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Abstract 
To add time su port t o  the relational model, both 

first normal fo rm ( f N F  and non-INF appmches  have 

maining within 1NF when time support is added may 
introduce data redundancy. The non-1NF models may 
not be capable of directly using existing relational stor- 
age structures or query evaluation stmtegies. 

This paper describes a new, conceptual tempoml 
data model that better captures the time-dependent se- 
mantics of the data while permitting multiple data mod- 
els at the representation level. This conceptual model 
effectively moves the distinction between the various 
existing data models from a semantic basis to a physi- 
cal, performance-relevant basis. 

We  define a conceptual notion of a bitempoml re- 
lation where tuples are stamped with sets of two- 
dimensional chronons in  transaction-time/valid-time 
space. W e  introduce a tuple-timestamped 1NF repre- 
sentation to  exemplify how the conceptual bitempoml 
data model is related, by means of snapshot equiva- 
lence, with representational models. W e  then consider 
querying within the two-level fmmework. W e  first de- 
fine an algebm at the conceptual level. We  proceed to  
map this algebm to the sample representational model 
in such a way that new opemtors compute equivalent 
results for different representations of the same concep- 
tual bitempoml relation. This demonstmtes that the 
representational model is faithful to the semantics of 
the conceptual data model, with many choices available 
that may be exploited to improve performance. 

1 Introduction 
Adding time to the relational model has been a 

daunting task [BADW82, McK86, SS88, S00911. More 
than a dozen extended data models have been pro- 
posed over the last decade [Sno92, JS921. Most of 
these models support valid time, that is, the time a 
fact was valid in the modeled reality. A few, no- 
tably [BZ82, BG89, Sno87, Sno931, have also supported 
transaction time, the time a fact was recorded in the 
database; such models are termed bitempoml, because 
they support both kinds of time [JCG*92]. 

While these data models differ on many dimensions, 
perhaps the basic distinction that has been oft stated 
is between first normal form (1NF) and non-1NF. A 
related distinction is between tuple timestamping and 
attribute value timestamping. Each has associated dif- 
ficulties. Remaining within lNF, an example being the 

been proposed. Each x as associated dificulties. Re- 

Michael D. So0 Richard T. Snodgrass 

Department of Computer Science 
University of Arizona 

Tucson, AZ 85721 

(800 ,  rts}@cs.arizona.edu 

1063-638Y93 $03.00 0 1993 IEEE 
262 

timestamping of tuples with valid and transaction start 
and end times [Sno87], may introduce redundancy be- 
cause attribute values that change at different times 
are repeated in multiple tuples. The non-1NF models, 
one bein timestamping attribute values with sets of 
intervalsjGad88B], may not be capable of directly us- 
ing existing relational storage structures or query eval- 
uation strategies that depend on atomic attribute val- 
ues. 

It is our contention that focusing on data presen- 
tation (how temporal data is displayed to the user), 
on data stomge, with its requisite demands of regular 
structure, and on efficient query evaluation has compli- 
cated the primary task of capturing the time-varying 
semantics. The result has been a plethora of incom- 
patible data models and query languages, and a cor- 
responding surfeit of database design and implemen- 
tation strategies that may be employed across these 
models. 

We advocate instead a very simple conceptual data 
model that captures the essential semantics of time- 
varying relations, but has no illusions of being suitable 
for presentation, storage, or query evaluation. We in- 
stead rely on existing data model(s) for these tasks, 
by exploiting equivalence mappings between the con- 
ceptual model and the representational models. This 
equivalence is based on snapshot equivalence, which 
says that two relation instances are equivalent if all 
their snapshots, taken at all times (valid and trans- 
action), are identical. Snapshot equivalence provides 
a natural means of comparing rather disparate repre- 
sentations. Finally, while not addressed here, we feel 
that the conceptual data model is the appropriate lo- 
cation for database design [JSS92A] and logical query 
optimization. 

In essence, we advocate moving the distinction be- 
tween the various existing temporal data models from 
a semantic basis to a physical, performance-relevant 
basis, utilizing our proposed conceptual data model to 
capture the time-varying semantics. 

The paper has the following outline. In the next sec- 
tion we define the conceptual model. We then exam- 
ine a previously proposed representational data model, 
namely tuple timestamping e.g., [NA89, Sad87, Sar90, 

conceptual model and this model, then briefly discuss 
additional representational models. 

Having presented both the conceptual data model 
and exemplified representational data models, Sec- 

Sno87, Sno931). We provi 6 e a mapping between the 
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tion 4 presents an overview of the interaction among 
the data models. Snapshot equivalence is the subject 
of Section 5.  Ironically, while definitions of snapshot 
equivalence are particular to individual data models 
(as the definitions rely on model-specific operations), 
the notion of snapshot equivalence allows us to re- 
late relation instances, as well as operators, of differ- 
ent representations, and also allows us to relate repre- 
sentations to the semantics ascribed to the conceptual 
model. Section 6 is devoted to generalizing algebraic 
operators of the relational model to apply to objects 
in the bitemporal conceptual model as well as the tu- 
ple timestamped representational model. As with data 
instances, we demonstrate correspondence of these o p  
erators. 

2 Conceptual Bitemporal Relations 
The primary reason behind the success of the rela- 

tional model is its simplicity. A bitemporal relation is 
necessarily more complex. Not only must it associate 
values with facts, as does the relational model, it must 
also specify when the facts were valid in reality, as well 
as when the facts were current in the database. Since 
our emphasis is on semantic clarity, we will extend the 
conventional relational model as small an extent as nec- 
essary to capture this additional information. 
2.1 Definition 

Tuples in a conceptual bitemporal relation instance 
are associated with time values from two orthogonal 
time domains, namely valid time and transaction time. 
Valid time is used for capturing the timevarying na- 
ture of the part of reality being modeled, and trans- 
action time models the update activity of the relation. 
For both domains, we assume that the database sys- 
tem has limited precision, and we term the smallest 
time unit a chronon. As we can number the chronons, 
the domains are isomorphic to the domain of natural 
numbers. 

In general, the schema of a conceptual bitemporal 
relation, R, consists of an arbitrary number of explicit 
attributes, A', A2, . . . , A,,, encoding some fact (possi- 
bly composite) and an implicit timestamp attribute, T. 
Thus, a tuple, t = (al, a 2 , .  . . ,a, tb), in a conceptual 
bitemporal relation instance, r(R\, consists of a num- 
ber of attribute values associated with a timestamp 
value. 

An arbitrary subset of the domain of valid times 
is associated with each tuple, meaning that the fact 
recorded by the tuple is true in the modeled reality 
during each valid-time chronon in the subset. Each in- 
dividual valid-time chronon of a single tuple has asso- 
ciated an arbitrary subset of the domain of transaction 
times, meaning that the fact, valid during the partic- 
ular chronon, is current in the relation during each of 
the transaction time chronons in the subset. 

Associated with a tuple is a set of so-called bitempo- 
ral chmnons in the twedimensional space spanned by 
valid time and transaction time. Such a set is termed 
a bitempoml element', denoted tb, and is represented 
graphically as a set of rectangles. Because no two tu- 
ples with mutually identical explicit attribute values 

'Alternative, equally desirable terms include time period ret 
[BZSZ] and bitemporal liferpan [CC87]. 

(termed value-equivalent are allowed in a bitemporal 

tained in a single tuple. 

EXAMPLE: Consider a relation recording employee/ 
department information, such as "Jake works for the 
shipping department." We assume that the granularity 
of chronons is one day for both valid time and trans- 
action time, and the period of interest is the month of 
June 1992. 

Figure 1 shows how the bitemporal element in an 
employee's department tuple changes. The x-axis de- 
notes transaction time, and the y-axis denotes valid 
time. Employee Jake was hired by the company as 
temporary help in the shipping department for the 
interval from June 10th to  June 15th, and this fact 
is recorded in the database predictively on June 5th. 
This is shown in Figure l(a). The arrows pointing to 
the right signify that the tuple has not been logically 
deleted; it continues through to the transaction time 
NOW. On June loth, the personnel department dis- 
covers an error. Jake had real1 been hired for the 
valid-time interval from June 5tE to June 20th. The 
database is corrected on June loth, and the updated 
bitemporal element is shown in Figure l(b). On June 
15th, the personnel department is informed that the 
correction wa8 itself incorrect; Jake really was hired 
for the original time interval, June 10th to June 15th, 
and the database is corrected the same day. This is 
shown in Figure l(c). Lastly, Figure l(d) shows the 
result of three updates to the relation, all of which take 
place on June 20th. While the the period of validity 
was correct, it was discovered that Jake was not in the 
shipping department, but in the loading department. 
Consequently, the fact (Jake, Ship) is removed from 
the current state and the fact (Jake, Load) is inserted. 
A new employee, Kate, is hired for the shipping depart- 
ment for the interval from June 25th to June 30th. 

relation instance, the ful 1 time history of a fact is con- 

29vt  29vt P 

t t  tt  b 5 10 15 20 25% O b  5 10 15 20 2550 
0 

(4 (b) 

p , S h i p )  

(J&e,Ship) (Jake,Load) 

t t  tt b 5 10 15 20 25% O b  5 10 15 20 25.30 
0 

(4 (4 
Figure 1: Bitemporal Elements 

We note that the number of bitemporal chronons 
in a given bitemporal element is the area enclosed by 
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the bitemporal element. The bitemporal element for 
(Jake, Ship) contains 140 bitemporal chronons. 

The example illustrates how transaction time and 
valid time are handled. As time passes, i.e., as the 
computer's internal clock advances, the bitemporal el- 
ements associated with current facts are updated. For 
example, when (Jake, Ship) was first inserted, the six 
valid-time chronons from 10 to 15 had associated the 
transaction time chronon NOW. At time 5, the six 
new bitemporal chronons, (5? lo), . . . , (5,15), were ap- 
pended. This continued until time 9, after which the 
valid time was updated. Thus, starting at  time 10, 16 
bitemporal chronons are added at every clock tick. 

The actual bitemporal relation corresponding to the 
graphical representation in Figure l(d) is shown below. 
This relation contains three facts. The timestamp at- 
tribute T shows each transaction time chronon associ- 
ated with each valid-time chronon as a set of ordered 
pairs. 

Emp Dept "= 
Jake Load I Kate Ship 

T 
( ( 5 ,  lo), . . . , (5,15), . . . , (9, lo), . . . 
(9, 15),(10,5), . . . ,(10,20), ..., 
(14,5), . . . (14,20), (15, lo), ..., 
(15,15) . . . , (19, lo), . . . , (19,15)} 
{ ( N O W ,  10) , . . . , ( N O W ,  15)) 
{(NOW,25), ...,( N O W , 3 0 ) )  

0 

2.2 Update 
We consider the three forms of update, insertion, 

deletion, and modification, in turn. 
An insertion is issued when we want to record in 

bitemporal relation instance r that a currently un- 
recorded fact (01,. . . , a,) is true for some period(s) 
of time. These periods of time are represented by a 
valid-time element, i.e., a set of valid-time chronons, 
t u .  When the fact is stored, its valid-time element 
stamp is transformed into a bitemporal-element stamp 
to capture that, from now on, the fact is current in the 
relation. We indicate this with a special value in the 
domain of transaction chronon identifiers, NO W. 

The arguments to the i n s e r t  routine are the rela- 
tion into which a fact is to be inserted, the explicit 
values of the fact, and the set of valid-time chronons, 
t,, during which the fact was true in reality. i n s e r t  
returns the new, updated version of the relation. There 
are three cases to consider. First, if 0 1 , .  . . , a,) was 

is appended. Second, if ( ~ 1 , .  . . ,a,) was part of some 
previously current state, the tuple recording this is u p  
dated with the new valid-time information. Third, if 
( a l ,  . . . , a,) is already current in the relation, a mod- 
ification is required, and the insertion is rejected. (In 
the following, we denote valid-time chronons with c,, 
and transaction-time chronons with ct .) 

insert (r ,  (al,. . .,an),tv) = 

never recorded in the relation, a comp I etely new tuple 

r U { ( a l , . . . , a n l  {NOW} xtu)} 
if 1 3  tb (( a i ,  . . . , an I t b )  E r) 

if 3tb ( a1, .  . .,ani t b )  E r A  

f - { ( 0 1 ,  , an, t b ) }  
U{(al , . . . ,anItbU{NOW} x h)} 

7 3  [NOW, c v )  E t b )  
r otherwise 

The i n s e r t  routine adds bitemporal chronons with a 
transaction time of NO W. 

As time passes, new chronons must be added. We 
assume that a special routine tsspdate is applied 
to all bitemporal relations at  each clock tick. (Note 
that representational data models, to be discussed 
shortly, which actually store the data on disk will not 
require such a special routine; it is present only in 
the conceptual data model.) We also assume that the 
transaction-time granularity is sufficiently small that 
only one transaction can execute within a transaction- 
time chronon. This function simply updates the times- 
tamps to include the new transaction-time value. The 
timestamp of each tuple is examined in turn. When 
a bitemporal chronon of the type (NOW, c,) is en- 
countered in the timestamp, a new bitemporal chronon 
(ct,cv), where time ct is the new transaction-time 
value, is made part of the timestamp. 

ts-update(r,ct) : 
for each x E r 

for each (NOW,c,) E x[q 
x[T] + %[TI U { ( c t , ~ ) )  

Deletions concern the (logical) removal of a com- 
plete tuple from the current valid-time state of the 
bitemporal relation. We distinguish between the case 
where there is a tuple to delete and the case where no 
tuple matching the one to be deleted is current. 
delete(r ,  ( a l l . .  .,a,)) = 

r -  {(ai ,  - - -,an1 tb)) 
U{(01 , . . . ,anl  tb-nov-ts(tb } 

if 3 t /(al.. . . , an1 t b )  E r )  L otherwise 

where nOW-tS(tb) = {(NOW,c,,) I (NOW,c,] E t b } .  
Finally, a modification of an existing tup e may be 

defined as a deletion followed by an insertion as follows. 

modify(r, (al,. . .,a,),t,) = 
insert (de lete(r ,  (01,. . .,an)), (a1, .  . ., an),fv) 

EXAMPLE: The sequence of bitemporal elements 
shown in Figure 1 is created by the following sequence 
of commands, invoked at  the indicated transaction 
time (7'2'). 

Command 
insert (dept. ("Jake" ,"Ship") , [6/10 .6/151) 
modify (dept. ("Jake", "Ship") , [6/5,6/201) 

delete (dept. ('I Jake", "Ship") 
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Valid-time relations and transaction-time relations 
are special cases of bitemporal relations that support 
only valid time and transaction time, respectively. 
Thus an valid-time tuple has an associated set of valid- 
time chronons (termed a valid-time element and de- 
noted t " ) ,  and a transaction-time tuple has an as- 
sociated set of transaction-time chronons (termed a 
tmnsaction-time element and denoted t t ) .  For clarity, 
we use the term snapshot relation for a conventional 
relation. Snapshot relations support neither valid time 
nor transaction time. 

3 Representation Schemes 
A conceptual bitemporal relation is structurally 

simple-it is a set of facts, each timestamped with 
a bitemporal element which is a set of bitemporal 
chronons. In this section we examine a previously pro- 
posed representation scheme for bitemporal relations. 
We specify the objects defined in the representation, 
provide the mapping to and from conceptual bitempo- 
ral relations to demonstrate that the same information 
is being stored, and show how updates of conceptual 
bitemporal relations may be mapped into updates on 
relations in the representation. We end by briefly con- 
sidering four additional representations. 
3.1 A Sample Representation Scheme 

In the conceptual model, the timestamp associated 
with a tuple is an arbitrary set of bitemporal chronons. 
As such, a relation schema in the conceptual model is 
non-lNF, which may be difficult to implement directly. 
We describe here how to represent conceptual relations 
by 1NF snapshot relations, allowing the use of existing, 
well-understood implementation techniques. 

Let a bitemporal relation schema 'R contain the at- 
tributes AI,. . . , An, T where T is the timestamp at- 
tribute defined on the domain of bitemporal elements. 
This schema is represented by a snapshot relation 
schema R as follows. 

The additional attributes T,, T,, V, , Ve are atomic- 
valued timestamp attributes containing a starting and 
ending transaction-time chronon and a starting and 
ending valid-time chronon, respectively. These four 
values represent the bitemporal chronons in a rectan- 
gular region, the idea being to divide the complete re- 
gion, covered by the bitemporal element of a single tu- 
ple in a conceptual relation instance, into a number of 
rectangles and then represent the conceptual tuple by 
a set of value-equivalent tuples, one for each rectangle. 

There is a multitude of possible ways of covering a 
bitemporal element. We require that any function that 
covers a bitemporal element z[T] of a bitemporal tuple 
t satisfy two properties. 

1. Any bitemporal chronon in z[T] must be con- 

2. Each bitemporal chronon in a rectangle must be 

Apart from these requirements, the covering function 
is purposefully left unspecified-an implementation is 

tained in at least one rectangle. 

contained in z[T]. 

free to choose a covering with properties it finds de- 
sirable. For example, a set of covering rectangles need 
not be disjoint. Overlapping rectangles may reduce 
the number of tuples needed in the representation, at 
the possible expense of additional processing during 
update. 

EXAMPLE: The 1NF relation corresponding to the 
conceptual relation in Figure l(d) is shown below. 

Emp Dept ]I T, T, I V, V, I 
Jake 6/10 6/14 6/20 

Here we use a non-overlapping covering function that 
partitions the bitemporal elements by transaction 
time. 0 

Throughout the paper, we will use R and S to de- 
note relation schemas. Relation instances are denoted 
r, s ,  and t ,  and r R) means that r is an instance of 

we let A denote the set of all attributes Ai. For tu- 
ples we use z, y, and z (possibly indexed), and the 
notation z Ai] is defined to be the value of attribute 

be the closed interval from z[V,] to 2 V ] i.e., a set 
of one-dimensional valid-time chronons 1 , k6 similarly 
for z[T], a set of transaction-time chronons. 

The following functions convert between a concep- 
tual bitemporal relation instance and a corresponding 
instance in the representation scheme. The second ar- 
gument, cover, of the routine concep-tolrnap is a cov- 
ering function. It returns a set of rectangles, each de- 
noted by a set of bitemporal chronons. 

R. Attributes are 6 enoted Ai, Bi, and Ci. For brevity, 

Ai for t u p e  f z. As a shorthand, we define .[VI to 

con c e p-t o -8 nap ( rl , cover 1 : 
s t  0; 
for each z E rl 

z[A] t z[A]; 
for each 1 E cover(z[T]) 

t m i n - l ( t ) ;  z[Te] t m a x - l ( t ) ;  
z V, t m i n - d ( t ) ;  z[v,] t maz-2(t)  ; *PI 8 6 s u { z } ;  

return s 

The functions man-1 and man2 select a minimuin first 
and second component, respectively, in a set of binary 
tuples. The function m a - 1  returns the value NOW if 
encountered as a first component; otherwise, it  returns 
a maximum first component. The function max-2 se- 
lects a maximum second component. 
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snap-to-concep(r) : 
s t  0; 

r t r -  z } ;  fo r  z A  each t 'i' z A]; 
ZIT] t bi-chr(z[T], .[VI) ; 
f o r  each y E r 

r t r -  y}; 
z[T] t x\T] U bi-chr(y[T], y[V]> ; 

i f  '[A] = y[A] 

s t s U { z } ;  
r e t u r n  s 

The function bi-chr computes the bitemporal chronons 
covered by the argument rectangular region. 

The concep-to-snap routine generates possibly 
many representational tuples from each concep 
tual tuple, each corresponding to  a rectangle in 
valid/transaction-time space. The snap-to-concep 
routine merges the rectangles associated with a single 
fact into a single bitemporal element. 

Note that the functions are the inverse of each other, 
i.e., for any conceptual relation instance r', 

snap-to-concep(concep-tosnap(r', cover)) = r'. 
For the update routines, the most convenient cov- 

ering functions partition on either valid or transaction 
time and do not permit overlaps. The current trans- 
action time is ct. 

i n se r t ( r , (u l ,  ..., u,),t,,,cover,,): 
cur t cover, ( t u )  ; 
f o r  each x E r 

i f  x[Te] = NOW and z[A] = ( u t , .  . . ,an) 
f o r  each t E cur 

i f  x[V] nt # 0 
cur t (cur - t )  U ( t  - z[V]) ; 

f o r  each t E cur 

r e t u r n  r 

delete(r, (01,. . . , a n ) )  : 
f o r  each x E r 

if 2 A] = ( ~ 1 , .  . . , an) and z[Te] = NOW 
2 t T e ]  + ct ; 

r e tu rn  r 

The function cover,, in the i n s e r t  routine returns a set 
of valid-time intervals (each a set of contiguous valid- 
time chronons). The routine first reduces the valid 
time elements, produced by the covering function, to 
avoid overlap with the valid times of existin tuples 
that have a transaction time extending to N%W and 
that are value equivalent to the one to be inserted. 
Then, one tuple is inserted for each of the remaining 
valid time elements. The delete routine simply re- 
places the transaction end time with the current time, 
Ct . 

As for the conceptual data model, modify is simply 
a combination of delete and i n s e r t .  

3.2 Other Representations 
The representation just discussed is a representa- 

tive of the five representations that have been pro- 
posed so far to support both valid and transaction 
time. We briefly review each of the four remaining 
representations-an analysis similar to  the one in Sec- 
tion 3.1 may be performed for each [JSS92B]. 

BenZvi introduced the first bitemporal representa- 
tion, similar to the tuple timestamping scheme in Sec- 
tion 3.1, but with five timestamps: (1) valid begin, (2) 
valid end, (3) the transaction time when valid begin 
was recorded, (4) the transaction time when valid end 
was recorded, and 5 the transaction time when the 

In representations based on attribute-value times- 
tamping (e.g., [CC87, Tan86, Gad88B, LJ88, MS91]), 
all information about an object is rouped within a 
single tuple. This capability has ma!e attribute value 
timestamped representations popular for data model- 
ing. In Gadia's TempSQL model [Gad92], which is 
the only model based on attribute-value timestamp 
ing that supports bitemporal relations, each attribute 
value has associated a transaction-time interval and a 
valid-time interval. Like in the representation in Sec- 
tion 3.1, these intervals together encode a bitemporal 
rectangle. 

Another representation often mentioned is a se- 
quence of valid-time states indexed by transaction time 
[SA85]. This representation is derived by first par- 
titioning the transaction-time dimension according to 
the beginning and ending points of the transaction- 
time intervals of all the tuples in the bitemporal rela- 
tion. Second, for each partition, all tuples current in 
the partition are collected along with their valid-time 
intervals. These sets are valid-time relations indexed 
by transaction time. The transaction-time interval of 
a partition is the existence interval of the valid-time 
relation, i.e., the time when the entire valid-time rela- 
tion was the current state of the bitemporal relation. 
Alternatively, we can envision a bitemporal relation as 
a sequence of transaction-time states indexed by valid 
time. 

In the backlog-based representation scheme, bitem- 
poral relations are represented by backlogs, which are 
also 1NF relations [Kim78, JMRS921. The most impor- 
tant difference between this and the previous schemes 
is that tuples (termed update requests) in bitemporal 
backlogs are never updated, i.e., backlo s are append- 
only. In addition to  the explicit attri%ute values, a 
update request has four attribute values: (1) valid be- 
gin, (2) valid end, (3) the transaction time when the 
update request is inserted, and (4) a value indicating 
whether the lipdate is an insertion or a deletion. 

As for the sample representation scheme, it is pos- 
sible for each of these representation schemes to devise 
mappin functions to and from the conceptual bitem- 
poral re!ations. Thus, the results of the rest of the 
paper apply also to  these other representations. 

4 Data Model Interaction 
The previously proposed representations arose from 

several considerations. They were all extensions of the 
conventional relational model that attempted to c a p  
ture the time-varying nature of both the enterprise be- 

tuple was logically 6 1  e eted [BZ82]. 
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ing modeled and the database, and hence incorporated 
support for both valid and transaction time. They 
attempted to retain the simplicity of the relational 
model; the two tuple timestamping models were per- 
haps most successful in this regard. They attempted 
to present all the information concerning an object in 
one tuple; the attribute-value timestamped model was 
perhaps best at that. And they attempted to ensure 
ease of implementation and query evaluation efficiency; 
the backlog representation may be advantageous here. 

Display Formats Representational Data Models 

Logical 
Database 

Design Four tuple timestamps 

1 
Five tuple timestamps 

Conceptual Attribute timestamps 

\ b  
I 

\c7 Backlogs 

Figure 2: Interaction of Conceptual and Representa- 
tional Data Models 

It is clear from the number of proposed representa- 
tions that meeting all of these goals simultaneously is a 
difficult, if not impossible task. We therefore advocate 
a separation of concerns. The time-varying semantics 
is obscured in the representation schemes by presenta- 
tion and implementation considerations. We feel that 
the bitemporal conceptual data model proposed in this 
paper is the most appropriate basis for expressing this 
semantics. This data model is notable in its use of 
bitemporal chronons to stamp facts. Clearly, in most 
situations, this is not the most appropriate way to 
present the stored data to users, nor is it the best way 
to physically store the data. However, since there are 
mappings to other representations that, in many situa- 
tions, may be more amenable to presentation and stor- 
age, those representations can be employed for those 
purposes, while retaining the semantics of the concep 
tual data model. Figure 2 shows the placement of the 
bitemporal conceptual data model and the five repre- 
sentational data models with respect to storage repre- 
sentation and display. It indicates that logical data- 
base design produces the conceptual relation schemas, 
which are then refined into relation schemas in some 
representational data model(s). Query optimization 
may be performed on the logical algebra, parameter- 
ized by the cost models of the representation(s) c h e  
sen for the stored data. Finally, display presentation 
should be decoupled from the storage representation. 
The sample conceptual relation introduced in Section 
2.1 can be expressed in the various representational 
data models, and each resulting relation may be appro- 
priate for presentation in some situation, independent 

of how the relation is stored. 
Note that this arrangement hinges on the semantic 

equivalence of the various data models. It must be 
possible to map between the conceptual model and the 
various representational models, as discussed next. 

5 Semantic Equivalence 
The previous section claimed that many equivalent 

representations of the same conceptual relation may 
ceexist. In this and the next section, we explore 
in more detail this relationship between the concep 
tual data model and the sample representational data 
model. We focus here on the objects in the models; the 
next section will examine operations on these objects. 
5.1 Transaction and Valid Timeslice Op- 

erators 
We use snapshot equivalence to formalize the no- 

tion of equivalent representations. Snapshot equiva- 
lence makes use of the notions of transaction and valid 
timeslice, which we define for the sample representa- 
tion. 

The tmnsaction timeslice operator, pa ,  takes two ar- 
guments, a bitemporal relation and a time value, the 
latter appearing as a subscript. The result is a valid- 
time relation. In order to explain the semantics of 
p* ,  we describe its operation on a conceptual bitem- 
poral relation. Each tuple is examined in turn. If any 
of its associated bitemporal chronons have a transac- 
tion time matching the argument time, the explicit at- 
tribute values and each of the valid-time chronons with 
a matching transaction time become a tuple in the re- 
sult. The transaction timeslice operator may also be 
applied to a transaction-time relation, in which case 
the result is a snapshot relation. 

The valid timeslice operator, P, is very similar. It 
also takes two ar uments, a bitemporal relation and 
a time value. T\e difference is that this operator 
does the selection on the valid time and produces a 
transaction-time relation. The valid timeslice operator 
may also be applied to a valid-time relation, in which 
case the result is a snapshot relation. 

DEFINITION: Define a relation schema R = 
( A I ,  :. . ,An,  T,, Te, V,, Ve), and let r be an instance 
of this schema. Let t 2  denote an arbitrary time value 
and let t 1 denote a time not exceeding NO W. 

p,"l(r) = { z ( " + ~ )  132 E f 

r t ( r )  = 132 E r 
( z [ A ]  = z[A] A .[VI = .[VI At' E z[T])} 

(z[A] = z[A] A z[T] = z[T] A t  E z[V])} 0 

The transact ion t imeslice operator for transaction- t ime 
relations (p') and the valid timeslice operator for valid- 
time relations (T") are straightforward special cases. 
Note further that transaction and valid timeslice may 
be defined for the other representational data models 
as well. 

5.2 Snapshot Equivalence 
We can now define snapshot equivalence so that it 

applies to each representational data model for which 
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the valid timeslice and transaction timeslice operators 
have been defined2. 

DEFINITION: Two relation instances, r and s, are 
snapshot equivalent, r Z s, if for all times t l  not ex- 
ceeding NOW and all times t2, 

0 

There is no reason to apply p before r in this def- 
inition, as the following theorem states. Proofs of all 
theorems in terms of the tuple-timestamped represen- 
tational data model may be found elsewhere [JSS92B]. 

THEOREM 1 Let r be a bitemporal relation. Then 
for all times 11 not exceeding NOW and for all times 
t 2 ,  

Snapshot equivalence precisely captures the notion 
that relation instances in the representation scheme 
have the same information content. More precisely, all 
representations of the same conceptual bitemporal re- 
lation instance are snapshot equivalent, and two bitem- 
poral relations that are snapshot equivalent represent 
the same conceptual bitemporal relation. 

THEOREM 2 Snapshot equivalent bitemporal rela- 
tions represent the same conceptual bitemporal rela- 
tion: 

1. If concep-tosnap(r', cover1) = r1 and 

2. If s1 & s 2  then 
concep-to-snap(r', coverz) = r2 then r1 & r2. 

snap-to-concep(s1) = snap-to-concep(s2). U 

This theorem has important consequences. For each 
representation, and for a given covering function, snap- 
shot equivalence partitions the relation instances into 
equivalence classes. Each instance in an equivalence 
class maps to the same conceptual bitemporal relation 
instance. The semantics of the representation instance 
is thus identical to that of the conceptual instance. 
This correspondence provides a way of converting in- 
stances between disparate representations: this conver- 
sion can proceed through a conceptual instance. Fi- 
nally, the correspondence provides a way of demon- 
strating that two instances in different representations 
are semantically equivalent, again by examining the 
conceptual instance(s) to which they map. 

2The concept of snapshot equivalence is due to  Gadia and was 
first defined for valid-time relations [Gads]  and was later gener- 
alized to multiple dimensions [Gym]. We have chosen to avoid 
the original term weakly equivalent to avoid confusion with the 
different notion of weak equivalence over algebraic expressions 
(e.g., [UIlSZ]). Disambiguating the original term by prefixing 
with "temporally" is awkward. 

6 An Algebra for Bitemporal Concep- 
tual Relations 

We now examine the operational aspects of the data 
models just introduced. A major goal is to demon- 
strate the existence of the operational counterpart of 
the structural equivalence established in the previ- 
ous section. We first define operations on conceptual 
bitemporal relations and then define corresponding o p  
erations on the tuple-timestamped representation. We 
prove that the operators preserve snapshot equivalence 
and are natural generalizations of their snapshot coun- 
terparts. 
6.1 Definition 

Define a relation schema R = (At, . . . ,Aril T), and 
let r be an instance of this schema. Let t 2  denote an 
arbitrary time value and let t l  denote a time not ex- 
ceeding N O W .  Then the valid timeslice and transac- 
tion timeslice operators, defined in Section 5.1 for the 
tuple-timestamped representational model, may be de- 
fined as follows for the conceptual data model. 

pF1 ( r )  = {z("+ ' )  13% E r (z[A] = z[A]A 

.E(.) = {z("+') 132 E r (z[A] = z[A]A 
4T"l = {tz I (tl,t2) E 4TI) 4T"I # 0)) 

Z[Tt] = {ti I (ti,tz) E z[T]) A z[Tt] # 0)) 
Let D be an arbitrary set of 101 non-timestamp at- 

tributes of relation schema R. The projection on D of 
r ,  r s ( r ) ,  is defined as follows. 

.E(.) = { Z ( ~ ~ I + ~ )  132 E r z[D] = z[D])A 
VY E f (!/[Dl = z t 01 * 0 1  G Z[Tl)A 
Vt E z[T] 3y E f (y[D] = z[D] A t  E y[T])) 

The first line ensures that no chronon in any value- 
equivalent tuple of r is left unaccounted for, and the 
second line ensures that no spurious chronons are in- 
troduced. 

Let P be a predicate defined on AI, . . . , A,,. The 
selection P on r ,  uF(r), is defined as follows. 

uE(r) = { z  I z E r A P(z[A])) 

To define the union operator, UB, let both r1 and 

I(32 E r13y E 1-2 

(-3Y E rz(y[A = 441))  A 4TI = 4TI))V 

r2 be instances of R. 

r1 uB r2 = (.[A = z y ]  = yjA] A z[T] = z[T] U y[T]))V 
(32 E rl (%[A = t[A A 

(3y F 3 2  E rl(z[A 1 = y[A])) A z[T] = y[T]))) 
72 ( 4 4  = Y A b  

The first clause handles value-equivalent tuples found 
in both rl and r z ;  the second clause handles those 
found only in r l ;  and the third handles those found 
only in r2. 

With r1 and r2 defined as above, relational differ- 
ence is defined as follows. 
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The last two lines compute the bitemporal element, 
depending on whether a value-equivalent tuple may be 
found in S .  

In the bitemporal natural join, two tuples join if 
they match on the join attributes and have overlapping 
bitemporal element timestamps. Define r and s to be 
instances of R and S, respectively, and let R and S be 
bitemporal relation schemas given as follows. 

The bitemporal natural join of r and s, r WB s, is de- 
fined below. As can be seen, the timestamp of a tuple 
in the join result is computed as the intersection of the 
timestamps of the two tuples that produced it. 

We have only defined operators for bitemporal rela- 
tions. The similar operators for valid time and trans- 
action time relations are special cases. The valid and 
transaction time natural joins are denoted w" and 
We , respectively; the conventional snapshot natural 

join is denoted Ws . The same naming convention is 
used for the remaining operators. 
8.2 Mapping the Algebra to a Represen- 

tation Scheme 
For each of the algebraic operators defined in the 

previous section, we now define counterparts for the 
sample representation scheme. Throughout this sec- 
tion, R and S denote tuple-timestamped bitemporal 
relation schemas, and r and s are instances of these 
schemas. Initially, R is assumed to have the attributes 

As the transaction- and valid-timeslice operators 
were defined already in Section 3.1, we now define in 
turn projection, selection, union, difference, and natu- 
ral join. 

To define projection, let D be an arbitrary set of ID1 
attributes among A I , .  . . , A,. The projection on D of 
r ,  is defined as follows. 

A I ,  . . . , An Ts, Te, Ve, Ve. 

= { ~ ( 1 ~ 1 + ~ )  122 E r 
(z[D] = z[D] A z [ q  = z[q A z[V] = .[VI)} 

Next, let P be a predicate defined on A I , .  . . ,A,.  
The selection P on r ,  U:(.), is defined as follows. 

~ $ ( r )  = { z ( " + ~ )  131 E r ( z  = z A P(z[A]))} 

To define the union operator, UB, let both r1 and 
r2 be instances of schema R. 

r1 uB r2 = { z ( " + ~ )  I 31 E r13y E r2 (t = z v t = y)) 

With r1 and r2 defined as above, relational differ- 
ence is defined using several functions, each introduced 
in Section 3.1. 

The new timestamp is conveniently determined by set 
difference on bitemporal elements. 

To define the bitemporal natural join, we need two 
bitemporal relation schemas R and S with overlapping 
attributes. 

R = (AI . . - 9  A n  B1, ., Ts, Te, Vs, Ve) 
S = ( A I ,  . . . , An, C1, . Ck 1 1 Ts, Te, Vs, Ve) 

In the bitemporal natural join of r and s, r WB s, two 
tuples join if they match on the join attributes and 
overlap in both valid time and transaction time. 

6.3 Equivalence Properties 
We have seen that a conceptual bitemporal relation 

is represented by a class of snapshot equivalent rela- 
tions in the representation scheme. We now define the 
notion of an operator preserving snapshot equivalence. 

DEFINITION : An operator a preserves snapshot equiv- 
alence if, for all arameters X and snapshot relation 
instances r and r representing bitemporal relations, P 

This definition may be trivially extended to operators 
that accept two or more argument relation instances. 

0 

In the snapshot relational algebra, an operator, e.g., 
natural join, must return identical results every time 
it is applied to the same pair of arguments. In our 
framework, we require only preservation of snapshot 
equivalence. Thus, we add flexibility in implementing 
the bitemporal operators by accepting that they return 
different , but snapshot equivalent, results when applied 
to identical arguments at different times. 

The operators preserve snapshot equivalence. That 
is, given snapshot equivalent operands each operator 
produces snapshot equivalent results. This ensures 
that the result of an algebraic operation will be cor- 
rect, irrespective of covering. 

THEOREM 3 The algebraic operators preserve snap- 

The next step is to combine the conceptual and 
representation level transformation functions with the 
representation level operators to create correspond- 
ing conceptual level operators. Given a representation 
level operator, a p ,  its corresponding conceptual level 
operators, a P c ,  is defined as follows. 

a',"(r') = snap-to-concep(aPX (concep-to-snap(r'))) 

shot equivalence. 0 
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Theorems 2 and 3 in combination make this meaningful 
and ensure that the conceptual level operators behave 
like the snapshot relational algebra operators-with 
identical arguments, they always return identical re- 
sults. This is required because, like snapshot relations, 
conceptual bitemporal relations are unique, i.e., two 
conceptual relations have the same information con- 
tent if and only if they are identical. 

Now, we have two sets of operators defined on the 
conceptual bitemporal relations, namely the directly 
defined operators in Section 6.1 and the induced o p  
erators. In fact, we have constructed the two sets of 
operators to be identical. Put differently, the operators 
in Section 6.1 are the explicitly stated conceptual level 
operators, induced from the representation level oper- 
ators (Section 6.2) and the transformation algorithms 
in Section 3.1. 

Next we show how the operators in the various data 
models, snapshot, transaction-time, valid-time, and 
bitemporal, are related. Specifically, we show that the 
semantics of an operator in a more complex data model 
reduces to the semantics of the operator in a simpler 
data model. Reducibility guarantees that the seman- 
tics of simpler operators are preserved in their more 
complex counterparts. 

For example, the semantics of the transaction-time 
natural join reduces to the semantics of the s n a p  
shot natural join in that the result of first joining two 
transaction-time relations and then transforming the 
result to a snapshot relation yields a result equivalent 
to that obtained by first transforming the arguments 
to snapshot relations and then joining the snapshot re- 
lations. This is shown in Figure 3 and stated formally 
in the first equivalence of the following theorem. 

Transact ion- t i me relations Snapshot relations 

P: 
r ,  rl 

I WT PT 

Figure 3: Reducibility of Transaction-Time Natural 
Join to Snapshot Natural Join. 

THEOREM 4 Let t denote an arbitrary time that, 
when used with a transaction timeslice operator, does 
not exceed NOW. In each equivalence, let r and s 
be relation instances of the proper types for the given 
operators. Then the following hold. 

A similar analysis can be made for the other operators. 
0 

7 Summary and Future Research 
In this paper, we defined the bitempond conceptual 

data model which timestamps facts with bitemporal 
elements, which are sets of bitemporal chronons. We 
argued that it is a unifying model in that conceptual 
instances could be mapped into instances of existing 
representational data models. This was exemplified 
by a first normal form (1NF) tuple timestamped data 
model in which tuples were stamped with rectangles in 
the transaction-time/valid-time space. We also showed 
how an extension to the conventional relational alge- 
braic operators could be defined in the conceptual data 
model, and be mapped to analogous operators in the 
representational models. 

An important property of the conceptual model, 
shared with the conventional relational model, but not 
held by the representational models, is that relation 
instances are semantically unique: each models a dif- 
ferent reality and thus has a distinct semantics. We 
employed snapshot equivalence to relate instances in 
different models, and we showed that the operators 
were equivalent , were snapshot-equivalence preserving, 
and were a natural extension of the snapshot operators. 

We advocate a separation of concerns. Data pre- 
sentation, storage representation, and time-varying se- 
mantics should be considered in isolation, utilizing dif- 
ferent data models. Semantics, specifically as deter- 
mined by logical database desi n, should be expressed 
in the conceptual model. MAtiple presentation for- 
mats should be available, as different applications re- 
quire different ways of viewing the data. The storage 
and processin of bitemporal relations should be done 
in a data mofel that emphasizes efficiency. 

Additional research is needed in database design, 
utilizing the conceptual data model. I t  appears that 
normal forms may be more conveniently defined in this 
model than in the representational models [JSS92A]. 
Also, more work is needed in mapping existing tempo- 
ral query language proposals into the conceptual data 
model. 
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