object-oriented models [25, 29, 32]. As we will
discuss in detail, that approach inherently introduces difficulties with respect to
document validation, data independence, tool support, and standardization. So in this
paper we advocate a novel approach that retains the non-temporal XML schema for
the document, utilizing a series of separate schema documents to achieve data
independence, enable full document validation, and enable improved tool support,
while not requiring any changes to the XML Schema standard (nor subsequent
extensions of that standard; XML Schema 1.1 is in development).

The primary contribution of this paper is to introduce the τXSchema (Temporal
XML Schema) data model and architecture. τXSchema is a system for constructing
schemas for time-varying XML documents1. A time-varying document records the
evolution of a document over time, i.e., all of the versions of the document.
τXSchema has a three-level architecture for specifying a schema for time-varying
data2. The first level is the schema for an individual version, called the snapshot
schema. The snapshot schema is a conventional XML Schema document. The second
level is the temporal annotations of the snapshot schema. The temporal annotations
identify which elements can vary over time. For those elements, the temporal
annotations also effect a temporal semantics to the various integrity constraints (such
as uniqueness) specified in the snapshot schema. The third level is the physical
annotations. The physical annotations describe how the time-varying aspects are
represented. Each annotation can be independently changed, so the architecture has
(logical and physical) data independence [7]. Data independence allows XML
documents using one representation to be automatically converted to a different
representation while preserving the semantics of the data. τXSchema has a suite of
auxiliary tools to manage time-varying documents and schemas. There are tools to
convert a time-varying document from one physical representation to a different
representation, to extract a time slice from that document (yielding a conventional
static XML document), and to create a time-varying document from a sequence of
static documents, in whatever representation the user specifies.

As mentioned, τXSchema reuses rather than extends XML Schema. τXSchema is
consistent and compatible with both XML Schema and the XML data model. In
τXSchema, a temporal validator augments a conventional validator to more
comprehensively check the validity constraints of a document, especially temporal
constraints that cannot be checked by a conventional XML Schema validator. We
describe a means of validating temporal documents that ensures the desirable property
of snapshot validation subsumption. We show elsewhere how a temporal document
can be smaller and faster to validate than the associated XML snapshots [12].

1 We embrace both the document and data centric orientations of XML and will use the terms

“document” and “database” interchangeably.
2 Three-level architectures are a common architecture in both databases [33] and spatio-

temporal conceptual modeling [21].

350 F. Currim et al.

While this paper concerns temporal XML Schema, we feel that the general
approach of separate temporal and physical annotations is applicable to other data
models, such as UML [28]. The contribution of this paper is two-fold: (1) introducing
a three-level approach for logical data models and (2) showing in detail how this
approach works for XML Schema in particular, specifically concerning a theoretical
definition of snapshot validation subsumption for XML, validation of time-varying
XML documents, and implications for tools operating on realistic XML schemas and
data, thereby exemplifying in a substantial way the approach. While we are confident
that the approach could be applied to other data models, designing the annotation
specifications, considering the specifics of data integrity constraint checking, and
ascertaining the impact on particular tools remain challenging (and interesting) tasks.

τXSchema focuses on instance versioning (representing a time-varying XML
instance document) and not schema versioning [15, 31]. The schema can describe
which aspects of an instance document change over time. But we assume that the
schema itself is fixed, with no element types, data types, or attributes being added to
or removed from the schema over time. Intensional XML data (also termed dynamic
XML documents [1]), that is, parts of XML documents that consist of programs that
generate data [26], are gaining popularity. Incorporating intensional XML data is
beyond the scope of this paper.

The next section motivates the need for a new approach. Section 0 provides a
theoretical framework for τXSchema, while an overview of its architecture is in
Section 0. Details of the τValidator may be found in Section 0. Related work is
reviewed in Section 0. We end with a summary and list of future work in Section 0.

2 Motivation

This section discusses whether conventional XML Schema is appropriate and
satisfactory for time-varying data. We first present an example that illustrates how a
time-varying document differs from a conventional XML document. We then
pinpoint some of the limitations of XML Schema. Finally we state the desiderata for
schemas for time-varying documents.

2.1 Motivating Example

Assume that the history of the Winter Olympic games is described in an XML
document called winter.xml. The document has information about the athletes
that participate, the events in which they participate, and the medals that are awarded.
Over time the document is edited to add information about each new Winter
Olympics and to revise incorrect information. Assume that information about the
athletes participating in the 2002 Winter Olympics in Salt Lake City, USA was added
on 2002-01-01. On 2002-03-01 the document was further edited to record the medal
winners. Finally, a small correction was made on 2002-07-01.

To depict some of the changes to the XML in the document, we focus on
information about the Norwegian skier Kjetil Andre Aamodt. On 2002-01-01 it was
known that Kjetil would participate in the games and the information shown in Fig. 1

A Tale of Two Schemas: Creating a Temporal XML Schema 351

was added to winter.xml. Kjetil won a medal; so on 2002-03-01 the fragment was
revised to that shown in Fig. 2. The edit on 2002-03-01 incorrectly recorded that
Kjetil won a silver medal in the Men’s Combined; Kjetil won a gold medal. Fig. 3
shows the correct medal information.

...
<athlete>
 <athName>Kjetil Andre Aamodt</athName>
</athlete>
...

Fig. 1. A fragment of winter.xml on 2002-01-01

<athlete>
 <athName>Kjetil Andre Aamodt</athName> won a medal in
 <medal mtype="silver">Men's Combined</medal>
</athlete>

Fig. 2. Kjetil won a medal, as of 2002-03-01

<athlete>
 <athName>Kjetil Andre Aamodt</athName> won a medal in
 <medal mtype="gold">Men's Combined</medal>
</athlete>

Fig. 3. Medal data is corrected on 2002-07-01

A time-varying document records a version history, which consists of the
information in each version, along with timestamps indicating the lifetime of that
version. Fig. 4 shows a fragment of a time-varying document that captures the history
of Kjetil. The fragment is compact in the sense that each edit results in only a small,
localized change to the document. The history is also bi-temporal because both the
valid time and transaction time lifetimes are captured [20]. The valid time refers to the
time(s) when a particular fact is true in the modeled reality, while the transaction time
is the time when the information was edited. The two concepts are orthogonal. Time-
varying documents can have each kind of time. In Fig. 4 the valid- and transaction-
time lifetimes of each element are represented with an optional <rs:timestamp>
sub-element3. If the timestamp is missing, the element has the same lifetime as its
enclosing element. For example, there are two <athlete> elements with different
lifetimes since the content of the element changes. The last version of <athlete>
has two <medal> elements because the medal information is revised. There are
many different ways to represent the versions in a time-varying document; the
methods differ in which elements are timestamped, how the elements are
timestamped, and how changes are represented (e.g., perhaps only differences
between versions are represented).

Keeping the history in a document or data collection is useful because it provides
the ability to recover past versions, track changes over time, and evaluate temporal
queries [17]. But it changes the nature of validating against a schema. Assume that the

3 The introduced <rs:timestamp> element is in the “rs” namespace to distinguish it from

any <timestamp> elements already in the document. This namespace will be discussed in
more detail in Sections 0 and 0.

352 F. Currim et al.

 ...
<athlete>
 <rs:timestamp ttStart="2002-01-01" ttStop="2002-02-28"
 vtBegin="2002-02-01" vtEnd="2002-02-28"/>
 <athName>Kjetil Andre Aamodt</athName>
 ...
</athlete>
<athlete>
 <rs:timestamp ttStart="2002-03-01" ttStop="now"
 vtBegin="2002-03-01" vtEnd="now"/>
 <athName>Kjetil Andre Aamodt</athName> won a medal in
 <medal mtype="silver">
 <rs:timestamp ttStart="2002-03-01" ttStop="2002-06-30"
 vtAt="2002-03-01"/>
 Men's Combined
 </medal>
 <medal mtype="gold">
 <rs:timestamp ttStart="2002-07-01" ttStop="now" vtAt="2002-03-01"/>
 Men's Combined
 </medal>
...

Fig. 4. A fragment of a time-varying document

 <element name="athlete">
 <complexType mixed="true">
 <sequence>
 <element name="athName" type="string"/>
 <element ref="medal" minOccurs="0" maxOccurs="unbounded"/>
 <element name="birthPlace" type="string" minOccurs="1"
 maxOccurs="1"/>
 <element name="phone" type="phoneNumType" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="age" type="nonNegativeInteger" use="required"/>
 </complexType>
</element>

Fig. 5. An extract from the winOlympic schema

file winOlympic.xsd contains the snapshot schema for winter.xml. The
snapshot schema is the schema for an individual version. The snapshot schema is a
valuable guide for editing and querying individual versions. A fragment of the schema
is given in Fig. 5. Note that the schema describes the structure of the fragment shown
in Fig. 1, Fig. 2, and Fig. 3. The problem is that although individual versions conform
to the schema, the time-varying document does not. So winOlympic.xsd cannot
be used (directly) to validate the time-varying document of Fig. 4.

The snapshot schema could be used indirectly for validation by individually
reconstituting and validating each version. But validating every version can be
expensive if the changes are frequent or the document is large (e.g., if the document is
a database). While the Winter Olympics document may not change often, contrast this
with, e.g., a Customer Relationship Management database for a large company.
Thousands of calls and service interactions may be recorded each day. This would
lead to a very large number of versions, making it expensive to instantiate and

A Tale of Two Schemas: Creating a Temporal XML Schema 353

validate each individually. The number of versions is further increased because there
can be both valid time and transaction time versions.

To validate a time-varying document, a new, different schema is needed. The
schema for a time-varying document should take into account the elements (and
attributes) and their associated timestamps, specify the kind(s) of time involved,
provide hints on how the elements vary over time, and accommodate differences in
version and timestamp representation. Since this schema will express how the time-
varying information is represented, we will call it the representational schema. The
representational schema will be related to the underlying snapshot schema (Fig. 5),
and allows the time-varying document to be validated using a conventional XML
Schema validator (though not fully, as discussed in the next section).

2.2 Moving beyond XML Schema

Both the snapshot and representational schemas are needed for a time-varying
document. The snapshot schema is useful in queries and updates. For example, a
current query applies to the version valid now, a current update modifies the data in
the current version, creating a new version, and a timeslice query extracts a previous
version. All of these apply to a single version of a time-varying document, a version
described by the snapshot schema. The representational schema is essential for
validation and representation (storage). Many versions are combined into a single
temporal document, described by the representational schema.

Unfortunately the XML Schema validator is incapable of fully validating a time-
varying document using the representational schema. First, XML Schema is not
sufficiently expressive to enforce temporal constraints. For example, XML Schema
cannot specify the following (desirable) schema constraint: the transaction-time
lifetime of a <medal> element should always be contained in the transaction-time
lifetime of its parent <athlete> element. Second, a conventional XML Schema
document augmented with timestamps to denote time-varying data cannot, in general,
be used to validate a snapshot of a time-varying document. A snapshot is an instance
of a time-varying document at a single point in time. For instance, if the schema
asserts that an element is mandatory (minOccurs=1) in the context of another
element, there is no way to ensure that the element is in every snapshot since the
element’s timestamp may indicate that it has a shorter lifetime than its parent
(resulting in times during which the element is not there, violating this integrity
constraint); XML Schema provides no mechanism for reasoning about the
timestamps.

Even though the representational and snapshot schemas are closely related, there
are no existing techniques to automatically derive a representational schema from a
snapshot schema (or vice-versa). The lack of an automatic technique means that users
have to resort to ad hoc methods to construct a representational schema. Relying on
ad hoc methods limits data independence. The designer of a schema for time-varying
data has to make a variety of decisions, such as whether to timestamp with periods or
with temporal elements [16], which are sets of non-overlapping periods and which
elements should be time-varying. By adopting a tiered approach, where the snapshot
XML Schema, temporal annotations, and physical annotations are separate
documents, individual schema design decisions can be specified and changed, often

354 F. Currim et al.

without impacting the other design decisions, or indeed, the processing of tools. For
example, a tool that computes a snapshot should be concerned primarily with the
snapshot schema; the logical and physical aspects of time-varying information should
only affect (perhaps) the efficiency of that tool, not its correctness. With physical data
independence, few applications that are unconcerned with representational details
would need to be changed.

Finally, improved tool support for representing and validating time-varying
information is needed. Creating a time-varying XML document and representational
schema for that document is potentially labor-intensive. Currently a user has to
manually edit the time-varying document to insert timestamps indicating when
versions of XML data are valid (for valid time) or are present in the document (for
transaction time). The user also has to modify the snapshot schema to define the
syntax and semantics of the timestamps. The entire process would be repeated if a
new timestamp representation were desired. It would be better to have automated
tools to create, maintain, and update time-varying documents when the representation
of the timestamped elements changes.

2.3 Desiderata

In augmenting XML Schema to accommodate time-varying data, we had several
goals in mind. At a minimum, the new approach would exhibit the following desirable
features.

• Simplify the representation of time for the user.
• Support a three-level architecture to provide data independence, so that changes in

the logical and physical level are isolated.
• Retain full upward compatibly with existing standards and not require any changes

to these standards.
• Augment existing tools such as validating parsers for XML in such a way that

those tools are also upward compatible. Ideally, any off-the-shelf validating parser
(for XML Schema) can be used for (partial) validation.

• Support both valid time and transaction time.
• Accommodate a variety of physical representations for time-varying data.
• Support instance versioning.

Note that while ad hoc representational schemas may meet the last three desiderata,
they certainly don’t meet the first four. Other desirable features, outside the scope of
this paper, include supporting schema versioning and accommodating temporal
indeterminacy and granularity.

3 Theoretical Framework

This section sketches the process of constructing a schema for a time-varying
document from a snapshot schema. The goal of the construction process is to create a
schema that satisfies the snapshot validation subsumption property, which is

A Tale of Two Schemas: Creating a Temporal XML Schema 355

described in detail below. In the relational data model, a schema defines the structure
of each relation in a database. Each relation has a very simple structure: a relation is a
list of attributes, with each attribute having a specified data type. The schema also
includes integrity constraints, such as the specification of primary and foreign keys. In
a similar manner, an XML Schema document defines the valid structure for an XML
document. But an XML document has a far more complex structure than a relation. A
document is a (deeply) nested collection of elements, with each element potentially
having (text) content and attributes.

3.1 Snapshot Validation Subsumption

Let DT be an XML document that contains timestamped elements. A timestamped
element is an element that has an associated timestamp. (A timestamped attribute can
be modeled as a special case of a timestamped element.) Logically, the timestamp is a
collection of times (usually periods) chosen from one or more temporal dimensions
(e.g., valid time, transaction time). Without loss of generality, we will restrict the
discussion in this section to lifetimes that consist of a single period in one temporal
dimension4. The timestamp records (part of) the lifetime of an element5. We will use
the notation xT to signify that element x has been timestamped. Let the lifetime of xT
be denoted as lifetime(xT). One constraint on the lifetime is that the lifetime of an
element must be contained in the lifetime of each element that encloses it6.

The snapshot operation extracts a complete snapshot of a time-varying document
at a particular instant. Timestamps are not represented in the snapshot. A snapshot at
time t replaces each timestamped element xT with its non-timestamped copy x if t is in
lifetime(xT) or with the empty string, otherwise. The snapshot operation is denoted as

snp(t, DT) = D
where D is the snapshot at time t of the time-varying document DT.

Let ST be a representational schema for a time-varying document DT. The snapshot
validation subsumption property captures the idea that, at the very least, the
representational schema must ensure that every snapshot of the document is valid
with respect to the snapshot schema. Let vldt(S,D) represent the validation status of
document D with respect to schema S. The status is true if the document is valid but
false otherwise. Validation also applies to time-varying documents, e.g., vldtT(ST, DT)
is the validation status of DT with respect to a representational schema, ST, using a
temporal validator.

Property [Snapshot Validation Subsumption]. Let S be an XML Schema document,
DT be a time-varying XML document, and ST be a representational schema, also an

4 The general case is that a timestamp is a collection of periods from multiple temporal

dimensions (a multidimensional temporal element).
5 Physically, there are myriad ways to represent a timestamp. It could be represented as an
<rs:timestamp> subelement in the content of the timestamped element as is done in the
fragment in Fig. 4. Or it could be a set of additional attributes in the timestamped element, or
it could even be a <rs:version> element that wraps the timestamped element.

6 Note that the lifetime captures only when an element appears in the context of the enclosing
elements. The same element can appear in other contexts (enclosed by different elements) but
clearly it has a different lifetime in those contexts.

356 F. Currim et al.

XML Schema document. ST is said to have snapshot validation subsumption with
respect to S if

vldtT(ST, DT) ⇔ ∀t[t∈lifetime(DT) ⇒ vldt(S, snp(t, DT)]

Intuitively, the property asserts that a good representational schema will validate only
those time-varying documents for which every snapshot conforms to the snapshot
schema. The subsumption property is depicted in the following correspondence
diagram.

D

DT

snp(t, DT)

vldtT(ST,DT)

vldt(S,D)

v ⇒ w

v

w

Fig. 6. Snapshot validation subsumption

Details of the process for constructing a schema for a time-varying document that
conforms to the snapshot validation subsumption property from a snapshot schema
are available in a technical report by the authors [12].

4 Architecture

The architecture of τXSchema is illustrated in Fig. 7. This figure is central to our
approach, so we describe it in detail and illustrate it with the example. We note that
although the architecture has many components, only those components shaded gray
in the figure are specific to an individual time-varying document and need to be
supplied by a user. New time-varying schemas can be quickly and easily developed
and deployed. We also note that the representational schema, instead of being the only
schema in an ad hoc approach, is merely an artifact in our approach, with the snapshot
schema, temporal annotations, and physical annotations being the crucial
specifications to be created by the designer.

The designer annotates the snapshot schema with temporal annotations (box 6).
The temporal annotations together with the snapshot schema form the logical schema.
Fig. 8 provides an extract of the temporal annotations on the winOlympic schema.
The temporal annotations specify a variety of characteristics such as whether an
element or attribute varies over valid time or transaction time, whether its lifetime is
described as a continuous state or a single event, whether the item itself may appear at
certain times (and not at others), and whether its content changes. For example,
<athlete> is described as a state element, indicating that the <athlete> will be
valid over a period (continuous) of time rather than a single instant. Annotations can
be nested, enabling the target to be relative to that of its parent, and inheriting as

A Tale of Two Schemas: Creating a Temporal XML Schema 357

8. Non-Temporal

Data

0. XMLSchema

1. TVSchema 2. TXSchema 3. PXSchema 4. RXSchema

6. Temporal
Annotations

7. Physical
Annotations

10. Representational
Schema

5. Snapshot
Schema

9. Temporal Data

Logical-
Representational

Mapper

Namespace

Namespace

Namespace Namespace

Annotates

Annotates Output

Input

Namespace

Namespace

Namespace

Name
space

Namespace

Namespace

Input

Input

Squash

Output
Input

Input Input

Input

Fig. 7. Architecture of τXSchema

defaults the kind, contentVarying, and existenceVarying attribute values
specified in the parent. The attribute existenceVarying indicates whether the
element can be absent at some times and present at others. As an example, the
presence of existenceVarying for an athlete’s phone indicates that an athlete
may have a phone at some points in time and not at other points in time. The attribute
contentVarying indicates whether the element's content can change over time.
An element’s content is a string representation of its immediate content, i.e., text, sub-
element names, and sub-element order.

Elements that are not described as time-varying are static and must have the same
content and existence across every XML document in box 8. For example, we have
assumed that the birthplace of an athlete will not change with time, so there is no
annotation for <birthPlace> among the temporal annotations. The schema for the
temporal annotations document is given by TXSchema (box 2), which in turn utilizes
temporal values defined in a short XML Schema TVSchema (box 1). (Due to space
limitations, we can’t describe in detail these annotations, but it should be clear what
aspects are specified here.)

The next design step is to create the physical annotations (box 7). In general, the
physical annotations specify the timestamp representation options chosen by the user.
An excerpt of the physical annotations for the winOlympic schema is given in Fig. 9.
Physical annotations may also be nested, inheriting the specified attributes from their
parent; these values can be overridden in the child element.

Physical annotations play two important roles.
1. They help to define where the physical timestamps will be placed (versioning

level). The location of the timestamps is independent of which components vary
over time (as specified by the temporal annotations). Two documents with the
same logical information will look very different if we change the location of the
physical timestamp. For example, although the elements phone and athName
are time-varying, the user may choose to place the physical timestamp at the

358 F. Currim et al.

 <temporalAnnotations
 xmlns="http://www.cs.arizona.edu/tau/tauXSchema/TXSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.cs.arizona.edu/tau/tauXSchema/TXSchema.xsd">
<snapshotSchema schemaLocation="http://www.cs.arizona.edu/
 tau/tauXSchema/examples/schemas/winOlympic.xsd"/>
...
 <validTime target="/winOlympic/…/athlete" kind="state" contentVarying="true">
 <validTime target="@age"/>
 <validTime target="athName"/>
 <validTime target="medal" kind="event"/>
 <validTime target="phone" existenceVarying="true"/>
 </validTime>
...
 <transactionTime target="/winOlympic"/>
 <transactionTime target="/winOlympic/…/athlete/@age"/>
 <transactionTime target="/winOlympic/…/athlete/athName"/>
...
</temporalAnnotations>

Fig. 8. Sample temporal annotations

 <physicalAnnotations xmlns= "http://www.cs.arizona.edu/tau/tauXSchema/PXSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.cs.arizona.edu/tau/tauXSchema/PXSchema.xsd">

 <temporalAnnotations schemaLocation="http://www.cs.arizona.edu/
 tau/tauXSchema/examples/schemas/winOlympicTemporal.xml"/>
...
 <stampPosition target="/winOlympic" transactionTimeStampType="step" />
 <stampPosition target="/winOlympic/.../athlete" validTimeStampType="extent">
 <stampPosition target="@age" validTimeStampType="step"
 transactionTimeStampType="step"/>
 <stampPosition target="athName" transactionTimeStampType="step"/>
 <stampPosition target="medal" validTimeStampType="none" />
 <stampPosition target="phone" transactionTimeStampType="extent"/>
 </stampPosition>
...
</physicalAnnotations>

Fig. 9. Sample physical annotations

athlete level. Whenever any element below athlete changes, the entire
athlete element is repeated.

2. The physical annotations also define the type of timestamp (for both valid time
and transaction time). A timestamp can be one of two types: step or extent.
An extent timestamp specifies both the start and end instants in the timestamp’s
period. In contrast a step-wise constant (step) timestamp represents only the
start instant. The end instant is implicitly assumed to be just prior to the start of
the next version, or now for the current version. However, one cannot use step
timestamps when there might be “gaps” in time between successive versions.
Extent timestamps do not have this limitation. Changing even one timestamp
from step to extent can make a big difference in the representation.

A Tale of Two Schemas: Creating a Temporal XML Schema 359

6. Temporal
Annotations

Input

7. Physical
Annotations

 τValidator

Error
Messages

5. Non-temporal
Schema

6. Temporal
Annotations

Input

7. Physical
Annotations

τValidator

Error
Messages

10. Temporal
Data

5. Non-temporal
Schema

Fig. 10. τValidator: Checking the schemas and instance

The schema for the physical annotations document is PXSchema (box 3).
τXSchema supplies a default set of physical annotations, which is to timestamp the
root element with valid and transaction time using step timestamps, so the physical
annotations are optional. (Again, space limitations do not allow us to describe these
annotations in detail.)

We emphasize that our focus is on capturing relevant aspects of physical
representations, not on the specific representations themselves, the design of which is
itself challenging. Also, since the temporal and physical annotations are orthogonal
and serve two separate goals, we choose to maintain them independently. A user can
change where the timestamps are located, independently of specifying the temporal
characteristics of that particular element. In the future, when software environments
for managing changes to XML files over time are available, the user could specify
temporal and physical annotations for an element together (by annotating a particular
element to be temporal and also specifying that a timestamp should be located at that
element), but these would remain two distinct aspects from a conceptual standpoint.

At this point, the designer is finished. She has written one conventional XML
schema (box 5) and specified two sets of annotations (boxes 6 and 7). We provide
boxes 1, 2, 3, and 4; XML Schema (box 0) is of course provided by W3C.

Let’s now turn our attention to the tools that operate on these various
specifications. The temporal annotations document (box 6) is passed through the
τValidator (see the left half of Fig. 10) which checks to ensure that the
annotations are consistent with the snapshot schema. The Validator utilizes the
conventional validator for many of its checks. For instance, it validates the temporal
annotations against the TXSchema. But it also checks that the temporal annotations
are not inconsistent. Similarly, the physical annotations document is passed through
the τValidator to ensure consistency of the physical annotations.

Once the annotations are found to be consistent, the Logical to Representational
Mapper (software oval, Fig. 7) generates the representational schema (box 10) from
the original snapshot schema and the temporal and physical annotations. The
representational schema (mentioned in Section 0 as “rs:”) is needed to serve as the
schema for a time-varying document/data (box 9). The time-varying data can be
created in four ways: 1) automatically from the non-temporal data (box 8) using
τXSchema’s squash tool (described in our technical report [12]), 2) automatically
from the data stored in a database, i.e., as the result of a “temporal” query or view, 3)
automatically from a third-party tool, or 4) manually.

360 F. Currim et al.

The time-varying data is validated against the representational schema in two
stages. First, a conventional XML Schema validating parser is used to parse and
validate the time-varying data since the representational schema is an XML Schema
document that satisfies the snapshot validation subsumption property. But as
emphasized in Section 0, using a conventional XML Schema validating parser is not
sufficient due to the limitations of XML Schema in checking temporal constraints.
For example, a regular XML Schema validating parser has no way of checking
something as basic as “the valid time boundaries of a parent element must encompass
those of its child”. These types of checks are implemented in the τValidator. So
the second step is to pass the temporal data to τValidator as shown in the right
half of Fig. 10. A temporal XML data file (box 9) is essentially a timestamped
representation of a sequence of non-temporal XML data files (box 8). The namespace
is set to its associated XML Schema document (i.e. representational schema). The
timestamps are based on the characteristics defined in the temporal and physical
annotations (boxes 6 and 7). The τValidator, by checking the temporal data,
effectively checks the non-temporal constraints specified by the snapshot schema
simultaneously on all the instances of the non-temporal data (box 8), as well as the
constraints between snapshots, which cannot be expressed in a snapshot schema.

To reiterate, the conventional approach has the user start with a representational
schema (box 10); our proposed approach is to have the user design a snapshot schema
and two annotations, with the representational schema automatically generated.

5 Tools

Our three-level schema specification approach enables a suite of tools operating both
on the schemas and the data they describe. The tools are open-source and beta
versions are available7. The tools were implemented in Java using the DOM API [34].
We now turn to a central tool, the temporal validator.

The logical and physical temporal annotations (Fig. 7, boxes 6 and 7) for a non-
temporal XML Schema (Fig. 7, box 5) are XML documents and hence can be
validated as such. However, a validating XML parser cannot perform all of the
necessary checks to ensure that the annotations are correctly specified. For example it
cannot check that elements that have a minOccurs of 0 do not use a step-wise
constant timestamp representation (i.e. a compact representation that assumes
continuous existence, and where only the begin/start time of a timestamp is specified
and the end/stop time of a timestamp is assumed to be the same as the begin/start
point of the succeeding timestamp). This motivates the need for a special validator for
the temporal and physical annotations. We implemented a tool, called Validator,
to check the annotations. First, τValidator validates the temporal and physical
annotations against the TXSchema and PXSchema, respectively. Then it performs
additional tests to ensure that the snapshot schema and the temporal and physical
annotations are all consistent.

7 http://www.cs.arizona.edu/tau/txschema/ and
 http://www.cs.arizona.edu/tau/tdom/

A Tale of Two Schemas: Creating a Temporal XML Schema 361

τValidator also validates time-varying data. A temporal data validator must
ensure that every snapshot of the time-varying document conforms to the snapshot
schema. It does this, in part, by using an existing XML Schema validating parser to
validate the temporal document against the representational schema. Validator
then performs two additional kinds of checks: representational checks and checks to
compensate for differences in the semantics of temporal and non-temporal constraints.
For instance it needs to check that there are no gaps in the lifetimes of versions for
elements that have minOccurs=1 in the representational schema.

Additional details about other tools developed—including results of experiments
performed on the tools—are available elsewhere [12].

6 Review of Related Work

While there have been a number of research efforts that have identified methods to
detect and represent changes in XML documents over time [18], none have addressed
the issue of validating a time-varying document.

There are various XML schemas that have been proposed in the literature and in
the commercial arena. We chose to extend XML Schema in τXSchema because it is
backed by the W3C and supports most major features available in other XML
schemas [22]. It would be relatively straightforward to apply the concepts in this
paper to develop time support for other XML schema languages; less straightforward
but possible would be to apply our approach of temporal and physical annotations to
other data models, such as UML [28].

Garcia-Molina and Cho [10] provide evidence that some web pages change on
every access, whereas other pages change very infrequently, with a coarse average
change interval of a web page of 4 months. Nguyen et al. [27] describe how to detect
changes in XML documents that are accessible via the web. In the Xyleme system
[37], the XML Alerter module periodically (with a periodicity specified by the user)
accesses the XML document and compares it with a cached version of the document.
The result is a sequence of static documents, each with an associated existence period.
Dyreson [13] describes how a web server can capture some of the versions of a time-
varying document, by caching the document as it is served to a client, and comparing
the cached version against subsequent requests to see if anything has changed.
Amagasa et al. [2] classify the methods used to access XML documents into two
general categories: (i) using specialized APIs for XML documents, such as DOM, and
(ii) directly editing documents, e.g., with an editor. In the former case, to access and
modify temporal XML documents, DOM can be extended to automatically capture
temporal information (and indeed, we have implemented such functionality in
τDOM). It is also possible to capture transaction time information in the documents
through change analysis, as discussed above and elsewhere [4, 11].

There has been a lot of interest in representing time-varying documents. Marian et
al. [23] discuss versioning to track the history of downloaded documents. Chien,
Tsotras and Zaniolo [9] have researched techniques for compactly storing multiple
versions of an evolving XML document. Chawathe et al. [8] described a model for
representing changes in semi-structured data and a language for querying over these
changes. For example, the diff based approach [4, 11] focuses on an efficient way to

362 F. Currim et al.

store time-varying data and can be used to help detect transaction time changes in the
document at the physical level. Buneman et al. [6] provide another means to store a
single copy of an element that occurs in many snapshots. Grandi and Mandreoli [19]
propose a <valid> tag to define a validity context that is used to timestamp part of a
document. Finally, Chawathe et al. [8] and Dyreson et al. [14] discuss timestamps on
edges in a semi-structured data model.

Recently there has been interest in incremental validation of XML documents [3, 5,
30]. These consider validating a snapshot that is the result of updates on the previous
snapshot, which has already been validated. In a sense, this is the dual to the problem
we consider, which is validating a (compressed) temporal document all at once, rather
than once per snapshot (incrementally or otherwise).

None of the approaches above focus on the extensions required in XML Schema to
adequately specify the nature of changes permissible in an XML document over time,
and the corresponding validation of the extended schema. In fact, some of the
previous approaches that attempt to identify or characterize changes in documents do
not consider a schema. As our emphasis is on logical and physical data modeling, we
assume that a schema is available from the start, and that the desire is for that schema
to capture both the static and time-varying aspects of the document. If no schema
exists, tools can derive the schema from the base documents, but that is beyond the
scope of this paper. Our approach applies at the logical view of the data, while also
being able to specify the physical representation. Since our approach is independent
of the physical representation of the data, it is possible to incorporate the diff-based
approach and other representational approaches [6] in our physical annotations.

7 Conclusion

In this paper we introduce the τXSchema model and notation to annotate XML
Schemas to support temporal information. τXSchema provides an efficient way to
annotate temporal elements and attributes. Our design conforms to W3C XML
Schema definition and is built on top of XML Schema. Our approach ensures data
independence by separating (i) the snapshot schema document for the instance
document, (ii) information concerning which portion(s) of the instance document can
vary over time, and (iii) where timestamps should be placed and precisely how the
time-varying aspects should be represented. Since these three aspects are orthogonal,
our approach allows each aspect to be changed independently. A small change to the
physical annotations (or temporal annotations) can effect a large change in the
(automatically generated) representational schema and the associated XML file.

This separation of concerns may be exploited in supporting tools; several new,
quite useful tools are discussed that exploit the logical and physical data
independence provided by our approach. Additionally, this independence enables
existing tools (e.g., the XML Schema validator, XQuery, and DOM) to be used in the
implementation of their temporal counterparts.

Future work includes extending the τXSchema model to fulfill the remaining issues
in the desiderata and beyond. Indeterminacy and granularity are two significant and
related issues, and should be fully supported by τXSchema. We anticipate that
providing this support would require additions to the TVSchema / TXSchema /
PXSchema / RXSchema (Fig. 7, boxes 1–4), but no changes to the user-designed

A Tale of Two Schemas: Creating a Temporal XML Schema 363

schemas (Fig. 7, boxes 5–7). These augmentations would be upward compatibile with
this version of τXSchema and be transparent to the user. Schema versioning is another
important capability. For simplicity, we assume that the XML document changes, but
the schema remains stable over time. However, in reality, the schema will also change
with time. We are designing an extension that takes into account schema versioning.

We plan to extend our approach to also accommodate intensional XML data [26]
which refer to programs that generate data. Some of these programs may be evaluated
(a process termed materialization), with the results replacing the programs in the
document. There are several interesting time-varying aspects of intensional XML
data: (i) the programs themselves may change over time, (ii) even if the programs are
static, the results of program evaluations may change over time, as external data the
programs access changes, and (iii) even if the programs and the external data are
static, different versions of the program evaluators (e.g., Java compiler) may be
present, may generate different results due to incompatibilities between versions. It is
challenging to manage this combination of schema and instance versioning over time.

Another broad area of work is optimization and efficiency. Currently there is no
separation of elements or attributes based on the relative frequency of update. In the
situation that some elements (for example) vary at a significantly different rate than
other elements, it may prove more efficient to split the schema up into pieces such
that elements with similar “rates of change” are together [25, 29, 32]. This would
avoid redundant repetition of elements that do not change as frequently. Related to
optimization is the issue of optimizing the use of time-varying text content. For
instance it may be desirable to capture order among different pieces of text content
within an element (e.g., different pieces may be used to describe a particular sub-
element and may therefore vary with a frequency strongly correlated to the sub-
element’s temporal characteristics). We want to incorporate recently proposed
representations (e.g., [4, 6, 9, 11]) into our physical annotations. Finally, the
efficiency of the tools mentioned in Section 5 can be improved. For example, it would
be interesting to investigate whether incremental validation approaches [3, 5, 30] are
applicable in the temporal schema validator.

References

[1] Abiteboul, S., Bonifati, A., Cobena, G., Manolescu, I. and Milo, T., Dynamic XML
Documents with Distribution and Replication. Proceedings of the ACM SIGMOD
International Conference on Management of Data, (San Diego, CA, 2003), 527-538.

[2] Amagasa, T., Yoshikawa, M. and Uemura, S., A Data Model for Temporal XML
Documents. Proceedings of the 11th International Workshop on Database and Expert
Systems Applications, (London, England, 2000), Springer, Berlin, New York, 334-344.

[3] Barbosa, D., Mendelzon, A., Libkin, L., Mignet, L. and Arenas, M., Efficient
Incremental Validation of XML Documents. Proceedings of the 20th International
Conference on Data Engineering, (Boston, MA, 2004), IEEE Computer Society.

[4] Birsan, D., Sluiman, H. and Fernz, S.-A. XML Diff and Merge Tool, IBM alphaWorks,
1999. http://www.alphaworks.ibm.com/tech/xmldiffmerge.

[5] Bouchou, B. and Halfeld-Ferrari, M., Updates and Incremental Validation of XML
Documents. Proceedings of the 9th International Workshop on Data Base Programming
Languages, (Potsdam, Germany, 2003), Springer.

364 F. Currim et al.

[6] Buneman, P., Khanna, S., Tajima, K. and Tan, W.C., Archiving scientific data.
Proceedings of the ACM SIGMOD International Conference on Management of Data,
(Madison, WI, 2002), ACM, 1-12.

[7] Burns, T., Fong, E.N., Jefferson, D., Knox, R., Mark, L., Reedy, C., Reich, L.,
Roussopoulos, N. and Truszkowski, W. Reference Model for DBMS Standardization,
Database Architecture Framework Task Group of the ANSI/X3/SPARC Database
System Study Group. SIGMOD Record, 15 (1). 19-58, 1986.

[8] Chawathe, S., Abiteboul, S. and Widom, J., Representing and Querying Changes in
Semistructured Data. Proceedings of the 14th International Conference on Data
Engineering, (Orlando, FL, USA, 1998), IEEE Computer Society, 4-13.

[9] Chien, S., Tsotras, V. and Zaniolo, C. Efficient schemes for managing multiversion XML
documents. VLDB Journal, 11 (4). 332-353, 2002.

[10] Cho, J. and Garcia-Molina, H., The Evolution of the Web and Implications for an
Incremental Crawler. Proceedings of the 26th International Conference on Very Large
Data Bases, (Cairo, Egypt, 2000), Morgan Kaufmann, 200-209.

[11] Cobena, G., Abiteboul, S. and Marian, A., Detecting Changes in XML Documents.
Proceedings of the 18th International Conference on Data Engineering, (San Jose,
California, 2002), IEEE Computer Society, 41-52.

[12] Currim, F., Currim, S., Snodgrass, R.T. and Dyreson, C.E. τXSchema: Managing
Temporal XML Schemas, Technical Report TR-77, TimeCenter, 2003.

[13] Dyreson, C., Towards a Temporal World-Wide Web: A Transaction Time Web Server.
Proceedings of the 12th Australasian Database Conference, (Gold Coast, Australia,
2001), 169-175.

[14] Dyreson, C.E., Bohlen, M. and Jensen, C.S., Capturing and Querying Multiple Aspects
of Semistructured Data. Proceedings of the 25th International Conference on Very Large
Data Bases, (Edinburgh, Scotland, UK, 1999), Morgan Kaufmann, 290-301.

[15] Franconi, E., Grandi, F. and Mandreoli, F., Schema Evolution and Versioning: A Logical
and Computational Characterisation. Database Schema Evolution and Meta-Modeling,
Proceedings of the 9th International Workshop on Foundations of Models and
Languages for Data and Objects, FoMLaDO/DEMM, (Dagstuhl, Germany, 2000),
Springer, 85-99.

[16] Gadia, S. A Homogeneous Relational Model and Query Languages for Temporal
Databases. ACM Transactions on Database Systems, 13 (4). 418-448, 1988.

[17] Gao, D. and Snodgrass, R.T., Temporal Slicing in the Evaluation of XML Queries.
Proceedings of the 29th International Conference on Very Large Databases, (Berlin,
Germany, 2003), Morgan Kaufmann, 632-643.

[18] Grandi, F. An Annotated Bibliography on Temporal and Evolution Aspects in the
WorldWideWeb, Technical Report TR-77, TimeCenter, 2003.

[19] Grandi, F. and Mandreoli, F. The Valid Web: its time to Go…, Technical Report TR-46,
TimeCenter, 1999.

[20] Jensen, C.S. and Dyreson, C.E. (eds.). A Consensus Glossary of Temporal Database
Concepts. in Etzion, O., Jajodia, S. and Sripada, S. (eds.). Temporal Databases:
Research and Practice, Springer-Verlag, 1998, 367-405.

[21] Khatri, V., Ram, S. and Snodgrass, R.T. Augmenting a Conceptual Model with Spatio-
Temporal Annotations. IEEE Transactions on Knowledge and Data Engineering,
forthcoming, 2004.

[22] Lee, D. and Chu, W. Comparative Analysis of Six XML Schema Languages. SIGMOD
Record, 29 (3). 76-87, 2000.

[23] Marian, A., Abiteboul, S., Cobena, G. and Mignet:, L., Change-Centric Management of
Versions in an XML Warehouse. Proceedings of the Very Large Data Bases Conference,
(Roma, Italy, 2001), Morgan Kaufmann, 581-590.

[24] McHugh, J. and Widom, J., Query Optimization for XML. Proceedings of the 25th
International Conference on Very Large Databases, (Edinburgh, Scotland, UK, 1999),
Morgan Kaufmann, 315-326.

A Tale of Two Schemas: Creating a Temporal XML Schema 365

[25] McKenzie, E. and Snodgrass, R.T. An Evaluation of Relational Algebras Incorporating
the Time Dimension in Databases. ACM Computing Surveys, 23 (4). 501-543, 1991.

[26] Milo, T., Abiteboul, S., Amann, B., Benjelloun, O. and Ngoc, F.D., Exchanging
Intensional XML Data. Proceedings of the ACM SIGMOD International Conference on
Management of Data, (San Diego, CA, 2003), 289-300.

[27] Nguyen, B., Abiteboul, S., Cobena, G. and Preda, M., Monitoring XML Data on the
Web. Proceedings of the ACM SIGMOD International Conference on Management of
Data, (Santa Barbara, CA, 2001), 437-448.

[28] OMG. Unified Modeling Language (UML), v1.5, 2003.
http://www.omg.org/technology/documents/formal/uml.htm.

[29] Ozsoyoglu, G. and Snodgrass, R.T. Temporal and Real-Time Databases:A Survey. IEEE
Transactions on Knowledge and Data Engineering, 7 (4). 513-532, 1995.

[30] Papakonstantinou, Y. and Vianu, V., Incremental Validation of XML Documents.
Proceedings of the 9th International Conference on Database Theory, (Siena, Italy,
2003), Springer, 47-63.

[31] Roddick, J.F. A Survey of Schema Versioning Issues for Database Systems. Information
and Software Technology, 37 (7). 383-393, 1995.

[32] Snodgrass, R.T. Temporal Object-Oriented Databases: A Critical Comparison. in Kim,
W. ed. Modern Database Systems: The Object Model, Interoperability and Beyond,
Addison-Wesley/ACM Press, 1995, 386-408.

[33] Steel, T.B., Jr., Chairman Interim Report: ANSI/X3/SPARC Study Group on Data Base
Management Systems 75-02-08. FDT-Bulletin of ACM SIGMOD, 7 (2). 1-140, 1975.

[34] W3C. Document Object Model (DOM) Level 2 HTML Specification Version 1.0. Hors,
A.L. ed., W3C, 2002.
http://www.w3.org/TR/2002/PR-DOM-Level-2-HTML-20021108/.

[35] W3C. XML Schema Part 1: Structures. Mendelsohn, N. ed., W3C, 2001.
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/.

[36] W3C. XML Schema Part 2: Datatypes. Malhotra, A. ed., W3C, 2001.
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

[37] Xyleme, L. A dynamic warehouse for XML Data of the Web. IEEE Data Engineering
Bulletin, 24 (2). 40-47, 2001.

	Introduction
	Motivation
	Motivating Example
	Moving beyond XML Schema
	Desiderata

	Theoretical Framework
	Snapshot Validation Subsumption

	Architecture
	Tools
	Review of Related Work
	Conclusion

