
Valid-time Indeterminacy

Curtis E. Dyreson and Richard T. Snodgrass
Department of Computer Science

University of Arizona
Tucson, AZ 85721

{curt is,rts}Qcs . arizona. edu

Abstract
In valid-time indeterminacy, it is known that an event stored

in a temporal database did in fac t occur, but it is not known
ezactly when the event occurred. W e present an eztension of
the tuple-timestamped temporal data model, called the the pos-
sible chronons data model, t o support valid-time indetrrtninncy
In the possible chronons data model, each event is represented
with a set of possible chronons, delimiting when the event might
have occurred, and a probability distribution over that set . W e
eztend the TQuel query languaye with constructs that specify
the user’s credibility in the underlying valid-time data and the
user’s plausibility i n the relationships among that data. W e
outline a formal tuple calculus semantics, and show that this
semantics reduces t o the determinate semantics on determinate
data.

1 Overview
A valid-time database recorcls the history of a i l enterprise

[Jensen et al. It associates with each event. a times-
tamp indicating when that. event. occurred. Oft.en a user knows
only approximately when an everkt Iiappened. Fur iilstailce, she
may know that it happened “between 2 PM and 4 I’M,” “on
Friday,” “sometime last week,” or “around the middle of the
month.” These are examples of valid-time indeterminacy. In-
formation that is valid-time indeterminate can be characterized
as “don’t know when” information, or more precisely, “don’t
know ezactly when” information. This kind of information has
various sources, including the following.

19921.

granularity - In perhaps most cases, the granularity of the
database does not match the precision to which an event
time is known. For example, an event time known to within
one day and recorded on a system with tiniest,anips in the
granularity of a microseconcl happened sometime during
that day, but during which microsecond is unknown.

should be able to control, via query language constructs, the
amount of indeterminacy present in derived information; and
the query evaluator should accommodate valid-time indetermi-
nacy in its processing. Query evaluation efficiency should re-
main high iq the presence of valid-time indeterminacy, and it
should not be affected at all i n its absence.

This docunient describes the possible chronons data model.
The model adds valid-time indeterminacy to TQuel [Snodgrass
19871. TQuel is a strict superset of Quel, the query language
for Ingres [Stonebraker et al. 1976). TQuel has a complete,
formal semantics which we extend to support valid-time inde-
terminacy. We could have extended SQL [Melton 19901. While
there are numerous proposed temporal extensions of SQL, none
of these extensions have a complete, formal semantics. In ad-
dition, the temporal database research community has yet to
adopt a common model for research purposes. Since Que1 is
equivalent to SQL in expressive power, our ideas can be applied
to both languages.

The next section introduces an example that will be used
throiighout the paper. We then examine the representation of
valid-time incleterniiiiacy. After that, we explore what it means
to retrieve information from a database with valid-time indeter-
minacy. Emphasis i s placed on providing a simple and intuitive
retrieval method. We outline syntactic and semantic extensions
to TQuel to support retrieval of valid-time indeterminate infor-
mation. The final sections trace related work, summarize our
approach, and discuss future work.

2 Motivating Example
An example valid-time database is shown in Figure 1. This

database models a single company with two warehouses and
one airplane factory. ‘The warehouses supply parts to the fac-
tory. Each warellouse keeps its own Sent relation, which is a
history of parts shipnients sent from the warehouse to the fac-
tory. ‘l’lie factc)ry niaintains the In-Production relation, which
is a production history of airplanes built by the factory.

lations and derived relations.

dating techniques - Many dating techniques are inherently
Valid-time indeterminacy naturally arises in both base re-

It may surprise the reader to
imprecise, such as radioactive and Carbon-14 clnling.

future planning - Projected completion dates are often
inexactly specified, i.e., the project will complete three to
six months from now.

unknown or imprecise event t imes - In general, event
times could be unknown or iinprecise. For exaniple, assume
that we do not know when an individual was born. The
individual’s date of birth could he recorded i n IIIC clatabase
as either unknown (they were horn betwe~m I I I I ~ dncl tlie
beginning of time) or iniprccise (Ilicy were LOI.II I J (.LW~~I I
now and 150 years ago).

Temporal database rnanageiiieiit systenis slioul~l provicle
support for valid-time incleterniinacy. In particiiliir, users

335

note that the In-Production base relation is a valid-time in-
determinate relation. This is because the granularity of the
In-Production relation is a month while that of the Sent and
Received relations are just a single day (we are assuming an
underlying timestamp granularity of one day). A month is an
indeterminate value that represents a set of possible days. We
know that. product.ion on an airplane started on some day in the
inclicated month, but we can’t, be sure which one. For this exam-
ple, we assume that production is equally likely t o have started
or cnrlecl during any clay i n an indicated month; although, in
geiieral we allow nonunifwni clist.ributions.

l‘hr Keceiued relation is not niaintained by either the fac-
t,ory or a warcllouse; rather it is a derived relation, the prod-
uct. of educat.ecl guesswork. Parts are shipped by truck from a

1063-638W93 $03.00 0 1993 IEEE

Sent-by- Trump(Lot# , Par t)
II Valid time

Lot# P a r t .
23 wing strut
24 engine

(at)
May 6
June 4

Sent-by- Gr i f in (Lot# , Par t)
(1 Valid time

Lot# Part
30 wing strut
31 wing strut

(at)
M ay 26
June 9

Model Serial#
Centurion AB33
Cutlass z19
Centurion AB34
Caravan FA2K

Received(Warehouse, Lot#, Par t)

Valid time
(from) (to)
March J une
June July
June August
April May

Warehouse
h u m p
Griffin
Trump 24 engine
Griffin I 31 I win; strut

Lot# Part
23 wing s h u t
30 wina s h u t

Valid time
(at)

May 10 - May 29 ei
May 30 - June 18 e2
June 8 - June 27 e3
June 13 -July 2 e4

Figure 1: An hist.orical database

warehouse and arrive a t the factory no earlier than ~1 and no
later than 24 days after they leave a warehouse. The Received
relation is computed from each warehouse’s Sent relation by
adding a 4-24 day “fudge factor” to the valid-time attribute.
The valid times in the Received relation are indeterminate; that
is, we know roughly when the parts were received, but we do
not know exactly which day they were received. We will assume
that each possible day indicated by the recorded raiige of days
is equally likely. For example, the batch of engines received
from the Trump warehouse arrived on one of the days in the set
{June 8, June 9, . . . , June 27}, but we have no reason to favor
one day rather than another.

In a database that supports valid-time indeterminacy,
queries can make use of indeterminate information. Suppose
that a few of the Centurion airplane owners have reported
a faulty wing strut. Naturally, we would like to query the
database to determine which warehouse(s) supplied the defec-
tive parts and, specifically, which lots are implicated (we give
such a query in Section 5). In TQuel with valid-time irideterini-
nacy, we could query to determine which received shipnient of
wing struts “overlaps” the procluclion of a Centurion airplane.
Overlap is the operation of temporal intersection.

There are two stages to determining an answei to a query.
The first stage retrieves the data that is relevant to lhe query.
The second stage constructs an answer that satisfies the con-
straints specified in the query. We provide separate controls for
each stage.

Ronge credibility changes the information available to query
processing. For instance, given a uniform distribution assump-
tion, it is unlikely that production on the Centurion seiial num-
ber AB33 began early in March; but more likely that it started
by late March. A typical user might be interested i n only those
production times which are likely, late March to early June for
the Centurion, ignoring those tliat are unlikely. 111 the possi-
ble chronons data model, the user can express this preference

by selecting an appropriate range credibility value. The chosen
range credibility potentially modifies every interval in a valid-
time relation, restricting the range of each interval. Effectively,
non-credible starting and terminating times are eliminated to
the chosen level of credibility during query processing, allowing
the user to control the quality of the information used in the
query.

Ordering plausibility controls the construction of a n answer
to the query using the pool of credible information. For in-
stance, a Centurion owner could query which shipment of wing
struts plausibly arrived during production of his or her plane.
Intuitively such a query relaxes the constraints on the relation-
ship between the production times and the day a shipment was
received from “absolutely sure of overlap?” to “is i t probable
that they overlap?” or even to “is it even remotely possible
that they overlap?”. The user selects the kind of overlap that
she or he requires by setting an appropriate ordering plausibil-
ity value. It is probable that lot number 31 from the Griffin
warehouse was received during production the Centurion with
serial number AB33, but it is impossible to be absolutely sure
that it did.

We believe that there is a natural division between indeter-
minacy in the dataand indeterminacy in the query. The support
for valid-time indeterminacy that we add to TQuel allows the
user to control both kinds of indeterminacy. Range credibility
massages the information from which a plausible answer to the
query is constructed.

3 Extending the Data Model with In-
determinacy

In this section, we discuss how valid-time indeterminate
events and intervals are represented in the data model.
3.1 Time

In t,he temporal dat.abase conirnunity, two basic time mod-
els have been proposed: the continuous model, in which time
is viewed as being isomorphic to the real numbers, with each
real nuniber corresponding t.o a ‘Lpoint” in time, and the dis-
crete model, in which time is viewed as being isomorphic to
the integers [Cliflord SL Tansel 19851. In the discrete model,
the continuous hie- l ine is partitioned into line segments. Each
segment is called a chronon [Ariav 1986, Clifford & Rao 19871.
A chronon is the smallest duration of time that can be repre-
sented. We choose to use the discrete model.

We do not assume a specific granularity or chronon size;
a chronon may be of any duration (e.g., nanoseconds, years,
Chinese imperial dynasties). We believe that specifying the
granularit,y should be left to the implementation rather than
fixed in the data model. Our data model supports only a single
chronon size, although multiple granularities can be handled by
representing the indeterminacy explicitly.

We assume that. every event occurs a t a point in time. Be-
cause we are using a discrete model, a chronon represents a line
segnient rather than a point. Hence, we can only record that
an event occurred during a particular chronon. Two events
that occur during the same chronon may still occur a t different
t imes .
3.2 Indeterminate Events

An event is determinate if it is known when (i.e., during
which chronon) it occurred. A determinate event cannot overlap
two chronons. If it is unkiiown when an event occurred, but
known t,hat it did occur, then the event is indeterminate. The
indet.erminacy refers t.0 the t ime when the event occurred, not
whet.her the event. occurred or noL. 1ndet.erminate events do not

336

I

Valid time

sg Griffin electrical May 31
s7 Trump

Figure 3: Examples of value incthpleteness

i
i

.‘I

’ 25 ‘ 50 75 ’ 25 50 75
p.m.f. c. d. f.

Figure 2: A “probably early” distribution

model the situation where it is unknown if an event occurred a t
all.

An indeterminate event is described by a l o u w stcppo+f
chronon, an upper rupport chronon, and a probability mass
function (p.m.j.1. The support chrononsdeliniit wheii the event
occurred; i t occurred no earlier than the lower support chronon
and no later than the upper support chronon. Betwwn h e s u p
port chronons is a period of indeterminacy. The period of inde-
terminacy is a contiguous set of possible chronons. The event
occurred during some chronon in this set, but during which is
unknown. We use a. to denote the lower support chronon for
the indeterminate event a, and a* to denote the upper support
chronon.

In some situations not all the possible chronons are equally
likely. For instance, it could be that the event most likely h a p
pened during the earliest chronon in the period of indetermi-
nacy. The probability mass function gives the probability that
the event occurred during each chronon. In the terrniiiology of
probability theory, this distribution is the density firnction for
the event random variable. For an indeterminate event a, we
define its p.m.f., Pa, by

Pa(i) = Pr[a = i] i E Z

where Pr[a = i] is the probability that the event occurred dur-
ing chronon i. All probability mass functions are considered to
be independent; we make no provisions for joint, marginal, or
dependent density functions. Note that, because we adopted
the discrete model of time, a p.m.f. is a discrete, rather than a
continuous, function. Figure 2 depicts a “probably early” mass
function. The probability mass function for an indeterminate
event is supplied by the user; the default distributioii is uniform
probability. For example, the mass function depicted in Figure 2
might illustrate the probability that a performer is “gonged” on
The Gong Show (the performance is likely to end early). We
will sometimes write the indeterminate event a as ([a . ,a*] ,Pa) .

A useful function derived from the probability mass function
is the cumulative density function (c.d.f.), which is defined to
be:

Fa(i) = Pr[a 5 i] = P ~ (I ;) .
k l i

Intuitively, for each chronon the c.d.f. measures the probability
that the event occurs sometime before o r during a’clironon.
Figure 2 shows the c.d.f. for the “probably early“ p.m.f.

While the terminology used in the possible chronons data
model suggests a difference between indeterminate and deter-
minate events, it is instructive to note that indeterminate events
can be used to model determinate events. A determinate event
is modeled by an indeterminate event with a set of possible
chronons that contains a single chronon. In this case, the prob-
ability that the event occurred during that single chronon is
1.

3.3 Indeterminate Intervals
An interval bounded by indeterminate events (called the

starting and terminating events) is termed an indeterminate
interval. An indeterminate interval could start during any
chronon in the set of possible chronons of the starting event.
Likewise, the indeterminate interval could end during any
chronon in the set of possible chronons of the terminating event.
Since it is unknown precisely when the starting or terminating
events happen, it followathat it is unknown precisely when an
indeterminate interval begins or ends.

An indetermirrate interval represents a set of porrible inter-
vals, one of which is the “real” interval, but which is unknown.
A single possible interval is obtained by choosing one possible
chronon from each bounding indeterminate event’s set of pob

sible chronons. Every combination of chronons in the starting
and terminating events’ set of possible chronons is in the set of
possible intervals.

For every indeterminate interval, every member of the set
of possible chronons for the starting event must be before every
member in the set of possible chronons in the terminating event.
This ensures that every possible interval in an indeterminate
interval is a valid interval. That is, a possible interval cannot
terminate before it starts, as might happen if the sets of possible
chronons overlapped. There is one exception to this maxim; the
sets of possible chronons in the bounding events can overlap on
a single chronon. As a result, each possible interval must span
a t least one chronon, and some possible intervals might span
only that single chronon.

Thus far we have only considered indeterminate intervals
bounded by indeterminate events. What of indeterminate in-
tervals that have determinate events as one or both bounding
events? Since indeterminate events can be used to model de-
terminate events, no special provisions are needed to handle
determinate bounding events.

3.4 Other Kinds of Indeterminacy
In the possible chronons da t a model, valid-time indeter-

minacy is orthogonal to other sources of incompletenam (c.f.,
[Motro 1990)). In particular, it can peacefully coexist with value
incompletenerr, where the value of an attribute (as o p p d to
a timestamp) is not fully known. For example, in the Received
relation, we may be shipped a part which we have yet to iden-
tify (ss in Figure 3), has been partially identified (de restricts
the kind of part to belong to the specified class of parts), or
has been narrowed down to a set of possibilities (a,). While
there are approaches that combine temporal and value incom-

i

i

i

I
r, 1/

pleteness (e.g., [Gadia et al. 1992]), we advocate separating
the various kinds of indeterminacy, so that useis can choose the
combination that is most appropriate for their application.

We turn now from the data iiiodel to the query semantics.

4 Review of TQuel
We assume that the reader is familiar with TQuel and the

tuple calculus; we provide a quick review of TQuel’s retrieve
statement. The interested reader will find many examples as
well as a complete description of the syntax and semantics else-
where [Snodgrass 1993, Snodgrass 19871. An example retrieve
query that determines which wing s t r u t shipments arrived dur-
ing production of a Centurion airplane is shown in Figure 4.
The retrieve has several components: the target list, specifying
how the attributes of the relation being derived are computed
from the attributes of the underlying relations; a i d i d clause,
specifying the valid time of tuples i n the target relation: R where
clause, specifying a relationship that. must be satisfied among
the explicit attributes (those visible to the user) of the partic-
ipating tuples; a when clause, specifying a relationship among
the valid-timeattributes of the participating tuples; and an as
of clause that performs a rollback on the temporal database
(not shown in Figure 4).

In the valid clause, a temporal expression consist.ing solely
of temporal constructors specifies the valid time of tuples in
the target relation. A temporal constructor chooses a n event
or interval that satisfies some constructor specific constraints.
For example, the First temporal constructor chooses the earli-
est event from a pair of events. The temporal expression associ-
ated with the when clause is cornposed of temporal const.ructois,
boolean connectives, and temporul predicates. A teniporal pred-
icate determines whether a pair of events or intervals satisfies
some predicate specific constraints. For example, tlie precede
predicate determines whether one event (or interval) is earlier
than another. If so, the predicate evaluates to “true:” if not, it
evaluates to “false.”

5 Extensions to TQuel
This section proposes a syntax and semantics for extending

TQuel’s retrieve statement to support valid- time indet.erminacy.
A primary design goal is to make this extension a iriinimal ex-
tension. I t will be shown in Section 5.8 that the new syntax
and semantics preserves the nieaning of all extatit TQuel re-
trieve statements.

5.1 Syntactic Extensions for Valid-time
Indeterminacy

We make two syntactic extensions to TQuel’s retrieve state-
ment, one to specify the range credibility and the other to spec-
ify the ordering plausibility. Details are presented elsewhere
[Dyreson & Snodgrass 1992A].

Range credibility appears (optionally) in the range state-
ment of an interval relation. The credibility applies indepen-
dently to the starting and terminating events in the interval.
It can be any integer value between 0 and 100 (inclusive). The
credibility phrase has an initial default value of 100; this default
value can be changed using a set statement. Range credibility
is not applicable to event relations because removing indeter-
minacy from an indeterminate event might. require partitioning
the event’s period of indeterminacy.

Ordering plausibility is tlie plausibility i n the temporal or-
dering of the events that participate in the retrieval. The order-
ing plausibility may be specified either for the entire when predi-
cate and valid constructor or for a particular temporal predicate

range o f r is Received
range of p is InSroduction with confidence 0
retrieve (YH = r.Yarehouse, L t = r .Lot# , St = p . S e r i a l t)

v a l i d at r
where p.Hodel = “Centurion” and r.Part = “wing s t r u t ”
when r overlap p probably

Defective-Shipment-Candidates(WH, L#, S#)

II Valid time
WH I L# I S# 11 (at)

Trump I 23 I AB33 11 May 10 - May29
Griffin AB33 May30 - June 18
Griffin I iy 1 AB34 11 June 13 - July 2

Figure 4: A sample query and its result

or constructor, in which case it appears in parentheses immedi-
ately after the operator. The ordering plausibility is specified
with an integer between 1 and 100 (inclusive). The plausibility
phrases are optional and have an initial default value of 100,
which can be changed using a set statement.

The retrieve statement in Figure 4 shows a plausibility value
of “probably” for the overlap temporal predicate in the when
clause. This is syntactic sugar for a plausibility value of 60.

5.2 Semantic Extensions
The semantic extensions to support valid-time indetermi-

nacy involve the redefinition of several existing functions and
relations and the introduction of new functions. Specifically,
we redefine the temporal ordering relation to support ordering
plausibility, we introduce two “shrink“ functions to effect range
credibility, we add an “adjust” function to the valid clause to
ensure that only valid indeterminate intervals are constructed,
and we redefine the coalescing operator, Reduce. In subsequent
sections we consider each of these modifications in some de-
tail. It is important, however, to observe that each function or
relation that we redefine or add incorporates the determinate
semantics. Support for valid-time indeterminacy is an extension
of the cleterininale seniantics rather than a replacement. Hence,
the semantics of existing queries is left unchanged (this point is
reiterated i n Seclion 5.8).

5.3 Supporting Ordering Plausibility
To support ordering plausibility we redefine the ordering re-

lation Before. The semantics of retrieve without indeterminacy
is based on a well-defined ordering of the valid time events in
the underlying relations (Snodgrass 19871. Every temporal pred-
icate and temporal constructor refers to this ordering to deter-
mine if the predicate is true or the constructor succeeds. A set
of determinate events has a single temporal ordering. Given a
temporal expression consisting of temporal predicates and tem-
poral constructors, this ordering either satisfies the expression
or fails to satisfy it.

A set of indeterminate events, however, typically has many
possible temporal orderings. Some of these temporal orderings
are plausible while others are implausible. The user specifies
which orderings are plausible by setting an appropriate ordering
plausibility value. We stipulate that a temporal expression is
satisfied if there exists a plausible ordering that satisfies it.

In the determinate semantics, Before is the “<” relation

338

e4 e4 <prob el

e2
e3
e4

Figure 5: Table of a <prob 0 for the events in Received

on event times. In the indeterminate semantics, the temporal
ordering is given by the probabilistic ordering operator ‘‘<prob”

which is defined as follows. For any two indeterminate events,
a and P

a <prob P = 1100 X Pr[a < P]J
where

Pr[a < PI = C pa(;) x pp(j) i, j E Z.
8 <J

This formulation of the probabilistic ordering operator treats
ordering probabilities that are between 0 and 1 (after scaling
by 100) as 0. That is, it treats two events that have a small
chance of occurring before each other as well-ordered in time.
To distinguish the well-ordered case from this other case, we
define the ordering probability to be 1 whenever its value as
defined above, prior to taking the floor, is between 0 and 1.
Hence, to evaluate every possible ordering, however improbable,
an ordering plausibility of 1 suffices.

The probabilistic ordering operator assumes that there are
no dependencies between the probabilities associated with in-
determinate events. It cannot be used to accurately compute
the probability of orderings such as (a <prob <,,rob v). In the
expression “(a precede P) and (0 precede 7)” the two precedes
are separately evaluated, returning boolean values that are sub-
sequently anded. While this evaluation strategy is consistent
with the determinate semantics, it is not equivalent to comput-
ing a n ordering of (a <prob P <prob v).

Figure 5 shows the value of <prob for each pair of events in
the relation Received, placed on a time-line in Figitrc 6. For
instance, e2 <prob e3 = 88.

To handle indeterminate events, we modify Before to include
an additional initial parameter, the ordering plausibility y. The
value of y can be any integer between 1 and 100 (inclusive). In
general, higher (closer to 100) ordering plausibilities stipulate
that more probable orderings sliould be considered plausible.
The indeterminate Before is defined as follows.

Before(y, a, P) -(a i s P) A ((a <prob P) 1 7)

An event is never Before itself, regardless of the value of 7. Two
events are said to be equivalent if they have the same support
chronons and the same probability mass functions. Two equiv-
alent, but not identical, events inay or may not be Before one
another, depending on y. To distinguish identical It o m equiva-
lent events, each event appearing as an argument to Before is

el H
ez H

e3 H
e4 H

Figure 6: A pictorial representat.ion of the Received event times

el el el

y = 01 y = 50 y = 100

Figure 7: Ordering the events in Received depends on y

tagged with the tuple from which it originates. The tags are
compared by the Before function. If the tags do not match, the
binary infix operator <pro(, determines the discrete probability
of one event occurring “before” another.

The ordering relation among the events in the relation Re-
ceived depends on the ordering plausibility, y. The orderings
given by differing values of y are graphically depicted in Fig-
ure 7. Each directed edge in a graph indicates that the orig-
inating event is Before the terminating event. Some pairs of
events are “indistinguishable,” that is each occurs Before the
other. If no edge connects two events, the events are “incom-
parable,” neither occurs Before the other. Note that Before,
for y # 100, is not a typical ordering relation in that it is not
transitive nor asymmetric, although it is always irreflexive (Be-
jore for y = 100 is transitive, asymmetric, and irreflexive for
nonequivalent events).

A useful generalization of Before is Set-Before. Set-Before
is similar to Before, but operates on sets of events.

Set-Before(y, a , 0) w Vz E a Vy E P Before(y, I, y)

Set-Before stipulates that the set of events a is before the set
of events if every event in a is before every event in P , to the
specified ordering plausibility.

The new ordering relations are used to redefine the tempo-
ral constructors and predicates. Below. we consider the First
constructor in some detail since First is used in other construc-
tors. Recall that First chooses the earliest event among a pair
of events. But, with indeterminate events, choosing the earliest
event among a pair of events is not always straightforward. In
particular, for a given ordering plausibility, it could be that that
neither event in a pair or events is earlier, or it could be that
both are earlier. In the indeterminatesemantics, First(y, a, 0)
evaluates to

a if Set-Before(y, a, P)
P if Set-Before(?, 0, a)
Q - 5 otherwise, where

I) = a U 0 and
15 = {zI I E 71 A -3y E r) (Before(?, y, I))}

To simplify discussion of First, consider the case where a and
each contain a single indeterminate event. Determining which
even1 occurs first has several possible outcomes:

only U is first,

only 0 is first,

both a and P are first (each is before the other; the events
are indistinguishable), or

neither a nor 0 is first (neither is before the other; the
events are incomparable).

r

I

I

339

The first two outcomes are straightforward. The third outcome,
that for indistinguishable events, is handled by the fact that
First is nondeterministic; each event is generated separately
and may result in a separateoutput tuple. For the final possible
outcome, since neither event is before the other, First constructs
the set containing both events. Other temporal constructors
and temporal predicates will treat the set as a set of events with
no Before relationships between the members. In general, all
members in a set of events are pairwise incomparable. Below
we show several temporal expressions composed of the First
constructor and the result of each expression using t,he events
from the relation Received.

Fir-450, { e l) , {e311 = { e z)
F W l O O , tez), { e l)) = { e :)
Firrt(l, {el}, { e 3 }) = { e z } and { e 3 } (both are first)
First(lOO, {42}, { e 3 }) = { e z , e 3 }

(a is first)
(P is first)

(incomparable events)

The First constructor can deduce the first event among a group
of events, even when some of those events are incomparable (e z ,
e3, and e4 are incomparable for a plausibility of 100 as shown
in Figure 7), for example:

First(100, { e z } , First(100, { e 3 } , { e 1))) = { e : } .

The First constructor also works when some of the events are
indistinguishable (e z , eg , and e4 are indistinguishable for a plau-
sibility of l) , for example:

First(1, First(1, { e z } , { e l }) , First(1, { e 3 } , (e 4))) = { e : } .

The redefinition of the Last Lernporal constructor is similar
to that of First and is omitted to save space. The definitions of
the other temporal constructors change little; a parameter for
the plausibility is added to each, e.g.,

ouerlap(y, (a , P) , (s , J)) = (Last(r ,a,o),First(r ,P,s)) .

Contrast this with the determinate semantics for the overlap
constructor:

overlap ((a, P) , (q, 5)) = (L a s t (a , q), Firs t (P , Q) .

We are now in a position to redefine the temporal pred-
icates. These definitions differ only slightly from the deter-
minate semantics. A plausibility parameter is added to each
predicate and Set-Before replaces Before since the temporal
constructors now build sets of events rather than events. For
example, in the determinate semantics, precede((i r ,P) , (q, 5))
is defined as B e f o r e (L a s t (a , P) , First(q,C)), while in the in-
determinate semantics precede(y, (a, P) , (q, 6)) is defined as
Set-Before(y, Last(?, a, p) , First(?, 7,s)).

5.4 Supporting Range Credibility
Range credibility changes the data that is available for query

evaluation. In general, range credibility is used to eliminate
some possible intervals from an indeterminate interval. It does
so by eliminating some possible chronons from both the starting
and terminating events’ set of possible chronons. To support
range credibility we introduce two “shrink” functions: Shrink-s
(shrink the startingevent) and Shrink-t (shrink the terminating
event). The shrink functions compute a “shortened” version of
an indeterminate event by shrinking its period of indeterminacy
and modifying its probability mass function.

Shrink-s computes a “later” period of indeterminacy by re-
moving some of the “earlier” chronons from the set of possible
chronons. How many chronons to remove is governed by the first

7 = 25

y = 50

7 = 75

y = 100 20
H

Figure 8: Shrink-s(y, ([1,20), Uniform)) for several values of y

argument, 7 , the range credibility. The value of y is between 0
and 100 (inclusive). Every possible chronon that has a cumu-
lative probability less than the level of credibility is removed.
Higher values (closer to 100) of y will remove more chronons
from the set. Shrink-s(100, a) will remove every chronon except
the latest possible chronon in a. Shrink-s (0 ,a) will leave a un-
changed. Figure 8 shows the result of Shrink-a for several credi-
bility values on the indeterminate event a = ([l, 201, Uniform) .
Shrink-s is defined as follows.

Shrink-s(y, ([a., a*], Pa)) = ([I, a.], PA)

where I is constrained by

(a. 5 I 5 a* A Fa(I) 2 7)
A 7(3a)(1 < i 5 a* A F,(i) = Fa(2)
A -(gj)(a* < j < I A Fa(l) > Fa(j) 2 7)

and PA is the new mass function, PA(;) = aT. Intuitively,
the conditions on the function stipulate that the desired chronon
is in a group of chronons with the same cumulative probability
(the cumulative probability is the chance that the event oc-
curs before or during the chronon in question). This group is
the latest group such that the cumulative probability of all the
chronons earlier than the group falls below y while the cumu-
lative probability of each chronon within the group matches or
exceeds y. The desired chronon is the latest chronon within this
group. It is the latest rather than an arbitrary chronon so that
repeated shrinks will make progress.

The function must also compute a new probability mass
function since the old mass function might have assigned
nonzero probability to chronons that are no longer in the pe-
riod of indeterminacy. To construct the new mass function, the
probability of each of the remaining chronons is scaled by the
cumulative probability of the chopped chronons. The new mass
function is a conditional density function. That is, the proabili-
ties are conditioned by the fact that the period of indeterminacy
is shrunk.

Shrink-t is similar t o Shrink-a, but it removes the ‘‘late’’
chronons from an event’s period of indeterminacy. The defini-
tion of this function is similar t o that of Shrink-a.

With these two functions, it is possible to define the tempo-
ral constructor consisting entirely of a tuple variable associated
with an interval relation.

interual(y, t) = ({Shrink-s(y, tjrom)), {Shr ink- t (y , t t 4)))

This function extracts the from timestamp from the tuple,
shrinks it by y to create a ‘‘later’’ set of possible chronons, ex-
tracts the t o timestamp from the tuple, and shrinks it by y t o
create an “earlier” set of possible chronons, thereby effecting the

range credibility. If 7 = 100, then dl valid-time indeterminacy
will be eliminated. The function then constructs an interval
consisting of the pair of the starting event and the terminating
event, each perhaps indeterminate.

5.5 Adjusting
The valid clause for a valid-time relation associates a valid

time event or interval with each answer tuple. If the target
relation is a n event relation, one answer tuple is generated for
each event in the set of events constructed by the valid clause.
If the target relation is an interval relation, then the starting
and terminating events are chosen from the starting and termi-
nating set of events constructed by the valid clause. However,
the selected events do not always form a valid interval since
the events could have overlapping periods of indeterminacy (on
more than a single chronon).

The Adjust function ensures that this condition is not vio-
lated by constructing a valid indeterminate interval from a pair
of indeterminate events if it is plausible to do so. If the sets of
possible chronons of the starting and terminating events over-
lap, the function will shrink the sets of possible chronons so
that they do not overlap. The constructed indeterminate inter-
val represents only a subset of all the possible intervals since the
shrinking process eliminates some possible intervals. The max-
imum amount by which Adjust can shrink the sets of possible
chronons is dictated by the ordering plausibility, gamma. We
define Adjust as follows.

A d j u s t (y , a , 0) = (Shrank- t (J ,a) , Shrink-s(b,P))

where 8 is the smallest value less than or equal to (100 - y)
such that Eefore(100, Shrink_t(S,a), Shrink-s (&,P)) . When the
starting event is entirely before the terminating event, this func-
tion simply returns the interval as is. If this is not the case, it
attempts to isolate a plausibility, 5, that is the minimum amount
each set of possible chronons needs to be shrunk by i n order to
construct a valid interval. The maximum amount each event is
allowed t o be shrunk is given by (100 - 7) (if y = 100, the Ee-
fore should be true without any shrinking). If no such S exists,
then no interval is constructed because the construction would
exceed the user chosen plausibility.

5.6 Coalescing
Tuples in TQuel relations are assumed to be coalesced,

in that tuples with identical values for the explicit attributes
(termed value-equivalent tuples [McKenzie & Snodgrass 19911)
neither overlap nor are adjacent in determinate valid time. How-
ever, the tuples could overlap in indeterminate valid time. The
tuples produced by the retrieve statement are coalesced by the
Reduce function. A new function Reduce’ computes the mini-
mal set of value-equivalent indeterminate tuples, i.e., the set for
which there are no such tuples. Details are presented elsewhere
[Dyreson & Snodgrass 1992A].

5.7 Semantics of the Example Query
At this point, the semantics of t,he retrieve statement have

been specified. As an example, we trace the computation of the
query given in Figure 4 on the database given in Figure 1. The
query will result in three tuples, also shown in Figure 4. First,
the extent of the intervals in In-Production is unchanged by the
shrink functions because the query uses a range credibility of 0.
The where clause eliminates every tuple from In-Production ex-
cept the Centurions. Likewise, the where clause also eliminates
every tuple from Received except the wing strut tuples.

The shipment of lot number 23 w a s definitely received dur-
ing production of the Centurion serial number AB33; it. satisfies

the overlap with every plausibility. The other shipments might
have been received. Lot number30 satisfies theoverlap for plau-
sibilities lower than 65 because ([May 30, June 181, uniform) is
Before ([June 1, June 301, uniform) for ordering plausibilities
below 65. The other shipment, however, arrived too late in
June to be considered plausible. It is plausible that lot num-
ber 31 arrived before the end of production only for ordering
plausibilities of 28 or less.

For production of the Centurion serial number 11834, all the
shipments arrived too early, except for lot number 31 from the
Griffin warehouse.
5.8 Query Reducibility

An important feature of the extended syntax and seman-
tics is that evaluation of a retrieve statement using the de-
fault plausibility and credibility (both are 100) on a valid-time
database with indeterminate or determinate interval relations
and determinate event relations is equivalent t o evaluation of
the retrieve statement with the previous semantics (which has
no support for valid-time indeterminacy) on the corresponding
“interval reduced” database without valid-time indeterminacy.
We will call this property query reducibility. By an interval re-
duced database, we mean a valid-time database in which the
interval indeterminacy has been removed by replacing each in-
determinate interval with its determinate portion (every inde-
terminate interval has a determinate portion of at least one
chronon). Query reducibility shows that the meaning of all ex-
tant TQuel queries and relations is preserved under the new
semantics. It also shows that even if there is some indetermi-
nacy in the database (i.e., if there are indeterminate interval
relations), the user can choose to ignore it (this is the default
choice).
T h e o r e m The eztended semantics is query reducible to the
previous, valid-time determinate, semantics.
The proof is given elsewhere [Dyreson & Snodgrass 1992A].

6 Imp 1 e me 11 tat i o n
Our goal in implementing support for valid-time indetermi-

nacy is to do so efficiently. The new or redefined functions
discussed in the previous section, Adjus t , S h r i n k s , Shrink-t,
Set-Before, Before, and Reduce’, are all executed in the “in-
ner loop” of query processing. Significant slowdown of these
operations would have a dramatic effect on the overall speed
of query evaluation. Although implementing the new functions
may appear costly, we have developed an efficient implemen-
tation based on heavy preprocessing of the probability infor-
mation and approximating the actual computation when nec-
essary [Dyreson & Snodgrass 1992A]. We have also developed
a compact indeterininate event timestamp format (8 bytes for
common indeterminate events) [Dyreson & Snodgrass 1992BI.
In parallel with the theorem of query reducibility given in Sec-
tion 5.8, conventional TQuel queries on determinate relations
will incur no additional execution overhead under the new se-
mantics. For queries on indeterminate relations, for a plausi-
bility of 1 or 100 or a credibility of 0 or 100, the algorithms to
support the new functions incur little overhead. These special,
but common, credibility and plausibility levels indicate that the
user has chosen either not to use any probabilistic information
or to interpret probabilistic information as determinate. For
these situations, the algorithms to support the new functions
are straightforward and quite efficient.

7 Related Work
Despite the wealth of research in incomplete information

databases, there are few efforts that address temporal incom-

,

341

pleteness. Much of the previous research in incomplete informa-
tion databases has concentrated on issues related to null values
[Codd 1990, Date 1986, Vassiliou 1979, Zaniolo 19841. Another
primary research thrust has studied the applicability of fuzzy
set theory to relational databases [Dubois & Prade 1988, Ze-
mankova k Kandel 19851.

Our work can be seen as an extension of the Probabilistic
Data Model (PDM) [Barbard et al. 19921. In PDM, attribute
values are sets with weights attached to each element. The
weight is the probability that the corresponding element is the
value of the attribute. Queries use the probabilistic represen-
tation in conjunction with a single user-given “confidence” to
compute a result within the framework of the possible world
semantics.

Information that is valid-time indeterminate is also similar
to disjunctive information, especially in the context of deductive
databases [Liu & Sunderraman 19901. A set of possible chronons
is of the exclusive-or variety of disjunctive information (only one
disjunct is true) [Ola 19921.

Recently, the issue of multtple time granularities, e.g., know-
ing some events to the accuracy of seconds, other events to
within a day, and yet other events to only within a year, has
been examined [Ladkin 1987, Wiederhold et al. 19911. These
approaches generally convert mixed granularities to the coars-
est granularity, taking into account the semantics of the time-
varying domains. Our work refines this approach because we
convert the coarser granularities to indeterminacy and preserve
the semantics of the finest granularity.

Dutta uses a fuzzy set approach to handle generalized tem-
poral events [Dutta 19891. A generalized temporal event is a
single event that has multiple occurrences. For example the
event “Margaret’s salary is high” may occur at various times
as Margaret’s salary fluctuates to reflect promotions and demo-
tions.

Generalized bitemporal elements are defined somewhat dif-
ferently in a more recent paper [Kouramajian & Elmasri 1992).
Bitemporal elements combine transaction time and valid time
in the same temporal element [Jensen et al. 19921. Since TQuel
also supports transaction time, valid-time indeterminacy and
generalized bitemporal elements differ mainly in their handling
of valid time. In their model, both the upper bound and the
lower bound on a valid time interval could be a set of non-
contiguous possible chronons. Unlike valid-time indeterminacy,
the upper and lower bound sets could intersect and no proba-
bilities are used. Since there are no probabilities, the user in
general is limited to querying for answers which are either “def-
inite” or those which are “possible” (or combinations thereof).
Historically, these alternatives have a well-defined meaning in
incomplete information databases [Lipski 19791.

Another proposal intertwines support for value and temporal
incompleteness [Gadia et al. 19921. By combining the different
kinds of incomplete information, a wide spectrum of attribute
values are simultaneously modeled, including values that are
completely known, values that are unknown but are known to
have occurred, values that are known if they occurred, and val-
ues that are unknown even if they occurred. We feel that con-
flating different kinds of incompleteness in a single temporal
relational database model prevents the user from picking and
choosing the kind of incomplete information support that she
desires.

In our approach, value, tuple, and temporal incompleteness
are orthogonal. By combining valid-time indeterminacy with
other kinds of incomplete information we can support each of

the kinds of incomplete information found in Gadia et al., plus
others (e.g., fuzzy value incompleteness). Another difference
between our approach and theirs is that they make no use of
probabilistic information. The user cannot express his or her
credibility in the underlying data nor plausibility in the tempo-
ral relationships in the data.

Finally, the approach to valid-time indeterminacy espoused
by Kahn and Gorry [Kahn & Gorry 19771 is reminiscent of those
employed by the artificial intelligence community [Maiocchi &
Pernici 19911. In their model, events and intervals are specified
relative to each other; only a subset are actually tied to the valid
time line. An event may only be known to have occurred, say,
between two other events. Their model is more general than
the possible chronons data model, but also exhibits significant
query processing overhead.

8 Summary and Future Work
This paper has extended the syntax and formal semantics

of TQuel to support valid-time indeterminacy. This support
provides the user with two controls on the retrieval process,
range credibility and ordering plausibility. We have extended
the range statement with an optional with clause to specify
range credibility and extended the retrieve statement to specify
ordering plausibilities. Range credibility changes the informa
tion available to query processing. It eliminates some possible,
but unlikely intervals from an indeterminate interval until the
desired quality of information is reached. Ordering plausibility
controls the coristruction of an answer to a query using the pool
of credible information. A temporal expression is satisfied if
there exists a plausible ordering (to the level specified by the
user) that satisfies it. The approach has an intuitive seman-
tics, is orthogonal to those proposed by others to handle value
incompleteness and generalized events, refines previously pro-
posed techniques to handle multiple granularities of time, and
has a practical implementation.

The result is an expressive extension to TQuel to support
valid-time indeterminacy. The extension is also “transparent”
to the user who does not use the added query language support
for indeterminacy. The extended semantics and implement&
tion both reduce to the previous semantics and implementation
under the default credibility and plausibility.

A useful extension of the current work would be to use spans
instead of values to express credibility and plausibility. For in-
stance, the user could specify a range credibility of a “day” or
a “year,” causing sets of possible chronons in the specified rela
tions to be shrunk to the most probable day or year. Similarly,
the ordering plausibility could make use of durations. The user
could constrain retrieval to tuples that “overlap March, 1984”
to “within a year” (this has been termed a “band join” [De-
Witt et al. 19911 or a “fuzzy temporal equi-join” [Leung &
Muntz 19911). Both possibilities can be seen as extensions of
the present paper.

This paper only considers the retrieve statement. The up-
date statements (append, delete, and replace) can also be ex-
tended in an analogous manner. Extending temporal aggregates
(Snodgrass et al. 19931 is more challenging; the goal, shared
with this paper, is to simultaneously maximize the expressive
power of the language and the efficiency of query evaluation. Fi-
nally, when a consensus temporal extension to SQL is available,
we will apply our approach to that language to add valid-time
inde termGnacy.

342

Acknowledgements
This work was supported in part by NSF grant ISI-8902707

and IBM contract #1124. Comments on earlier drafts of this
paper by Christian Jensen, Michael Soo, and Nick Kline helped
improve the presentation.

References
[Ariav 19861 Ariav, G. “A Temporally Oriented Data Model.”

A C M Transactions on Database Systems, 11, No. 4,
Dec. 1986, pp. 499-527.

[Barbard et al. 19921 BarbarQ, D., H. Garcia-Molina and D.
Porter. “The Management of Probabilistic Data.”
IEEE Transactions on Knowledge and Data Engi-
neering, 4, No. 5, Oct. 1992, pp. 487-502.

“On
an Algebra for Historical Relational Databases: Two
Views,” in Proceedings of ACM SIGMOD Interna-
tional Conference on Management of Data. Ed.
S. Navathe. Association for Computing Machinery.
Austin, TX: May 1985, pp. 247-265.

[Clifford & Rao 19871 Clifford, J. and A. Rao. “A Simple, Gen-
eral Structure for Temporal Domains,” in Proceedings
of the Conference o n Temporal Aspects in Informa-
tion Systems. AFCET. France: May 1987, pp. 23-30.

[Codd 19901 Codd, E. F . “Missing Information,” in The Re-
. lational Model for Database Management: Version

2. Addison-Wesley Publishing Company, Inc., 1990.
Chap. 8-9.

[Date 19861 Date, C.J. “Null Values in Database Management,”
in Relational Database: Selected Writings. Reading,
MA: Addison-Wesley, 1986. Chap. 15. pp. 313-334.

[DeWitt et al. 19911 DeWitt, D., J . Naughtonand D. Schneider.
“An Evaluation of Non-Equijoin Algorithms,” in Pro-
ceedings of the Conference on Very Large Databases.
1991, pp. 443-452.

[Dubois & Prade 19881 Dubois, D., and H. Prade. “Handling
Incomplete or Uncertain Data and Vague Queries in
Database Applications,” in Possibility Theory: An
Approach to Computerized Processing of Uncertainty.
New York and London: Plenum Press, 1988. Chap.

[Dutta 19891 Dutta, S. “Generalized Events in Temporal
Databases,” in Proceedings of the Fifth International
Conference on Data Engineering. Los Angeles, CA:
Feb. 1989, pp. 118-126.

[Dyreson & Snodgrass 1992AI Dyreson, C. E. and R. T . Snod-
grass. “Historical Indeterminacy.” Technical Report
T R 91-30a. Computer Science Department, Univer-
sity of Arizona. Revised Feb. 1992.

[Dyreson & Snodgrass 1992BI Dyreson, C. E. and R. T. Snod-
grass. “Time-stamp Semantics and Representat ion .”
Technical Report T R 92-16a. Computer Science De-
partment, University of Arizona. July 1992.

[Gadia et al. 19921 Gadia, S.K., S. Nair and Y.-C.
Poon. “Incomplete Information in Relational Tem-
poral Databases,” in Proceedings of the Conference
on Very Large Databases. Vancouver, Canada: Aug.
1992.

[Jensen et al. 19921 Jensen, C.S., J. Clifford, S.K. Gadia, A.
Segev and R.T. Snodgrass. “A Glossary of Temporal
Database Concepts.” SIGMOD Record, 21, No. 3,
Sep. 1992.

[Kahn & Gorry 19771 Kahn, K. and G. A. Gorry. “Mechanizing
Temporal Knowledge.” Artificial Intelligence, (1977),
pp. 87-108.

[Kouramajian & Elmasri 19921 Kouramajian, V. and R. El-
masri. “A Generalized Temporal Model.” Tech. Re-
port. University of Texas a t Arlington. Feb. 1992.

[Clifford & Tansel 19851 Clifford, J . and A.U. Tansel.

6. pp. 217-257.

[Ladkin 19871 Ladkin, P. “The Logic of Time Representation.”
PhD. Dissertation. University of California, Berkeley,
Nov. 1987.

[Leung & Muntz 19911 Leung, T.Y. and R. Muntz. “Temporal
Query Processing and Optimization in Multiprocessor
Database Machines.” Technical Report CSD-910077.
Computer Science Department, UCLA. Nov. 1991.

[Lipski 19791 Lipski, W., Jr. “On Semantic Issues Connected
with Incomplete Information Databases.” A CM
Transactians on Database Systems, 4, No. 3, Sep.
1979, pp. 262-296.

[Liu & Sunderraman 19901 Liu, K.C. and R. Sunderraman.
“Indefinite and Maybe Information in Relational
Databases.” A CM Transactions o n Database Sys-
tems, 15, No. 1, Mar. 1990, pp. 1-39.

[Maiocchi & Pernici 19911 Maiocchi, R. and B. Pernici. “Tem-
poral Data Management Systems: A Comparative
View.” IEEE Transactions on Knowledge and Data
Engineering, 3, No. 4, Dec. 1991, pp. 504-524.

[McKenzie & Snodgrass 19911 McKenzie, E. and R. Snodgrass.
“Supporting Valid Time in an Historical Relational
Algebra: Proofs and Extensions.” Technical Report
TR-91-15. Department of Computer Science, Uni-
versity of Arizona. Aug. 1991.

“Solicitation of Comments:
Database Language SQL2.” American National Stan-
dards Institute, Washington, DC, 1990.

[Motro 19901 Motro, A. “Imprecision and incompleteness in r e l a
tional databases: survey.” Information and Software
Technology, 32, No. 9, Nov. 1990, pp. 579-588.

[Ola 19921 Ola, A. “Relational Databases with Exclusive Dis-
junctions,” in Proceedings of the Eighth International
Conference on Data Engineering. Tempe, AZ: Feb.

[Snodgrass 19931 Snodgrass, R. “An Overview of TQuel,” in
Temporal Databases: Theory, Design, and Implemen-
tation. Benjamin/Cummings, 1993. Chap. 6. pp.
45.

[Snodgrass et al. 19931 Snodgrass, R., S. Gomez and E. McKen-
zie. “Aggregates in the Temporal Query Language
TQuel.” IEEE Transactions on Knowledge and Data
Engineering, (1993), t o appear.

[Snodgrass 19871 Snodgrass, R. T. “The Temporal Query Lan-
guage TQuel.” A CM Transactions on Database Sys-
tems, 12, No. 2, June 1987, pp. 247-298.

[Stonebraker et al. 19761 Stonebraker, M., E. Wong, P. Kreps
and G. Held. “The Design and Implementation of
Ingres.” A CM Transactions on Database Systems, 1,
No. 3, Sep. 1976, pp. 189-222.

[Vassiliou 19791 Vassiliou, Y. “Null values in database
management-a denotational semantics approazh,” in
Proceedings of A CM SIGMOD International Confer-
ence on Management of Data. Association for Com-
puting Machinery. New York: ACM Press, May 1979,
pp. 162-169.

19911 Wiederhold, G., S. Jajodia and W.
Litwin. “Dealing with Granularity of Time in Tem-
poral Databases,” in Proc. 3rd Nordic Conf. on
Advanced Information Systems Engineering. Trond-
heim, Norway: May 1991.

[Zaniolo 19841 Zaniolo, C. “Database Relations with Null Val-
ues.” Journal of Computer and System Sciences, 28
(1984), pp. 142-166.

[Zemankova & Kandel 19851 Zemankova, M. and A. Kandel.
“Implementing Imprecision in Information Systems.”
Information Sciences, 37 (1985), pp. 107-141.

[Melton 19901 Melton, J. (ed.)

1992, pp. 328-336.

[Wiederhold et al.

343

