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Abstract. We establish an exact correspondence between temporal lo- 
gic and a subset of TSQL2, a consensus temporal extension of SQL-92. 
The translation from temporal logic to TSQLZ developed here enables a 
user to write high-level queries which can be evaluated against a space- 
efficient representation of the database. The reverse translation, also pro- 
vided, makes it possible to characterize the expressive power of TSQLB. 
We demonstrate that temporal logic is equal in expressive power to a 
syntactically defined subset of TSQL2. 

1 Introduction 

In this paper, we bring together two research directions in temporal databases. 
The first direction is concerned with temporal extensions to calculus-based query 
languages such as SQL (e.g., [GN93, NA93, Sar93]). The issues addressed include 
space-efficient storage, effective implementation techniques, and handling large 
amounts of data. This approach includes the consensus temporal query lan- 
guage TSQLZ [Sno95], whose practical implementations should be forthcoming. 
The second direction is concerned with defining high-level query languages with 
logical semantics, e.g., temporal logic [TCSO, GM91, CCT94]. The advantages of 
using logic languages come from their well-understood mathematical properties 
[GHR94]. Logic languages are easy to use and make algebraic query transfor- 
mation possible [CT95]. F or instance, temporal logic has been proposed as the 
language of choice for formulating temporal integrity constraints and triggers 
[Cho95, CT95, GL93, LS87, SW95]. 

The semantics of temporal logic queries is defined with respect to sequences 
of database states [GHR94]. In temporal databases we do not want to construct 
and store all the states explicitly. Instead, various proposals have associated 
with each fact a concise description of the set of points over which the fact 
holds, such as a period1 [NA93, Sar90, Sno87, Tan861 or a finite union of periods 

1 We use the term ‘period’ in this paper rather than the term ‘interval’ commonly 
used in temporal logic because the latter term conflicts with SQL INTERVALS, which 
are unanchored durations, such as 3 months. 
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[CC87, Gad%, Sno95]. We show here how to translate temporal logic queries into 
TSQL2, enabling the user to write high-level queries which will be evaluated 
against a space-efficient representation of the database. While translations of 
first order logic to SQL have been previously discussed [AHV95, VGTSl], we 
know of no translations from temporal logic to a temporal query language. 

We start with a discussion of the basic framework in Section 2. We define 
the syntax and semantics of the two languages in question, temporal logic and 
TSQL2. In Section 3 we give the mapping from temporal logic to TSQL2.2 We 
conclude the section with an example and the discussion of some implementation 
issues. Section 4 discusses the reverse mapping, thereby relating the expressive 
power of (a subset of) TSQL2 and temporal logic. 

2 Basic framework 

Before comparing temporal logic and TSQLZ we have to set up a formal frame- 
work suitable to both languages. Time is considered to be integer-l&e: linear 
(totally ordered), discrete, bounded in the past, and infinite in the future. Our 
approach can be adopted to other kinds of time, e.g., dense, rational-like time, 
although some details of the mapping may in that case be different. We aIso take 
the point-based view which is predominant in the context of temporal logic. This 
view means that the truth-values of facts are associated with individual time 
points (also called instants). We aSsume a fixed time granularity. 

We will consider only v&d-time, which relates when facts are valid in reality 
[JCE+94]. In particular, tmnsaction time, which relates when facts are stored in 
the database, is not considered. 

2.1 Temporal logic 

Temporal logic is an abstract language, i.e., a language which is defined with 
respect to abstract temporal databases [Cho94]. An abstract temporal database, 
in turn, is a database which captures the formal semantics of a temporal database 
without considering representation issues. 

It is possible to view an abstract temporal database in several different but 
equivalent ways. We choose here the timeslice view (called snupshot in [Cho94]) 
in which every time instant is associated with a (finite) set of facts that hold at 
it. For integer-like time, this view leads to an infinite sequence of finite database 
states (DO, D1, D2, . . .). 

Emmple 1. Table 1 presents an example of an abstract temporal database, 
viewed as a sequence of states. The database represents information about East- 
ern European history, modeling the independence of various countries [Cho94]. 
Each fact indicates an independent nation and its capital. This relation will be 
used as a running example throughout the paper. 

’ An implementation of the translation from temporal logic to TSQLZ is publicly 
available at http : //uuw . iesd. auc. dk/-boehlen/. 
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Year Timeslice 

1025 indep(‘Poland’, ‘Gniezno’) 
. . . . . . 

1039 {indep(‘Poland‘, ‘Gniezno‘)) 
1040 {indep(‘Poland’, ‘Cracow‘)) 
. . . . . . 

1197 {indep(‘Poland’, ‘Crucow‘)] 
1198 {indep(‘CzechI<ingdom’, ‘Prague‘), indep(‘Poland’, ‘Cracow‘)} 
. . . . . . 

1995 {indep(‘CzechRepublic’, ‘ Prague‘), indep(‘Poland’, ‘Warsaw‘), 
indep(‘Slovakia’, ‘Bratislava‘)} 

. . . . . . 

Table 1. Eastern European history: the abstract temporal database 

Syntax. Temporal logic extends first order logic with binary- temporal connec- 
tives since and until, and unary connectives 0 ( ‘Lprevious” or “yesterday”) and 
0 (“next” or “tomorrow”). Informally, A since B is true in a state if A is true 
for states between when B was true and now (this state). A until B is true in 
a state if A will be true into the future until B will be true. 

As usual, other temporal connectives can be defined in terms of these, e.g., 

+A z true since A (A was true sometime in the past) 

OA E true until A (A will be true sometime in the future) 

n A = -+-A (A was true always in the past) 

q A z -OlA (A will be true always in the future). 

Example 2. Our first example is a query which does not relate different database 
states. The query 

(3City)(indep(‘Poland‘, City) A +lCity2)indep(‘Slovakia‘, City2)) 

determines all years when Poland but not Slovakia was an independent country, 
i.e., the times when the query evaluates to true. 

Example3. The second example relates different database states. The query 

(indep(‘Poland’, City) A City # ‘C racow‘) since indep(‘Poland‘, ‘Cracow‘) 

returns the name of the city that superseded Cracow as Poland’s capital and the 
years when this city was the capital. 

ExampZe4. Consider the query [Cho94, p.5151 “list all countries that lost and 
regained independence” over the abstract temporal database shown in Table 1. 
This is formulated in temporal,logic as: 

(3S1, S2)(+indep(X, Sl) A Oindep(X, S2) A (VS)+ndep(X, S)). 

For a country and a year to result, the country will have been independent in 
the past, will be independent in the future, but is currently not independent. 
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Semantics. An abstract temporal database is a sequence D = (De, Dr , D2, . . .) of 
database states. Every database state Di contains a relation (relation instance) 
T for each relation schema R. We define the semantics of temporal logic formulas 
in terms of a satisfaction relation b and a valuation I/ {a valuation is a mapping 
from variables to constants): 

- D, Y, i b A iff A is atomic and A/v E Di (where A/v is the result of applying 
v to the variables of A), 

- D, Y, i k TA iff D, v, i k A, 

- D, V, i k A A B iff D, Y, i b A and D, Y, i b B, similarly for V and +, 

- D, v, i + (3X)A iff for some c, D,v[X t c], i + A where v[X t c] is a 
valuation identical to v except that it maps X to c, 

- D,v,i j= (VX)A iff for all c, D,v[X t c],i + A, 

- D,v,i+OAiffi>OandD,v,i-l+A, 

- D,v,ij=OAiffD,v,i+l/=A, 

- D,v,i~AsinceBiff3j(j<iAD,v,j~~AVlc(j<kIijD,v,k~A)) 

- D,v,i~AuntilBiff3j(j>iAD,,,j~=~V~(iFI,<j_,D,,,k:~A)) 

The answer to a temporal logic query A in D is the set {(Y, i) : D, v, i b A}. 
Thus, temporal logic may be viewed as a natural extension of relational calculus. 

As indicated by the example queries on the previous page, temporal logic 
provides a convenient means of expressing rather involved English queries in 
a natural way. However, the state-based semantics of temporal logic does not 
suggest an efficient implementation of such queries. A period-based implemen- 
tation, in which the period over which each fact was valid is used directly in the 
evaluation, promises much faster execution. 

2.2 TSQL2 

TSQLZ [Sno95] is the consensus temporal extension of SQL-92 and, therefore, 
we use it as our target database query language when translating temporal logic. 
A valid-time relation is a relation where tuples are implicitly timestamped with 
periods3. 

Example 5. Table 2 contains a concrete TSQLZ relation representing the abstract 
temporal database shown in Table 1. 

3 In this paper, we use a slight variant of TSQLZ named Applied TSQL2 (ATSQL2) 
[BJS95]. ATSQLS modifies TSQL2 in a few minor ways. ATSQLZ timestamps tu- 
ples with periods rather than with temporal elements; ATSQLZ adds support for 
duplicates (though we will consider only ATSQL2 queries that remove duplicates); 
and ATSQLB changes the syntax of the valid clause. We use ATSQLZ because the 
semantics of that language has been formally specified; only an informal specification 
of the semantics of TSQLS has been given. Other than these changes, the languages 
are similar, and we will continue to refer to them under the rubric TSQL2. 



idep 
Country 
Czech Kingdom 
Czechoslov\kia 
Czechoslovakia 
Czech Republic 
Slovakia 
Slovakia 
Poland 
Poland 
Poland 
Poland 
Poland 

Table 2. Eastern European history: the concrete TSQLZ relation 
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Capital 
Prague 
Prague 
Prague 
Prague 
Bratislava 
Bratislava 
Gniezno 
Cracow 
Warsaw 
Warsaw 
Warsaw 

Syntax. TSQLZ extends the query language of SQL-92 [MS931 with the following 
constructs: 

I. Syntactic constructs to manipulate timestamps (e.g., extract the start and 
end point of a period, construct a period out of two time points, etc.)4. 

2. Temporal built-in predicates, which can be used in the UHERE clause in order 
to specify temporal relationships between pairs of periods. To be consistent 
with SQL2, the relationships below have a somewhat different meaning than 
the identically-named relationships in [A1183]. Notation: P- for BEGIN(P) 
and P+ for END(P). 

- PI = P2 iff PI- = P.J and PI+ = P2,j 
- PI CONTAINS P2 iff PC 5 P.j- and PT > Pz 
- PI MEETS P2 iff succ(P~> = Pp 
- PI OVERLAPS PZ iff PF < P,' and PT 5 Pt 
- PI PRECEDES P2 iff Pz < P; 

Also, period endpoints can be compared -directly using PRECEDES. In this 
way, all the relationships in [A11831 can be expressed. 

3. A valid clause, which can be placed in front of queries.5 It is to spec- 
ify whether a query expression should be evaluated with temporal seman- 
tics (no valid clause) or with standard Codd semantics (valid clause). In- 
tuitively, temporal semantics corresponds to snapshot reducibility [Sno87] 
which means that, conceptually, the respective query is evaluated over every 

4 These features are briefly discussed where used the first time. 
5 The same syntactic extension is allowed for queries in the FROM clause defining a 

derived table. With auxiliary tables or views such queries can be rewritten so that 
the valid clause only occurs at “the outermost level”. 



snapshot of a temporal database. The valid clause comes in two different 
flavors. If it is of the form VALID SNAPSHOT, a snapshot relation is returned. 
Otherwise, it is of the form VALID expr in which case a valid-time relation 
is returned with valid-time defined by expr. 

4. (PERIOD) may follow a query expression or a relation name in a from clause, 
specifying that the result be coalesced, that is, tuples with identical explicit 
attribute values whose valid-times overlap or are adjacent are merged into 
a single tuple, with a period equal to the union of the periods of the orig- 
inal tuples. As a side-effect, duplicates are eliminated. We use (PERIOD) 
throughout because temporal logic does not allow duplicates or uncoalesced 
periods. 

5. Other facilities not relevant here, including temporal indeterminacy, schema 
evolution, user-defined granularities, and extensible literal syntax. 

Semantics. TSQL2 has been given a formal denotational semantics that maps 
TSQL2 statements to (temporal) relational algebra expressions [BJS95]. 

&ample 6. In order to determine the name of the city that superseded Cracow 
as Poland’s capital (c.f., Example 3), different database states have to be re- 
lated. In TSQLB this means that we have to specify a valid clause (in order to 
override snapshot reducibility) and we also have to specify the required temporal 
relationship. This results in the following TSQLZ query Qi: 

VALID VALID(i1) 
SELECT il.Capital 
FROH indep(PERIOD) AS il, indep(PERIOD) AS i2 
WHERE il.Country = 'Poland' 

AND i2.Country = 'Poland' AND i2.Capital = 'Cracou' 
AND VALID(i2) MEETS VALID(i1) 

Example 7. The formulation of a query becomes even simpler if it can be an- 
swered by looking at single snapshots. In this case the user can simply ignore 
time when formulating a query, as illustrated in the following query Q2, which 
determines all period(s) when Poland but not Slovakia was independent (c.f., 
Example 2) : 

(SELECT il.Country 
FROH indep(PERIOD) AS il 
WHERE il.Country = 'Poland' 

AND NOT EXISTS ( 
SELECT * 
FROM indep(PERIOD) AS i2 
WHERE i2.Country = 'Slovakia'))(PERIOD) 

3 Mapping Temporal Logic to TSQLB 

A mapping from temporal logic to TSQL2 is useful for two reasons. First it 
relates the two languages and, thus, their expressive power. Second it yields 
an efficient implementation for temporal logic formulas using a translation to 
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TSQLZ that efficiently encodes identical adjacent facts. Also TSQLZ queries can 
be optimized. 

Before we can describe the actual mapping of temporal formulas to TSQL2 we 
need to establish a relationship between the databases over which our translation 
is well defined. Not every abstract temporal database can be represented as a 
TSQLZ database. For example, the database that has a single fact p(a) in every 
even-numbered state and whose every odd-numbered state is empty cannot be 
represented in TSQLZ. 

Definitionl. Let D = (01, Ds,. . .) be an abstract temporal database. The 
support of a temporal logic formula A under a valuation v is the set 

{i : D, Y, i + A}. 

The support for ground formulas (e.g., facts) does not depend on the valuation. 
The definition of the support allows us to define the class of abstract temporal 
databases we are interested in. 
Definition2. An abstract temporal database is finitary’if it contains a finite 
number of facts and the support of every fact can be represented as a finite union 
of periods. 

Proposition3. Every TSQL2 database represents a jinitary abstract temporal 
database and every finitary abstract temporal database can be represented by a 
TSQL.2 database. 

The previous observations are used to define the translation of temporal logic 
formulas to TSQLP and prove its correctness. The translation uses an extension 
of existing methods for translating first-order logic formulas to SQL-92, e.g., 
[VGTSl, AHV95, WiitSl] as one of its steps. We also give a syntactic criterion 
for identifying (a subset of) domain independent formulas of temporal logic. 

3.1 Temporal Logic to TSQL2 Translation 

The translation of temporal logic formulas to TSQL2 is defined by induction 
on the structure of the formula. Temporal logic formulas can be thought of as 
first-order formulas augmented by additional temporal connectives since, until, 
l , and 0. This observation allows us to define the translation process in two 
steps: 

1. mapping of temporal connectives, and 

2. mapping of maximal sub-formulas not containing temporal connectives. 

The whole translation procedure then works inductively on the structure of the 
given query: It first computes the TSQL2 equivalents of the maximal first-order 
subformulas of the query. The results are then used in the definitions of the 
translations of temporal connectives to TSQL2 views. These views then replace 
the original temporal subformula (by a virtual relation name). The process is 
repeated until the whole formula is translated. 

We first describe the mapping of the temporal connectives to TSQL2. This 
mapping links the translations of the (essentially) first-order pieces of the original 
query toget her. 
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Mapping since and until. Figure 1 graphically illustrates the semantics of 
since and until. We have listed all possible temporal relationships [A11831 be- 

Temporal relationship Temporal iogic 
between formulas A and B formula F 

Tkuth period 

of formula F 
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B 
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B 
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A since B 
A until B 

A since B 
A until B 

A since B 
A until B 

A since B 
A until B 

A since B 
A until B 

A since E 
A until B 

A since B 
A until B 

A since B 
A until B 

A since B 
A until B 

A since B 
A until B 

A since B 
A until B 

A since I3 
A until B 

A since B 
A until B 

ti 

[succ(B-), A+] 

[A-,.4+1 

[A-, A+1 
P-2 pred(B+ )] 

;-!-,A+] 

FA+l 

[succ(B-), A+] 

[A-, s=dP+ )I 

[A-, A+1 
i-4-j A+] 

[suee(B-), A+] 

[A-,p=W+)l 
[succ(B-), A+] 

[‘i-r-4+1 
[succ(B-), A+] 

[A- > p=d(B+ )I 

[A-,-4+1 
[A- ,pred(B+)J 

[succ(B-), A+] 

IA- ,vd(B+)l 

Fig. 1. Semantics of since and until 

tween the truth periods of two formulas A and B. For each relationship we have 
determined the truth period of A since B and A until B respectively. (A-/A+ 
denotes the start/end point of the truth period of A.) More formally the truth 
periods of A since B and A until B are defined as follows. 

A since B c) [maz(A-, succ(B-)), A+] 
for maz(A-, succ(B-)) 5 A+ and B+ 2 A- 

A until B c) [A- , min(A+ , pred( B+))] 
for A- 5 min(A+ ,~RxI(B+)) and A’ > B- 

The reader may verify that these general expressions evaluated on any particular 
relationship given in Figure 1 result in the correct truth period. 
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These expressions can be translated to TSQL2 straightforwardly. The valid 
clause is used to specify the final timestamp (and to prevent snapshot reducibil- 
ity), whereas the conditions are translated into appropriate WHERE clause condi- 
tions. More precisely, A since B is translated to6 

VALID PERIOD(LAST(BEGIN(VALID(a0)) ,BEGIN(VALID(al))+l) , END(VALID(aO))) 
SELECT . . . 
FROR A’(PERIOD) AS a0, B’(PERIOD) AS al 
WHERE LAST(BEGIN(VALID(a0)) ,BEGIN(VALID(ai))+l) <= END(VALID(a0)) 

AND BEGIN(VALID(a0)) <= END(VALID(al)) 
AND . . . 

whereas A until B is translated to 
VALID PERIClD(BEGIN(VALID(a0)) , FIRST(END(VALID(aO)),END(VALID(alj))-1) 

SELECT . . . 
FROM A’(PERIOD) AS a0, B’(PERIOD) AS al 
WHERE BEGIN(VALID(a0)) <= FIRST(END(VALID(a0)) ,END(VALID(al))-I) 

AND BEGIN(VALID(a1)) <= END(VALID(aO)) 
AND . . . 

The SELECT list of the TSQL2 statements is determined from the free variables 
occurring in either A or B. Variables used in A and B give rise to further WHERE 
clause conditions. We get A’ by applying the translation recursively to A and 
B’ by applying the translation recursively to B. 

Mapping 0 and 0. The mapping of the connectives l A and OA is defined 
as follows: First we define the truth periods for l A and OA with respect to the 
truth period of A: 

.A i+ [succ(A-), succ(A+)] 

OA I+ [pred(A-), pred(A+)] 

The result is translated to TSQLZ using a definition of the corresponding valid- 
time clause that shifts the valid-time period by one in the appropriate direction. 
The translation for l A looks like 

VALID VALID (a01 +I 
SELECT . . . 
FROM A'(PERIOD) AS a0 

and the translation for OA is 

VALID VALID (a0) -1 
SELECT . . . 
FROM A'(PERIoD) As a0 

The SELECT list is again obtained from the set of free variables in A, and A’ is 
the TSQL2 translation of A. 

6 PERIOD(z, y) takes two timepoints z and y, and returns a period. BEGIN/END returns 
the start/end point of a period. FIRST and LAST return the minimum and maximum 
timepoint out of a pair of timepoints, respectively. Finally, we assume here that the 
valid-time is at a granularity of a year. Thus +l is shorthand for +INTERVAL ’ 1' 
YEAR and -1 for -INTERVAL '1' YEAR. 
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Mapping of first-order (sub-Jformulas. The mapping of first-order formu- 
las to relational algebra has been described in several papers and books, e.g., 
[VGTSl, AHV95]. A s our target language is (T)SQL2 rather than relational 
algebra, we map maximal first-order subformulas to directly to SQL [WiitSl], 
thereby exploiting the syntactic features of the latter and achieving efficient SQL 
queries. 

3.2 Domain independence 

Similarly to the first-order case [VGTSl, AHV95], not all formulas expressible in 
temporal logic are domain-independent. We identify (a subset of) the domain- 
independent formulas of temporal logic using an extension of the syntactic cri- 
teria defined for first-order formulas. 
Proposition4 Let ‘p be a temporal formula and ALWD be a domain-indepen- 
dence criterion for first-order formulas. If 

1. ALWD(FOL(~)), 

2. ALWD(FOL(A)) and ALWD(FOL(B)) f or every subformula of cp that has the 
form A until B or A since B, and 

3. ALWD(FOL(A)) f or every subformula of Q of the form op A where op is one 

of {+,0,wa*,0) 
where FOL is a mapping that replaces all occurrences of temporal subformulas 
by (imaginary) database relations with the same sets of free variables, then Q is 
domain-independent. 
The domain-independence needs to be extended to the temporal domain as well. 
We need to show that every tuple in the result of our query is associated with a 
finite union of periods. However, it is easy to show that: 
Theorem5. For any finitary temporal database and a fixed valuation the sup- 
port of every temporal logic formula can be represented by a finite union of peri- 
ods. 

Thus the application of boolean operators, temporal operators, and quantifiers 
preserves the finitary property of relations. This result shows that all the inter- 
mediate results can be represented by finite unions of periods (and thus evaluated 
properly using TSQL2). 

3.3 Correctness of the translation 

Proposition 4 guarantees that at every point of the transformation process we 
only have to deal with domain-independent formulas (i.e., all first order vari- 
ables are range-restricted). Thus there are only finitely many valuations (for any 
finitary temporal database) at that point. Thus 
Theorem 6. For every temporal logic formula Q satisfying the assumptions of 
Proposition 4 and for every finitary abstract temporal database D the following 
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diagram commutes: 
D 9 + R 
-l- J- 

@‘SQL2 9TSQL2 > RTSQLZ 

where DTSQL2 is the TSQL& equivalent of D, pTSQL2 is the translation of the 
temporal logic query ‘p, and R TsQL2 is the TSQLR variant of the result of the 
query. 

3.4 Deriving specialized mappings 

Based on the translation of since and until, the mapping of other temporal con- 
nectives can be defined. While theoretically feasible such an approach may be 
cumbersome in practice as it leads to unnecessarily complicated TsQL2 state- 
ments. 

Mapping +. We illustrate how the definition of since can be used to derive 
an efficient special purpose mapping for +. The formula +I3 is equivalent to 
true since B. Therefore we take the definition of A since B (Section 3.1) and 
substitute A by true. We notice that the truth period of true is the whole time 
line which means that BEGIN(VALID(a0) 1 evaluates to 0 (beginning of time) and 
END(VALID(~O)) evaluates to 00 (end of time). After the obvious simplifications 
we obtain: 

VALID PERIOD(BEGIN(VALID(al~~+i, TIRESTAMP 'forever') 
SELECT . . . 
FROM @(PERIOD) AS al 

which is considerably less complex than the original statement. Similarly, we can 
use the definition of until to derive a mapping for 0. 

Mapping H. For n A, one can rewrite it as l+lA and use the approach pre- 
sented above. Unfortunately, this approach is not very practical as it may lead 
to formulas that cannot be translated (e.g., 1+-p(X) versus n p(X)). Therefore 
we derive a TSQL2 translation for n A from the definition 

D,v,i~mAiffV~(j<i-,D,v,j~A) 

Assuming bounded time in the past, this can be easily expressed in TSQLB: 
VALID PERIOD(BEGIN(VALID(ao)), END(VALID(aO))+l) 

SELECT . . . 
FROM A'(PERIOD) AS a0 
WHERE BEGIN(VALID(a0)) = TIMESTAMP 'beginning' 

By analogy, a special purpose mapping for CIA can be derived. 

3.5 Example 

Consider the query “list all countries that lost and regained independence” (Ex- 
ample 4) formulated in temporal logic as: 

(3.9, S2)(+indep(X, Sl) A Oindep(X, S2) A (VS)(+zdep(X, S))). 
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To simplify the illustration of the translation we break up the formula into a set 
of auxiliary rules (views): 

auz-vieurl(X, Sl) t +indep(X,Sl). 
auz-view2(X, S2) t Oindep(X, S2). 

(33, S2)auz_viewl(X, Sl) A auz,view2(X, S2) A (VS)(+ndep(X, S)). 

We translate the first rule to 
VALID PERIOD(BEGIN(VALID(aO))+l, TIMESTAMP 'forever') 

SELECT aO.Conntry, aO.Capital 
FROM indep(PERIOD) AS a0 

and the second rule to 
VALID PERIOD(TIMESTAMP 'beginning', END(VALID(al))-1) 

SELECT ai.Conntry, al.Capital 
FROM indep(PERIOD) AS al 

The main query is then translated to 
SELECT a2.Conntry AS Country 
FROM aux-vieul(PERIOD) AS a2, aux-vieu:!(PERIOD) AS a3 
WHERE a2.Conntry = a3.Conntry 
AND NOT EXISTS ( 

SELECT * 
FROM indep(PERIDD) AS a4 
WHERE a4.Conntry = a2.Country) 

Note that this last step is identical to the translation from first order logic 
to SQL. Because temporal logic and TSQL2 handle the temporal dimension 
of snapshot-reducible queries automatically, the translation of temporal logic 
formulas that do not contain temporal connectives degenerates to the translation 
of first order logic to SQL. 

4 Mapping TSQL2 to temporal logic 

Establishing a mapping between TSQL2 and temporal logic is less important 
from a practical point of view than establishing the mapping in the other direc- 
tion, as described in the previous section. However, the former mapping makes 
it possible to study the expressive power of TSQLZ as a query language. 

Definition7. A TSQLZ query is pure if: 

1. It does not use aggregate operators. 

2. Goalescing of periods is forced using (PERIOD). As a side-effect, this ensures 
that no duplicates are generated. 

The idea is to use only those features of SQL that can be mapped to relational 
calculus or algebra. 

Definitions. A TSQL2 query is local if: 

1. In every subclause of a SELECT,allthe references of the formVALID refer 
to a tuple variable u of the FROM clause of this particular SELECT. (There is 
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no similar requirement for nontemporal attributes.) This implies that nested 
SELECT clauses cannot refer to the valid-times of correlation names specified 
in the FROM clause of an enclosing SELECT. 

2. The only arithmetic expressions in which VALID(v) can appear are of the 
form VALID(v) f k for an integer k. 

3. No VALID SNAPSHOT clauses appear. 

Example 8. The following TSQL2 query is nonlocal. 
(VALID VALID(a) 

SELECT * FROM a AS a 
WHERE NOT EXISTS 

(SELECT * FROM b AS b 
WHERE VALID(a) MEETS VALID(b) AND a.X=b.Z))(PERIOD) 

Our mapping maps pure local TSQL2 q ueries to temporal logic formulas. Its 
main idea is illustrated by the following example. 

Example9. Consider the following (pure local) TSQL2 query. 
(VALID PERIOD(BEGIN(VALID(b)),END(VALID(c)) 

SELECT * 
FROM a AS a, b AS b, c AS c 
WHERE VALID(a) OVERLAPS VALID(b) 

AND VALID(c) OVERLAPS VALID(b) 
AND a.X=b.Z)(PERIOD) 

Assume that a has two attributes: X and Y, b one attribute Z, and c also one 
attribute W. 

We extend previous notation to appIy to tuple variables as follows: x- denotes 
BEGIN(VALID(x)) and x+ denotes END(VALID(x)). Based on the WHEREclause, 
period endpoints have to be partially ordered in the following way: 

a-<b’Ab-Fa’Ac-Lb’Ab-~c’. 

Now consider all linear orders of endpoints that are consistent with the above 
partial order, for example, the linear order 01: 

a- < c- < b- < c+ < a+ < b+. 

Given a linear order 0, every period with endpoints that are successive elements 
in 0 is called nondecomposable. Notice that in each such period and for each 
fixed valuation the truth values of a(X,Y), b(Z) and c(W) do not change. For 
each such period P in a given linear order 0, denote by a: the conjunction 
of a(X,Y), b(Z), and c(W) or their negations that is true over all the points 
in P. The formula ag will be called the i&l characteristic of the period P in 
0. For example, CY:‘,~+~ is a(X,Y) A b(Z) A C(W). We also define the global 

characteristic of P in a given linear order 0 as the temporal logic formula @ 
that encodes the given linear order of endpoints and is true exactly over P. The 
order 01 leads to the formula ,@ ,c+l which is a conjunction of 

(a(X, Y) A b(Z) A c(W)) until 
((4X, Y) A b(Z) A -c(W)> until (-a(X, Y) A b(Z) A -c(W))) 
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and 
(u(X, Y) A b(Z) A c(W)) since 

(C4X, Y) A -b(Z) A c(W)) since (u(X, Y) A -b(Z) A -c(W))) 

The temporal logic formula corresponding to the query with VALID period P7 
is obtained as the conjunction of the nontemporal condition in the WHERE clause 
(here: X = 2) and the disjunction of all the formulas formulas Pp” where 0 is a 
linear order consistent with the partial order given by the WHERE clause. 

Theorem9. For every pure local TSQL2 query Q, there is a temporal logic 
formula 4Q such that for every TSQLZ database D, a tuple zi timestamped by an 
period i belongs to the answer of Q over D i# D’, Y, t k 6Q for every timepoint 
t in i (where D’ is the abstmct temporal database corresponding to D and Y is 
the valuation that maps the free variables of #JQ to ii). 

Proof. (sketch) The formula +Q is defined inductively. For a base relation p with 
n attributes, #Q is just p(zl, . . . , zn) where 11,. . . , zn are different variables. For 
a VALID P . . . SELECT where P is a nondecomposable period, (bQ is obtained 
as a disjunction of all the global characteristics ,@ where 0 is a linear order 
consistent with the partial order given by the WHERE clause, as in Example 9 (all 
of TSQLZ built-in temporal predicates can be handled in this way). 

There are several additional points that need to be considered. First, there 
may be more than one possible partial order of endpoints obtained from the 
WHERE clause. The resulting formula is obtained then as a disjunction of formu- 
las corresponding to individual partial orders. Second, the period in the VALID 
clause may be decomposable. Then the TSQL2 query may be viewed as a finite 
union of TSQL2 queries in which such periods are nondecomposable. Third, tem- 
poral expressions on the valid-times have to be handled in a special way. In every 
linear order, one needs to consider not only period endpoints but also the appro- 
priate neighboring points (predecessors and successors). As a result, local char- 
acteristics may now contain also 0 and 0. For instance, in Example 9 the local 
characteristic of the period [succ(b-),c+] should be a(X, Y)Ab(Z)Ac(W)AOb(Z) 
and the global characteristic should be changed similarly. Fourth, temporal con- 
stants, e.g., 2 can be encoded using 0. Namely, we define inductively the formula 
ni which is true exactly in the state Di: 

def 
n0 E letrue 

ni+l dGf Oni. 

To deal with unanchored spans, e.g., “3 instants”, we introduce sufficiently many 
(3 in the example) additional points associated with the formula true into the 
partial ordering and construct the local characteristic appropriately. Finally, 
anchored spans are dealt with using the combination of the above techniques. 
In all cases, one produces the characteristics in essentially the same way: by 
encoding the linear order in temporal logic. 

Moreover, nontemporal conditions in the WHERE clause, NOT, and EXISTS are 
translated as in the standard translation from SQL to (domain) relational calcu- 
lus. For the attributes not in the SELECT list, appropriate existential quantifiers 

' If no VALID clause is present the intersection of all valid periods corresponding to 
the FROH list is assumed. 
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are added to the formula. Finally, SELECT without a VALID clause is translated 
using the standard translation from SQL to domain relational calculus. 

The translation from temporal logic to TSQLZ presented in the previous 
section produces pure local TSQL2 queries. Thus: 

Corollary 10. Temporal logic and pure local TSQLZ have the same expressive 
power as query languages. 

There is a subtle point here: the above translation produces temporal logic 
formulas that are domain-independent. However, not every such formula satisfies 
the assumptions of Proposition 4 and is thus amenable to the translation back 
to TSQL2. We conjecture that this gap may be closed by providing a more 
sophisticated translation from temporal logic to TSQL2. 

The following is a natural next question to ask: Is there a logical query 
language equivalent to full TSQLS? The lack of aggregates in temporal logic 
can be remedied by a syntactic extension of the language, along the lines of one 
proposed for relational calculus [Klu82]. Th e requirement of maximal periods is 
more fundamental. In fact, allowing noncoalesced periods calls for a temporal 
logic that is not point- but period-based [Tom95]. Thus in this case, there can 
be no translation from full TSQLB to the temporal logic discussed in this paper, 
even for local queries. 

The restriction to local queries is also critical. Pure TSQLS has the same 
expressive power as two-sorted first-order logic in which there is a separate sort 
for time fTom95]. It has been recently shown [AHVdB95, TN961 that temporal 
logic is strictly less expressive than the above two-sorted logic. Thus, there can 
be no translation from TSQLZ to temporal logic that works for all pure queries. 

5 Summary 

We have established an exact correspondence between temporal logic and a 
syntactically defined subset of TSQL2. The translation from temporal logic to 
TSQLS allows the efficient implementation of temporal logic queries within a 
temporal database management system supporting TSQLS. 

Future work includes extending the class of allowed temporal logic formulas 
(which will also require extensions to the translation to TSQL2), and extending 
temporal logic and the translation to support aggregates. Also interesting would 
be an adaptation of our approach to a dense domain. This would require first 
extending TSQLS to such a domain, including support for half-open and open 
periods, and then extending the mapping introduced here. Finally, a translation 
from two-sorted first-order logic to TSQL2, which is of clear practical interest, 
seems considerably more complicated than the translation from temporal logic 
to TSQL2 given in the present paper. 
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