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Abstract Developing a DBMS with built-in temporal support from

scratch is a daunting task that may only be accomplished by
Most real-world database applications contain a substanmajor DBMS vendors that already have a DBMS to modify
tial portion of time-referenced, or temporal, data. Re-and have large resources available. This has led to the con-
cent advances in temporal query languages show that sucideration of a layered, a@tratum approach where a layer,
database applications could benefit substantially from builtimplementing temporal support, is interposed between the
in temporal support in the DBMS. To achieve this, temporabpplications and a conventional DBMS [3, 22]. The layer
guery representation, optimization, and processing mechmaps temporal SQL statements to regular SQL statements
anisms must be provided. This paper presents a generadnd passes them to the DBMS, which is not altered. With
algebraic foundation for query optimization that integratesthis approach, it is feasible to support a temporal SQL that
conventional and temporal query optimization and is suit-strictly extends SQL, thus not affecting legacy applications.
able for providing temporal support both via a stand-alone This paper offers a foundation for conventional and tem-
temporal DBMS and via a layer on top of a conventionalporal query optimization that is applicable to both the in-
DBMS. By capturing duplicate removal and retention andtegrated and the layered architecture, thus making it rele-
order preservation for all queries, as well as coalescing forvant for a DBMS vendor that plans to incorporate temporal
temporal queries, this foundation formalizes and generalizefeatures into their product, as well as to third-party devel-
existing approaches. opers that want to implement a temporal layer on top of a
conventional DBMS. The foundation offers comprehensive,
) precise, and integrated coverage of order preservation and
1. Introduction duplicate removal and retention for all queries, as well as of
coalescing for temporal queries. (In coalescing, tuples with
Most real-world database applications manage timeadjacent time periods and otherwise identical attribute val-
referenced data. For example, this aspect applies to fites are consolidated.)
nancial, medical, and travel applications; and being time- The foundation is enabled by a temporally extended al-
variant is one of Inmon’s defining properties of a data waregebra, which enhances existing relational algebras based on
house [11]. Recent advances in temporal query languagesultisets by integrating the handling of order and adding
[8, 13] show that such applications may benefit substantiallfemporal support. In addition to conventional relations,
from a DBMS with built-in temporal support. The poten- the algebra employs temporal relations timestamped with
tial benefits are several: application code is simplified andime periods, which are useful for implementation be-
more easily maintainable, thereby increasing programmerause of their granularity independence and fixed-width
productivity [21], and more data processing can be left tformat. Previously proposed user-level temporal relations
the DBMS, potentially leading to better performance. may be mapped to this format [14], and the user-level data
In contrast, the built-in temporal support offered by cur-model and query language may be point-based or interval-
rent database products is limited to predefined, time-relateldlased [4]. More generally, the algebra is independent of the
data types, e.g., the Informix TimeSeries DataBlade and thepecific user-level temporal relational query language and
Oracle8 TimeSeries cartridge, and extensibility facilities thatlata model employed, and it provides support for the two
enable the user to define new, e.g., temporal, data typesain classes of temporal statements found in the literature:
However, temporal support is needed that goes beyond dath) statements that use built-in temporal semantics and are
types and extends the query language itself. evaluated conceptually at each point of time and (2) state-



ments that explicitly manipulate values of (new) temporaltion [10, 17] primarily considers the processing of joins and
abstract data types with convenient operations and predsemijoins. It does not delve into general query optimization
cates defined on them. The temporal aspect considered hexed does not address duplicates, order, and coalescing.
is valid time [12], which captures when data was, is, or will  The paper is structured as follows. Section 2 motivates
be true in the modeled reality; the approach can be extendelde need for the proposed foundation for query optimization,
to also handle transaction time, either alone or in combinadefines the underlying database structures, and presents the
tion with valid time. extended relational algebra operations. The different types
In the algebra, relations are defined as lists, and six kindgf algebraic equivalences are described in Section 3, and
of relation equivalences are defined. Specifically, two relathe concrete transformation rules that preserve the differ-
tions can be equivalent as lists, multisets, and sets, and th&yit equivalence types are provided in Section 4. Sections 5
can be snapshot-equivalent as lists, multisets, and sets. Fypd 6 describe how to determine when different transforma-
example, the last type of equivalence occurs when all cotion rules are applicable and provide a query plan enumera-
responding pairs of snapshot relations that may be deriveléPn algorithm. Section 7 concludes and offers research di-
from a pair of temporal relations are the same when considections.
ered as sets.

These types of equivalences come into play becausé. An extended algebra
queries specify different types of results, depending on o . o
whether ordering, duplicate removal, or coalescing are spec- Ve initially motivate for the proposed query optimization

ified in the query statement. For example, an SQL quer)f,ramework. The remainder of this section first describes re-

not includingORDER B¥indDISTINCT at the outermost quirements to the extendgd algebra, then defines its database
level specifies a result of type multiset, thus opening the posStructures and the operations on them.
sibility of applying transformations that do not preserve list
equivalence. The different types of equivalences make @1 Example
possible to systematically exploit transformationrulesandto  tpe example assumes a layered architecture, where the
optimize a query according to the type of the expected resul atum performs some of the query optimization and pro-
The paper provides transformation rules that preserve the%%ssing, in addition to translating temporal query language
types of equivalences and describes when a rule of some tyRgytements to SQL. Specifically, complex temporal opera-
is applicable to a query. Finally, an algorithm is providedyjong such as temporal aggregation, temporal duplicate elim-
that generates equivalent query evaluation plans. ination, and coalescing are often not processed efficiently
Some work has been reported on non-temporal relationgh conventional DBMSs and might advantageously be sup-
algebras for multisets [1, 7, 9], with the most recent of thesgorted by the stratum.
works [9], by Garcia-Molina et al., being also the most ex-  |n the temporal relationEMPLOYERnd PROJECTin
tensive. This book offers comprehensive coverage of quergigure 1, we assume a closed-open representation for time
transformations that preserve set as well as multiset equivgreriods and assume the time values to denote months dur-
lences. Formalizing relations as multisets, sorting is permit'mg some year. For examp|e, John is in Sales from January
ted only at the outermost level. But although SQL only al-to August (not including the latter), and he is in Advertising
lows sorting at the outermost level, pushing down sorting ifrom June to November. Consider the query “Which em-
a query plan can improve performance. By formalizing relaployees worked in a department, but not on any project, and
tions as lists and offering integrated support for query transyyhen?” In particular, the user requires the result relation to
formations that preserve list equivalences, we allow sortinge sorted, coalesced, and without duplicates in its snapshots.
to be performed early during query evaluation. In addition;The snapshot of a temporal relation at timies the conven-
we state precisely when list, multiset, and set based equiv@ional relation containing those tuples (without the time pe-
lences, including their temporal counterparts, are applicablgjods) from the temporal relation that have time periods con-
Recent work on query optimization by Leung et al. [16] em-tainingt.
phasizes the importance of considering duplicates in DB2's  To exemplify the concepts of coalescing and temporal du-
query rewrite rules. However, duplicates are addressed gficates (duplicates in snapshots), let us examineEikie
special cases when defining rewrite rules, and no formab| OYERrelation after being projected @mpName, T1, and
foundation for reasoning about these is offered. T2 (see the top-left relation in Figure 3 in Section 2.5). This
More than a dozen temporal relational algebras have begrojected relation is not coalesced; the first and third tuples
proposed over the last two decades [18, 19], but all the akand the second and third tuples) for Anna have adjacent
gebras known to the authors are set-based and hence time periods and can be merged. Also, it contains tempo-
not adequately address issues related to duplicates, ordeal duplicates; its snapshot at, e.g., time 6 contains duplicate
and coalescing. Existing work on temporal query optimizatuples for John.



EMPLOYEE difference is sensitive to duplicates in its left argument, so

EmpName | Dept T1 | T2 the lower-leftrdup” may affect the result of the difference.
John Sales 118 However, the presence or absence of duplicates is not rele-
John Advertising 6 |11 vant for the operations below thiglup’, as well as for the
Anna Sales — 2 |6 operations that are on the right branch of the temporal dif-
Anna Advertising 2 6 ) . .
Anna Sales 5 T ference. Also, it does not matter if the relation produced
by the temporal difference contains duplicates or not, due
PROJECT Result to the subsequentlup’ operation. As a result, transforma-
EmpName | Prj | T1 | T2 EmpName | T1 | T2 tion rules applied to the darkly shaded region need not pre-
John PL 12 |3 Anna 2 |3 serve duplicates. Third, transformations applied below the
John P2 |5 |6 Anna 4 |5 coalescing operation need not preserve the time periods; co-
jg:g ﬁé ; io 222: g ; alescing returns a unique relation for all snapshot-equivalent
Anna 5 T3 12 Anna 10 T 12 argument reIationsTwhose snapshots do not contain dupli-
Anna P> 15 16 John T T3 cates.. The tomlup ensures that.the argumen.t to the co-
Anna P3 |7 |8 John 3 15 alescing operation does not contain duplicates in snapshots.
Anna P3 19 | 10 John 6 |7 Sections 5 and 6 elaborate on these concepts and describe
John 8 |9 when different types of transformation rules are applicable.
John 10 | 11 By systematically exploiting transformation rules pre-

serving different types of equivalences, we are able to
Figure 1. Example relations achieve an “optimized” query tree such as the one shown

The desired result of the previous query is given at thd" Figure 2(b). In this tree, the transfer operation has been

bottom-right in Figure 1. We proceed to use this query tdDushed down, indicating that the stratum performs tempo-

: . L . ral duplicate elimination, coalescing, and difference. The
illustrate the importance of properly considering duplicates, )
order, and coalescing during query optimization. sort operation was pushed down because the DBMS sorts

_— o f han th .Th f I h
To compute the result, the stratum initially uses a straigh faster than the stratum. The parts of a query relegated to the

. A DBMS (here, those belo@* operations) are not optimized
forward mapping of the user-level query to an initial alge-

bra expression, shown in Figure 2(a). The gquery is entirelby the stratum; instead these are expressed in the language

computed in the DBMS; the last operation applied is atrans%-umoorte‘j by the DBMS, e.g., SQL, and are then passed to

fer operatiori™® that transfers its argument from the DBMS the DBMS, which will perform its own optimization. In the

) .~ stratum, coalescing is performed before difference because
to the stratum. Allowing also a reverse transfer operation

TD permits query plans to flexibly partition computation the left argument to the temporal difference is expected to be
' P query b yp P smaller than the result of the temporal difference.
between the stratum and the DBMS. hi le th h h d lain
The next operations, sortingdrt), coalescing ¢oal’) We use-t Is example throughout the paper and exp ainin
. RN ' . more detail the concepts represented by the shaded regions
and temporal duplicate eliminatiomrdup™ ), are performed

to obtain the user-required format. Theup” operation and the generation of equivalent query trees.
ensures that no sngpshots have dupIicate_s,camH en- 5o Requirements
sures that value-equivalent tuples (tuples with the same non-
temporal attribute values) with adjacent time periods are Several requirements should be kept in mind when de-
merged. signing the algebra. It is a fundamental requirement that the
The temporal difference\{) is the central operation in algebra be formally defined. Equally fundamental, the alge-
this query. It returns the employees that are preseBMA  bra must be suitable for implementation, which has several
PLOYEE but not inPROJECT along with the time periods implications. The algebra must incorporate ordering, du-
when this occurred. It turns out that to obtain the correcplicate removal and retention, and coalescing. This implies
result, the left argument is not allowed to contain duplicateshat the relations, over which the operations will be defined,
in snapshots; this is ensured by thizp” operation priorto  should be lists, thereby incorporating both duplicates and or-
the difference. der. In addition, it is attractive to use conventional, fixed-size
Transformation rules that preserve different types oftuples, which implies the use of time periods (as opposed to
equivalences are applicable to different parts of the quergemporal elements, which are finite unions of time periods).
This is illustrated by the shaded regions in Figure 2(a). FirstJo be independent of the granularity of time, definitions of
transformations below th&rt need not preserve order. The operations should be expressed in terms of the start and end
operations belowort are not sensitive to order, and thet  times of periods only.
ensures that whatever result is produced by the operations The algebra must extend the conventional relational alge-
below, it is correctly ordered at the end. Second, temporaira and must accommodate both classes of temporal state-
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Figure 2. Algebraic expressions for the query

ments mentioned in the introduction, namely statementBefinition 2.1 A relation schemais a three-tupleS =
with built-in temporal semantics and statements that explic(2, A, dom), where( is a finite set of attributesA is a
ity manipulate values of time data types. To convenientlyfinite set of domains, andom : 2 — A is a function that
accommodate the first class of statements, we introducEssociates a domain with each attribute. O
temporal operations that are counterparts of existing rela- . .
tiongl algeb?a operations, in the sense?hat they are sn%psh o e>_<ample, relation schem&MPLOYEEfrom Fig-
reducible to these. A temporal operatiop, is snapshot- ure 1 is formally a three—tupleﬂ,A, dom), where ) =
reducible to operationp if for any point in timet and for {EmpName, Dept, T1,T2}, A = {string, T}, and dom =
any temporal relation, the snapshot at of the result of {(EmpName, string), (Dept, string), (T1,T), (T2, T)}.  We
applyingop: to r is equal to the result of applyingps to denot_e the time domain bBY anq use the definition of this
the snapshot of at timet. For example, temporal duplicate domain proposed by, e.g., Bettini et al. [2].

elimination is snapshot reducible to duplicate elimination. pefinition 2.2 A tuple over schem& = (2, A, dom) is a
We also require that the operations be minimal and ofs nctiont : 0 — Usead, such that for every attributé of

thogonal. Each operation should perform one single fuan, #(A) € dom(A). A relation schema instance ovsris a
tion and should minimally affect its argument(s) in doing S0 4ite sequence of tuples ovsr O

This way, replication of functionality is avoided, and it is

easier to combine operations in queries. For example, codlote that the definition of a relation schema instance (re-
lescing should not have any effect on duplicates; a separat@tion, for short) corresponds to the definition of a list. A
duplicate elimination operation should be available for thisrelation can contain duplicate tuples, and the ordering of the
purpose. As another implication, the operations should retuples is significant. RelatioBMPLOYE&om Figure 1 is a
tain as much as possible the time periods and the order of tHist of tuples(t., t2, t3, 4, t5). Tuplet; can be expressed as
tuples in the argument relation(s). For example, coalescin§(EmpName, John), (Dept, Sales), (T1,1), (T2,8)}.

should retain the ordering of its argument. Combinations of We distinguish between snapshot, or conventional, and
operations, termed idioms, may be included for efficiencytemporal relations. We reserve two specific attribute names,

but should be identified as idioms. T1 and T2, for denoting the time period start and end, re-
spectively, of a temporal relation. The schema of a snapshot
2.3. Database structures relation does not contain these two attributes. Alternatively,

we could have chosen to have a single type of relation, but

We define relation schemas, tuples, and relation schenthen each temporal operation would have to take the names

instances in turn. The definitions are the standard ones, baf the temporal attributes as extra arguments. Using our ap-
adapted to address duplicates and order. proach, the operations implicitly know the time attributes.



Operation Sorting Cardinality Duplicates | Coalescing
Order(result) n(result)

op(r) = Order(r) < n(r) Retains Retains
Ty enirfn (T) = Prefiz(Order(r), ProjPairs) =n(r) Generates| Destroys
ri U7y unordered =n(r1) + n(rs) Generates| Destroys
r1 X T2 = Order(ry) =n(r1) - n(ra) Retains —

r1\ T2 = Order(r1) > (n(r1) — n(r2)) and< n(r1) Retains —
&a1,....Gn F1,...Fy (1) | = Prefiz(Order(r), GroupPairs) < n(r) Eliminates —
rdup(r) = Order(r) < n(r) Eliminates —

r1 xT 1y = Order(r1) \ TimePairs < n(r1) - n(rz) Retains Destroys
ri\T ro = Order(ry) \ TimePairs <2-n(ry) Retains Destroys
551 _____ GniFro Fun(T) | = Prefiz(Order(r), GroupPairs) <2-n(r)—1 Eliminates | Destroys
rdup™ (r) = Order(r) \ TimePairs <2-n(r)—1 Eliminates | Destroys
riUrs unordered > n(r1) and< (n(r1) + n(r2)) Retains —

r UL 1 unordered > n(ry) and< (n(ri1) + 2 - n(r2)) Retains Destroys
sorta(r) =A =n(r) Retains Retains
coal™ (1) = Order(r) \ TimePairs < n(r) Retains Enforces

Table 1. Overview of operations
2.4. Fundamental algebra operations (Cartesian product followed by selection and projection),
would not introduce any new issues in the framework. How-

We describe briefly all the fundamental algebra operaever, idioms should be included in an implementation of the
tions. We then consider temporal duplicate elimination inalgebra.
detail. Other operations are defined elsewhere [20]. Our algebra and the algebra presented in [9] are funda-

Table 1 lists all operations. Selectian)( projection r), = mentally different in that the latter works on multisets, while
union ALL (L1), Cartesian producty), difference {), ag- ours works on lists. However, our selection, projection,
gregation §), and duplicate elimination-§up) derive from  Cartesian product, difference, union ALL, aggregation, and
the conventional relational algebra. For the latter four operaduplicate elimination operations are not list-sensitive, i.e., if
tions, we add temporal counterparts, denoted by superscrifiteir argument relations are identical as multisets (but differ-
T. The temporal operations conceptually evaluate the resudint as lists), their result relations are also identical as mul-
at each point of time. This is exemplified by the differencetisets. When we treat relations as multisets, our algebra is
between regular and temporal duplicate elimination, to bat least as expressive as the algebra presented in [9] because
discussed in Section 2.5. each operation of the latter may be expressed by one of the

Next, union () originates from the union operation for seven operations mentioned above.
multisets given in [1]. This operation includes a tuple in  Table 1 also describes, for each operation, the order and
the result as many times as the tuple occurs in the argumeaardinality of the result relation and how the operation han-
relation that has the most occurrences of that tuple. Thdles regular duplicates and coalescing. Functibder(r)
temporal counterpart of union is denoted by. We also returns a list of attributes paired with a sorting type (ascend-
add coalescing, which merges value-equivalent tuples witing or descending) for relation(e.g.,(A ASC, BDESC)). For
adjacent time periods, and sorting. Our definition of coaan unordered relation, the function returns an empty list.
lescing is different from that given bydbilen et al. [5], due Lists ProjPairs, TimePairs, and GroupPairs include, re-
to the requirement of minimality (see Section 2.2) and ousspectively, the projection attributes, the temporal attributes,
relations being list based. The coalescing ohigh et al. and the grouping attributes paired witBC or DESC. Func-
merges value-equivalent tuples with adjacerdwm@rlapping tion Prefiz returns the largest common prefix of its two ar-
time periods; in our algebra, this effect can be achieved bguments. For example, if a relation is sorted B, and
performing temporal duplicate elimination and coalescing. C, and we project it orh andC, the result is sorted oA.

The algebra includes fundamental operations as well a8lthough omitted from the table, the time attributes may in
the temporal operations needed to accommodate query stagpecial cases be present in the order of a relation resulting
ments with built-in temporal semantics (see Section 2.2). Wérom coalescing. Also note that in the special case where the
omit derived operations (idioms), except regular and temposorting listA is a prefix of Order(r), the order ofsort 4 (r)
ral union, which can be expressed via union ALL and reguis Order(r).
lar (temporal) difference. The addition of idioms, e.g., join  We denote the cardinality of relatiorby n(r). An oper-



ation may (1) eliminate regular duplicates so that the resulhe relation. FunctiorOver” : [TT x RT] — 77T scans
relation would only have distinct tuples, (2) retain regularthe argument relation and finds the first tuple whose time
duplicates, i.e., the result relation would have distinct tupleperiod overlaps with the argument tuple and which is value-
onlyif the argument relation(s) contains only distinct tuples,equivalent with it. (For example, the first two tuplesraf
or (3) generate regular duplicates that do not derive fronoverlap and are value-equivalent.) If there is no such tu-
duplicates existing in the argument relation(s). In a simifple, we return the first tuple concatenat&y (vith the re-
lar manner, an operation may (1) enforce coalescing, so thatilt of rdup” applied to the rest of the relation. Otherwise
its result relation is coalesced, (2) retain coalescing, i.e., ité€he fourth and fifth lines), the operation returns the result
result relation is coalescerhly if its argument relation is  of rdup’ applied to the modified argument relation, where
coalesced, or (3) destroy coalescing. Note that coalescirthe overlapping tuple is changed to the result of subtract-
is undefined for snapshot relations (which are returned bing the first tuple of the relation from the overlapping tuple.
operations that have temporal counterparts). The result can contain zero, one, or two tuples, depending
The next section defines temporal duplicate eliminationon how the time periods of the tuples are related. Function
Overall, an attempt has been made to define operations cothange” : [TT x RT x RT] = R finds the argument tu-
ducive to efficientimplementation. For example, union ALL ple in the first argument relation, then replaces the tuple with

simply concatenates its arguments. the second argument relation (since the temporal difference
may return two tuples, we use “relation” as result type). For
2.5. Temporal duplicate elimination example, the time period of the second tuplerafis ob-

tained by subtracting the time period of the first tupl&of
Let 77 be the set of all tuples with temporal support, andfrom that of the second tuple @afl.
let RT be the set of all relations with such tuples. Operation

rdup’ : RT — RT removes duplicates from all snapshots R1 = 7z (EMPLOYEE) R2 = rdup(R1)

of the argument relation. The argument and result relations | EmpName | T1 | T2 EmpName | 1.T1 | 1.T2

have the same schema. Note that this operation also removes | John 1 18 John 1 8

regular duplicates because they qualify as duplicates in snap- | John 6 |11 John 6 11

shots. Anna 2 6 Anna 2 6
Figure 3 shows th&&eMPLOYERelation projected on Anna 2 |6 Anna 6 12

L = (EmpName, T1,T2) and also the results of regular and Anna 6 |12

temporal duplicate elimination applied to this relation. Re- R3 = rdup” (R1)

lation R2 does not contain regular duplicates (there is only EmpName | T1 | T2

one tuple for Anna with times 2 and 6), and relatkidoes John 1 [8

not contain duplicates in snapshots (note the timestamps of | John 8 |11

the second tuple). Time attributesia are prefixed by “1” Anna 2 |6

because the result of regular duplicate elimination is a snap- | Anna 6 |12

shot relation and thus cannot include attributes natreor
T2.

We use\-calculus for the definitions. The definitions do
not imply the actual implementation algorithms, dotcon- . )
strain the implementation algorithms to produce the same- Relation equivalences
results, taking order and duplicates into account. We define

Figure 3. Regular and temporal duplicate elim-
ination

temporal duplicate elimination below. The query.optimizer does not always negd to operate on
oA . relations as lists. For example, fRDER BYs not speci-

rdup” = A;-(T =L Vitail(r) =L1) =, fied in a query, it is enough to consider the underlying re-
(Over™ (head(r), tail(r)) = undef) — lations as multisets. To enable such different treatment of

head(r) @ rdup™ (tail (r)),
rdup™ (head(r) @ Change™ (Over™ (head (1), tail(r)),
tail(r),m))
wherer,, = (Over™ (head(r), tail(r))) \* (head(r))

relations, we distinguish between six types of equivalences
between relations: list equivalences(, ), multiset equiv-
alence (=,,), set equivalence=£; ), snapshot list equiv-
alence &), snapshot multiset equivalence=§, ), and

The arguments to the operation are given before the dot, armhapshot set equivalencesf ). Two relations are equiva-

the definition is given after the dot. The first line says that iflent as lists if they are identical lists; as multisets if they are
the argument relation is empty (L) or its part without the identical multisets taking into account duplicates, but not
first tuple ¢ail(r)) is empty, the operation returms Other-  order; and as sets if they are identical sets, ignoring dupli-
wise, the second line is processed, which says that we appbates and order. Snapshot list equivalence holds between
function Over” to the first tuple kead(r)) and the rest of two temporal relations when snapshots of those relations at



each point of time are equivalent as lists. Similar conditionset. For example, quemdupT(er(EMPLDYEE)) (resulting

imply snapshot multiset equivalence (at each point in timein relationR3) can return distinct tuples in any order. In

the relations should be equivalent as multisets) and snapshgéneral, the type of the result specified by a query affects

set equivalence (at each point in time, the relations should bghich transformation rules can be exploited. Section 4 lists

equivalent as sets). Formal definitions may be found in th&ransformation rules, and Sections 5 and 6 describe how to

associated technical report [20]. determine when a transformation rule of some type is appli-
We can exemplify the different types of equivalences us€able.

ing the relations in Figure 3. Relatio®s andR2 are not

equivalent as lists or as multisets because the tuple for Anng. Transformation rules

with times 2 and 6 occurs twice &1, but once ire2. How-

ever, the = equivalence holds because the two relations In this section, we describe transformation rules involv-

contain the same tuples. Snapshot equivalences betwegiy conventional operations, duplicate elimination, coalesc-

the two relations are undefined because relakiiis non-  ing, sorting, and transfer operations in turn, listing central

temporal. rules. The full rule set, which extends all existing rule sets
Relationsk1 andR3 have different tuples, e.g., the tuple known to the authors, can be found in [20].
for John with times 6 and 11 is presentAn, but not in The transformation rules are given as equivalences that

R3; thus, they are not equivalent as lists, multisets, or setg&xpress that two algebraic expressions are equivalent accord-
Their snapshots are also not equivalent as lists or as multisdtgy to one of the six equivalence types from Section 3; we al-
because the snapshotdfat times between 2 and 6 contains ways give the strongest equivalence type that holds. An alge-
two tuples for Anna, while snapshots of relatiB® never  braic equivalence represents both a left-to-right and a right-
contain more than one tuple for Anna. The only equivalenceo-left transformation rule, and it may have pre-conditions.
that holds between the two relations is] , meaning that  All transformation rules can be verified formally, as the oper-
their snapshots are equivalent as sets. ations and equivalence types have formal definitions. Unlike
We have an ordering between the types of equivalencerules expressed informally, which sometime later have been
For example, the equivalenge =,, sortrs asc(R1) implies  foundto be in error, e.g., in [15], the rules here are theorems
that both relations are equivalent as multisets and sets, andth formal proofs.
that their snapshots are equivalent as multisets and sets. Weln transformation rulesy can be a base relation or an
list all implications in the following theorem. operation tree. We denote the attribute domain of the schema
of r by Q,.. Functionattr returns the set of attributes used
Theorem 3.1 Letr; andr, be relations. Then the following in a selection predicate or projection functions.
implications hold. (Implications pointing downward apply
only to temporal relations.) 4.1. Conventional transformation rules

Conventional relational algebra rules for multisets [9] dif-

FrM=LT2 = T =yTy = T't=gT> - .
fer in how they are extended to support lists and temporal

¢ 4 4 operations. Most rules are valid for lists and have coun-

rM=Sry = i =Sry = =3y terparts for the corresponding temporal operations; in some

cases, pre-conditions involving the temporal attributes apply.

Proof: [20] O  Commutativity rules, e.g., for Cartesian product and union,

. . ~_satisfy only the=,, equivalence because the different order
The different types of equivalences can be exploited inyf the arguments leads to differently ordered tuples in the

query optimization. Transformation rules (to be discusseqegyits. A few rules, involving regular and temporal union,
in Section 4) can be divided into six categories, one folhaye equivalence types weaker them, .

each type of equivalence. For example, we may have a rule

expr; — expry, Which says that after the replacement of4 2 puplicate elimination transformation rules
expressiorezpr, in the original query plan by expression

expro, the result relation produced by the new plan will be  RulesD1-D4in Figure 4 indicate when duplicate elimi-
list equivalent to the result relation produced by the orig-nation is not necessary. Note that if we perform a temporal
inal plan. Another ruleezpr, —s expr, says that if we duplicate elimination on a temporal relation, the result rela-
replaceezpr, by ezprs, the new plan will yield to a result tionis only =% equivalent to the argumentrelation (compare
relation that may only be set equivalent to the result relarelationsk1 andR3 from Figure 3).

tion produced by the original plan, because the application Conventional duplicate elimination rules may be found
of this rule does not preserve either duplicates or the ordem [9], and they can easily be extended to lists. The only ad-
This may be acceptable though, if the result needs to be dition is two new rules for regular and temporal union (see



(D1) rdup(r)=cr  rdoes not have duplicates (S1) sorta(r)=cr IsPrefitOf (A, Order(r))
(D2) rdup™ (r)=,r r does nothave duplicates in snapshats(S2) sorta(r) =ur
(D3) rdup(r)=sr (S3) sorta(sorts(r)) = sorta(r) IsPrefizOf (B, A)

(D4) rdup™ (r)=3r
(D5) rdup(ri Ure) =¢ rdup(ri) U rdup(r2)
(D6) rdup™ (riUT r2) =1 rdup™ (r1)UT rdup™ (r2)

(C1) coalT(ry=rr r is coalesced

(C2) coal™ (r) =5, r

(C3) coal™ (op(r)) =L op(coal™ (r))

(C4) 7py,... 5 (coal™ (r)) =s sy, 5 (7)

(C5) coal™ (coal™ (r1) U coal™ (r2)) =1 coal™ (ry Urs)

(C6) coal™ (coal™ (r1) UT coal™ (12)) =1 coal (r1 UT r2)

(C7) coal” (€L, . an,py,.... P (c0al (1)) =1 coal (€6, 7.7, (7))

(C8) coal® (my,, . 4 m1,12(coal (1)) =1 coal™ (w4 11,02 (1)) r does not have duplicates in snapshots

(C9) coal™ (ma(r1 xT r2)) =1 wa(coal™ (r1) xT coal™ (ra)), r1 andr» do not have duplicates in snapshots
whered = Q, 7, \ {1.T1,1.T2,2.T1,2.T2}

(C10) coal™ (11 \T 72) = coal™ (r1) \T coal™ (1=2)

T1 ¢ attr(P) AT2 ¢ attr(P)
T1 ¢ attr(f1,..., fn) A T2 & attr(fr,..., fn)

r1 does not have duplicates in snapshots

Figure 4. Transformation rules

D5-Dé6). Contrary to the commonly considered union ALL  The first two transformations can be modified to have
and regular SQL union (which removes duplicates from theéype = if we require that the arguments do not have du-
result relation of union ALL) operations, our regular andplicates in snapshots (rulg88-C9). Adding the same re-
temporal union operations do not generate new duplicates gfuirement, the third rule can be modified to have type
their argumentrelations do not contain any duplicates, whichke,, (rule C10. Equivalence type=, cannot be achieved
means that we can push duplicate elimination below reguldrecause temporal difference is sensitive to the distribution
or temporal union. of value-equivalent tuples in the left argument; and this dis-
tribution may be different for; and coal(r1). Note that
since periods need not be preserved in the right argument to
temporal difference, the second coalescing on the right-hand
RulesC1 and C2 show when we can eliminate coalesc- gjde of the rule is not necessary. However, in cases when co-

ing; rule C1can be used to derive other transformation rulegjescing significantly reduces the cardinality of its argument,
that eliminate superfluous coalescing. RO®says that coa- it might be useful to retain it.

lescing and selection commute only if the selection predicate
does not involve the temporal attributes. If we project a coay
lesced relation on non-temporal attributes, coalescing is not’
necessary if we consider the relations as sets (dJeFor a Sorting can be eliminated if it is performed on a relation
number of operations, coalescing their arguments and resulis,; js ajready sorted as desired, if we can treat the relation
is equivalent to coalescing their results only (UBS-C7). 55 5 multiset, or if there is a subsequent sorting operation
Our list of coalescing transformations extends the list PIOTrulesS1-S3. PredicatdsPrefizOf takes two lists as argu-

vided by Bohlen et al. [5]. Due to the differences in coa- nents and returns True if the first list is a prefix of the second
lescing definitions (see Section 2.4) and because [5] alloWshe Transformation rul83requiresB to be a prefix ofA.

duplicates in snapshots of temporal relations, but notregulgf 4 is 4 prefix of B, we can eliminateort 4 using ruleS1
duplicates, the following three transformation rules (given If we wish to sort the result of some operation, the sort-

4.3. Coalescing transformation rules

4. Sorting transformation rules

in [5]) have only type=:, and are derivable from rul€2

coal” (7.1, 1,12 (coal ™ (1)) =3 coal® (myy,.. g, 1112(7))
coalT (ma(r1 xT r2)) =5, wa(coal™ (r1) xT coal™ (r2)),
whered = Q, 7, \ {1.T1,1.T2,2.T1,2.T2}

ing can be performed on the argument relation(s) for that
operation if the operation does not destroy the ordering. All
operations, except, U, andu”, fully or partially preserve
the ordering of the first argument relation.

coal™ (ri \T r2) =3; coal™ (r1) \T coal” (rs)

The transformation rules have?, type because projection, 4.5. Transfer transformation rules

Cartesian product, and temporal difference destroy coalesc-

ing. The projection in the second rule is necessary because Transfer transformation rules are used in the stratum ar-
the temporal Cartesian product retains the timestamps of ithitecture. If we have an implementation of the same oper-
argument relations [20]. ation in both the stratum and the DBMS, we have a choice



of where to execute the operation. We can transfer a relajuery. We formalize the applicability of the transformation
tion from the DBMS to the stratum using operatibfi, and  rules below, thus linking the user-level language and the al-
the other way using operatid’ (these operations were not gebraic optimization.
listed in Table 1 because they are specific to the layered ar-
chitecture). Definition 5.1 Assume a query, its evaluation plarP, a

If a rule transfers an operation from the stratum totransformation ruld’, a location/ in the plan wherd” will
the DBMS or vice versa, the relations produced by thebe applied, and the evaluation pl&h obtained by applying
left-hand side and the right-hand side of the rule areuleT to P atl. Then, ruleT is applicable atlocation!/ in
only =,, equivalent because we cannot be sure how thelan P if and only if P =, P’, where =54, is (1) =5
DBMS implementation of the operation will sort its re- if DISTINCT is specified at the outermost level of Q, but
sult, operationsort being the only exception. For this ORDER BYs not specified at that level, (2f¢,, if DIS-
reason, the previously givees, transformation rules are TINCT andORDER BYare not specified at the outermost
only applicable in the stratum, and they have correspondevel of Q, or (3)=, , if ORDER BY /s specified at the
ing =,, transformation rules for the DBMS. For brevity, the outermost level of Q. m|

latter rules are omitted from Figure 4. _ . .
The definition uses the equivalence typg , , whereA is

. . . the list specified in th©ORDER B¥lause. Two relations are
5. Applicability of transformation rules =, . equivalentif their projections oA are =, equivalent.
Thus, =, equivalence implies=, , equivalence.

Queries expressed in some user-level query language are The =,,. equivalence type cannot be one of the
mapped to an initial algebraic expression, which is thersnapshot-equivalence types because a query must faithfully
passed to the optimizer, where transformation rules are apyeserve the time periods from base relations and cannot
plied according to some given strategy. The resulting, neWhitrarily return any of the snapshot-equivalent result rela-
algebraic expressions must, when evaluated, return the saigns. However, there are cases where snapshot-equivalence
result as the original expression, which we assume correctiyne rules can be applied while complying with Defini-
computes the user's query. In our case, the optimizer musgfon 5.1; we describe those cases below. Note also that
contend with six different types of transformation rules. Forthis definition is a posteriori, in that it compares the result-
each type of rule, we have to formalize when it can be aping query plan with the original one. What is needed is

plied. an a priori procedure for determining when a transformation
_ N o rule is applicable.
5.1. Applicability definition First, we use an example operation tree for describing

which types of transformation rules can be applied to which

There are no restrictions on when rules with equivalencguery regions. Then, Section 5.3 briefly presents the oper-
type =, may be applied. Applying such rules has no ef-ation properties used to determine when the different types
fect on the result; a transformed expression evaluates togf transformation rules are applicable. Finally, Section 6 de-
result identical to that obtained from evaluating the originalscribes how these properties are exploited during query plan
expression. This does not hold for any of the other types oénumeration.
rules. However, they may still be applicable.

Assuming for specificity that the user-level language is5.2. Example
some temporal variant of SQL, a query may, or may not,
includeDISTINCT andORDER Bt the outermost level, Let us again consider the operation tree in Figure 2(a).
which affect the type of the result. The presence of@ie  The result of evaluating the tree is a list. The shaded regions
DER BYclause in a query specifies a result relation that isletermine which types of transformation rules are applica-
a list; if theORDER BYlause is absent from the query, the ble.
guery specifies a multiset, and the order of the result tuples Inthe area where order needs not be preserved (the lightly
is immaterial. In this latter case, we can apply transformashaded region), we can appiy,, transformationrules. The
tions that merely preserve multiset equivalence. Further, iubtree below theort operation can treat relations as mul-
DISTINCT isincluded at the outermost level of a query (buttisets because thert operation ensures that the result is
ORDER BY¥s not), the query returns a relation that is a set.ordered appropriately.

Intuitively, we can apply transformation rules to a query Rules of type=; can be applied to those query frag-
evaluation plan if the result relations produced by the newnents where duplicates are not relevant, which are indicated
plan and the original plan are equivalent as sets, multisets, &y the darker shaded region. In this example, these frag-
lists, depending on whether or NDtSTINCT andORDER ments are the subtree below the top temporal duplicate elimi-
BY were specified at the outermost level of the user-levehation operation, except the bottom temporal duplicate elim-



ination operation, which ensures that the left argument of theonsider neither performance nor the subsequent heuristic
temporal difference does not contain duplicates in snapshots cost-based selection of a final query plan.
(see Section 2). (This illustrates that fragments need not al- The inputs to the query plan enumeration algorithm are a
ways be whole subtrees; in fact, there exist operation treeset of plansP, containing the initial plan, and a set of trans-
for which a particular shading is absent for an entire subtreefprmation rules7 R. The output is all query evaluation plans
Rules of the snapshot-equivalence types can be appligHat are possible to obtain using the given set of transforma-
to those query fragments that need not preserve time petion rules. The algorithm is given in Figure 5. For the al-
ods. This is true for all operations below coalescing becausgorithm to terminate, the set of transformation rules cannot
coalescing returns the same result relation for all snapshaiclude all rules given in Section 4. The rules that introduce
equivalent argument relations, if they do not contain dupli-additional operations, such as— rdup(r), could be ap-
cates in snapshots (which, in this case, is ensured by tempplied an infinite number of times. Hence, heuristics have to
ral duplicate elimination below coalescing). Consequentlybe used to restrict the rule set, as will be described shortly.
below coalescing =3, rules can be applied=Z rules can  The algorithm is deterministic, i.e., it generates the same set

be applied where duplicates are not relevant. of query plans independently of the order of transformation
_ _ rules and locations [20].
5.3. Operation properties Note that operationslup”, coal”,\T, andu” are order-

The shaded regions in an operation tree are determin&fnSitive, i.e., if they take arguments that are equivalent

using three Boolean properties of operations (see Table ng multisets, their results may not be equivalent as multi-

Each operation in a tree has a value for each of these pro ets. We do n(_)t_c_over the resulting cc_)mpllcanons, bUt. as-
ume that the initial query plan contains those operations

erties. _ _
only when they preserve multiset equivalence. Such cases
[Property Name | Description | include, for examplecoal” combined withrdup™, coal”
OrderRequired Trueif the result of the operation must ~ When its argument does not have duplicates in snapshots,
preserve some order and\” when its left argument does not have duplicates in
DuplicatesRelevant | Trueif the operation cannot arbitrarily ~ snapshots (for multiset-equivalent right arguments,al-
add or remove regular duplicates ways returns multiset-equivalent results). The query plan in
PeriodPreserving Trueif the operation cannot replace ifs  Figure 2(a) is a suitable input to the algorithm.
result with a snapshot-equivalent one

) . for eachplanP € P do
Table 2. Operation properties foreachT € TR do

. for eachlocationl in P matching the left side df” do
For example, th®rderRequiredoroperty does not hold if local conditions are satisfieaj%d

if the sort operation does not exist below in the tree. For all (Tisa=, rule)
operations in the right branch of a temporal difference, the v (T'isa =, rule A Yop € I (=OrderRequired (op)))
DuplicatesRelevardoes not hold if the left argument to the V (Tisa =s rule A Yop € I (~DuplicatesRelevant (op)

temporal difference does not contain duplicates in its snap- A= OrderRequired (op)))

shots. Formal definitions of the properties are given else- V (T'isa =] ruleA Vop € I (~PeriodPreserving (op)))

where [20]. V (T isa =3, rule A VYop € | (= OrderRequired (op)
During query optimization, the properties are first set for A= PeriodPreserving(op)))

= DuplicatesRelevant (op)
A = PeriodPreserving(op)))

V (Tisa =% ruleA Yop €l

the initial query evaluation plan that is passed to the quer (
query P P query A= OrderRequired (op)

op'F|m|zer. When a transfgrmatlon rule is applied, the prop- then applyT o, yielding P
erties must be adjusted in the transformed area. In most . : -
. . . . : . adjust the properties d?’;
cases, this local adjustment is satisfactory, i.e., properties do addP’ to P
not have to be recomputed for all operations in the resultingayrm P ’
query tree [20].
The use of the properties in operation trees enables us Figure 5. Query plan enumeration algorithm
to formalize when a transformation rule is applicable to a
guery plan. The next section shows how the properties are In the algorithm, when testing the applicability of a trans-

used during query plan enumeration. formation rule at some location, the properties of the op-
erations at that location are employed; the operations we
6. Query plan enumeration consider are those operations in the location that correspond

to the operations explicitly mentioned on the left-hand side
We give a straightforward enumeration algorithm whoseof the transformation rule and those that correspond to the
purpose is to generate correct query evaluation plans; weot nodes of the subtrees mentioned on the left-hand side
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Figure 6. Operation trees with properties and transformation-rule applicability regions

of the transformation rule. For example, when testing theontain duplicates in snapshots (because its left argument

applicability of transformation ruIeoalT(rl \" ry) =,  does not contain duplicates in snapshots), we applyDale

coalT(rl) \T coalT(rz), the properties of the operations and remove the top temporal duplicate elimination.

coal” and\” and the operations located at the roots-of Then we push the coalescing below the temporal dif-

andr» are used. ference by using ruleC10 (we can apply this rule be-
The algorithm provides an operational means of detereause OrderRequired does not hold for each participat-

mining when a transformation rule is applicable. It hasing operation). The resulting plan is shown in Fig-

a syntactic component (the left-hand side expression musire 6(a). For each operation, we list its properties in square

match in some location) and a semantic component (the prérackets in the ord€iOrderRequired, DuplicatesRelevant,

conditions must hold and the properties must be set appropriPeriod Preserving).

ately). The algorithm generates query plans that are correct. Next, we remove the unnecessary coalescing appearing

in the second argument to the temporal difference, using

Theorem 6.1 The algorithm given in Figure 5 generatesrule C2 order and time periods need not be preserved in

correct query plans. the right branch of a temporal difference. Finally, we push

Proof: To prove the theorem, we need to prove that it applieghe sort operation down, and we change the location of the

only those transformation rules that aplicableaccording ~ sort operation from the stratum to the DBMS. Figure 6(b)

to Definition 5.1. The proof is divided into six parts, one for shows the final plan.

each type of transformation rule [20]. m|

This theorem achieverrectnessbut notcompleteness /- Conclusions and future work
i.e., correct query plans are generated, and we exploit trans-
formation rules of “weak” equivalence types, e.g; , but Temporal query representation, optimization, and pro-
we do not findall possible correct query plans that may becessing mechanisms are needed to achieve built-in temporal
generated using the different types of transformation rules.support in DBMSs. However, previously proposed conven-
To prevent the algorithm from generating an infinite num-tional and temporal algebras have to varying degrees over-
ber of plans, heuristics have to be used. For example, orleoked such aspects as duplicates, ordering, and coalescing.
heuristic could be that rules that introduce additional operak addition, past work considered the efficient processing of
tions, such as — rdup(r), should not be used. Another only some operations, e.g., temporal joins, and did not delve
heuristic can be that selections have to be performed as eaifyto general query optimization.
as possible. Thus, we would allow the transformation rule This paper offers a general foundation for optimizing
op(coal” (r)) =, coal” (op(r)), but would not use trans- conventional and temporal queries, which is suitable for pro-
formation rulecoal” (op(r)) =, op(coal® (r)). viding temporal support via a stand-alone temporal DBMS
To illustrate how the algorithm works, we use the exam-or via a layer on top of a conventional DBMS. This founda-
ple query from Section 2. The initial query plan is givention offers comprehensive and precise handling of duplicates
in Figure 2(a). First, we push the transfer operation downand order for conventional and temporal queries, as well as
Then, since the result of the temporal difference does natoalescing for temporal queries. The foundation is enabled
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