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Abstract involves computing the temporal extent of each maximum

value, which requires determining the tuples that overlap
The ability to model the temporal dimension is essen- each temporal instant.

tial to many applications. Furthermore, the rate of increase  In this paper, we present several new parallel algorithms
in database size and response time requirements has outfor the computation of temporal aggregates on a shared-
paced advancements in processor and mass storage tecmothing architecture [8]. Specifically, we focus on the
nology, leading to the need for parallel temporal database Aggregation Tree algorithm [7] and propose several ap-
management systems. In this paper, we introduce a varietyproaches to parallelize it. The performance of the parallel
of parallel temporal aggregation algorithms for a shared- algorithms relative to various data set and operational char-
nothing architecture based on the sequential Aggregation acteristics is of our main interest.
Tree algorithm. Via an empirical study, we found that the  The rest of this paper is organized as follows. Section 2
number of processing nodes, the partitioning of the data, gives a review of related work and presents the sequential
the placement of results, and the degree of data reduction ef-algorithm on which we base our parallel algorithms. Our
fected by the aggregation impacted the performance of theproposed algorithms on computing parallel temporal aggre-
algorithms. For distributed results placement, we discov- gates are then described in Section 3. Section 4 presents
ered that Time Division Merge was the obvious choice. For empirical results obtained from the experiments performed
centralized results and high data reduction, Pairwise Merge on a shared-nothing Pentium cluster. Finally, Section 5 con-
was preferred regardless of the number of processing nodescludes the paper and gives an outlook to future work.
but for low data reduction, it only performed well up to 32
nodes. This led us to a centralized variant of Time Division
Merge which was best for larger configurations having low
data reduction.

2. Background and Related Work

Simple algorithms for evaluating scalar aggregates and
aggregate functions were discussed by Epstein [5]. A dif-
ferent approach employing program transformation meth-
ods to systematically generate efficient iterative programs
for aggregate queries has also been suggested [6]. Tumas

Aggregate functions are an essential component of dateextended Epstein’s algorithms to handle temporal aggre-
query languages, and are heavily used in many applicationgates [9]; these were further extended by Kline [7]. While
such as data warehousing. Unfortunately, aggregate comthe resulting algorithms were quite effective in a uniproces-
putation is traditionally expensive, especially in a tempo- sor environment, all suffer from poor scale-up performance,
ral database where the problem is complicated by having towhich identifies the need to develop parallel algorithms for
compute the intervals of time for which the aggregate value computing temporal aggregates.
holds. For example, finding the (time-varying) maximum  Early research on developing parallel algorithms focused
salary of professors in the Computer Science Departmenion the framework of general-purpose multiprocessor ma-

- ” g ) s g chines. Bitton et al. proposed two parallel algorithms for
*This work was sponsored in part by National Science Foundation ; ; ;
grants CDA-9500991 and IRI-9632569, and National Science Foundation processing (Conventlonal) aggregate functions [1] The

Research Infrastructure program EIA-9500991. The authors assume aIIS_quueries with a Parallel M.e.rge algorithm 'CompUtes par-
responsibility for the contents of the paper. tial aggregates on each partition and combines the partial
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Table 1. Sample Database and Its Temporal
Aggregation

results in a parallel merge stage to obtain a final result. An-

other algorithm, Project hiist, exploits the ability of the Figure 1. Example run of the Sequential(SEQ)
parallel system architecture to broadcast tuples to multi- Aggregation Tree Algorithm

ple processors. The Gamma database machine project [4]
implemented similar scalar aggregates and aggregate func-
tions on a shared-nothing architecture. More recently, par- .

allel algorithms for handling temporal aggregates were pre—3' Parallel Processing of Temporal Aggregates
sented [11], but for a shared-memory architecture.

In this section, we propose five parallel algorithms for

The parallel temporal aggregation algorithms proposedthe computation of temporal aggregates. We start with two
in this paper are based on the (sequential) Aggregation Tresimple parallel extensions to the SEQ algorithm, the Sin-
algorithm (SEQ) designed by Kline [7]. The aggregation gle Aggregation Tree (abbreviated SAT) and Single Merge
tree is a binary tree that tracks the number of tuples whose(sm) algorithms. We then go on to introduce the Time Divi-
timestamp periods contain an indicated time span. Eachsjon Merge with Centralizing step (TDM+C) and Pairwise
node of the tree contains a start time, an end time, and avierge (PM) algorithms, which both require more coordi-
count. When an aggregationtree is initialized, it begins with nation, but are expected to scale better. Finally, we present
a single node containing 0, 00,0 > (see the initial tree in the Time Division Merge (TDM) algorithm, a variant of

Figure 1). TDM+C, which distributes the resulting relation, as differ-
In the following example [7], there aretuples to be in- zrtga;ti;ahdn:‘;om the centralized results produced by the other
serted into an empty aggregation tree (see Table 1(a)). The 9 '

start time valuel8, of the first entry to be inserted splits the . .

initial tree, resulting in the updated aggregation tree shown3-1- Single Aggregation Tree (SAT)

in Figure 1. Because the original node and the new node

share the same end datecef, a count of 1 is assigned to The first algorithm, SAT, extends the Aggregation Tree
the new leaf node 18, 00,1 >. The aggregation tree after algorithm by parallelizing disk /0. Each worker node reads
inserting the rest of the records in Table 1(a) is shown in its data partition in parallel, constructs the valid-time peri-

Figure 1. ods for each tuple, and sends these periods up to the coordi-
nator. The central coordinator receives the periods from all
To compute the number of tuples for the peri8dl2)  the worker nodes, builds the complete aggregation tree, and

in this example, we simply take the count from the leaf (etyrns the final result to the client.
node[8,12) (which is 1), and add its parents’ count val-

ues. Starting from the root, the sum of the parents’ counts ;

is0 + 0 + 1 = 1 and adding the leaf count, gives a total of 3.2. Single Merge (SM)

2. The temporal aggregate results are given in Table 1(b). ) .
The second parallel algorithm, SM, is more complex

Though SEQ correctly computes temporal aggregates, itthan SAT, in that it includes computational parallelism
is still a sequential algorithm, bounded by the resources ofalong with 1/O parallelism. Each worker node builds a local
a single processor machine. This makes a parallel methochggregation tree, in parallel, and sends its leaf nodes to the
for computing temporal aggregates desirable. coordinator.



Unlike the SAT coordinator, which inserts periods into node traverses its aggregation tree in DFS order, propagat-
an aggregation tree, the SM coordinator merges each of theng the count values to the leaf nodes. The leaf nodes now
leaves it receives using a variant of merge-sort. The use ofcontain the full local count for the periods they represent,
this efficient merging algorithm is possible since the worker and any parent nodes are discarded. After all worker nodes
nodes send their leaves in a temporally sorted order. Finally,complete their aggregation trees, they exchange minimum
after all the worker nodes finish sending their leaves, the (earliest) start time and maximum (latest) end time values

coordinator returns the final result to the client.

3.3. Time Division Merge with Coordinator
(TDM+C)

Like SM, the third parallel algorithm also extends the
aggregation tree method by employing both computational
and /0O parallelism (see Figure 2). The main steps for this
algorithm are outlined in Figure 3.
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Major Steps for the TDM+C Algo-

3.3.1 Overall Algorithm

TDM+C starts when the coordinator receives a temporal
aggregate request from a client. Each worker node is in-

to ascertain the overall timeline of the query.
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Figure 4. Timeline divided into
forming a global partition set

p partitions,

The leaves of a local aggregation tree are evenly split
into p local partitions, consisting of a period and a tuple
count. Because each partition is split to have the same (or
nearly) the same number of tuples, local partitions can have
different durations. The local partition set (containirnggr-
titions) from each processing node is then sent to the coor-
dinator.

The coordinator takes gillocal partition setsand com-
putesp global partitions (how this is done is discussed in
the next section).

After computing the global time partition set, the coor-
dinator then naively assigns the period of the partition
to theit” worker node, and broadcasts the global partition
set and respective assignments to all the nodes. The worker
nodes then use this information to decide which local ag-
gregation tree leaves to send, and to which worker nodes to
send them to. Note that periods which span more than one
global partition period are split and each part is assigned ac-
cordingly(split periods do not affect the result correctness).

Each worker node merges the leaves it receives with the
leaves it already has to compute the temporal aggregate for
their assigned global partitions. When all the worker nodes

structed to build a local aggregation tree using its data par-finjsh merging, the coordinator polls them for their results

tition knowing the number of worker nodes,participating
in the query.

After each worker node constructs its local aggregation
tree, the tree is augmented in the following manner. The

in sequential order. The coordinator concatenates the results
and sends the final result to the client.

1A total of p? local partitions are created yworker nodes.
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3.3.2 Calculating the Global Partition Set
Figure 6. Intermediate Aggregation Tree

We examine in more detail the computation of the global
partition set by the coordinator. Recall that the coordinator
receives from each worker node a local partition set, con- As an example, suppose we inserted the first three lo-
sisting ofp contiguous partitions. The goal is to temporally cal partitions, and now we are inserting the fourth one
distribute the computation of the final result, with each node [0,30)(15). The current modified aggregation tree, before
processing roughly the same number of leaf nodes. inserting the fourth local partition, is shown in Figure 6a.
As an example, Figure 5 presefitiocal partitions from ~ Notice that for leaf node [5,9)(50), the count value is set to
3 worker nodes. The number between each hash mark segd0 instead ofl (first difference).
menting a local timeline represents the number of leaf nodes  The second and third differences are exemplified when
within that local partition. The total number of leaf nodes the fourth local partition is added. At the root node, we see
from the3 nodes is30 - 3 + 15 -3 + 30 - 3 = 285. The that the period for this fourth partition overlaps the periods
best p|an is haviné% = 95 |leaf nodes to be processed by of the left sub-tree and the rlght sub-tree. In the original
each node. Figure 4 illustrates the computation of the globalaggregation tree, we simply addetb a node’s countin the
partition set. left sub-tree and the right sub-tree at the appropriate places.
We modified the SEQ algorithm to compute the global Here, we see the thir_d difference. We split this partition
partition set, using the local partition information sent by count of30 in proportion to the durations of the left and
the worker nodes. We treat the worker node local parti- 19ht sub-trees. The root left sub-tree contains a period [0,5)
tion sets as periods, inserting them into the modified ag- for a dpratlon of5 tlme unltg. The fourth local partition
gregation tree. From Figure 5, the first period to be in- period is [0,30), 080 time units. We compute the left sub-
serted is [5,9)(50), the fourth is [0,30)(15), and the seventhtree’s share of this local time partition’s counté%’_o—o)) :
is [0,10)(30), and the ninth(last) is [1000,5000)(30). This 15 = 2, while the right sub-tree’s shareis — 2 = 13. In
use of the Aggregation Tree is entirely separate from the usethis case, the left sub-tree leaf node [0,5) now has a count of
of this same structure in computing the aggregate. Here we2 (see Figure 6b). We now pas3 down the root right sub-
are concerned only with determining a division of the time- tree, increasing its right leaf node count from [5,9)(50) to
line intop contiguous periods, each with approximately the [5,9)(52) as its share of the newly added partition’s caint,
same number of leaves. is added, by using the same proportion calculation method.
There are three main differences between our Modified At leaf node [9,800)(50), the inserted partition’s count is
Aggregation Tree algorithm used in this portion of TDM+C how down tol1, since2 was taken by node [5,9)(52).
and the original Aggregation Tree [7], used in step 2 of Now, the second difference comes into play. Two new
Figure 3. First, the “count” field of this aggregation tree leaf nodes are created by splitting [9,800)(50). The new
node is incremented by the count value of the local parti- leaves are [9,30) and [30,800). Leaf [9,30) receives all the
tion being inserted, rather than Second, a parent node remaining inserted partition’s count df. The count 060
must have a count value 6f When a leaf node is splitand  from [9,800)(50) is now divvied up amongst the two new
becomes a parent node, its count is split proportionally be-leaf nodes. The leftleaf node recei\@%ﬁo = lofthe
tween the two new leaf nodes based on the durations of theis0, while the right leaf node receive8. So the new left leaf
respective time periods. This new parent count becdimes node is now [9,30)(12), wherk2 comes froml1 + 1, and
Third, during an insertion traversal for a record, if the search the new right leaf node shows as [30,800)(49). Again, see
traversal diverges to both subtrees, the record count is splitFigure 6b for the result. Table 2 shows the leaf node values
proportionally between the 2 sub-trees. once all9 local time partitions from Figure 5 are inserted.
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17 0 5 Step2. Build local aggregation trees
64 5 9 Step3. While not final aggregation tree Merge
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44 30 350
43 350 800 Figure 7. Major Steps for the PM Algorithm

21 800 1000
40 1000 1500
32 1500 5000 synchronization steps that may limit the performance ob-
9 5000 10000 tained. First, all of the local partition sets must be com-
pleted before the global time set partitioning can begin. Sec-
ond, all of the worker nodes must complete their merges and
send their results to the coordinator before the client can re-
ceive the final result.

The next algorithm, PM, will attempt to obtain better
Now that the coordinator has the global span leaf countsperformance, by replacing the two global synchronization
and the optimal number of leaf nodes to be processed bysteps withog, p localized synchronization steps.
each node, it can figure out the global partition set. For each
node (except the last one), we continue adding the span leaf
counts until it matches or surpasses the optimal number of3 4. pajrwise Merge (PM)
leaf nodes. When the sum is more than the optimal number,
we break up the leaf node that causes this sum to be greater
than the optimal number, such that the leaf node countdivi-  The fourth parallel algorithm, PM (see Figure 7), dif-

sion is done in proportion to the period duration. fers from TDM+C in two ways. First, the coordinator is

As an example, refer to Table 2. We know that the more involved than in TDM+C. Secondly, instead of all the
optimal number of periods per global partitionds. We  worker nodes merging simultaneously, as in TDM+C, pairs
add the leaf node counts from the top until we reach nodeof worker nodes merge when the opportunity presents itself.
[10,30)(12). The sum at this point &, or 1 more than  \which two worker nodes are paired is determined dynami-
optimal. We break up [10,30)(12) into two leaf nodes such ¢qjly by the query coordinator.
that the first leaf node period should contain a countigf
and the newly created leaf node should contain anlys-
ing the same idea of proportional count division, we can see
that [10,28)(11) and [28,30)(1) are the two new leaf nodes.
So the first global time partition has the period [0,28) and
has a count 095.

The computation for the second global time partition
starts at [28,30)(1). Continuing on, the global time parti-
tions for this example are [0,28), [28,866), and [866,10000).

The reader should be aware that this global time partition
resolution algorithm is not perfect. The actual number of
local aggregation tree leaves assigned to each worker node Once a worker node finishes transmitting leaves to its
may not be identical. The reason is that the algorithm usesPuddy worker node, it is no longer a participantin the query.
the local partition sets, which are just guides for the global This buddying-up continues until the query coordinator as-
partitioning. When a local partition haé leaf nodes in pe- certains that only one worker node is left, which contains
riod [9,800), the global partition scheme assumes a uniformthe completed aggregation tree. The query coordinator then

distribution, while the actual leaf nodes distribution may be directs the sole remaining worker node to submit the results
heavily skewed. directly to the client. Figure 8 provides a conceptual picture

of this “buddy” system.

A portion of a PM aggregation tree may be merged mul-
tiple times with other aggregation trees. The merge algo-
We expect better scalability for TDM+C as compared to the rithm is a merge-sort variant operating on two sorted lists
SAT and SM algorithms because of the data redistribution as input (the local list, and the received list). This merge is
and its load-balancing effect. However, there are two global near linear((n), in the number of leaf nodes to be merged.

Table 2. All leaf node values in a tabular format
once all 9 partitions from Figure 5 are inserted

A worker node is available for merging when its local
aggregation tree has been built. The worker node informs
the query coordinator that it has completed its aggregation
tree. The query coordinator then arbitrarily picks another
worker node that had previously completed its aggregation
tree, thereby allowing the two worker nodes to merge their
leaves. Then, the query coordinator instructs the worker
node with the least number of leaf nodes to send the leaves
to the other node, the “buddy worker node”, which does the
merging of leaves.

3.3.3 Expected Performance
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Table 3. Experimental Case Matrix Summary

4.1. Experimental Environment

S s e N The experiments were conducted on a 64-node shared-
' ' nothing cluster of 200MHz Pentium machines, each with

A A A 128MB of main memory and a 2GB hard disk. The ma-
chines were physically mounted on two racks of 32 ma-

chines. Connecting the machines was a 100Mbps switched
Ethernet network, having a point-to-point bandwidth of
100Mbps and an aggregate bandwidth of 2.4Gbps in all-
to-all communication.

Each machine was booted with version 2.0.30 of the
Linux kernel. For message passing between the Pen-
tium nodes, we used the LAM implementation of the MPI
communication standard [2]. With the LAM implemen-
tation, we observed an average communication latency of
790 microseconds and an average transfer rate of about 5
Mbytes/second.

Merge
P‘ Pj Request

Disk Disk Disk Disk
.

Partitioned Partitioned
Data Data

Figure 8. Pairwise Merge (PM) Algorithm

3.5. Time Division Merge (TDM) 4.2. Experimental Parameters

To help precisely define the parameters for each set of

The fifth parallel algorithm, TDM, is identical to tests, we established an experiment classification scheme.
TDM+C, except that it has distributed result placement Table 4 lists the different parameters, and the set of param-
rather than centralized result placement. This algorithm eter values for each experiment.
simply eliminates the final coordinator results collection  Synthetic datasets were generated to model relations
phase and completes with each worker node having a diswhich store time-varying information for each employee in
tinct piece of the final aggregation tree. A distributed re- a database. Each tuple has three attributes, an SSN attribute
sult is useful when the temporal aggregate operation is awhich is filled with random digits, a StartDate attribute, and
subquery in a much larger distributed query. This allows an EndDate attribute. The SSN attribute refers to an en-
further localized processing on the individual node’s aggre- try in a hypothetic employee relation. On the other hand,
gation sub-result in a distributed and possibly more efficient the StartDate and EndDate attributes are temporal instants
manner. which together construct a valid-time period. The data gen-
eration method varies from one experiment to another and
is described later.

NumProcessorslepends on the type of performance
measurement. Scale-up experiments used 2, 4, 8, 16, 32,
and 64 processing nodes, while the variable reduction ex-

For the purposes of our evaluation, we chose the tempo-periment used a fixed set of 16 nodes.
ral aggregate operati€BOUNBInce it does not require that To see the effects oflata partitioningon the perfor-
the attribute itself be sent. This simplifies the data struc- mance of the temporal algorithms, the synthetic tables were
tures maintained while still exhibiting the characteristics partitioned horizontally either by SSN or by StartDate.
of a temporal aggregate computation. Based on this tem-The SSN and StartDate partitioning schemes were attempts
poral aggregate operation we perform a variety of perfor-to model range partitioning based on temporal and non-
mance evaluations on the five parallel algorithms presentedtemporal attributes [3].

The matrix in Table 3 summarizes the experiments we have Thetuple sizewas fixed at 41 bytes/tuple. The tuple size
done. was intentionally kept small and unpadded so that the gener-

4. Empirical Evaluation



Parameter Exp4.3 Exp4.4 Exp4.5 Exp4.6
NumProcessors 2,4,8,16, 32,64 2,4,8,16, 32,64 2,4,8,16, 32,64 16
Partitioning by SSN by SSN by StartDate by StartDate
TupleSize 41 bytes 41 bytes 41 bytes 41 bytes
PartitionSize 65536 tuples 65536 tuples 65536 tuples 65536 tuples
NumTuples NumProcessors*65536 | NumProcessors*65536 | NumProcessors*65536 16*65536
DataReduction 0% 100 % 0% 0/20/40/60/80/100 %

Table 4. Experiment Parameters

ated datasets could have more tuples before their size made
them difficult to work with?

All experiments except the single speed-up test used a
fixed databaseartition sizeof 65,536 tuples. This was
done to facilitate cross-referencing of results between dif-
ferent tests. Because of this, the 16-node results of the
scale-up experiments are directly comparable to the results
of the 16-node data reduction experiment.

The totaldatabase sizeeflects the total number of tuples
across all the nodes participating in a particular experiment
run. For scale-up tests, the total database size increased with Y ‘ ‘
the number of processing nodes. ? Y NumberorworkerNodes o

Finally, the amount oflata reductionis 100 minus the
ratio between the number of resulting leaves in the final
aggregation tree and the original number of tuples in the
dataset. A reduction of 100 percent means that a 100-tuple
dataset produces 1 leaf in the final aggregation tree because
all the tuples have identical StartDates and EndDates.

Time in Seconds

Figure 9. Scale-Up Results (4M tuple Dataset
with No Reduction and SSN Partitioning)

SM performs better than SATntuitively, since the
dataset exhibits no reduction, both SM and SAT sealid
periods from the worker nodes to the coordinator. The rea-
son behind SM’s performance advantage comes from the
computational parallelism provided by building local aggre-

We set up our first experiment to compare the scale-upgation trees on each worker node. Aside from potentially
properties of the proposed algorithms on a dataset with noreducing the number of leaves passed on to the coordina-
reduction. We will also use the measurements taken fromtor, this process of building local trees sorts the periods in
this experiment as a baseline for later comparisons with subtemporal order. This sorting makes compiling the results
sequent experiments. The second column of Table 4 givegnore efficiertt than SAT's strategy of having to insert each
the parameters for this particular experiment. valid-time period into the final aggregation tree.

For this experiment, a synthetic dataset containing 4M  SAT exhibits the worst scale-up performaribieis result
tuples was generated. Each tuple had a randomized SSNB not surprising, since the only advantage SAT has over the
atrribute and was associated with distinct periods of unit original sequential algorithm comes from parallelized I/O.
length (i.e..EndDate = StartDate + 1). The dataset was  This single advantage does not make up for the additional
then sorted by SSR.and were then distributed to the 64 communication overhead and the coordinator bottleReck.
processing nodes. The performance difference between TDM and TDM+C

To measure the scale-up performance of the proposed alincreases with the number of noddsor this observation,
gorithms, a series of 6 runs having 2, 4, 8, 16, 32, and 64it is important to remember that TDM+C is simply TDM
nodes, respectively, were carried out. Note that since weplus an additionalesult-collectiorphase that sends all final
fixed the size of the dataset on each node, increasing thdeaves to the coordinator, one worker node at a time. The
number of processors meant increasing the total databasperformance difference increases with the number of nodes
size. Timing results from this experiment are plotted in Fig-
ure 9 and lead us to the following conclusions.

4.3. Baseline Scale-Up Performance: No Reduction
and SSN Partitioning

randomizing the tuples in terms of StartDate and EndDate fields.
4The SM coordinator uses a merge-sort variant in compiling and con-
2The total database size for the scale-up experiment at 64 processingstructing the final results.

nodes was 64 partition®65536 tuples 41 bytes = 171,966,464 bytes. 5In SAT, all the periods are sent to the coordinator which builds a single,
3Since the SSN fields are generated randomly, this has the effect ofbut large, aggregation tree.




because of the non-reducible nature of the dataset and the
fact that scale-up experiments work with more data as the
number of nodes increase.

Among the algorithms that provide monolithic results,
PM has the best scaleup performance up to 32 notlks
is attributed to the multiple merge levels needed by PM. A
PM computation needs at ledsk, p merge levels where
p is the number of processing nodes. On the other hand,
the TDM+C algorithm only merges local trees once but has
three synchronization steps, as described in Section 3. With
this analysis in mind, we expected PM to perform better or
as well as TDM+C for 2, 4, and 8 nodes, which have 1, 2,
and 3 merge levels, respectively. We then expected TDM+C
to outperform PM as more nodes are added, but we were
suprised to realize that PM was still performing better than
TDM+C up to perhaps 50 nodes.

To find out what was going on behind the scenes, we
used the LAM XMPI package [2] to visually track the pro- With 100% reduction, PM and TDM+C catch up to
gression of messages within the various TDM+C and PM TDM. Aside from constructing smaller aggregation trees,
runs. This led us to the reason why TDM+C performed a high degree of data reduction decreases the number of ag-
worse than PM for 2 to 32 nodes: TDM+C was slowed more gregation tree leaves exchanged between nodes. TDM does
by increased waiting time due to load-imbalance (computa- not send its leaves to a central node for result collection, so
tion skew) as compared to PM. it does not transfer as many leaves as its peers. Because of

this, TDM is not impacted by the amount of data reduction

4.4. Scale-Up Performance : 100% Reduction and &S much as either PM or TDM+C which end up performing
SSN Partitioning as well as TDM.

Time in Seconds

I
32 64

I
2 4

8 16
Number of Worker Nodes

Figure 10. Scale-Up Results (4M tuple Dataset
with 100% Reduction and SSN Partitioning)

4.5. Scale-Up Performance : No Reduction and

This experiment is designed to measure the effect of a Time Partitioning

significant amount of reduction (100% in this case) on the
scale-up properties of the proposed algorithms. Table 4

gives the parameters for this experiment This experimentis designed to measure the effect of time

partitioning on the scale-up properties of the proposed algo-

This experiment is modeled after the first one but with a rithms. The settings for this experiment are summarized in
synthetic dataset having 100% reduction. This dataset was e 4 g P

generated by creating 4M tuples associated with the same . . .
period and having randomized SSN attributes. The syn- The dataset for this experiment was generated in a man-
. o imilar to the first one, but with StartDate rather than
thetic dataset was then rearranged randérmahd split into ner simiiar 1o N !
9 i sp SSN partitioning. This was done by sorting the whole

4 iti h havi les. i L
6 pgrtltlons gac aylng 65’536 tup e.s . dataset by the StartDate attribute and then splitting it into
This experiment, like the first one, is a scale-up experi- o
64 partitions of 64K tuples each.

ment. Hence, it was conducted in much the same way. Tim- Time Partitioning did not significantly help any of the

ing results from this egperlment are plotted in Figure 10 and algorithms. We originally expected TDM and TDM+C to
leads us to the following observations. benefit he ti itioning b | lized th
All algorithms benefit from the 100% data reduction ene'|t rom the time partltl.o'nln'g ut we also realized that
" for this to happen, the partitioning must closely match the

Coltm?arln?hresults ftrom thg baflellnde extp(?[[]l'mezt W'tht.r e way the global time divisions are calculated. Because we
sults from the current expeniment iead us to this observa Ion'randomly assigned partitions to the nodes, TDM did not

?ecatluse O(; the rtugh degrele of data_re?huctflp nt, the aggregtabenefit from the time patrtitioning. In fact, it even performed
lon trees do not grow as large as in the Tirst expenment. ; ;0 1yt poorer in all but the 16-node run. We attribute the

\é\mh smatILer trees,fmsertl;ons c;:c netwtpenods tskf less tm;](.asmall performance gaps to differences in how the partition-
ecause there are fewer branches o traverse betore reac 'r]ﬁg strategies interacting with the number of nodes made

the insertion points. Because all of th? pregented al(:'loritth'TDM redistribute mildly varying numbers of leaves across
use aggregation trees, they all experience increased perfort-he runs. As for SM and PM, they exhibited no conclu-

mance. sive improvement because they were simple enough to work
The aggregation tree algorithm performs at its worst case when the thOUt Con?;'_de”ng how tuples were distributed across the
dataset is sorted by time [7]. various partitions.




leaves as discussed when we observed that the performance
for TDM+C and PM caught up with TDM in the second
experiment.

Increasing the amount of data reduction improved the
P performance of the proposed algorithmisike the second
R experiment, increasing the amount of reduction improved
yd i the performance of the parallel algorithms. With higher de-
| grees of data reduction, aggregation trees became increas-
ingly smaller with fewer leaves to exchange between nodes.

Time in Seconds

‘ 4.7. Summary
8 16 32 64
Number of Worker Nodes

The empirical observations confirm that dataset parti-
tioning, result placement, data reduction effected by the ag-
gregation, and the number of processing nodes affect the
proposed algorithms in different ways. SAT and SM, as
‘ ‘ ‘ ‘ seen in Figures 9, 10, and 11, were affected most by the
w“r M number of processing nodes. Figure 12 shows that SM,
ol Tomie | SAT, PM and TDM+C were significantly affected by low
data reduction while TDM was the least affected. Also, Fig-
ures 9, 10, and 11 show that TDM has the best performance
under all situations, but only if distributed result placement
is desired. On the other hand, PM has centralized result
placement but scales well only when data reduction is high,
as seen in Figure 10. TDM+C also provides centralized re-
sult placement but does not scale-up better than PM unless
there is low reduction and the number of processing nodes
% 100 is large. Lastly, dataset partitioning only affected the TDM
variants, and even then, not substantially.

Figure 11. Scale-Up Results (4M tuple Dataset
with No Reduction and StartDate Partitioning)

Time in Seconds

I
0 20

40 60
% Reduction

Figure 12. Variable Reduction Experiment
(65536 tuples/node, 16 nodes, StartDate Par- 5 Conclusions
titioned)

Temporal aggregate computations are important opera-
tions in a temporal database system. Traditionally, this has
4.6. Performance Measurement : Variable Reduc- Peenan expensive operation in sequential database systems,

tion therefore, the question arises as to whether parallelism is a
cost-effective approach for improving the efficiency of tem-

hi . is desianed he eff ¢ poral aggregate computations.
This experiment is designed to measure the effect of a° o " main contribution of this paper is a collection of

varying amount of data reduction on the scale-up properties, | agorithms that parallelize the computation of tem-

of the proposed algorithms. The settings for this experi- ,, 5| agqregates. We ran these algorithms through a series
ment, provided in Table 4, summarizes the parameters fory¢ nertormance measurements and observed how different
this experiment. properties affected their behavior. From these observations,
For this experiment, six sets of partitions were generated.,,o provide the following conclusions which should help in

Each set had 16 partitions, one for each of the 16 processinghe design of a parallel database system’s query optimizer
nodes participating in the six runs. The partitions were gen-ha¢ selects the right temporal algorithm for a particular sit-

erated having 0, 20, 40, 60, 80 and 100 percent reduction,aion. Our recommendations are summarized in the matrix
Timing results for this experiment are plotted on Figure 12 j, Taple 5.

and lead us to the following observations.
TDM is the least affected by varying data reduction. 1. Use TDM whenever distributed result placement suf-

The low slope of TDM's performance curve in Figure 12 fices, regardless of any other parameter. As discussed
shows us that it is the algorithm least affected by variations in Section 3, distributed result placement is useful for
in local reduction. The reason for this is that, among the distributed subqueries which are parts of larger dis-

presented algorithms, TDM exchanges the least number of  tributed queries. Also, distributed result placement



Data Node | Distributed | Centralized 5. Disk-paging strategiesOur proposed algorithms rely
Reduction Count Results Results solely on main memory for storing runtime informa-
HI Small TDM PM tion, which include merged lists, aggregation trees and,
Large TDM PM message queues. A disk-paging strategy that is aware
LOW Small TDM PM of how the parallel algorithms work will allow the al-
Large TDM TDM+C gorithms to handle larger dataset sizes.

6. Deeper sensitivity analysis to other factonle have
Table 5. Matrix of Recommendations studied the effects of different parameters on the pro-
posed algorithms. It is obvious, however, that other
factors such as long-lived tuples and data distribution,
suffices when the aggregation results are not required  among others, would affect the proposed techniques.

for the entiretimeline (i.e., finding the (time-varying) Studying these effects is a ripe area for further re-
salaries of all employees for the last year). search.

2. For centralized result placement, use PM whenever
there is a high degree of data reduction. Also, for a 6 Acknowledgement
small configuration of processing nodes, having rela-
tively high reduction, PM should be used. We would like to thank Minseok Park for his great work

. on generating performance numbers for this research effort.
3. For centralized result placement, low data reduc-

tion, and larger processing node configurations, use
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