
Computing Temporal Aggregates

Nick Kline & Richard T. Snodgrass
Department of Computer Science

University of Arizona
Tucson, A 2 85721

kline,rtsQca.arizona.edu

Abstract
Aggregate computation, such as selecting the minimum

attribute value of a relation, is expensive, especially in a
temporal database. We describe the basic techniques be-
hind computing aggregates in conventional databases and
show that these techniques are not efficient when applied
to temporal databases. We examine the problem of com-
puting constant intervals (intervals of time for which the
aggregate value is constant) used for temporal grouping.
We introduce two new algorithms for computing temporal
aggregates: the aggregation tree and the k-ordered aggre-
gation tree. An empirical comparison demonstrates that
the choice of algorithm depends in part on the amount of
memory available, the number of tuples in the underlying
relation, and the degree to which the tuples are ordered.
This study shows that the simplest strategy is to first sort
the underlying relation, then apply the k-ordered aggrega-
tion tree algorithm with k = 1.
KEYWORDS: Temporal Databases, Aggregate Com-
putation, Query Evaluation, Query Optimization

1 Introduction
Aggregate functions are evaluated on relations and

compute a scalar value, such as the average salary of
all employees. Aggregate functions are an important
component of data query languages, and are heavily
used in many applications. Query benchmarks often
contain a large percentage of aggregate queries (e.g.,
[Gray 19911). Hence, efficient execution of aggregate
functions is an important goal.

In temporal databases, relations model time-
varying aspects of an enterprise. Information such as
when the tuple was written to disk (known as trans-
action t ime) , or when the tuple was known to be valid
(known as valid time) may be represented [Jensen
et al. 19941. Temporal database models and query
languages have recently been developed that require
new implementation strategies for aggregate functions
[Kline 1993, Tansel et al. 19931.

One reason that existing approaches are not effi-
cient is due to temporal grouping, where we may wish
to group the results by time. In this paper we focus on
aggregates computed over interval relations grouped
by instant, where we wish to know the aggregate value
at each point in time. This is perhaps the most com-
mon grouping. This computation is difficult because
it is necessary to know which tuples overlap each in-
stant, and simply considering each tuple in order in

a sorted-by-time relation will not be sufficient due to
the varying interval lengths.

In this paper we present efficient implementation
techniques for temporal aggregates. We describe the
query language constructs used to express aggregates
in snapshot and temporal query languages. We an-
alyze related work on the evaluation of snapshot ag-
gregates and consider their efficacy for temporal ag-
gregate computation. We introduce two different al-
gorithms and implementation strategies more suitable
for temporal databases: the aggregation tree and the
k-ordered aggregation tree. We describe how to im-
plement these algorithms assuming sufficient memory
is available. We evaluate the performance of these al-
gorithms by evaluating queries over relations differing
in size, number of long-lived tuples, and the degree to
which the relation is sorted.

We empirically examine both the space and time re-
quirements of the algorithms and specify how a query
analyzer would choose the proper technique. Exam-
ple temporal queries will be specified in TSQL2 [Snod-
grass et al. 19941. TSQL2 extends SQL-2 in an up-
ward compatible manner to support many aspects of
temporal databases, including temporal aggregation.

2 Aggregates in Query Languages
Aggregates in most relational query languages may

be divided into two types, scalar aggregates and ag-
gregate functions. Scalar aggregates yield single scalar
values, while aggregate functions return relations.

For example, the scalar aggregate in the SQL query

SELECT AVG(Sa1ary)
FROM Employed

will compute the average salary of all the employees
and return a scaler value.

Aggregate functions may return a set of values be-
cause of qualifications in the query. The tuples be-
ing aggregated must be partitioned as specified in the
group-by clause. The following query will compute the
average salary of employees grouped by department,
and return these values as a new relation.

SELECT Dept. AVG(Sa1ary)
FROM Employed
GROUP BY Dept

1063-6382/95 $4.00 0 1995 IEEE
222

http://kline,rtsQca.arizona.edu

Scalar aggregates may be computed and then re-
placed by their value in their query, since they are
independent of the query in which they are nested
[Epstein 19791.

In temporal databases, we extend the domain and
range of aggregates to include time. In this paper,
we assume that the temporal dimensions are inter-
vals; aggregates may also be evaluated over event re-
lations. We also extend the groupby clause with tem-
poral grouping. We will term the beginning time of an
interval the start time and the terminating time the
end time.

Query language features to support aggregation are
included in TSQL2 [Kline et al. 19941. Aggregates in
databases either select their values (such as the aggre-
gate maximum) or compute their values (such as the
aggregate count). In TSQL2, aggregates are defined
over both temporal and non-temporal values. If the
previous query were computed over a temporal rela-
tion, then the result returned would still be the av-
erage salary grouped by department, but this would
be a time-varying value. The average per department
would vary over time reflecting the information in the
database changing over time.

Besides new aggregates, TSQL2 provides extended
query language features to support aggregation. One
new feature is temporal grouping. Temporal grouping
is the process in temporal databases where the time-
line is partitioned over time, tuples are grouped over
these partitions, and aggregate values are computed
over these groups. There are two types of partitioning,
by a span a calendar defined length of time, such as
a year), or b y each instant (an instant is the smallest
measurable period of time in a temporal database). In
this paper we consider partitioning by instant.

For partitioning by instant, we first create a parti-
tion of the underlying relation for each instant. We
then compute the aggregate over each partition. Sup-
pose that for two consecutive instants, the same tu-
ples overlap both of them. The aggregate will have
the same value for both of these partitions, since they
both are computed over identical sets of tuples. This
will be true for any sequence of instants for which the
same tuples overlap. We call these sequences of in-
stants (or partitions) where the aggregate values do
not change (and equivalently the group of tuples they
are computed over do not change) constant intervals.
Notice that although we describe a partitioning of a
time-line, the partitioning is determined by the tuples.

3 Snapshot Aggregate Computation
Aggregate computation in conventional databases

is well-understood. In this section we will describe
the typically used techniques used to compute aggre-
gates in snapshot databases and also discuss several
optimizations.

A scalar aggregate is composed of an aggregate ex-
pression and an optional qualification. Epstein out-
lined a simple algorithm for evaluating scalar aggre-
gates consisting of two steps [Epstein 19791.

1. Allocate a tuple to hold the result. This tuple
contains two attributes, a counter (initialized to

2.

zero) used to count the number of tuples that
satisfy this aggregate’s qualification, and a result
attribute.

For each tuple that qualifies, update the counter
and the aggregate result.

The count field is used for computing aggregates that
need to know how many tuples satisfied the qualifica-
tion, such as count and average. For other aggregates,
such as minimum and maximum, it may be used to
recognize the first tuple.

To handle many scalar aggregates in a query, com-
pute each of them separately and store each result in a
singleton relation, referring to that singleton relation
when evaluating the rest of the query.

4 Temporal Aggregate Computation
In this discussion, we first consider extending exist-

ing approaches to aggregate computation. The prob-
lem we address is how to compute a temporal aggre-
gate over intervals of a time-line. These intervals are
constant intervals, induced by the timestamps of the
underlying relation. Then we discuss some general
points about computation of constant intervals.
4.1 A Previous Implementation

One approach for implementing aggregation in a
temporal query language is based on an extension of
existing approaches [Tuma 19921. This approach sup-
ports temporal aggregates using extensions of existing
aggregation techniques but, as stated in the referenced
paper, the efficiency suffers. Basically, the constant
intervals are determined first, then the aggregate is
evaluated using the technique described above. Specif-
ically, five steps are involved.

First, determine the periods of time during which
the relation remained fixed. These are the times dur-
ing which no new tuples entered or exited the relation
and hence are constant intervals. For each constant
interval, select the tuples which overlap it. Third, if
there is a group-by clause present, partition each con-
stant interval of tuples into subsets, where each sub-
set has a different unique value for the partitioning
attribute. These are referred to as aggregation sets.
Fourth, compute the aggregate value for each aggre-
gation set. Finally, associate these values with the
proper combination of tuples from the original query,
based on the values indicated by the group-by clause,
time interval of the aggregation set, and interval or
event from the valid clause in the original query.

Since the computation of constant intervals is com-
puted first, and then the aggregate values are com-
puted for each constant interval, the relation must be
read twice. The algorithms we present below need
only to read the relation once.
4.2 Extending Epstein’s Approach

We may extend the temporary relation approach
of Epstein (used to handle group-by clauses) to man-
age the constant intervals for aggregation in temporal
databases. We do this by replacing or supplement-
ing as appropriate the group-by-value with an interval-
value which represents the interval over which we are

223

computing the aggregate. Each element’s interval r e p
resents a constant interval. To compute the constant
intervals (and the aggregate value over each at the
same time), we use a temporary relation to main-
tain a list of the constant intervals and their aggre-
gate values, incrementally updating this list for each
tuple. This may also be formulated as an optimiza-
tion of the algorithm from the previous section, where
we have combined the computation of the aggregate
step 4) with the computation of the constant intervals
steps 1-3).

Implementing this simple extension to Tuma and
Epstein’s work requires considering each tuple only
once. When we are ready to consider a new temporal
tuple, we simply compare the tuple’s start and end
times with the start and end times of each interval in
the list. If the tuple’s interval overlaps a list element’s
interval, then we update the element’s aggregate value.
We will implement this algorithm using a linked list
and call this the naive or linked list approach.

5 New Algorithms
In this section we introduce several new algorithms

which may be used to compute a temporal aggregate.
For these algorithms, we assume that there is sufficient
main memory to store the structures.

First we will discuss an example temporal aggregate
query. We use 0 as the origin or earliest timestamp
and co as the greatest timestamp.

Figure 1 shows an example temporal relation. This
relation maintains the period of time that people were
employed by a company. Notice that “Nathan” was
not employed during times [13,17], and that the re-
lation is in no particular order. We assume that the
intervals are closed intervals.

name salary 11 start I end
Richard 40K II 18 I oc,
Karen 45K 8 20
Nathan 35K 1 1 :8 I 1; I
Nathan 37K

Figure 1: The Employed Relation

In Figure 2 we see how the Employed relation in-
duces constant intervals. The tuples are shown above
the time-line. In Figure 2.a, we have a timeline with a
single constant interval. In Figure 2.b, we see the con-
stant intervals induced by timestamps of the first tuple
[Richard, 40K, 18, CO]. Since only the 18 is a unique
timestamp we only add one constant interval. In Fig-
ure 2.c, we see that adding a tuple with two unique
timestamps adds two new constant intervals. Each
unique timestamp adds one more constant interval.
So with 6 unique timestamps and the initial constant
interval, we have 7 constant intervals induced by the
4 tuples in the Employed relation.
5.1 The Aggregation Tree

In this section we introduce the aggregation tree al-
gorithm. We describe how to incrementally construct
a tree structure which manages the constant intervals
and computes the aggregate values. We describe an

a, 0 (a single, empty constant
set, before we add any tuples)

I

18 00 0
(b) ’

(2 constant sets, [0,17] and
[18,a] after we add [18, col)

(4 constant sets)

Figure 2: Constant Intervals Induced by The Em-
ployed Relation

evaluation technique which assumes sufficient mem-
ory is available for construction of the tree. There are
other techniques which may be used to implement the
aggregation tree with only limited memory resources,
such as preallocating the tree in a linear memory ar-
ray, thus avoiding the need for tree node pointers, but
we will not discuss these alternatives here.

The following TSQL2 query will compute the num-
ber of tuples valid over each constant interval.

SELECT COUNT(Name)
FROM Employed E

The default grouping expression in TSQL2 groups
queries by instant, which means we will compute the
aggregate value separately at each point in time. The
result is coalesced by valid-time such that each inter-
val in the result is a constant interval with at least one
instant.

Recall that the Employed relation records the times
that certain people were employed. The result of this
query when applied to the Employed relation is shown
in Table 1.

13 17
18 20

2 21 21
1 22 CO I

Table 1: Result of Temporal Aggregate Query

The algorithm proceeds in two steps: build the ag-
gregation tree, and perform a depth first search to
compute the aggregate values at the leaves. Each node
in the tree has an aggregate state value (here it is a
count of the number of nodes which overlap this con-
stant interval) and a start and end time. The start and
end times at a leaf node encode a constant interval in
the query’s result. Each leaf also contains the partial
aggregate result for that constant interval. Initially, a
single node valid from 0 to co has a count of 0 (Fig-

224

. For each tuple, we search for the constant
~ ~ ~ e ~ v ~ ~ (s) containing the start and end times. When
we find these intervals, if the timestamp falls between
the boundaries of the constant interval, we split the
interval in two. Figure 3.b shows the effect of adding
the first tuple’s interval, 18,001. First we search in
the initial tree(Figure 3.a\ for the bounding interval
for 18. We see that the ending time of the tuple’s in-
terval (m) was the same as the ending time of the tree
node’s interval. So, we split the node into two pieces.
We do not need to search further for the tuple’s end-
ing timestamp (00) because that was contained in the
node.

The algorithm continues by considering the second
tuple, with a valid timestamp interval of [8,20]. The
start time, 8, is searched for in the current tree, Fig-
ure 3.b. The bounding node is [0,17] but the con-
stant interval extends past the end of this node so
the searching must continue. The node [0,17] is split
according to the tuple’s start time of 8. Searching
continues for the ending timestamp, 20, and again a
node is split. The result of processing this second tu-
ple is Figure 3.c. Notice that only the count values
stored at the leaves were adjusted. The node [8,17]
has a count of 1 because this is the part of the pre-
vious constant interval [0,17] which is overlapped by
the current tuple. The other child of [0,17], [0,7], is
not overlapped by the current tuple so its aggregate
value is initialized to 0. We adjust the internal node
aggregate values when a tuple’s constant interval com-
pletely overlaps a node. We continue processing the
tuples and the final result is shown in Figure 3.d.

One advantage of this algorithm is that it is not
always necessary to search the leaf nodes of the tree.
Suppose that to the final tree, we wished to add a
tuple with a constant interval of [5,50]. We would
search the tree for the constant interval containing
5. We find the node [0,7] and split it. We continue
search the tree, and see that the node 8,171 is com-
pletely overlapped by our tuple interva I . We update
the aggregate value stored here, the count, to 2. We
need to do this for the intervening nodes in the tree.
But, since we completely overlapped node [8,17], we
did not need to search the tree past this node to its
leaves, we only needed to update the value stored at
this node. We would continue processing this new tu-
ple until we found the constant interval which overlaps
the end timestamp, 50.

After the tree is completed, a depth first search
is performed from the root, keeping track of the ag-
gregate additive count value as we recurse. This will
produce the result in time order. Whenever we reach
a leaf node we write the aggregate value out with the
constant interval. For example, when we reach leaf
node [8,12] (in the final aggregation tree, Figure 3.d),
we add the aggregate value of the leaf node’s parents
(which is 0 + 0 + 1) to the leaf’s value of 1 and get 2.

Since our tuples are not sorted, a tuple may be in-
serted in any part of the tree. This could be inefficient
if we have large numbers of tuples and limited mem-
ory, as we could have a large working set of memory
pages. The aggregation tree works best if the rela-
tion is randomly ordered by time, since the tree that

a. initial tree b. tree after adding I18.ml c. tree after adding [8.201

d. final tree after adding 17.121 and [18.21]

Figure 3: Aggregate Computation Tree

results is more balanced.
The aggregation-tree is similar to the segment tree

[Preparata & Shamos 19851. A segment tree is a bal-
anced structure used to store segments of numbers
from the real number line. The use of segment-like
trees to store constant intervals for aggregate compu-
tations is one of the contributions of this paper.

The worst case time to create the tree is O(n2) be-
cause, in the worst case, the tuples are ordered in time,
and the tree becomes a linear list. In Section 5.3 we
propose a variation of the aggregation tree for sorted
and almost sorted relations.

If we do not balance the aggregation tree, then it
is simple to page portions of the tree to disk. This is
relatively easy because it is simple to mark a parent as
pointing to a subtree not currently in memory. Simply
accumulate the tuples which would overlap this region
of the tree and process them later. This should be an
interesting area for future research.
5.2 Data Considerations

In this section we describe several ways to quantify
the sortedness of a relation. We then describe several
algorithms which exploit the sortedness of the relation.

We define totally ordered by time to mean that the
tuples are sorted in order by start-times (typically in
increasing order), with ties broken by using the end
time. Notice that this definition does not consider
the degree to which the tuple intervals overlap other
tuples.

Another quantification is how far from being totally
ordered a group of tuples is. We call a set k-ordered
if each tuple is at most k positions from its position
in a totally ordered version of the relation. A totally
ordered set of tuples is equivalently O-ordered. One
way which this might arise is if all tuples written to a

225

database are written around the time they are known
to be true. For example, if a programmer was hired
on Tuesday, we probably write her new salary infor-
mation to the database on Tuesday or Wednesday. If
we guaranteed that we always wrote the information
by the next day, then we would have a form of tempo-
ral specialization, specifically, a retroactively bounded
relation, which is common in practice [Jensen & Snod-
grass 19941. A more efficient variant of the aggrega-
tion tree may be applied to both k-ordered relations
and retroactively bounded relations (discussed in Sec-
tion 5.3).

Another quantification is the characterization of
how many tuples are out of order, and how far they are
from their totally sorted position. If there are n tuples
in a relation, and the tuples are k-ordered, then we de-
fine the k-ordered percentage as the following quotient,

k

C i * n i

k-ordered-precentage = i=l
k * n '

where ni is the number of tuples i positions out of
order. This ratio ranges from 0 to 1. If the tuples are
all in order, then this ratio will be 0. If the tuples are
maximally disordered by k, then the ratio is greater
than 0; the higher the disorder, the higher the ratio.
The ratio can be 1 only for certain k. For a relation
with 6 tuples, with k = 3, if we swap tuples 1 with 4, 2
with 5, and 3 with 6, we have a k-ordered-precentage

Several example k-ordered-percentages follow in
Table 2. These examples illustrate how different or-
dering affects the value of the k-ordered-percentage.

of 1 (= (3 + 3 + 3)/(3 * 3)).

k-ordered I Explanation
percentage

0
0.0002
0.002

the tuples are sorted
2 tuples 100 places apart are swapped
20 tuples are 100 places from being

I I snrted I
0.00505
0.0505

_____I

1000 are 50 places out of order
10 tuples are 1 place out of order, 10 are

. . ., 100 are 100 out of order; the other
tudes are in order

Table 2: Examples of k-ordered-percentages
(n=10000, k=lOO)

5.3 Garbage Collecting the Aggregation

If the tuples in a relation are k-ordered, then we
may garbage collect the left side of the aggregation
tree as we create it. We may remove some nodes from
the beginning of the tree because we can determine
when we have considered all tuples which affect their

Tree

10 tuples forward

old II

10 tuples backwards
n

23
/12 13\, current tuple

greatest point farthest point
foward that tuple backwards that
2 may be in the tuple 23 may be
totally sorted in the totally
relation sorted relation

Figure 4: k-ordered list for k = 10

values. Before we remove these nodes, we send their
associated intervals and aggregate values to the next
stage of query evaluation. We call these variations of
the aggregation tree k-ordered aggregation trees, be-
cause they depend on the properties of k-ordered re-
lations.

For illustrative purposes, let us suppose k is 10.
The algorithm begins processing the tuples by build-
ing a typical aggregation tree with the first 22 tuples

, as described in Section 5.1. As the algorithm

the last 2k + 1 (21 in this case) tuple intervals in a
list. Begin numbering with 1 for convenience. Now,
consider adding the next tuple, the tuple at position
23. Tuple number 2 could have been at most 10 (or
k) positions out of order. Thus, tuple number 2 could
be placed, at the greatest, at position 12 (or 2 + k ,
which is the original position plus 10 possible move-
ment = 12) in the totally ordered list of tuples. The
current tuple (number 23) could have been, at the ear-
liest position in the list, at position 13 (23 - 10 = 13).
Figure 4 shows this relationship. Since tuple 23 must
come after tuple 2 in the totally ordered list, and any
tuples after 23 would also appear after tuple 2 in the
totally ordered list, then it follows that the algorithm
is finished with any constant intervals whose end time
is before the start of tuple number 2.

What this means for the processing of a k-ordered
relation is that after we process each tuple, we look
back at the tuple 2k + 1 (21 back in our example) back
from the current tuple. The worst case running time
of the algorithm is still O(n2) , but we have reduced
the main memory space requirement substantially.

We garbage collect the nodes by keeping track of
two pieces of information as we build the tree. As
described above, we keep a window of the last 2k +
1 tuple timestamps to use in determining when we
can garbage collect a piece of the tree. The second
piece of information we maintain is the current earliest
constant interval in the tree still remaining in the tree.

The garbage collection proceeds as follows. After
processing a node, the tuple timestamp 2k + 1 nodes
back in the relation is examined; any node may be

procee (2k + Y s through the tuples, it is necessary to keep

226

node a
100-m

Parameter

bee b
100-00

Values tested

node a
100-m

(a) garbage collecting the suliar half of the baa

nods a
100-m

(b) garbage collecting me earlier pari 01 the tree

Legend

A - subtree
- gn;gnke collection

3 0 0 - 5 0 0 -constant interval
value at selected
nodes

Figure 5: Garbage Collecting Before Time 300

garbage collected whose associated constant interval
ends before this previous tuple’s start time (call this
start time the gc-threshold). Examine the time stored
at the root of the aggregation tree. If the left half
of the tree occurs before the gc-threshold, the entire
left subtree may be garbage collected, and the root re-
moved, and the root may be replaceed with the root’s
right child (or later child . This is illustrated in Fig-

child, compare the gc-threshold to the current earli-
est constant interval. If the earliest constant inter-
val is before the gc-threshold, then the algorithm may
garbage collect some interval or intervals in the earlier
half of the aggregation tree, as shown in Figure 5.b.
In this case, if only the earlier of two leaves of a node
are garbage collected, the parent is removed and re-
placed with the remaining leaf. Since the algorithm is
only garbage collecting the earliest consecutive part of
a tree, a “hole” is never created in the constant inter-
vals. Testing continues until these two conditions for
garbage collection are both false.

6 Empirical Comparison

ure 5.a. If it is not possi L le to remove the root’s left

We implemented the algorithms discussed above to
evaluate the effects of memory usage and different re-
lation ordering. Table 3 provides the parameters used
in our testing to contrast the different algorithms.
We performed the tests on a lightly loaded Sun IPC
SPARCstation running SunOS 4.1.1, and the tests
were compiled using gcc2 with optimization turned
on.

We utilized a test relation with a tuple size of 128
bytes, which contained four germane attributes: name
(6 bytes), salary (4 bytes), start-time (4 bytes), stop-
time (4 bytes), as well as attributes not examined by
the aggregate (110 bytes). We utilized 4 byte times-
tamps since this was sufficiently large for our relation’s

lifespan. TSQL2 permits the range and granularity of
the timestamps to affect the allocated size of times-
tamps; we expect one word timestamps to be common
[Dyreson & Snodgrass 19941.

All of the algorithms tested read the relation only
one time, so we did not measure disk access time. Note
that this is in contrast to Tuma’s explicit constant in-
terval algorithm, which is the only temporal aggregate
algorithm implemented prior to our work. Tuma’s im-
plementation required that the underlying relation be
scanned twice, once to compute the constant intervals,
and again to compute the aggregate over each inter-
val [Tuma 19921. We tested different relation sizes by
creating relations from 128K to 8M in size (1K to 64K
tuples), doubling the relation size between tests. We
did not test larger relation sizes because the sizes we
used are sufficient to characterize the differences in
algorithm performance.

k-ordered-percent age
Long-lived tuples

Size of the relation in tuples

Size of the relation in bytes

0.02, 0.08, 0.14
0%, 40%, 80%
l K , 2K, 4K, 8K, 16K,
32K, 64K
128K, 256K, 512K, l M ,
2M, 4M, 8M

Table 3: Test parameters

We found that the choice of aggregate did not mate-
rially alter the results. We thus provide results only for
the count aggregate. Count uses only 4 bytes per each
aggregate-value stored. The other aggregates would
require more memory if they were tested. Sum, maxi-
mum, and minimum all use 4 bytes, plus an additional
bit to mark an empty value. Average uses 8 bytes, 4
for the sum and 4 for the count. This information
is in addition to the pointers and timestamp values,
which account for a large portion of the main memory
requirements.

Our relation had a lifespan of 1 million instants. We
generated the starting position of our tuples indepen-
dently, so our relations had many unique timestamps.
Realistic data would likely have a smaller percentage
of unique timestamps, with an associated increase in
performance for the tree based algorithms. We con-
sider two basic tuple lifespans. First, short-lived lifes-
pan tuples are tuples whose lifespan is a random length
from 1 to 1000 instants. Second, long-lived lifespan
tuples have duration equal to a random length be-
tween 20% and 80% of the relation’s lifespan (200,000
to 800,000 instants). Generated tuples that extend
past beyond the relation’s lifespan were discarded. We
tested different amounts of long-lived tuples on the al-
gorithms. The presence of long-lived tuples severely
affected some algorithms.

We ran each test several times with different ran-
dom number seeds to establish reliable results. We do
not show the error bars since 95% confidence inter-
vals never exceeded 10% of the indicated value on any
of the tests, an especially small figure on graphs with

227

logarithmic axes.
We first tested the linked list algorithm, and the

aggregation tree algorithm with randomly ordered re-
lations, using varying relation sizes and varying per-
centages of long-lived tuples as given in Table 3. We
indicate only CPU time, as all algorithms perform a
single segmented scan of the input relation.

We then added two parameters to relation gener-
ation. We generated a sorted relation, and then al-
tered it according to various k-ordered and k-ordered-
percentages. While it is perhaps more realistic to test
on retroactively bounded relations ([Jensen & Snod-
grass 19941 , such as updates occuring within two
days, modeling such relations is more difficult. So in-
stead, we approximate a retroactively bounded rela-
tion with a k-ordered relation. For a uniform arrival
rate, the two are identical.

As before, we also tested different relation sizes and
percentages of long-lived tuples. For these tests, we
compared the running times of the linked list algo-
rithm and the k-ordered aggregation tree.

Finally, we tested the algorithms on sorted rela-
tions. We compared the linked list algorithm, the
aggregation tree, and the k-ordered aggregation tree
with k = 1.

The results are presented in the following sections.
Please be sure to note that the results are log-log
graphs, and so the results may appear to be decep-
tively close. We use logarithmic graphs since we in-
creased the relation size by a factor of two for each
test.
6.1 Query Evaluation Time

In Figure 6 we see that the query evaluation time
for randomly ordered relations depends on the relation
size and the percentage of long-lived tuples. At cur-
rent processing and 1/0 rates, all of these algorithms
will be compute bound at realistic relation sizes. We
provide results for computation time only. Since the
performance of the aggregation tree and the linked list
was unaffected by the presence of long-lived tuples, we
provide only a single result for each. The linked list
had the worst performance over all relation sizes. For
the largest relation, it was 300 times slower than the
aggregation tree.

IOMXX): Linked List -
Aaorepstun Tree .-.--

0 1 .
1K 2;(4k & 1iK &K &

number d twler

Figure 6: Time Comparison on Unordered Relations

Next we consider ordered and partially ordered re-
lations. We altered the order of a sorted relation ac-

cording to various k and k-ordered-percentages test
values. We see in Figure 7 how the various k values
affect the results for no long-lived tuples (in the legend,
entries Ktree K=4, Ktree K=4O, Ktree K=4OO). We
combined these results with the results of comput-
ing the algorithm over totally ordered relations for
comparison purposes. The effect of the k-ordered-
percentage was outweighted greatly by the effect of the
k value (especially on a log-log graph), so we only show
a single graph for each k value; basically, larger k-
ordered-percentages meant a more random tree which
lead to a small increase in performance. Smaller values
of k resulted in more efficient run-time performance for
the k-ordered aggregation tree algorithm. This is be-
cause smaller k values mean a smaller “history” must
be maintained.

Figure 7 also contains test results for the linked-
list, the aggregation tree, and the k-ordered aggrega-
tion tree with k = 1, all when computed over ordered
relations with no long-lived tuples. The linked list al-
gorithm was relatively unaffected by the new parame-
ters tested here. As discussed above, when the tuples
are sorted or nearly so, the standard aggregation tree
has performance near O (n 2) , and obviously the per-
formance suffers in this test case. For this test case,
we sorted the relation before applying the aggregation
tree algorithm.

1OOOOO1 Linked List -
Aggregation Tree -+---

1Mx)o: Ktree “.-/ K=4M) -a)--

U1
U *....‘.

8 looo:
$ _..-.

. Ktree, sorted relation, K=l -* - -
,_/

C /‘

0.1 1 I I I I I I

1K 2K 4K 8K 16K 32K 64K
number of tuples

Figure 7: Time Comparison on Ordered Relations
without Long-lived Tuples

In Figure 8, we see how the algorithms are affected
by the presence of many long-lived tuples. As in the
previous figure, the k-ordered aggregation tree algo-
rithms are computed over partially ordered relations;
the other algorithms are computed over ordered rela-
tions. Most algorithms are slowed here since they need
a larger state, as discussed below. The linked-list is
unaffected; the aggregation tree suffers from the pres-
ence of long-lived tuples. If the relation is ordered, we

228

100000:
Linked List +

Aggregation Tree -+--

KtreeK=400 a
KtreeK=40 *--
Ktree K=4 -A--

Ktree, sorted relation, K=l -* - .
v) U .

10030:

C ...-A

8 1OOo: 2

0.1 1 I I I I I 1

1K 2K 4K 8K 16K 32K 64K
number of tuples

Figure 8: Time Comparison on Ordered Relations
with 80% Long-lived Tuples

may use the k-ordered aggregation tree with a window
of 1 as we tested here. This results in a very efficient
run-time performance, and as we shall see, efficient
memory utilization. As discussed before, the aggrega-
tion tree has O (n 2) performance over sorted relations.

The behavior of the k-ordered aggregation tree ap-
pears to be complex. However, the results can be sum-
marized as follows. Small values of k are more efficient
because the number of tuples that are maintained in
the tree is smaller. Larger values of k slow process-
ing down, because a sorted or almost sorted relation
leads to creation of a linked list. Large k-ordered-
percentages improve the run time performance of the
k-ordered aggregation tree as the tree is less linear;
more randomness in good for the aggregation tree al-
gorithms. The k-ordered aggregation tree is slightly
more affected by the number of long-lived tuples, as
opposed to the aggregation tree, largely because the
k-ordered tree has fewer tuples, uses less time, and
thus is more affected by more tuples in the tree. Re-
call that k-ordered relations allow us to garbage collect
the node added to the tree from a tuple’s start time
(within a certain number of nodes depending on k).
There may also be a node added to the tree for the
tuple’s end time. If the end time is far away from the
start time (i.e., the length of the tuple in time is large),
then many tuples will have to be processed in the list
before we move past the end time induced tree node.
If we only have shorter-lived tuples, then the end time
induced tree node will be closer to the start time, and
we will be able to garbage collect that node sooner. So,
the more longer lived tuples, the greater the number
of nodes will be created that will be garbage collected
later, as opposed to earlier.

Parodoxically, the aggregation tree’s performance
improves in the presence of many long-lived tuples.

This is because of the size of the relation and the dis-
tribution of the length of long-lived tuples. In Fig-
ure 7, the tuples are mostly short-lived. Thus few of
the tuple insertions into the aggregation tree avoid the
construction of a linear list. This linear aggregation
tree strictly grows down the right hand side of tree.
When many long-lived tuples are present as in Fig-

the tuples are long lived here) result in a less linear
right hand side of the tree. The tree is more “bushy”.
As the algorithm has inserted many tuples into the
right hand side of the tree ahead of time, this side
of the tree is not linear. Thus we see a performance
improvement.

ure 8), the insertions for the end of the tup \ e (80% of

Aggregation Tree -
Ktree K=400 -*)--- _.I-- *...-- 1 M q -

__..-

256K -

__.-
P +--1

6 2 16K-

256.

I I I I I I I

1K 2K 4K 8K 16K 32K 64K
number of tuples

Figure 9: Memory Comparison with No Long-lived
Tuples

6.2 Main Memory Comparison
The amount of memory used for a “node” differed

between the algorithms. Both aggregation tree algo-
rithms used 16 bytes per node as we implemented the
more efficient, single timestamp per node variation:
two child pointers, an aggregate-value, and a times-
tamp split value. The linked list algorithm used 16
bytes per node as it stored two timestamps.

As before, the space requirements of the algorithms
vary with percentage of long-lived tuples. Figure 9
compares them under the (unrealistic) assumption of
no long-lived tuples. The memory required by the
linked list algorithms was basically constant over dif-
ferent k and k-ordered percentage values, so we only
present a single result for this algorithm. The mem-
ory requirements for the k-ordered aggregation tree
when computed over a totally ordered relation (in the
legend, Ktree, sorted relation, K=l) , were barely re-
duced from the IC = 4 tests. The basic aggregation
tree requires the most main memory.

For relations with long-lived tuples, the results are

229

much worse for the k-ordered tree algorithms; the
memory requirements for the linked list and aggrega-
tion tree algorithms are totally unaffected by presence
of such tuples.

The memory used by the k-ordered tree algorithm
varied for all three factors, but the most important
factor was the value of k , closely followed by the per-
centage of long-lived tuples. The k-ordered-percentage
proved to be relatively unimportant in memory usage.
This is expected because the ordering of the tuples
affects the shape of the tree (and thus the evaluation
time), but not the actual number of nodes in the tree
(which determines the space usage). The relatively
large space requirements for small relations for the
k-ordered tree occurs because the (fixed) value of IC is
such a large percentage of the number of tuples; hence,
there is less opportunity for garbage collection.
6.3 Query Optimizer Strategies

The optimizer can exploit information on the sort-
edness of the underlying relation. If the relation is not
sorted, regardless of the number of long-lived tuples,
then the aggregation tree algorithm will perform well
when compared to the linked list and k-ordered ag-
gregation tree, depending on the tradeoff between the
cost of increased memory requirements and the cost
of disk access. If memory is cheaper than disk I/O,
then the aggregation tree is the best approach. On
the other hand, if the relation is sorted, or if the disk
access time necessary to sort the relation is less costly
than the memory the aggregation tree requires, then
the k-ordered aggregation tree is the best approach.
If the relation is declared by the data base adminis-
trator to be retroactively bounded, then the k-ordered
aggregation tree would be the algorithm of choice, as
no sorting is required.

The performance of the linked list algorithm was
almost unaltered between the various alternatives, de-
pending only on the relation size. Although its per-
formance was poor in comparison to the other algo-
rithms here, it is important to note that if there were
very few constant intervals in the results (i.e., we were
only interested in the results for a single year and
instants represented days), then the linked list algo-
rithm would have quite adequate performance. The
number of unique timestamps in the relation has a
a similar effect on performance. The tests described
in this paper have randomly generated start times,
which leads to many unique tuple start times. If there
were many fewer unique timestamps, which might be
the case if the granularity was very coarse, or if most
records were written in a short period of time (e.g.,
a student-records database with grades all written on
the last day of the semester), then less memory would
be required to store the “state” for each of the algo-
rithms. This last case would especially improve the
memory requirement of the aggregation tree and the
linked list algorithms.

7 Summary and Future Work
This paper introduced several new algorithms for

computing temporal aggregates which are much more
efficient than the linked list algorithm. It also de-

fined two new metrics to quantify temporal relations,
k-orderedness and k-ordered percentage.

We introduced the linked list algorithm, an im-
provement over the only previously implemented tem-
poral aggregation algorithm, which maintains buckets
for the results in memory. For relations with only a
small number of constant interval results, the linked
list algorithm is expected to be the most efficient in
time and space. The linked list algorithm was unaf-
fected by long-lived tuples. However, the linked list
algorithm was still slower than either of the other new
algorithms under all tested conditions.

For unordered relations, we introduced the aggre-
gation tree, which builds a binary tree of the constant
intervals, and showed that this algorithm is the most
efficient in time, dependent in part on the number of
long-lived tuples. The space usage of the aggregation
tree is generally greater than the linked list algorithm,
due mostly to the fact that each unique timestamp
adds two nodes to the aggregation tree and only one
in the case of the linked list algorithm.

For k-ordered relations, we introduced the k-
ordered aggregation tree, a variation of the aggrega-
tion tree with garbage collection of tree nodes. This al-
gorithm was generally the most efficient for k-ordered
relations with any long-lived tuples. We tested this
algorithm with different values of k and k-ordered-
percentages and found that the k-ordered aggregation
tree worked best for small values of k and for larger
k-ordered-percentages. The linked list algorithm was
unaffected by different values of k and k-ordered per-
cent ages.

To summarize, we have presented techniques for
computing temporal aggregates for unordered, fully
sorted, and almost ordered temporal relations, and
empirically shown under what conditions each of the
algorithms is best. The simplest strategy is to sort
the relation then use the k-ordered aggregation tree
with k = 1. This gives very efficient run-time perfor-
mance across a range of long-lived tuple percentages,
with minimal memory usage. When the relation is
not ordered, but is retroactively bounded, then the k-
ordered aggregation tree is directly applicable without
sorting.

There are several further areas of research to ex-
plore in temporal aggregation. One alternative to ex-
amine is a balanced aggregation tree, which should be
especially efficient in the case of a k-ordered relation.

Another possibility for future research concerns the
aggregation tree. If the relation might be sorted, then
the best choice would be the aggregation tree algo-
rithm, with the relation’s pages randomized when they
are read to avoid linearizing the aggregation tree. This
randomization could be performed on each group of
pages read into memory, and therefore would not af-
fect the 1 / 0 time.

Another aspect to investigate is temporal grouping
by span. If the number of spans is much smaller than
the number of constant intervals, then fewer “buckets”
need to be maintained as there will be many fewer con-
stant interval results. The performance of the slower
algorithm tested here (the linked list) would be ex-
pected to improve.

230

We did not consider duplicate elimination. This
will probably not affect the linked list algorithm very
much, but is another matter entirely for the tree algo-
rithms. Our choices depend on the number of tuples
in each interval. Probably the best single approach for
this problem involves removing the duplicates before
the relation is processed, perhaps by sorting.

Finally, we want to explore limited main mem-
ory implementations of these algorithms. The perfor-
mance of the aggregation tree appears to be a promis-
ing alternative for true randomly ordered relations,
but the memory requirements are excessive.

The techniques described here may also be applied
to spatial and spatiotemporal databases to compute
aggregates and associate them with intervals in space
and time.

Acknowledgements
Mike Soo, Suchen Hsu and Curtis Dyreson provided

helpful comments. We thank Sampath Kannan for his
suggestions and discussions of metrics for quantifying
the sortedness of the underlying relation, and Andrey
Yeatts for his suggestions regarding the implementa-
tion of the garbage collection algorithm.

This work was supported in part by NSF grants
IRI-8902707 and IRI-9302244, and also by an AT&T
Foundation Grant.

Bibliography
[Bitton et a1 19831 Bitton, D., H. Boral, D. DeWitt

and W.K. Wilkinson. “Parallel Algorithms
for the Execution of Relational Database Op-
erations.” ACM Transactions on Database
Systems, 8, No. 3, Sep. 1983, pp. 324-353.

[Ceri & Gottlob 19851 Ceri, S. and G. Gottlob.
“Translating SQL Into Relational Algebra:
Optimization, Semantics, and Equivalence of
SQL Queries.” IEEE Transactions on Soft-
ware Engineering, SE-11, No. 4, Apr. 1985,
pp. 324-345.

[Dyreson & Snodgrass 19931 Dyreson, C. E. and R. T.
Snodgrass. “Timestamp Semantics and R e p
resentation.” Information Systems, 18, No. 3

[Dyreson & Snodgrass 19941 Dyreson, C. E. and R.
T. Snodgrass. “Temporal Granularity and In-
determinacy: Two Sides of the Same Coin.”
Technical Report T R 94-06. Computer Sci-
ence Department , University of Arizona. Feb.
1994.

[Epstein 19791 Epstein, R. “Techniques for Process-
ing of Aggregates in Relational Database Sys-
tems.” UCB/ERL M7918. Computer Sci-
ence Department, University of California at
Berkeley. Feb. 1979.

[Freytag & Goodman 19861 Freytag, J.C. and N.
Goodman. “Translating Aggregate Queries
into Iterative Programs,” in Proceedings of the
Con-ference on Verv Large Databases. Ed. Y.

(1993), pp. 143-166.

[Gray 19911 Gray, Jim (ed.) “The Benchmark Hand-
book for Database and Transaction Process-
ing Systems.” Morgan Kaufmann, 1991.

[Jensen & Snodgrass 19941 Jensen, C. S. and R. Snod-
grass. “Temporal Specialization and Gener-
alization.” IEEE Transactions on Knowledge
and Data Engineering,

[Jensen et al. 19941 Jensen, . S., J . Clifford, R.
Elmasri, S. K. Gadia, P. Hayes and S. Jajo-
dia [eds]. “A Glossary of Temporal Database
Concepts.” ACM SIGMOD Record, 23, No.

[Kiessling 19851 Kiessling, W. “On Semantic Reefs and
Efficient Processing of Correlation Queries
with Aggregates,” in Proceedings of the Con-
ference on Veru Larae Databases. Ed. A.

tgg4).
1, MU. 1994, pp. 52-64.

Pirotte and Y. cassi l ih . Stockholm, Sweden:

[Kim 19828 Kim, W. “On Optimizing an SQL-
A CM Transactions on

AU . 1985, pp. 241-250.

like Nested Query.”
Database Systems, 7, No. 3, sept 1982, pp.

[Kline 19931 Kline, N. “An Update of the Tempo-
ral Database Bibliography.” ACM SIGMOD
Record, 22, No. 4, Dec. 1993, pp. 66-80.

[Kline et al. 19941 Kline, N., R. T. Snodgrass, and
T.Y. Leung. “Aggregates for TSQL2.” Com-
mentary. TSQL2 Design Committee. Sep.
1994.

[Preparata & Shamos 19851 Preparata, F. P. and M.
I. Shamos. “Computational Geometry, An In-
troduction.” Springer-Verlag, 1985.

[Snodgrass et al. 19931 Snodgrass, R., S. Gomez and
E. McKenzie. “Aggregates in the Temporal
Query Language TQuel.” IEEE Transactions
on Knowledge and Data Engineering, 5, Oct.

[Snodgrass et al. 19941 Snodgrass, R.T., I. Ahn, G.
Ariav, D.S. Batory, J . Clifford, C.E. Dyre-
son, R. Elmasri, F. Grandi, C.S. Jensen, W.
Kafer, N. Kline, K. Kulkanri, T.Y.C. Leung,
N. Lorentzos, J.F. Roddick, A. Segev, M.D.
So0 and S.M. Sripada. “TSQL2 Language
Specification.” ACM SIGMOD Record, 23,
No. 1, Mar. 1994, pp. 65-86.

[Tansel et al. 19931 Tansel, A., J . Clifford, S. Gadia,
S. Jajodia, A. Segev and R. Snodgrass (eds.).
“Temporal Databases: Theory, Design, and
Implementation.” Database Systems and Ap-
plications Series. Redwood City, CA: Ben-
j amin/Cummings, 1993.

[Tuma 1992 Tuma, P. A. “Implementing Histori-

Wayne State University, Nov. 1992.
[vonBultzingsloewen 19871 vonBultzingsloewen, G.

“Translating and Optimizing SQL Queries
Having Aggregates,” in Proceedings of the
Conference on Very Large Databases. Ed. P.
Hammersley. Brighton, England: Sep. 1987,

443-469.

1993, pp. 826-842.

cal A ggregates in TempIS.” Master’s Thesis,

pp. 235-243.

Kambayaski. Kyoto, Japan: Aug. 1986, pp.
138-146.

23 1

