Stratum Approaches to Temporal DBMS Implementation

Kristian Torp Christian S. Jensen Richard T. Snodgrass
Department of Computer Science Department of Computer Science,
Aalborg University, Denmark University of Arizona, USA
{torp,csj }@cs.auc.dk rts@cs.arizona.edu

Keywords: Temporal databases, database systems architsociating timestamps with facts. Implementing a temporal

tures, database interfaces, legacy systems. database management system (temporal DBMS) on top of a
conventional DBMS has generally not been pursued because
Abstract it cannot take advantage of well-known temporal implemen-

tations techniques such as temporal indexes (e.g., [12]), tem-

Previous approaches to implementing temporal DBMSgoral storage structures (e.g., [1]), and temporal join (e.g.,
have assumed that a temporal DBMS must be built frof21]) and coalescing algorithms [5]. Further, it seems that
scratch, employing an integrated architecture and using nethere has been an implicit assumption (e.g., in [17]) that the
temporal implementation techniques such as temporal iperformance of temporal DBMSs should be similar to that
dexes and join algorithms. However, this is a very larg@f conventional DBMSs, even when a temporal DBMS man-
and time-consuming task. This paper explores approachages multiple versions of data and a conventional DBMS
to implementing a temporal DBMS as a stratum on top ghanages only one version. However, building a complete
an existing non-temporal DBMS, rendering implementatioPBMS from bottom up is a very large task that may only be
more feasible by reusing much of the functionality of the uraccomplished by the major DBMS vendors.
derlying conventional DBMS. More specifically, the paper With the general goal of providing built-in support for
introduces three stratum meta-architectures, each with seiime-varying data without having to construct a temporal
eral specific architectures. Based on a new set of evaluati@@BMS from scratch, we explore in this paper how a tem-
criteria, advantages and disadvantages of the specific archyoral DBMS can be implemented in a stratum on top of an
tectures are identified. The paper also classifies all existingisting, conventional DBMS. The idea is to reuse the func-
temporal DBMS implementations according to the specifigonality of existing DBMS technology. The limitation of
architectures they employ. It is concluded that a stratum aisuilding on top of an existing DBMS is that it is not possible
chitecture is the best short, medium, and perhaps even long- modify existing core DBMS functionality, e.g., the data
term, approach to implementing a temporal DBMS. manager, the query processor component, and the transac-
tion manager.

While the stratum approach may bring built-in temporal
support in the DBMS to application programmers, the ap-

Most database application manage temporal data [9, 1@fioach also provides a means of experimenting with new
such as time and date of withdrawal of money from an ATMemporal database technologies. The approach makes it fea-
machine, closing values of stocks on the stock exchangsble for research teams to implement and experiment with
or the periods over which employees are associated witemporal query languages, and it also allows some exper-
projects. imentation with parts of the back end of a database, e.g.,

Temporal data management is currently being (re-{uery evaluation and special temporal operator implemen-
implemented in each individual application in an ad-hotations [5]. The experiences gained from using the stratum
manner, with little support from the DBMS. Writing tem- approach can be helpful when realizing the long-term goal of
poral queries in SQL-92 can be very tedious, and it haguilding temporal functionality directly into the DBMS.
been shown that a temporal SQL can significantly reduce We list eight criteria that a stratum should satisfy. Among
the amount and difficult of code needed to express tempoukathers, the criteria include these: no changes to the underly-
queries [18, Ch. 1]. Temporal data management applicatioitgy DBMS, retention of all desired properties of the DBMS,
could thus benefit substantially from built-in support. minimal impact on middleware. We then define three meta-

Temporal databases extend conventional databases by ashitectures to building a stratum, namely (a) imposing a

1 Introduction

stratum directly, (b) using middleware as the stratum (e.g., Inthe stratum approach, the database applications are not
ODBC [13]), and (c) using a preprocessor. Each overall adirectly connected to the DBMS. All communication be-
chitecture captures several specific architectures, which ameen the applications and the DBMS is interposed by a stra-
discussed in turn. We classify existing systems according tom. There are two important potential advantages of using
their architecture, including the temporal DBMSs listed ira stratum. First, it is possible to provide applications with
a recent survey [4]. The specific architectures are evaluatadifferent data model than what is actually implemented by
against the eight criteria. the DBMS. Second, a new data model implemented in a stra-
The paper concludes that a stratum approach makes it ptigm does not have to be supplied by the DBMS vendor.
sible to implement a temporal DBMS with reasonable re- When the stratum approach is applied to temporal
sources. It will take years before an integrated architecturiatabases, the idea is to convert the conventional DBMS,
will become available. In the meantime, a stratum approasihich supports SQL-92, to a temporal DBMS, which sup-
can be used. In addition, a stratum is not necessarily a uperts some temporal SQL. The applications send temporal
intelligent converter—new temporal functionally can be imgueries to the temporal DBMS. The queries are received by
plemented in a stratum. the stratum, are converted into SQL-92 queries, which, in
The paper is organized as follows. Section 2 discusségn, are sent to the DBMS (in [6] it has been shown that
the general idea of a stratum and lists our evaluation crit@!l temporal queries can be converted to equivalent SQL-92
ria for stratum implementations of a temporal DBMS. A to-Jueries).
tal of 15 specific stratum architectures, partitioned into three The result from the DBMS is returned to the stratum,
meta architectures, and their current use are explored in S&dich may do some processing of the data before is is passed
tions 3 and 4, respectively. In Section 5, we compare the sp@-the applications. The purpose of the stratum is to make the
cific architectures to the criteria. Related work is the topic ofonventional DBMS look like a DBMS supporting a tempo-

Section 6, and Section 7 summarizes the paper. ral data model from the applications’ point of view, as done,
e.g., in[2,7,22,27].
2 The Stratum Approach We restrict our attention to considering only new applica-

. . _ . tions that may exploit the built-in temporal support. We do
This section describes the general idea of a stratum ggs; consider the (orthogonal) problem of converting legacy
proach, it considers how the approach applies to temporglyjications with built in ad-hoc temporal support to applica-

databases, and it lists our design criteria for a temporal strgs o using the temporal support implemented in the stratum.
tum.

2.2 Design Criteria for the Stratum Approach
2.1 The Stratum Architecture

In evaluating a stratum-implemented temporal DBMS,
The general idea of a stratum architecture is illustratede stress the set of eight design criteria introduced next.
in Figure 1, where the downward arrows denote a flow ofhe criteria are used in Section 5 to evaluate the different
queries, and the upward arrows denote a flow of data. Adtratum architectures.

boxes denote software components. The round boxes denj¢ modifications to the underlying DBMS are required
components that we can alter, and the square boxes dengig, pgms is used entirely as a black-box by the stratum.
components.we cannot alter, i.e., black-boxes: There 3om the DBMS'’s point of view, the stratum is an applica-
three levels in the stratum approach. The application lIevgh, The stratum uses only the DBMS’s, or a middleware's,
consists of the applications that access the DBMS. At they |evel interface (CLI) and does not rely on the DBMS
stratum level, the stratum is implemented as an interface Eféing extended with any temporal functionality. Because
the DBMS. Finally, at the representational level, we have thg,q stratum encapsulates the DBMS entirely, it is the only
DBMS where the data is actually stored. application that uses the DBMS directly. It is important
that the stratum does not require the DBMS to be modified
[Application] [Application] [Application] because we do not have the source code for the DBMS
available.

Application Level

Minimal impact on middleware The stratum may not use
the DBMS's native CLI, but may instead use a generic API,

} e.g., ODBC [13]. We allow changes to this middleware,

saumied Which can be used in the implementation of the stratum (to
representationd L e discussed in Section 3.2) because generic APIs are open
standards with their source code available. An example
can be to change the middleware to initiate a temporal
SQL-t0-SQL-92 conversion. The criterion on middleware is

DBMS

Figure 1. The Stratum Approach

more flexible than the criterion on the DBMS because we dshould be as fast as hand-optimized SQL-92 code for the
not assume we have the specification or the source code &ame purpose. Otherwise, application programmers may not
the DBMS. Minimal impact on middleware is important towant to use the automatic converter.

avoid side effects on existing applications. DBMS independence The stratum should be independent

Independence of applications The stratum implemen- Of the underlying DBMS. This may be achieved by using
tation should encapsulate the DBMS for all applicationsstandards, such as SQL-92. It is also desirable that the tech-
Applications implemented using the DBMS directly, e.g.niques used in the implementation of the stratum be generic.
via its native CLI, and applications using the DBMSAS an example, we want to avoid that the temporal SQL-to-
indirectly, e.g., via a library, should all see the data modeé$QL conversion uses recursive SQL as found in IBM's DB2,
exposed by the stratum. If applications do not see the sarit not in most other DBMSs.

data model, several versions of new applications must be The criteria are somewhat conflicting. As examples, the

implemented, and existing applications may be affected byndependence of applications” criterion may conflict with
the addition of time attributes to tables they use. the “adequate performance” criterion, and the “maximum

reuse of existing technology” criterion may conflict with the

Maximum reuse of existing technology We want a thin . 27 .
9 oy . “DBMS independence” criterion. The stratum implementor
stratum and therefore want to reuse as much of the function-

ality of the underlying DBMS as possible. We do not wan ust consider thesg trade-offs.)
. . . ; Several observations are in order for a stratum that fulfills
to implement functionality already in the DBMS, e.g., the

loa and the transaction managers. Onlv functionalit noeEII the criteria. First, no legacy application that now uses the
9 gers. y Y NCtratum was affected when the stratum was introduced (this

found in the DBMS should be implemented in the stratum. . . .
S X . .assumes that the temporal SQL is upward compatible with

The motivation for maximum reuse and a thin stratum I3

S) . . QL-92). They work as before and have the same perfor-
that limited resources are available for implementing the o)
stratum mance. However, legacy applications not using the stratum
' o o _ will be affected if table they use are altered to support time.
Gradual availability of temporal functionality Again, Second, it is not possible to encapsulate the DBMS from
because we assume limited resources and because an egdyDBA's point of view. The DBA must be aware that, e.g.,
return on the resources invested in the development gfples have been extended with time attributes to implement
the temporal DBMS is desirable, it should be possible tehe built-in support for time offered by the stratum. Third,
make new temporal functionality available in a stepwis@|| update statements on temporal tables must be performed
fashion. This provides a foundation for early availabilityyia the stratum if integrity constraints specified in the stratum
of a working temporal DBMS with functionality that may are to be enforced. Alternatively, the stratum must rely on the
increase gradually. Gradual availability is important to bentegrity constraint mechanisms of the DBMS to implement

able to demonstrate and evaluate temporal fUnCtiona”ty. new tempora| constraints. Otherwise’ it may be possib|e to

Retention of desired properties of the underlying DBMS update a temporal table to an inconsistent state, by circum-
The underlying DBMS satisfies core database propertieggnting the stratum. Finally, to make it possible for the stra-
e.g., the ACID properties of transactions. We want téum to do semantic checking of temporal SQL queries, all
retain these properties in the stratum, so that applicatioR®PL statements altering tables to support time dimensions
are not adversely affected by a stratum being interpose@ust be executed via the stratum.

The criterion ensures thgt the functiona_lity provideq b)é)) Stratum Implementation Approaches

the stratum is an extension of the functionality provide)]

by the underlying DBMS. However, it also means that if 1he nextstep is to explore how a stratum may be imple-

the underlying DBMS does not ensure a certain databaZented. The outset is the general architepture from Figure 1.
property, the stratum will not support it either. We assume that we have a set of applications that use tempo-

) ral SQL, but that we do not have a temporal DBMS. There-
Adequate Performance We define adequate performance o e simulate a temporal DBMS by using a conventional

as follows. First, legacy applications should have the samEaMS and interposing a stratum between the applications
performance as before a stratum is interposed. Performar}ﬁ?d the conventional DBMS

is essential to the acceptance of temporal functionality. We The stratum can be implemented in different positions
cannot require existing (legacy) applications to be reWrittel%ading to the following three overall architectures, each of

because new applications are built that use temporal supPQlhich is explored in more detail in the sequel
Second, temporal queries on temporal databases shoul '

be as fast as the corresponding SQL-92 queries on thee Interposing a stratum directly between the applications
corresponding “snapshot” databases with temporal data. Put and the conventional DBMS.

differently, SQL-92 code, for temporal-data access, gen- e Interposing a stratum in middleware (e.g., ODBC) be-
erated by the stratum’s temporal SQL-to-SQL conversion tween the applications and the conventional DBMS.

e Interposing a stratum using a preprocessor software When a stratum is interposed in a proprietary library,
component. as shown in the Sybase example, we will assume that
no temporal-SQL code is passed as a parameter, but that

In the subsequent discussions of the three architecturéise library implements high-level functions specific to the
we will only consider applications where an API is used talatabase being managed. For example, if an employee ta-
communicate with the DBMS. This is a general approach tble is present, the library may implement a functiore-
accessing a DBMS. ate Employeé<parameters-) that creates a new employee,

The discussions and figures use sample specific AP&pecified by theparameters by inserting a tuple into the
e.g., the DBMS-specific APIs for the DB2, Oracle, ancemployee table in the underlying DBMS. Note that in the
Sybase DBMSs. Different specific DBMSs are used simplgroprietary-library approach, no SQL-92 code is passed as
to make the discussion easier to follow, and we do not ire parameter. This is in contrast to the API approach, and it
vestigate the differences between, e.g., between the DB2 agides the two approaches different properties.

Sybase APIs—from our point of view, they are simply rep- To implement a stratum by interposing it directly, the stra-

resentatives of DBMS-specific APIs. Similarly, we use theum must support an API (or library interface) that is a su-

ODBC API [13] simply as a representative of any generigerset of the API (or library) the applications used before

API (because it is the best documented such one). We coultk stratum was interposed. We next turn to discussing the
have used other generic APIs such as the JDBC API [10] examples in Figure 2 in greater detail.

the Perl DBI API [3]. The Sybase application to the left in Figure 2 is an exam-
3.1 Interposing a Stratum Directly ple of an application that uses a proprietary library. Before

)) ~ the stratum was interposed, the Sybase application used the

Interposing a stratum directly between the applicationsyoprietary library, which, in turn, used the Sybase DBMS.
and the DBMS is illustrated in Figure 2. As for Figure 1,after interposing the stratum in the library, we do not want
upward and downward arrows denote the flow of queries aRg aiter the possibly many applications that use this library.
data, respectively. The round boxes and the square boXgsiead we change the implementation of the library. We re-
are software components that we can and cannot alter, fgn or strictly extend, the library’s interface to the applica-
spectively. The dashed lines show the input interface and thgns. we have the flexibility in the stratum to either make it
output interface of the stratum. use a DBMS-specific API or a generic API. This flexibility is

indicated in the figure by the arrows from the proprietary li-
& bese A Application Cracle App. brary at the stratum level to the Sybase API and to the Driver
sing Lib. Using ODBC Using API .
Manager API at the representational level.

In the middle of Figure 2, we have an example of an
ODBC application which, before the stratum was interposed,
was linked to the ODBC driver manager. After the stratum is
interposed, the application is connected to a stratum ODBC
driver manager component. This component must comply
fully with the ODBC API specification. When the ODBC
application connects to a DBMS (now via the stratum), the
stratum converts the arguments passed, if necessary. Again,

o AF \ we have the flexibility in the stratum to either map the input
Sybase DB2 Orade API calls to a generic API or a DBMS-specific API.
pBMS pBMS pBmS The example to the right in Figure 2 shows an Oracle ap-
_)) plication that used the Oracle-specific call-level interface be-
Figure 2. Interposing a Stratum Directly fore the stratum was interposed. After the stratum is inter-

Before the stratum was interposed in Figure 2, the ODB@osed the application uses the component at the stratum level
Translation and Oracle Translation components did not exighat complies with the Oracle call-level interface. The Ora-
Further, the proprietary library was not temporally enhanced@le call-level interface componentin the stratum has the same
The applications were linked with the Proprietary Libraryfunctionality as the stratum ODBC driver manager, convert-
the ODBC driver manager, or the Oracle API. ing temporal SQL to SQL-92 and forwarding the function

After the stratum is interposed, the API calls made by thealls.
applications are intercepted (the ODBC and Oracle examples Studying the input and output APIs of the stratum compo-
in Figure 2). The temporal-SQL code in the call is translatedents, it can be seen that the six combinations shown in Fig-
to SQL-92 code, and the stratum calls a DBMS or the drivarre 3 exhaust the possibilities. Interposing a stratum directly
manager at the representational level with this code. between the applications and the DBMSs or driver manager

Driver Manager

Sybase| DB2 | Oracle
Driver | Driver | Driver

thus yields a total of six specific architectures forimplementhe arguments in the call contain temporal SQL that must

ing a stratum. be translated, performs the translation if necessary, and then
Input Interface Output Interface forwards the call and translated arguments to the appropriate
Proprietgry Library Specific API “plain” ODBC-driver. By “plain” we mean an off-the-shelf
{ Specific API } X { Generic API } ODBC driver. In Figure 4 the three ODBC driversin the mid-
Generic API dle, i.e., the Sybase, DB2, and Oracle drivers, are the “plain”

ODBC-drivers. With this approach, the paths taken within
the driver manager are from the API through “Translate” to
3.2 Using Middleware as the Stratum a “plain” driver.

Next, we tumn to the use of middleware for implement- 1Nhe other alternative when using ODBC is to implement
ing a stratum. Again note that we use ODBC as our pré—he stratum entirely in an ODBC-driver. The driver manager

totypical middleware only because it is a mature and WeIIi-S then not alt_ered. Inste_ad, the translation is done in “tempo-
documented interface. Other types of middleware such 5" ODBC drivers. In Figure 4, we show two types of such
JDBC and DBI are based on ODBC and resemble it. Th temporal” driver. To the left, there is a “Temporal Sybase
idea of using ODBC as the stratum is shown in Figure Zprive_r," and to the_right, there is a “Temporal ODBC Driver.”
The dashed arrows inside the driver manager indicate diffef/€ discuss each in turn.

ent paths that can be taken and are explained further shortly. USing 2 DBMS-specific “temporal” ODBC driver, as ex-
emplified by the “Temporal Sybase Driver,” when an appli-

PowerBuilder cation makes an ODBC call, the driver manager performs
Using Lib. the same actions as for a “plain” ODBC driver: it simply for-
wards the call and arguments. In the “temporal” driver, tem-
: . poral SQL is converted to SQL-92, and the DBMS is queried.
it [E‘;":\Z’Z‘ggg} [iﬂﬁgg’é} [gﬁ%ﬁ‘g’g When using a generic “temporal” ODBC driver (i.e., the

“Temporal ODBC Driver”), the driver manager forwards the
call and the arguments to the driver. The generic “temporal”

Figure 3. Interposed Stratum Interfaces

i P 7 driver converts temporal SQL to SQL-92. It does not forward
the call directly to a specific DBMS, but instead reconnects
! e ! to the ODBC driver manager. This second connection uses
Tempord | Sy | 0852 | G [Tampord the “plain” driver for the appropriate specific DBMS. The
YPae | Driver | Driver | Driver | 9PEC reconnection to the driver manager is possible because an
f ODBC driver can function as an application.
777777777 /\ The combinations of input and output from the stra-
N * * tum components using the ODBC driver architecture as
Sybase DB2 Oracle . . .
DBMS DBMS DBMS the stratum are shown in Figure 5. The architecture pro-
vides a total of three specific stratum architectures: (1) A
Figure 4. Using ODBC as the Stratum generic APl/specific APl architecture obtained by imple-

£1enting a DBMS specific “temporal” ODBC driver; (2) a

Both before and after the stratum is interposed in Figure . . : . :
the applications communicate with the ODBC driver mandeneric APl/generic APl architecture realized by implement-
ager ing a generic “temporal’ ODBC driver; and (3) a generic

The stratum can be implemented in two places using %Pllspecn‘lc API achieved by adding a translation compo-

generic APl as ODBC. First, the stratum can be implement _rt]t t? the drlmr r(;l_z:fnage{[r. hNote_éhatt_thei\ _fwst tanddthlrotl art-
within the driver manager. This is indicated with the compo? lectures, while ditierent, have identical input and outpu

nent “Translate” in the figure. Second, the stratum can Bgterface.

. . : . o Input Interface Output Interface
implemented entirely in an ODBC driver. This is indicated . Specific API
with the components “Temporal Sybase Driver” and “Tem- { Generic API } { Generic AP }
poral ODBC Driver.”

When implementing the stratum within the driver man- Figure 5. ODBC Stratum Interfaces

ager, the driver manager itself is extended by a componeg
that translates temporal SQL to SQL-92. When an appli-
cation makes an ODBC call, the driver manager normally The third overall architecture for implementing a stratum

just forwards the call (assuming a connection has been és+to use a preprocessor. The idea is shown in Figure 6, where
tablished). With the extra temporal SQL-to-SQL-92 transthe dashed arrows show the flow of program code. A stratum
lation component added, the driver manager checks whethimplemented in a preprocessor does the conversion at com-

53 Preprocessing

pile time, as opposed to the two overall architectures disimples of their use. Specifically, we have tried to categorize
cussed previously, where the stratum does the conversionaditthe existing temporal DBMS implementations found in a
runtime. The preprocessor architecture is therefore only pascent survey [4] that use the stratum approach. Where we
sible for applications that do not generate temporal SQL codeve not been able to find an example relating to temporal
at runtime, e.g., it cannot be used for applications handlingBMS implementation, we discuss non-temporal examples.
ad-hoc queries against a temporal DBMS. The preprocessor

idea is widely used to embed SQL code into a host languageq Interposing a Stratum Directly

such as C or COBOL. N . o .
As shown in Figure 3, there are six combinations of input

[&/baseApp,} [puwergundﬂ [App“canon} [Oracle App } and output from the stratum components. The resulting six
Using AP! Using ODBC | | Using ODBC Using AP different architectures will be discussed in turn.
,,,,,,, O N L U S The proprietary library/specific APlarchitecture can be

RN used if a site has a large number of applications using a single
DBMS and wants to change the underlying DBMS to a tem-

poral DBMS. The applications are targeted towards a specific

******* R R bR R EEEEEEE DBMS that is considered a strategic component. There is no
. - " ’ for porting the library t t different DBMS
- F— Applicaion Orecle App reason for porting the library to support different DBMSs.

Using API Using ODBC Using API Using API The advantage of using a single DBMS is that it is pos-
\ sible to use all the features of the DBMS. It may have “that

one essential feature,” providing the reason why this specific

— DBMS is used. The feature can be a hardware feature, e.g.,

Driver Manager

the DBMS runs on an IBM mainframe, or a software feature,
ybasg DB2 | Oredle e.g., it supports data blades.
We assume this architecture can be used, e.g, for com-
/ panies that are extensively using one DBMS in their appli-
» - - cations, e.g., banks and insurance and telephone companies.
Sybase DB2 Oracle . .o
DBMS DBMS DBMS The DBMS may be a part of a high-performance mission-
critical transaction processing system. This architecture has
Figure 6. The Preprocessor Architecture been used by the Swiss Regional Banks to implement a

There is no difference between the architectures befofitemporal DBMS library on top of Oracle 7.3 [2].
and after the preprocessor stratum is interposed. The sourcel he proprietary library/generic APlarchitecture can be
code of the “temporal” applications is converted using a preised if a company has an existing library targeted towards a
processor, being compiled into an executable. The onfpecific DBMS which is used by a large set of applications.
difference is that the preprocessors are extended. FirstHg@wever, the company now wants to add temporal support
preprocessor converts temporal-SQL code to SQL-92 cod®.the DBMS. Further, the company gradually wants to move
Next, the SQL-92 code is run through the preprocessor suf§om a closed environmentto an open one. Instead of chang-
plied by the DBMS vendor. We do not show the DBMSING all the applications, the proprietary library is reimple-
vendors’ preprocessors in Figure 6; rather, the two preprfiented to support the mapping from temporal SQL to SQL-
cessing steps are both done in the preprocessor componé#s To make the library open, the reimplementation makes
at the stratum level. connections to DBMSs via a generic API, e.g., ODBC in-

As an example consider the Sybase application usirfgead of via a DBMS-specific API.
the Sybase API. Before the temporally-enhanced application The Perl 5 ODBC module [14] is an example of this ar-
codeis used’ itis run through the “tempora|” Sybase prepr@hitecture. The module makes it pOSSibIe to access the C-
cessor at the stratum level. This converts the temporal S@&nguage ODBC API from Perl programs. Note that the Perl
in queries to SQL-92 and may convert the AP used to beifgDBC module is an example of a library that is schema in-
either the Sybase-specific API or the generic ODBC API. dependent. The module is not built to support a specific set

The different type of input and output from the straturrPf applications, but targets a generic API, making it applica-
components are the same as for interposing a stratum direc@i¢ to any database. In contrast, the Swiss bank proprietary
as shown in Figure 3, leaving six specific architectures fdiorary/specific API example mentioned above is a database-
building a temporal DBMS in a preprocessor. specific, or schema-dependent, library where the library im-

.. . . lementor is aware of the underlying schema of the DBMS
4 Applications of the Different Architectures '?argeted. ying

In this section we discuss the utility of the different stra- The specific APl/specific AParchitecture can be used
tum architectures and, when possible, provide concrete ewhere a large set of applications use only one DBMS.

The architecture is more general than using the propri- An example is the NNODBC driver [11], which allows
etary library/specific API architecture because the specificsers to query an NNTP news server with a subset of SQL-
API/specific API architecture is schema independent. TH&2 via ODBC. The NNODBC driver encapsulates the news
architecture converts the DBMS-specific API calls, and naterver with a relational interface, i.e., makes it look like a ta-
only the calls to the proprietary library. It is likely to be ble from the driver manager’s point of view. Another similar
used for the same reasons as the proprietary library/speciéixample is the flat-file ODBC driver [13] that allows users to
API architecture: a specific DBMS is a strategic product, anquery ASCII files via SQL.

all the features of the specific DBMS can be utilized in the Thegeneric APl/generic AParchitecture is useful when
mapping, possibly leading to better performance. The archipplications are connected to different DBMSs via a generic
tecture is also useful for custom-built applications where thaPI, but there are no DBMS-specific drivers available for
DBMS to be used is known at design time, and where thisie DBMS to be used. However, there is a “temporal” driver,
DBMS is used throughout the lifetime of the applications. which bridges to a generic API for which a DBMS-specific

The architecture can be used by the major DBMS vendodsiver exists.
to extend their database products with temporal support. Dif- An example of this architecture is the JDBC-ODBC
ferent research prototypes have added temporal supportidgdge [10], which allows Java applications, using the
existing DBMSs by using this architecture, e.g., Chronologgeneric JDBC API, to access databases via ODBC. As a dif-
HDBMS, TimeDB, and T-Square DBMS [4]. These are alference from the example shown in Figure 4, not one but two
examples of temporal extensions of a specific conventiondifferent driver managers are used. The applications using
DBMS. The prototypes are not implemented as an API conhe JDBC-ODBC bridge connect to the JDBC driver man-
version. Instead, they convert a temporal SQL dialect tager. The JDBC-ODBC driver then connects to the ODBC
SQL-92 (in fact, to vendor-specific SQL-92 dialects) andiriver manager, which establishes a connection to a specific
then query the SQL-92 database. However, they all adopBMS.
the the overall idea of the specific API/specific APl architec- The extended driver managerchitecture is an alterna-
ture. tive to the generic APIl/generic API architecture. Extending

The specific APl/generic AParchitecture can be used if the driver manager has the advantage that only a single soft-
the source code from an application generator tool contaidgre components has to altered to provide temporal support
DBMS-specific API-calls and the user prefers the applicatioim multiple underlying DBMSs.
to access another DBMS, e.g., via ODBC.

Thegeneric API/specific ARArchitecture can be used if a
set Of ODBC app|icati0ns haVe a performance problem and The preprocessor approach iS a Simp|e one that iS cur-
the applications are only connected to one specific DBM$ently in wide use for permitting the embedding of SQL code
By interposing a stratum that connects directly to the DBM$, host language code, e.g., C/C++, Pascal, and COBOL
instead of using the ODBC driver manager, it may be possipde. Such host language code is run through a preprocessor
ble to enhance the performance of the applications by moyefore being compiled. The preprocessor converts the em-
ing temporal functionality from the stratum into the DBMS,pedded SQL code into, e.g., function calls using a DBMS-
e.g., as stored procedures. specific API. The converted source code is then compiled. In

The generic APl/generic APhrchitecture can be used the stratum approach, this scenario must be extended with a
where a set of ODBC-enabled applications are connectedt@mporal SQL-to-SQL-92 conversion.
several DBMSs, each of which is updated to support tem- The combinations of input and output to the stratum level
poral data. When the temporal SQL-to-SQL-92 conversiogre shown in Figure 3. The main difference between inter-
occurs before the driver manager, all DBMSs previously affposing a stratum directly and using a preprocessor architec-
cessed can still be accessed without building a converter fgjre is that the former does the conversion of temporal SQL
each specific DBMS. to SQL (and possiblely between APIs) at runtime, whereas
4.2 Using Middleware as a Stratum the latter do_es the F:onversion at compile time. For. this rea-

son, we omit the discussion of all six specific architectures

For this type of architecture, the combinations of inpuaind instead refer the reader to Section 4.1. However, we have
and output to the stratum level are shown in Figure 5. the following comments on two of the specific architectures.

The generic API/specific AParchitecture is the normal Thespecific API/specific ARireprocessor architecture is
way of using ODBC. A set of applications are using a DBMShighly relevant for DBMS vendors. As already mentioned,
which is enhanced to support temporal data management. freprocessors are widely used; and a temporal preprocessor
enable the existing applications to use the enhanced DBM&ges not necessitate any changes to the underlying DBMS.
all the conversion from temporal SQL to SQL-92 is done irHowever, it does require the DBMS vendor to define a tem-
the DBMS-specific driver. poral SQL. Thespecific APl/generic APand thegeneric

4.3 Preprocessor Stratum

APIl/generic APlarchitectures are of relevance to indepento be reimplemented. For this reason, we find that the archi-
dent software houses that support more than one DBMS atettures that use an API as input interface may reuse existing
are interested in a single product that is relevant to as matgchnology better. On the other hand, using a proprietary li-
customers as possible. Again, a prerequisite is the specifidaary as input interface may provide the best possible way of
tion of a temporal SQL. ensuring gradual availability of temporal functionality. Tem-
5 Comparison of the Architectures poral f_unctio_nality can be provided on a per-table pasis. As
time dimensions are added to tables, all the functions using
The following three subsections compare the 15 specifigples must be updated. Using an API as the input inter-
stratum architectures identified in Section 3 against the Critﬁce requires more Coding before app"cation programmers
ria introduced in Section 2.2. We use the fOlIOWing notatio%an start using the tempora| functiona"ty, because these ar-
for evaluating the architectures. A table field is empty if &hitectures are more general than the proprietary library ar-
criterion is not fulfilled. A check-mark,f) indicates that a chitectures.
criterion is fulfilled, and a check-mark-plug/() indicates we assume that the architectures where the output inter-
that a criterion is fulfilled to a higher degree than requireggce is a specific API can achieve better performance than
We use NA if a criterion is not applicable to the specific arthe architectures where the output interface is a generic API.
chitecture. The justification is that the former can be tuned to a specific
5.1 Interposing a Stratum Directly DBMS, e.g., rely on stored procedures. The cost of better
The six specific architectures for interposing a stratum dRerformance is that they become dependent on the DBMS,

rectly are compared in Table 1. The criteria are listed as rov@§ Shown in the last row in Table 1.
in the table in the order they were discussed in Section 2.25.2 Using Middleware as a Stratum

The three specific architectures that use middleware as
the stratum are compared in Table 2. The leftmost generic

Input Interface || Prop. Lib.][Specific][Generic |
Output Interface || Spec.| Gen. || Spec.| Gen. || Spec.| Gen. |

No DBMS Mods. || v/ Vi Vi Vi i i API/specific API architecture is the DBMS-specific “tempo-
Minimal Impact NA | V7T NA | T NA | T ral” driver architecture. The rightmost generic APl/specific
Indep. of Apps. v v N v API architecture is the architecture that alters the driver man-
Reuse of Tech. v v vilvill vt vt ager. '
Gradual Avail. \/+ \/+ v v Vv v Input Interface Generic
Retention Props. v v ¥ ¥ ¥ V Output Interface || Spec.| Gen.]| Spec.
Adequate Perf. Na v/ Nl Vv Nai Vv No DBMS Mods. || / v/ v
Indep. of DBMS v/ Vv Nai Minimal Impact Nall i Vv
] Indep. of Apps. Vi Vi Vi
Table 1. Interposed Architectures Reuse of Tech. Vil Y ;
None of the architectures require modifications to the un- Gradual Avail. v v v
derlying DBMS. The stratum is an application that uses the Retention Props. || ' | v
DBMS; specifically, the stratum uses the public interface to a Adequate Perf. [| v* | v v
’ ' Indep. of DBMS NGl v

specific DBMS or a generic API. To implement the architec-
tures that use a generic API as either the input or output in- Table 2. Middleware Architectures
terface, no modifications are required to the middleware. Be- As can been seen from Table 2, all architectures are
cause “no modifications” is the absolute minimum impact oDBMS independent—they only rely on additions to the mid-
the middleware, we give these architectures a check-marleware. Regarding their impact on the middleware, the
plus. two “temporal” driver approaches require no changes to the
The two architectures that use a proprietary library as theilriver manager. The drivers are added to the driver manager
input interface are not independent of applications. The aps “plain” drivers. Altering the driver manager requires addi-
plications have to call the proprietary library to use the newon of software components to the middleware. The changes
temporal functionality. Even if some some applications usare likely to be isolated and do not require reimplementing
the library, this does not rule out that other applications athe entire driver manager. Having to change the middleware,
cess the DBMS directly. And as mentioned in Section 2.2ye find that this is a minimal impact.
exposing different data models to same database may causé\ll the architectures are independent of applications (the
problems. The remaining four architectures are independénput interface is a generic API), can provide temporal func-
of the applications because all calls to the input interface (aionality gradually, and retain the desired properties of the
API) are interposed. underlying DBMS. Regarding performance, the first archi-
With respect to reuse of existing technology, all architectecture can be tuned to a specific DBMS. Again, the better
tures are in compliance. However, the two architectures ugerformance is at the cost of DBMS independence. The tun-
ing a proprietary library as input interface require the libraryng is not possible for the third architecture, even though it

also uses a specific API as output interface. The DBMS3bke Facade would then be the stratum and a specific DBMS
are accessed via “plain” ODBC drivers, which cannot be alwould be a subsystem. Other types of layers, also called
tered. However, the architecture becomes independent of theappers, can be found in tHaecoratorand theAdaptor
DBMS because multiple specific APIs can be used. design patterns [8].

5.3 Preprocessor Stratum An alternative to a stratum approach to building a tempo-
. e . ral DBMS is the integrated architecture where a DBMS is
The six specific architectures for the overall preprocessor it f h and the imol o
architecture are compared in Table 3 uilt from scratch and the implementation incorporates tem-
’ poral support. The Postgres DBMS [24, 25] is the most well-
inputinterface | Prop. Lib. | Specfic || Generic] knqwn _example of such an archlte_cture. It supports trans-
Output Interface || Spec.| Gen. || Spec.] Gen. || Spec.] Gen. | action time and so-calletime travelin the query language _
No DBMS Mods. ||/ 7 i 7 7 7 PostQuel. The TemplS Temporal DBMS supports both valid

Minimal Impact NA | vF || NA | vF || NA | y7 | andtransaction time [15] and extends academic Ingres [23].

Indep. of Apps. v v N v This system implements the TQuel temporal query language
ReuseofTech. || v* [vT I v& [vT [vF [vT | [17]. (The implementation of the TemplS Temporal DBMS
Gradual Avail. VAl VA v v v v is discontinued.) The TimeMultiCal is another temporally

Retention Props. || v | v VA v_| v | enhanced DBMS built from scratch [19]. It supports multiple
Adequate Perf. Nai Y/ Nai v NG Y/ ; o A
indep. of DBMS v " Wii calendars, but ne|therval|q time nor transgctlon time. The T-
Requiem system has an integrated architecture (for contact
Table 3. Preprocessor Architectures information, see [4]). This system extends a public domain

With respect to modifications to the DBMS, impact On?:eMjo(tig/%lg?smr:o\{tngt;/Ii:S :\:fil;rt;s}gsactlon time support.

middleware, and independence of applications, the prepro- .
cessor architectures are similar to their equivalent architec- 1 e Stratum approach has recently be used forimplement-

tures (based on input and output interface) for imposing 39 & temporal DBMS prototype, called TimeDB, which sup-
stratum directly, as discussed in Section 5.1. ports both valid time and transaction time [22]. It is built on
All the preprocessor architectures are very good fdiPP of the Oracle DBMS and supports the ATSQL2 temporal
reusing existing technology. The preprocessor approachG&€ry language [20], a descendent of the TSQL2 [18] tempo-
widely used, so we assume DBMS vendors and softwafé@! querylangl_Jage. The Tiger prototype [7] is a close relative
houses have experience with implementing preprocessorsdh1MmeDB. Itimplements ATSQL [6] and can be tested on-
general. Further, the preprocessor architectures make fine-
coupling between the stratum and the DBMSs lower because A mixture of an integrated and a stratum architecture is
there is no run-time interaction between the stratum and tif@cumented in [27]. Here, a temporal DBMS prototype sup-
DBMSs. The strata (preprocessors) are only used at compiRorting valid time is implemented partly on top of the Ingres
time, not at run-time. We also assume that because of th&BMS and partly as an extension of the Ingres DBMS. The
widespread use, many applications programmers are familifgres kernel is extended with support for an interval data
with the concept of a DBMS preprocessor. type. The rest of the temporal functionality is built on top of
Regarding performance, we have rated the preprocesdfe extended kernel.
architectures similar to the performance of the architectures Vassilakis et al. [28] have provided a survey of temporal
when the stratum is interposed directly. However, we belieM@BMS architectures that complements the study provided by
that the performance of the preprocessor architectures willis paper. While both papers present surveys, there are fun-
be better because queries are optimized at compile time idamental differences. They describe and evaluate three ar-
stead of at runtime. As before, we assume that performanckitectures that provide built-in temporal support in a client-
and DBMS independence are inversely related for the archderver environment; in contrast, we have explored 15 stra-
tectures. tum architectures. More specifically, Vassilakis et al. do not
assume that the underlying DBMS is a black-box, as is as-
6 Related Work sumed here. Next, they assume that temporal SQL is not,
The use of strata, or layers, is a general software desigmd cannot be, translated to regular SQL. Not performing
technique useful for decreasing the complexity of systemthis translation leads to very different types of architectures.
The use of a layer can be found in several design patterir example, query optimization must be partly done in the
TheFacadedesign pattern [8] can be used to provide a highbBMS and partly in the stratum. Further, they assume that
level interface to subsystems. The Facade pattern is usefydplication may connect directly to the underlying DBMS,
for layering the system and can do work on its own, e.g., iin contrast, we disallow direct access from applications to
the interface to the subsystems does not apply directly to tiige underlying DBMS because this may cause problems with
interface provided by the Facade. In the context of this papegspect to data integrity, as discussed in Section 2.2.

Finally, in [26] it is discussed how a temporal DBMS can [5] M. H. Bohlen, M. D. Soo, and R. T. SnodgrasSoalescing
be implemented on top of an existing system with a minimal in Temporal DatabasesVLDB Proceedings, pp. 180-191,

effort. Several implementation techniques are covered. 1996.
[6] M. H. Bdhlen and C. S. JenseA Seamless Integration of
7 Summary Time into SQL TR R-96-2049, Aalborg University, 1996.

Building a temporal DBMS from scratch is a daunting [7] M. H. Bbhlen. The Tiger Bitemporal Database Prototype
task, which may only be successfully taken on by the major www.cs.auc.dk/ Nt'.geradm/ ‘Pec' 1997,

DBMS vendors. To enable the efficient implementation of [8] E. Gamma et al. Design Pattems: Elements of Reusable
L . e . Object-Oriented SoftwaréAddison-Wesley, 1995.

_appllcatlons that may benefit from bU|It-|_n support for time [9] J. Gray and A. Reuter.Transaction Processing: Concepts

in the DBMS ano! to enfible experimentation Wlth gtemporal and TechniquesMorgan Kaufmann Publishers, 1993.

DBMS, we have investigated how the task of building atemr; g . Hamilton and R. CattellJlDBC: A Java SQL API version

poral DBMS can be reduced by building ontop of anexisting ~ 1.2q JavaSoft, 1997.

conventional DBMS, maximally reusing its functionality. [11] K. Jin. NNTP ODBC Driver ftp.uu.net/pub/ -

A set of criteria for evaluating a stratum architecture is database/perl-interfaces/other/ , Dec. 1997.
proposed. Three overall architectures to building a stratuifl2] D. Lomet and B. SalzbergAccess Methods for Multiversion
are identified and fifteen specific architectures are discussed. Data ACM SIGMOD, pp. 315-324, 1989.

We categorize the existing temporal DBMS implementationEL3] Microsoft Corp.Microsoft ODBC Software Development Kit
that we are aware of according to the specific architectures, Version 2.0.Microsoft Press, 1994.

The specific architectures are then compared against oldtl D- Roth. The Win32:ODBC Module www.roth.net/ -
criteria. There is no best architecture. Which architecturg __ 0dP¢/ » Dec. 1997. ,
is preferred depends on the situation where the stratum is to?) K- Ryu. A Temporal Database Management Main Memory

. . . Prototype Templs TR 26. University of Arizona, 1991.
be used. Those who want temporal functionality availabl

ickl I h d lib id 6] A. R. Simon. Strategic Database Technology: Management
quickly can use a temporally enhanced library to provide for the Year 2000Morgan Kaufmann Publishers, 1995.

temporal support. A library can also be tailored to a SP€r17] R. T. Snodgrass. The Temporal Query Language TQuel
cific DBMS for maximum performance. The DBMS vendors ACM TODS, 12(2):247—298, 1987.

can extend their products by, e.g., providing a temporallyig] R. T. Snodgrass (ed.).The TSQL2 Temporal Query Lan-

enhanced preprocessor or a stratum on top of the specific guage Kluwer Academic Publishers, 1995.

DBMS. DBMS vendors should make the temporal extensioift9] R. T. Snodgrass et al. The MultiCal System

general, requiring more work compared with only extending ftp.cs.arizona.edu/tsgl/multical/ ,1997.

a single library with temporal support. [20] R. T. Snodgrass, M. H. &@ilen, C. S. Jensen, and A. Steiner.
We believe that the best short and medium term approach Adding Valid Time to SQL/TemporaANSI X3H2-96-501r2,

to building a temporal DBMS is to build on top of an existing _ 'SO/IEC JTC1/SC21/WG3 DBL MAD-146r2, 1996.

conventional DBMS. This way, resources can be focussed dftl M- D- S00, R. T. Snodgrass, and C. S. Jendgfficient Eval-

implementing new temporal functionality without having to uation of the Valid-time Natural Join ICDE Proceedings,

reimplement existing functionalit Pp. 282-292, 1994.
P 9 Y. [22] A. Steiner et al. TimeDB www.cs.auc.dk/general-

Acknowledgements /DBS/tdb/TimeCenter/Software/ , Dec. 1997.
. . . [23] M. Stonebraker, E. Wong, and P. Krep¥he Design and
This research was supported in part by the Danish Techni- Implementation of INGRES ACM TODS, 1(3):189-222,
cal Research Council through grant 9700780, by the National 1976.
Science Foundation through grants IRI-9632569 and IRIf24] M. StonebrakerThe Design of the Postgres Storage System
9202244, and by the CHOROCHRONOS project, funded by VLDB Proceedings, pp. 289-300, 1987.
the European Commission DG XIll Science, Research arf@d5] M. Stonebraker, M. Hirohama, and L. A. Rowe.The

Development, contract no. FMRX-CT96-0056. Implementation of Postgres IEEE TKDE, 2(1):125-142,
1990.
References [26] K. Torp, C. S. Jensen, and M. HoBlen.Layered Implemen-

tation of Temporal DBMSs—Concepts and TechniquER

[1] 1. Ahn and R. T. Snodgras®artitioned Storage for Temporal R-96-2037, Aalborg University, 1996.
DatabasesInformation Systems, 13(4):369-391, 1988. [27] C. Vassilakis, P. Georgiadis, and N. Lorentzdsansaction

[2] R. Barnert and G. SchmutDie zeitbezogene Datenhaltung Support in a Temporal DBMS In Recent Advances in
bei den Schweizer RegionalbankekVirtschaftsinformatik, Temporal Databases, Springer-Verlag, pp. 255-271, 1995.
39(1):45-53, 1997. [28] C. Vassilakes, P. Geogiadis, and A. Sotiropoul@ampara-

[3] T. Bunce et al. Perl DBI APl. www.hermetic.com/ - tive Study of Temporal DBMS Architectureéah Intl. Work-
technologia/DBI/ , Dec. 1997. shop on Database and Expert Systems Applications Proceed-

[4] M. H. Bohlen. Temporal Database System Implementations ings, pp. 153164, 1996.
SIGMOD Record, 24(4):53-60, 1995.

10

