
Querying TSQL2 Databases
with Temporal Logic

Michael H. BGhlen’ , Jan Chomicki2,
Richard T. Snodgrass3, and David Toman

‘Dept. of Mathematics and Computer Science, Aalborg University
Fredrik Bajers Vej 7E, DK-9220 Aalborg Ost, Denmark, boehlen@iesd.auc.dk

‘Department of Computer Science, Monmouth University
West Long Branch, NJ 07764, chomickiQmonco1 .monmouth. edu

3Department of Computer Science, University of Arizona
Tucson, AZ 85721, rts@cs.arizona. edu

4Department of Computer Science, University of Toronto
Toronto, Ontario M5S lA4, Canada

Abstract. We establish an exact correspondence between temporal lo-
gic and a subset of TSQL2, a consensus temporal extension of SQL-92.
The translation from temporal logic to TSQLZ developed here enables a
user to write high-level queries which can be evaluated against a space-
efficient representation of the database. The reverse translation, also pro-
vided, makes it possible to characterize the expressive power of TSQLB.
We demonstrate that temporal logic is equal in expressive power to a
syntactically defined subset of TSQL2.

1 Introduction

In this paper, we bring together two research directions in temporal databases.
The first direction is concerned with temporal extensions to calculus-based query
languages such as SQL (e.g., [GN93, NA93, Sar93]). The issues addressed include
space-efficient storage, effective implementation techniques, and handling large
amounts of data. This approach includes the consensus temporal query lan-
guage TSQLZ [Sno95], whose practical implementations should be forthcoming.
The second direction is concerned with defining high-level query languages with
logical semantics, e.g., temporal logic [TCSO, GM91, CCT94]. The advantages of
using logic languages come from their well-understood mathematical properties
[GHR94]. Logic languages are easy to use and make algebraic query transfor-
mation possible [CT95]. F or instance, temporal logic has been proposed as the
language of choice for formulating temporal integrity constraints and triggers
[Cho95, CT95, GL93, LS87, SW95].

The semantics of temporal logic queries is defined with respect to sequences
of database states [GHR94]. In temporal databases we do not want to construct
and store all the states explicitly. Instead, various proposals have associated
with each fact a concise description of the set of points over which the fact
holds, such as a period1 [NA93, Sar90, Sno87, Tan861 or a finite union of periods

1 We use the term ‘period’ in this paper rather than the term ‘interval’ commonly
used in temporal logic because the latter term conflicts with SQL INTERVALS, which
are unanchored durations, such as 3 months.

326

[CC87, Gad%, Sno95]. We show here how to translate temporal logic queries into
TSQL2, enabling the user to write high-level queries which will be evaluated
against a space-efficient representation of the database. While translations of
first order logic to SQL have been previously discussed [AHV95, VGTSl], we
know of no translations from temporal logic to a temporal query language.

We start with a discussion of the basic framework in Section 2. We define
the syntax and semantics of the two languages in question, temporal logic and
TSQL2. In Section 3 we give the mapping from temporal logic to TSQL2.2 We
conclude the section with an example and the discussion of some implementation
issues. Section 4 discusses the reverse mapping, thereby relating the expressive
power of (a subset of) TSQL2 and temporal logic.

2 Basic framework

Before comparing temporal logic and TSQLZ we have to set up a formal frame-
work suitable to both languages. Time is considered to be integer-l&e: linear
(totally ordered), discrete, bounded in the past, and infinite in the future. Our
approach can be adopted to other kinds of time, e.g., dense, rational-like time,
although some details of the mapping may in that case be different. We aIso take
the point-based view which is predominant in the context of temporal logic. This
view means that the truth-values of facts are associated with individual time
points (also called instants). We aSsume a fixed time granularity.

We will consider only v&d-time, which relates when facts are valid in reality
[JCE+94]. In particular, tmnsaction time, which relates when facts are stored in
the database, is not considered.

2.1 Temporal logic

Temporal logic is an abstract language, i.e., a language which is defined with
respect to abstract temporal databases [Cho94]. An abstract temporal database,
in turn, is a database which captures the formal semantics of a temporal database
without considering representation issues.

It is possible to view an abstract temporal database in several different but
equivalent ways. We choose here the timeslice view (called snupshot in [Cho94])
in which every time instant is associated with a (finite) set of facts that hold at
it. For integer-like time, this view leads to an infinite sequence of finite database
states (DO, D1, D2, . . .).

Emmple 1. Table 1 presents an example of an abstract temporal database,
viewed as a sequence of states. The database represents information about East-
ern European history, modeling the independence of various countries [Cho94].
Each fact indicates an independent nation and its capital. This relation will be
used as a running example throughout the paper.

’ An implementation of the translation from temporal logic to TSQLZ is publicly
available at http : //uuw . iesd. auc. dk/-boehlen/.

327

Year Timeslice

1025 indep(‘Poland’, ‘Gniezno’)
.

1039 {indep(‘Poland‘, ‘Gniezno‘))
1040 {indep(‘Poland’, ‘Cracow‘))
.

1197 {indep(‘Poland’, ‘Crucow‘)]
1198 {indep(‘CzechI<ingdom’, ‘Prague‘), indep(‘Poland’, ‘Cracow‘)}
.

1995 {indep(‘CzechRepublic’, ‘ Prague‘), indep(‘Poland’, ‘Warsaw‘),
indep(‘Slovakia’, ‘Bratislava‘)}

.

Table 1. Eastern European history: the abstract temporal database

Syntax. Temporal logic extends first order logic with binary- temporal connec-
tives since and until, and unary connectives 0 (‘Lprevious” or “yesterday”) and
0 (“next” or “tomorrow”). Informally, A since B is true in a state if A is true
for states between when B was true and now (this state). A until B is true in
a state if A will be true into the future until B will be true.

As usual, other temporal connectives can be defined in terms of these, e.g.,

+A z true since A (A was true sometime in the past)

OA E true until A (A will be true sometime in the future)

n A = -+-A (A was true always in the past)

q A z -OlA (A will be true always in the future).

Example 2. Our first example is a query which does not relate different database
states. The query

(3City)(indep(‘Poland‘, City) A +lCity2)indep(‘Slovakia‘, City2))

determines all years when Poland but not Slovakia was an independent country,
i.e., the times when the query evaluates to true.

Example3. The second example relates different database states. The query

(indep(‘Poland’, City) A City # ‘C racow‘) since indep(‘Poland‘, ‘Cracow‘)

returns the name of the city that superseded Cracow as Poland’s capital and the
years when this city was the capital.

ExampZe4. Consider the query [Cho94, p.5151 “list all countries that lost and
regained independence” over the abstract temporal database shown in Table 1.
This is formulated in temporal,logic as:

(3S1, S2)(+indep(X, Sl) A Oindep(X, S2) A (VS)+ndep(X, S)).

For a country and a year to result, the country will have been independent in
the past, will be independent in the future, but is currently not independent.

328

Semantics. An abstract temporal database is a sequence D = (De, Dr , D2, . . .) of
database states. Every database state Di contains a relation (relation instance)
T for each relation schema R. We define the semantics of temporal logic formulas
in terms of a satisfaction relation b and a valuation I/ {a valuation is a mapping
from variables to constants):

- D, Y, i b A iff A is atomic and A/v E Di (where A/v is the result of applying
v to the variables of A),

- D, Y, i k TA iff D, v, i k A,

- D, V, i k A A B iff D, Y, i b A and D, Y, i b B, similarly for V and +,

- D, v, i + (3X)A iff for some c, D,v[X t c], i + A where v[X t c] is a
valuation identical to v except that it maps X to c,

- D,v,i j= (VX)A iff for all c, D,v[X t c],i + A,

- D,v,i+OAiffi>OandD,v,i-l+A,

- D,v,ij=OAiffD,v,i+l/=A,

- D,v,i~AsinceBiff3j(j<iAD,v,j~~AVlc(j<kIijD,v,k~A))

- D,v,i~AuntilBiff3j(j>iAD,,,j~=~V~(iFI,<j_,D,,,k:~A))

The answer to a temporal logic query A in D is the set {(Y, i) : D, v, i b A}.
Thus, temporal logic may be viewed as a natural extension of relational calculus.

As indicated by the example queries on the previous page, temporal logic
provides a convenient means of expressing rather involved English queries in
a natural way. However, the state-based semantics of temporal logic does not
suggest an efficient implementation of such queries. A period-based implemen-
tation, in which the period over which each fact was valid is used directly in the
evaluation, promises much faster execution.

2.2 TSQL2

TSQLZ [Sno95] is the consensus temporal extension of SQL-92 and, therefore,
we use it as our target database query language when translating temporal logic.
A valid-time relation is a relation where tuples are implicitly timestamped with
periods3.

Example 5. Table 2 contains a concrete TSQLZ relation representing the abstract
temporal database shown in Table 1.

3 In this paper, we use a slight variant of TSQLZ named Applied TSQL2 (ATSQL2)
[BJS95]. ATSQLS modifies TSQL2 in a few minor ways. ATSQLZ timestamps tu-
ples with periods rather than with temporal elements; ATSQLZ adds support for
duplicates (though we will consider only ATSQL2 queries that remove duplicates);
and ATSQLB changes the syntax of the valid clause. We use ATSQLZ because the
semantics of that language has been formally specified; only an informal specification
of the semantics of TSQLS has been given. Other than these changes, the languages
are similar, and we will continue to refer to them under the rubric TSQL2.

idep
Country
Czech Kingdom
Czechoslov\kia
Czechoslovakia
Czech Republic
Slovakia
Slovakia
Poland
Poland
Poland
Poland
Poland

Table 2. Eastern European history: the concrete TSQLZ relation

329

Capital
Prague
Prague
Prague
Prague
Bratislava
Bratislava
Gniezno
Cracow
Warsaw
Warsaw
Warsaw

Syntax. TSQLZ extends the query language of SQL-92 [MS931 with the following
constructs:

I. Syntactic constructs to manipulate timestamps (e.g., extract the start and
end point of a period, construct a period out of two time points, etc.)4.

2. Temporal built-in predicates, which can be used in the UHERE clause in order
to specify temporal relationships between pairs of periods. To be consistent
with SQL2, the relationships below have a somewhat different meaning than
the identically-named relationships in [A1183]. Notation: P- for BEGIN(P)
and P+ for END(P).

- PI = P2 iff PI- = P.J and PI+ = P2,j
- PI CONTAINS P2 iff PC 5 P.j- and PT > Pz
- PI MEETS P2 iff succ(P~> = Pp
- PI OVERLAPS PZ iff PF < P,' and PT 5 Pt
- PI PRECEDES P2 iff Pz < P;

Also, period endpoints can be compared -directly using PRECEDES. In this
way, all the relationships in [A11831 can be expressed.

3. A valid clause, which can be placed in front of queries.5 It is to spec-
ify whether a query expression should be evaluated with temporal seman-
tics (no valid clause) or with standard Codd semantics (valid clause). In-
tuitively, temporal semantics corresponds to snapshot reducibility [Sno87]
which means that, conceptually, the respective query is evaluated over every

4 These features are briefly discussed where used the first time.
5 The same syntactic extension is allowed for queries in the FROM clause defining a

derived table. With auxiliary tables or views such queries can be rewritten so that
the valid clause only occurs at “the outermost level”.

snapshot of a temporal database. The valid clause comes in two different
flavors. If it is of the form VALID SNAPSHOT, a snapshot relation is returned.
Otherwise, it is of the form VALID expr in which case a valid-time relation
is returned with valid-time defined by expr.

4. (PERIOD) may follow a query expression or a relation name in a from clause,
specifying that the result be coalesced, that is, tuples with identical explicit
attribute values whose valid-times overlap or are adjacent are merged into
a single tuple, with a period equal to the union of the periods of the orig-
inal tuples. As a side-effect, duplicates are eliminated. We use (PERIOD)
throughout because temporal logic does not allow duplicates or uncoalesced
periods.

5. Other facilities not relevant here, including temporal indeterminacy, schema
evolution, user-defined granularities, and extensible literal syntax.

Semantics. TSQL2 has been given a formal denotational semantics that maps
TSQL2 statements to (temporal) relational algebra expressions [BJS95].

&le 6. In order to determine the name of the city that superseded Cracow
as Poland’s capital (c.f., Example 3), different database states have to be re-
lated. In TSQLB this means that we have to specify a valid clause (in order to
override snapshot reducibility) and we also have to specify the required temporal
relationship. This results in the following TSQLZ query Qi:

VALID VALID(i1)
SELECT il.Capital
FROH indep(PERIOD) AS il, indep(PERIOD) AS i2
WHERE il.Country = 'Poland'

AND i2.Country = 'Poland' AND i2.Capital = 'Cracou'
AND VALID(i2) MEETS VALID(i1)

Example 7. The formulation of a query becomes even simpler if it can be an-
swered by looking at single snapshots. In this case the user can simply ignore
time when formulating a query, as illustrated in the following query Q2, which
determines all period(s) when Poland but not Slovakia was independent (c.f.,
Example 2) :

(SELECT il.Country
FROH indep(PERIOD) AS il
WHERE il.Country = 'Poland'

AND NOT EXISTS (
SELECT *
FROM indep(PERIOD) AS i2
WHERE i2.Country = 'Slovakia'))(PERIOD)

3 Mapping Temporal Logic to TSQLB

A mapping from temporal logic to TSQL2 is useful for two reasons. First it
relates the two languages and, thus, their expressive power. Second it yields
an efficient implementation for temporal logic formulas using a translation to

331

TSQLZ that efficiently encodes identical adjacent facts. Also TSQLZ queries can
be optimized.

Before we can describe the actual mapping of temporal formulas to TSQL2 we
need to establish a relationship between the databases over which our translation
is well defined. Not every abstract temporal database can be represented as a
TSQLZ database. For example, the database that has a single fact p(a) in every
even-numbered state and whose every odd-numbered state is empty cannot be
represented in TSQLZ.

Definitionl. Let D = (01, Ds,. . .) be an abstract temporal database. The
support of a temporal logic formula A under a valuation v is the set

{i : D, Y, i + A}.

The support for ground formulas (e.g., facts) does not depend on the valuation.
The definition of the support allows us to define the class of abstract temporal
databases we are interested in.
Definition2. An abstract temporal database is finitary’if it contains a finite
number of facts and the support of every fact can be represented as a finite union
of periods.

Proposition3. Every TSQL2 database represents a jinitary abstract temporal
database and every finitary abstract temporal database can be represented by a
TSQL.2 database.

The previous observations are used to define the translation of temporal logic
formulas to TSQLP and prove its correctness. The translation uses an extension
of existing methods for translating first-order logic formulas to SQL-92, e.g.,
[VGTSl, AHV95, WiitSl] as one of its steps. We also give a syntactic criterion
for identifying (a subset of) domain independent formulas of temporal logic.

3.1 Temporal Logic to TSQL2 Translation

The translation of temporal logic formulas to TSQL2 is defined by induction
on the structure of the formula. Temporal logic formulas can be thought of as
first-order formulas augmented by additional temporal connectives since, until,
l , and 0. This observation allows us to define the translation process in two
steps:

1. mapping of temporal connectives, and

2. mapping of maximal sub-formulas not containing temporal connectives.

The whole translation procedure then works inductively on the structure of the
given query: It first computes the TSQL2 equivalents of the maximal first-order
subformulas of the query. The results are then used in the definitions of the
translations of temporal connectives to TSQL2 views. These views then replace
the original temporal subformula (by a virtual relation name). The process is
repeated until the whole formula is translated.

We first describe the mapping of the temporal connectives to TSQL2. This
mapping links the translations of the (essentially) first-order pieces of the original
query toget her.

332

Mapping since and until. Figure 1 graphically illustrates the semantics of
since and until. We have listed all possible temporal relationships [A11831 be-

Temporal relationship Temporal iogic
between formulas A and B formula F

Tkuth period

of formula F

A

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

B

El

B

A since B
A until B

A since B
A until B

A since B
A until B

A since B
A until B

A since B
A until B

A since E
A until B

A since B
A until B

A since B
A until B

A since B
A until B

A since B
A until B

A since B
A until B

A since I3
A until B

A since B
A until B

ti

[succ(B-), A+]

[A-,.4+1

[A-, A+1
P-2 pred(B+)]

;-!-,A+]

FA+l

[succ(B-), A+]

[A-, s=dP+)I

[A-, A+1
i-4-j A+]

[suee(B-), A+]

[A-,p=W+)l
[succ(B-), A+]

[‘i-r-4+1
[succ(B-), A+]

[A- > p=d(B+)I

[A-,-4+1
[A- ,pred(B+)J

[succ(B-), A+]

IA- ,vd(B+)l

Fig. 1. Semantics of since and until

tween the truth periods of two formulas A and B. For each relationship we have
determined the truth period of A since B and A until B respectively. (A-/A+
denotes the start/end point of the truth period of A.) More formally the truth
periods of A since B and A until B are defined as follows.

A since B c) [maz(A-, succ(B-)), A+]
for maz(A-, succ(B-)) 5 A+ and B+ 2 A-

A until B c) [A- , min(A+ , pred(B+))]
for A- 5 min(A+ ,~RxI(B+)) and A’ > B-

The reader may verify that these general expressions evaluated on any particular
relationship given in Figure 1 result in the correct truth period.

333

These expressions can be translated to TSQL2 straightforwardly. The valid
clause is used to specify the final timestamp (and to prevent snapshot reducibil-
ity), whereas the conditions are translated into appropriate WHERE clause condi-
tions. More precisely, A since B is translated to6

VALID PERIOD(LAST(BEGIN(VALID(a0)) ,BEGIN(VALID(al))+l) , END(VALID(aO)))
SELECT . . .
FROR A’(PERIOD) AS a0, B’(PERIOD) AS al
WHERE LAST(BEGIN(VALID(a0)) ,BEGIN(VALID(ai))+l) <= END(VALID(a0))

AND BEGIN(VALID(a0)) <= END(VALID(al))
AND . . .

whereas A until B is translated to
VALID PERIClD(BEGIN(VALID(a0)) , FIRST(END(VALID(aO)),END(VALID(alj))-1)

SELECT . . .
FROM A’(PERIOD) AS a0, B’(PERIOD) AS al
WHERE BEGIN(VALID(a0)) <= FIRST(END(VALID(a0)) ,END(VALID(al))-I)

AND BEGIN(VALID(a1)) <= END(VALID(aO))
AND . . .

The SELECT list of the TSQL2 statements is determined from the free variables
occurring in either A or B. Variables used in A and B give rise to further WHERE
clause conditions. We get A’ by applying the translation recursively to A and
B’ by applying the translation recursively to B.

Mapping 0 and 0. The mapping of the connectives l A and OA is defined
as follows: First we define the truth periods for l A and OA with respect to the
truth period of A:

.A i+ [succ(A-), succ(A+)]

OA I+ [pred(A-), pred(A+)]

The result is translated to TSQLZ using a definition of the corresponding valid-
time clause that shifts the valid-time period by one in the appropriate direction.
The translation for l A looks like

VALID VALID (a01 +I
SELECT . . .
FROM A'(PERIOD) AS a0

and the translation for OA is

VALID VALID (a0) -1
SELECT . . .
FROM A'(PERIoD) As a0

The SELECT list is again obtained from the set of free variables in A, and A’ is
the TSQL2 translation of A.

6 PERIOD(z, y) takes two timepoints z and y, and returns a period. BEGIN/END returns
the start/end point of a period. FIRST and LAST return the minimum and maximum
timepoint out of a pair of timepoints, respectively. Finally, we assume here that the
valid-time is at a granularity of a year. Thus +l is shorthand for +INTERVAL ’ 1'
YEAR and -1 for -INTERVAL '1' YEAR.

334

Mapping of first-order (sub-Jformulas. The mapping of first-order formu-
las to relational algebra has been described in several papers and books, e.g.,
[VGTSl, AHV95]. A s our target language is (T)SQL2 rather than relational
algebra, we map maximal first-order subformulas to directly to SQL [WiitSl],
thereby exploiting the syntactic features of the latter and achieving efficient SQL
queries.

3.2 Domain independence

Similarly to the first-order case [VGTSl, AHV95], not all formulas expressible in
temporal logic are domain-independent. We identify (a subset of) the domain-
independent formulas of temporal logic using an extension of the syntactic cri-
teria defined for first-order formulas.
Proposition4 Let ‘p be a temporal formula and ALWD be a domain-indepen-
dence criterion for first-order formulas. If

1. ALWD(FOL(~)),

2. ALWD(FOL(A)) and ALWD(FOL(B)) f or every subformula of cp that has the
form A until B or A since B, and

3. ALWD(FOL(A)) f or every subformula of Q of the form op A where op is one

of {+,0,wa*,0)
where FOL is a mapping that replaces all occurrences of temporal subformulas
by (imaginary) database relations with the same sets of free variables, then Q is
domain-independent.
The domain-independence needs to be extended to the temporal domain as well.
We need to show that every tuple in the result of our query is associated with a
finite union of periods. However, it is easy to show that:
Theorem5. For any finitary temporal database and a fixed valuation the sup-
port of every temporal logic formula can be represented by a finite union of peri-
ods.

Thus the application of boolean operators, temporal operators, and quantifiers
preserves the finitary property of relations. This result shows that all the inter-
mediate results can be represented by finite unions of periods (and thus evaluated
properly using TSQL2).

3.3 Correctness of the translation

Proposition 4 guarantees that at every point of the transformation process we
only have to deal with domain-independent formulas (i.e., all first order vari-
ables are range-restricted). Thus there are only finitely many valuations (for any
finitary temporal database) at that point. Thus
Theorem 6. For every temporal logic formula Q satisfying the assumptions of
Proposition 4 and for every finitary abstract temporal database D the following

335

diagram commutes:
D 9 + R
-l- J-

@‘SQL2 9TSQL2 > RTSQLZ

where DTSQL2 is the TSQL& equivalent of D, pTSQL2 is the translation of the
temporal logic query ‘p, and R TsQL2 is the TSQLR variant of the result of the
query.

3.4 Deriving specialized mappings

Based on the translation of since and until, the mapping of other temporal con-
nectives can be defined. While theoretically feasible such an approach may be
cumbersome in practice as it leads to unnecessarily complicated TsQL2 state-
ments.

Mapping +. We illustrate how the definition of since can be used to derive
an efficient special purpose mapping for +. The formula +I3 is equivalent to
true since B. Therefore we take the definition of A since B (Section 3.1) and
substitute A by true. We notice that the truth period of true is the whole time
line which means that BEGIN(VALID(a0) 1 evaluates to 0 (beginning of time) and
END(VALID(~O)) evaluates to 00 (end of time). After the obvious simplifications
we obtain:

VALID PERIOD(BEGIN(VALID(al~~+i, TIRESTAMP 'forever')
SELECT . . .
FROM @(PERIOD) AS al

which is considerably less complex than the original statement. Similarly, we can
use the definition of until to derive a mapping for 0.

Mapping H. For n A, one can rewrite it as l+lA and use the approach pre-
sented above. Unfortunately, this approach is not very practical as it may lead
to formulas that cannot be translated (e.g., 1+-p(X) versus n p(X)). Therefore
we derive a TSQL2 translation for n A from the definition

D,v,i~mAiffV~(j<i-,D,v,j~A)

Assuming bounded time in the past, this can be easily expressed in TSQLB:
VALID PERIOD(BEGIN(VALID(ao)), END(VALID(aO))+l)

SELECT . . .
FROM A'(PERIOD) AS a0
WHERE BEGIN(VALID(a0)) = TIMESTAMP 'beginning'

By analogy, a special purpose mapping for CIA can be derived.

3.5 Example

Consider the query “list all countries that lost and regained independence” (Ex-
ample 4) formulated in temporal logic as:

(3.9, S2)(+indep(X, Sl) A Oindep(X, S2) A (VS)(+zdep(X, S))).

336

To simplify the illustration of the translation we break up the formula into a set
of auxiliary rules (views):

auz-vieurl(X, Sl) t +indep(X,Sl).
auz-view2(X, S2) t Oindep(X, S2).

(33, S2)auz_viewl(X, Sl) A auz,view2(X, S2) A (VS)(+ndep(X, S)).

We translate the first rule to
VALID PERIOD(BEGIN(VALID(aO))+l, TIMESTAMP 'forever')

SELECT aO.Conntry, aO.Capital
FROM indep(PERIOD) AS a0

and the second rule to
VALID PERIOD(TIMESTAMP 'beginning', END(VALID(al))-1)

SELECT ai.Conntry, al.Capital
FROM indep(PERIOD) AS al

The main query is then translated to
SELECT a2.Conntry AS Country
FROM aux-vieul(PERIOD) AS a2, aux-vieu:!(PERIOD) AS a3
WHERE a2.Conntry = a3.Conntry
AND NOT EXISTS (

SELECT *
FROM indep(PERIDD) AS a4
WHERE a4.Conntry = a2.Country)

Note that this last step is identical to the translation from first order logic
to SQL. Because temporal logic and TSQL2 handle the temporal dimension
of snapshot-reducible queries automatically, the translation of temporal logic
formulas that do not contain temporal connectives degenerates to the translation
of first order logic to SQL.

4 Mapping TSQL2 to temporal logic

Establishing a mapping between TSQL2 and temporal logic is less important
from a practical point of view than establishing the mapping in the other direc-
tion, as described in the previous section. However, the former mapping makes
it possible to study the expressive power of TSQLZ as a query language.

Definition7. A TSQLZ query is pure if:

1. It does not use aggregate operators.

2. Goalescing of periods is forced using (PERIOD). As a side-effect, this ensures
that no duplicates are generated.

The idea is to use only those features of SQL that can be mapped to relational
calculus or algebra.

Definitions. A TSQL2 query is local if:

1. In every subclause of a SELECT,allthe references of the formVALID refer
to a tuple variable u of the FROM clause of this particular SELECT. (There is

337

no similar requirement for nontemporal attributes.) This implies that nested
SELECT clauses cannot refer to the valid-times of correlation names specified
in the FROM clause of an enclosing SELECT.

2. The only arithmetic expressions in which VALID(v) can appear are of the
form VALID(v) f k for an integer k.

3. No VALID SNAPSHOT clauses appear.

Example 8. The following TSQL2 query is nonlocal.
(VALID VALID(a)

SELECT * FROM a AS a
WHERE NOT EXISTS

(SELECT * FROM b AS b
WHERE VALID(a) MEETS VALID(b) AND a.X=b.Z))(PERIOD)

Our mapping maps pure local TSQL2 q ueries to temporal logic formulas. Its
main idea is illustrated by the following example.

Example9. Consider the following (pure local) TSQL2 query.
(VALID PERIOD(BEGIN(VALID(b)),END(VALID(c))

SELECT *
FROM a AS a, b AS b, c AS c
WHERE VALID(a) OVERLAPS VALID(b)

AND VALID(c) OVERLAPS VALID(b)
AND a.X=b.Z)(PERIOD)

Assume that a has two attributes: X and Y, b one attribute Z, and c also one
attribute W.

We extend previous notation to appIy to tuple variables as follows: x- denotes
BEGIN(VALID(x)) and x+ denotes END(VALID(x)). Based on the WHEREclause,
period endpoints have to be partially ordered in the following way:

a-<b’Ab-Fa’Ac-Lb’Ab-~c’.

Now consider all linear orders of endpoints that are consistent with the above
partial order, for example, the linear order 01:

a- < c- < b- < c+ < a+ < b+.

Given a linear order 0, every period with endpoints that are successive elements
in 0 is called nondecomposable. Notice that in each such period and for each
fixed valuation the truth values of a(X,Y), b(Z) and c(W) do not change. For
each such period P in a given linear order 0, denote by a: the conjunction
of a(X,Y), b(Z), and c(W) or their negations that is true over all the points
in P. The formula ag will be called the i&l characteristic of the period P in
0. For example, CY:‘,~+~ is a(X,Y) A b(Z) A C(W). We also define the global

characteristic of P in a given linear order 0 as the temporal logic formula @
that encodes the given linear order of endpoints and is true exactly over P. The
order 01 leads to the formula ,@ ,c+l which is a conjunction of

(a(X, Y) A b(Z) A c(W)) until
((4X, Y) A b(Z) A -c(W)> until (-a(X, Y) A b(Z) A -c(W)))

338

and
(u(X, Y) A b(Z) A c(W)) since

(C4X, Y) A -b(Z) A c(W)) since (u(X, Y) A -b(Z) A -c(W)))

The temporal logic formula corresponding to the query with VALID period P7
is obtained as the conjunction of the nontemporal condition in the WHERE clause
(here: X = 2) and the disjunction of all the formulas formulas Pp” where 0 is a
linear order consistent with the partial order given by the WHERE clause.

Theorem9. For every pure local TSQL2 query Q, there is a temporal logic
formula 4Q such that for every TSQLZ database D, a tuple zi timestamped by an
period i belongs to the answer of Q over D i# D’, Y, t k 6Q for every timepoint
t in i (where D’ is the abstmct temporal database corresponding to D and Y is
the valuation that maps the free variables of #JQ to ii).

Proof. (sketch) The formula +Q is defined inductively. For a base relation p with
n attributes, #Q is just p(zl, . . . , zn) where 11,. . . , zn are different variables. For
a VALID P . . . SELECT where P is a nondecomposable period, (bQ is obtained
as a disjunction of all the global characteristics ,@ where 0 is a linear order
consistent with the partial order given by the WHERE clause, as in Example 9 (all
of TSQLZ built-in temporal predicates can be handled in this way).

There are several additional points that need to be considered. First, there
may be more than one possible partial order of endpoints obtained from the
WHERE clause. The resulting formula is obtained then as a disjunction of formu-
las corresponding to individual partial orders. Second, the period in the VALID
clause may be decomposable. Then the TSQL2 query may be viewed as a finite
union of TSQL2 queries in which such periods are nondecomposable. Third, tem-
poral expressions on the valid-times have to be handled in a special way. In every
linear order, one needs to consider not only period endpoints but also the appro-
priate neighboring points (predecessors and successors). As a result, local char-
acteristics may now contain also 0 and 0. For instance, in Example 9 the local
characteristic of the period [succ(b-),c+] should be a(X, Y)Ab(Z)Ac(W)AOb(Z)
and the global characteristic should be changed similarly. Fourth, temporal con-
stants, e.g., 2 can be encoded using 0. Namely, we define inductively the formula
ni which is true exactly in the state Di:

def
n0 E letrue

ni+l dGf Oni.

To deal with unanchored spans, e.g., “3 instants”, we introduce sufficiently many
(3 in the example) additional points associated with the formula true into the
partial ordering and construct the local characteristic appropriately. Finally,
anchored spans are dealt with using the combination of the above techniques.
In all cases, one produces the characteristics in essentially the same way: by
encoding the linear order in temporal logic.

Moreover, nontemporal conditions in the WHERE clause, NOT, and EXISTS are
translated as in the standard translation from SQL to (domain) relational calcu-
lus. For the attributes not in the SELECT list, appropriate existential quantifiers

' If no VALID clause is present the intersection of all valid periods corresponding to
the FROH list is assumed.

339

are added to the formula. Finally, SELECT without a VALID clause is translated
using the standard translation from SQL to domain relational calculus.

The translation from temporal logic to TSQLZ presented in the previous
section produces pure local TSQL2 queries. Thus:

Corollary 10. Temporal logic and pure local TSQLZ have the same expressive
power as query languages.

There is a subtle point here: the above translation produces temporal logic
formulas that are domain-independent. However, not every such formula satisfies
the assumptions of Proposition 4 and is thus amenable to the translation back
to TSQL2. We conjecture that this gap may be closed by providing a more
sophisticated translation from temporal logic to TSQL2.

The following is a natural next question to ask: Is there a logical query
language equivalent to full TSQLS? The lack of aggregates in temporal logic
can be remedied by a syntactic extension of the language, along the lines of one
proposed for relational calculus [Klu82]. Th e requirement of maximal periods is
more fundamental. In fact, allowing noncoalesced periods calls for a temporal
logic that is not point- but period-based [Tom95]. Thus in this case, there can
be no translation from full TSQLB to the temporal logic discussed in this paper,
even for local queries.

The restriction to local queries is also critical. Pure TSQLS has the same
expressive power as two-sorted first-order logic in which there is a separate sort
for time fTom95]. It has been recently shown [AHVdB95, TN961 that temporal
logic is strictly less expressive than the above two-sorted logic. Thus, there can
be no translation from TSQLZ to temporal logic that works for all pure queries.

5 Summary

We have established an exact correspondence between temporal logic and a
syntactically defined subset of TSQL2. The translation from temporal logic to
TSQLS allows the efficient implementation of temporal logic queries within a
temporal database management system supporting TSQLS.

Future work includes extending the class of allowed temporal logic formulas
(which will also require extensions to the translation to TSQL2), and extending
temporal logic and the translation to support aggregates. Also interesting would
be an adaptation of our approach to a dense domain. This would require first
extending TSQLS to such a domain, including support for half-open and open
periods, and then extending the mapping introduced here. Finally, a translation
from two-sorted first-order logic to TSQL2, which is of clear practical interest,
seems considerably more complicated than the translation from temporal logic
to TSQL2 given in the present paper.

340

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[AHVdB95] S. Abiteboul, L. Herr, and J. Van den Bussche. Temporal Connectives
versus Explicit Timestamps in Temporal Query Languages (unpublished
manuscript).

[All831 J. F. All en. Maintaining Knowledge about Temporal Intervals. Communica-
tions of the ACM, 16(11):832-843, 1983.

[BJS95] M. H. Bijhlen, C. S. Jensen, and R. T. Snodgrass. Evaluating and Enhancing
the Completeness of TSQL2. Technical Report TR 95-5, Computer Science
Department, University of Arizona, June 1995.

[CC871 J. Clifford and A. Croker. The Historical Relational Data Model (HRDM)
and Algebra based on Lifespans. In P roceedings of the International Confer-
ence on Data Engineering, pages 528-537, Los Angeles, CA, February 1987.

[CCT94] J. Clifford, A. Croker, and A. Tuzhilin. On Completeness of Historical Rela-
tional Query Languages. ACM Transactions on Database Systems, 19(1):64-
116, March 1994.

[Cho94] J. Chomicki. Temporal Query Languages: a Survey. Proceedings of the First
International Conference on Temporal Logic, pages 506-534, 1994.

[Cho95] J. Chomicki. Efficient Checking of Temporal Integrity Constraints Using
Bounded History Encoding. ACM Transactions on Database Systems, (20) 2,
149-186, 1995.

[CT951 J. Chomicki and D. Toman. Implementing Temporal Integrity Constraints
Using an Active DBMS. IEEE T ransactions on Knowledge and Data Engi-
neering, Vol. 7, No. 4, August 1995.

[EN941 R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Ben-
jamin/Cummings Publishing Company, 2nd edition, 1994.

[Gad881 S. K. Gadia. A Homogeneous Relational Model and Query Language for
Temporal Databases. ACM Transactions on Database Systems, 13(4):418-
448, December 1988.

[GHR94] D.M. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic: Mathemati-
cal Foundations and Computational Aspects. Oxford University Press, 1994.

[GL93] M. Gertz and U.W. Lipeck. Deriving Integrity Maintaining Triggers from
Transition Graphs. In Proceedings of the International Conference on Data
Engineering, 1993.

[GM911 D. Gabbay and P. McBrien. Temporal Logic and Historical Databases. In
Proceedings of the International Conference on Very Large Databases, 1991.

[GN93] S. K. Gadia and S. S. Nair. Temporal Databases: A Prelude to Parametric
Data. In A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T.
Snodgrass, editors, Temporal Databases: Theory, Design, and Implementation,
pages 28-66. Benjamin/Cummings Publishing Company, 1993.

[JCE+94] C. S. Jensen, J. Clifford, R. Elmasri, S. K. Gadia, P. Hayes, and
S. Jajodia editors. A Glossary of Temporal Database Concepts. ACM SIG-
MOD Record, 23(1):52-64, March 1994.

[Klu82] A. Klug. Equivalence of Relational Algebra and Relational Calculus Query
Languages Having Aggregate Functions. Journal of the ACM, 29(3):699-717,
1982.

[LM93] T. Y. C. Leung and R. R. Muntz. Stream Processing: Temporal Query Pro-
cessing and Optimization. In A. Tansel, J. Clifford, S. Gadia, S. Jajodia,
A. Segev, and R. T. Snodgrass, editors, Temporal Databases: Theory, Design,

[MS?]

[MS931

[NA93]

w-Q01

[h-93]

[Sno87]

[Sno95]

[SW95]

[Tan861

341

ond Impltmentation, chapter 14, pages 329-355. Benjamin/Cummings Pub-
lishing Company, 1993.
U.W. Lipeck and G. Saake. Monitoring Dynamic Integrity Constraints Based
on Temporal Logic. Information Systems, 12(3):255-269, 1987.
J. Melton and A. R. Simon. Understanding the New SQL: A Complete Guide.
Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1993.
S. Navathe and R. Ahmed. Temporal Extensions to the Relational Model
and SQL. In A. Tansel, J. Clifford, S. Gadia, S, Jajodia, A. Segev, and R. T.
Snodgrass, editors, Temporal Databases: Theory, Design, and Implementation,
pages 92-109. Benjamin/Cummings Publishing Company, 1993.
N. Sarda. Extensions to SQL for Historical Databases. IEEE Transactions
on Knowledge and Data Engineering, 2(2):220-230, June 1990.
N. Sarda. HSQL: A Historical Query Language. In A. Tansel, J. Clifford,
S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass, editors, Temporal
Databases: Theory, Design, and Implementation. Benjamin/Cummings Pub-
lishing Company, 1993.
R. T. Snodgrass. The Temporal Query Language TQuel. ACM Transactions
on Database Systems, 12(2):247-298, June 1987.
R. T. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer
Academic Publishers, 674+xxiv pages, 1995.
A.P. Sistla and 0. Wolfson. Temporal Triggers in Active Databases. IEEE
Transactions on Knowledge and Data Engineering, 7(3):471-486, June, 1995.
A. U. Tansel. Adding time dimension to relational model and extending re-
lational algebra. Information Systems, 11(4):343-355, 1986.

[Tom951 D. Toman. Point-based vs. Interval-based Temporal Query Languages. TR-
(X-95-15, Kansas State University, 1995.

[TN961 D. Toman and D. Niwiriski. First-Order Temporal Queries Inexpressible in
Temporal Logic. Proc. EDBT’96 (to appear), 1996.

[TC90] A. Tuzhili n and J. Clifford. A Temporal Relational Algebra as a Basis for
Temporal Relational Completeness. In Proceedings of the Internatianal Con-
ference on Very Large Databases, 1990.

[VGTSl] A. Van Gelder and R.W. Topor. Safety and Translation of Relational Cal-
culus Queries. ACM Transactions on Database Systems, 16(2):235-278, June
1991.

[Wtitgl] B. Wiithrich. Large Deductive Databases with Constraints. PhD thesis, De-
partment Informatik, ETH Ziirich, 1991.

