
Validating Quicksand: Temporal Schema

Versioning in τXSchema

Richard T. Snodgrass 1 Curtis Dyreson ∗,2 Faiz Currim 3

Sabah Currim 4 Shailesh Joshi 5

Abstract

The W3C XML Schema recommendation defines the structure and data types for
XML documents, but lacks explicit support for time-varying XML documents or for
a time-varying schema. In previous work we introduced τXSchema which is an in-
frastructure and suite of tools to support the creation and validation of time-varying
documents, without requiring any changes to XML Schema. In this paper we extend
τXSchema to support versioning of the schema itself. We introduce the concept of a
bundle, which is an XML document that references a base (non-temporal) schema,
temporal annotations describing how the document can change, and physical anno-
tations describing where timestamps are placed. When the schema is versioned, the
base schema and temporal and physical schemas can themselves be time-varying
documents, each with their own (possibly versioned) schemas. We describe how the
validator can be extended to validate documents in this seeming precarious situa-
tion of data that changes over time, while its schema and even its representation
are also changing.
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1 Introduction

Much of the power of a database management system stems from the presence
of a schema that describes the structure of the database. When the data is
versioned, a schema helps even more, because it expresses the commonality
among the different versions, as well as indicating which parts of the data
can change, and how. The schema is the solid ground upon which the data
structures stand. But when the schema itself is versioned, there is no solid
ground. How schema versioning is supported makes the difference between a
fluid motion between versions and floundering in quicksand.

An increasing amount of data is being published in XML. The W3C XML
Schema recommendation defines the structure and data types for XML docu-
ments [15]. XML Schema lacks explicit support for time-varying XML docu-
ments. We previously proposed a data model and architecture, called τXSchema [9],
for creating a temporal schema from a base schema, a temporal annotation,
and a physical annotation. The annotations specify which portion(s) of an
XML document can vary over time, how the document can change, and where
timestamps should be placed. The advantage of using annotations to denote
the time-varying aspects is that logical and physical data independence for
temporal schemas can be achieved while remaining fully compatible with both
existing XML Schema documents and the XML Schema recommendation.

In this paper we extend τXSchema to also support schema versioning. In doing
so, we leverage both conventional XML Schema and related tools (principally,
validator parsers), as well as τValidator for data versioning.

In a dynamic environment, as organizational contexts and user requirements
change, it is natural to see consequent changes in application schemas. Schema
designers often edit their schemas, refining and adding element and attribute
types. As an example, the Botanic Garden and Botanical Museum in Berlin-
Dahlem (BGBM 6 ) maintains a repository of XML Schemas 7 related to index
terms, keywords, biodiversity data about specimens and observations, meta-
level data about collections, organizations, and networks, and various wrapper
and configuration files. Most of these XML schemas have had multiple versions
over the last two to three years. The BioCASE Collection Profile is up to
version 1.24; the Access to Biological Collection Data is up to version 2.06.
The Pharmacogenetics Knowledge Base (PharmGKB 8 ) “contains genomic,
phenotype and clinical information collected from ongoing pharmacogenetic
studies.” The evolution of its schema has reached version 4.0 9 .

6 http://www.bgbm.org
7 http://www.bgbm.org/biodivinf/schema/default.asp
8 http://www.pharmgkb.org/
9 http://www.pharmgkb.org/schema/history.html
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One challenge is that in this potential quicksand, anything can change, and
thus must be versioned: the snapshot documents, the base schema, the tem-
poral annotations, the physical annotations, the schema documents included
by these documents, even the schemas of these schema components. And, be-
cause the physical annotations can change, the concrete representation within
a temporal XML document can vary. How can one even define validation in
such a fluid environment?

2 Approach

There are several key ideas to our solution. First, a temporal bundle (or simply,
a bundle) serves the analogous purpose of an XML Schema document for
a static document. So we have a single point of reference for the schema
of a temporal document. Of course, the bundle may itself contain versions
within it. That means that the temporal documents it references must also
have associated bundles as their schemas. The bundle is all the user needs for
describing the temporal document, just as the conventional XML Schema is
all the user needs for describing an XML document.

Second, as with quicksand, as you venture outward, eventually you reach solid
ground. So eventually you reach a bundle containing no versions, or else you
reach a static XML Schema document.

The third key idea, which we call schema-constant periods, first appeared in
a paper by one of the authors on temporal aggregation [21]. It is possible,
even with versioned schemas having themselves versioned schemas, to iden-
tify contiguous periods of time when there are no schema changes, anywhere.
Now, during such schema-constant periods the data may be (and probably is)
versioned, but at least you have a fixed base schema and fixed temporal anno-
tations, each of which has a fixed schema. And since the physical annotations
are fixed, the representation is also fixed, so it is possible to read and inter-
pret the temporal document during that schema-constant period, and even to
validate that portion of the document. (This is just the situation discussed in
our previous papers, of a single schema and versions of the data.) So a general
temporal document can be viewed as a sequence of data-varying documents,
each over a single schema-constant period. Since we can validate within each
schema-constant period, given the approaches elaborated on earlier, all we
have to do is validate across schema changes.

The final key idea first appeared in the original presentation of τXSchema [9]:
the representational schema (a) is derivable solely from information in the
bundle, (b) can be designed to enable some of the temporal integrity con-
straints to be checked by a conventional validator, and (c) can be computed
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and cached within τValidator, completely unbeknown to the user.

Of course, there are lots of interesting alleys and excursions during this trip,
but these four key ideas capture most of the approach.

In the remainder of this paper, we introduce the architecture through a running
example, then describe how the validator can be extended to validate docu-
ments in this seemingly precarious situation of data that changes over time,
while its schema and even its representation are also changing over time.

All times mentioned in this paper are from the transaction time dimension [20],
though τXSchema also supports valid time for data versioning. While schema
versioning has been considered in the context of valid time [8], doing so is quite
complex and in our opinion not worth this complexity. Thus in τXSchema
schemas vary and are versioned only over transaction time.

We also note that the emphasis here is on capturing a time-varying schema
and validating documents against such a schema. Our approach applies to
unmanaged environments, where each schema is originally in a separate doc-
ument paired with one or more data documents at particular points of time.
We also support managed environments, where a schema editor would be used
to maintain the schema(s), which the schema changes captured in a tempo-
ral document. How the schema changes are made, or what kinds of schema
evolution operations are provided, are beyond the scope of this paper.

3 Example and Architecture

The PharmGKB XML schema was designed conventionally, without an ar-
chitecture that supports schema versioning. As new releases of this schema
were developed (on May 12, 2004 Version 4.0 was released), all XML doc-
uments that were instances of this schema were rendered invalid, with the
maintainers responsible for updating their XML documents. The architec-
ture proposed here retains past data and past schemas, while always allowing
the current data and schema to be extracted, for tools that are not schema-
versioning aware. While our architecture does not limit the kinds of changes
a designer can make to a schema, typically as a schema is edited, each new
version will add to or refine an existing version rather than entirely replace it.

Prior to Version 3.2, the <ExperimentClass> element of PharmGKB con-
tained nested <sampleSet> elements (cf. Figure 1). In Version 3.2, this was
replaced with a <sampleSetXref> element (cf. Figure 2), that just mentioned
the unique identifier of the sample set, which was moved to the top of the doc-
ument, with a pharmgkbId attribute. (The AccessionObjectClass includes
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an attribute pharmgkbId to specify this unique identifier, not shown here.) In
Version 4.0 an <ExperimentClass> can now cross-reference more than one
<sampleSet> (cf. Figure 3: note unbounded for maxOccurs). Additionally,
though not shown in the figure, a <sampleSet> is now a set of <sample>s
instead of a set of <subject>s (logically!).

<xsc:complexType name="ExperimentClass">

<xsd:complexContent>

<xsd:extension base="AccessionObjectClass">

<xsd:sequence>

<xsd:element name="name"

type="NonEmptyTokenType"

minOccurs="0" maxOccurs="1" />

...

<xsd:element name="sampleSet"

minOccurs="0" maxOccurs="1" />

<xsd:complexType>

<xsd:complexContent>

<xsd:extension

base="AccessionObjectClass">

<xsd:sequence>

<xsd:element name="name"

type="NonEmptyTokenType"

minOccurs="0" maxOccurs="1"/>

...

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

...

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Fig. 1. <ExperimentClass> element in version 3.1

Now let’s examine how this could have been done using τXSchema. (Our
emphasis in this paper is on how to validate a time-varying document against
a time-varying schema. Hence, we only describe τXSchema to the point where
we can explain validation. For more discussion of τXSchema per se, please
consult prior papers [9,11].)

Figure 4 illustrates the architecture of τXSchema. This figure is central to our
approach, so we describe it in detail and illustrate it with the PharmGKB

schema. We note that although the architecture has many components, only
those components which are shaded in the figure are specific to an individual
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<xsc:complexType name="ExperimentClass">

<xsd:complexContent>

<xsd:extension base="AccessionObjectClass">

<xsd:sequence>

<xsd:element name="name"

type="NonEmptyTokenType"

minOccurs="0" maxOccurs="1" />

...

<xsd:element name="sampleSetXref"

type="XrefClass"

minOccurs="0" maxOccurs="1" />

...

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

...

<xsd:element name="sampleSet" />

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base="AccessionObjectClass">

<xsd:sequence>

<xsd:element name="name"

type="NonEmptyTokenType"

minOccurs="0" maxOccurs="1" />

...

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

Fig. 2. <ExperimentClass> element in version 3.2

time-varying document and need to be supplied by a user. We also note that
to this point, the schemas (boxes 4, 5, 6, and 7) are static. We’ll later relax
this assumption.

The designer starts with the base schema (box 4). In the case of Phar-

mGKB the base schema is root.xsd. It xsd:imports and xsd:includes other
schemas such as “http://www.pharmgkb.org/schema/sequence.xsd”, which it-
self xsd:includes experiment.xsd. The designer annotates the base schema
with temporal annotations (box 6). The temporal annotations together with
the base schema form the logical schema. The temporal annotations specify a
variety of characteristics such as whether an element or attribute varies over
valid time or transaction time, whether its lifetime is described as a continu-
ous state or a single event, whether the element itself may appear at certain
times (and not at others), and whether its content changes. Elements that are
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<xsc:complexType name="ExperimentClass">

<xsd:complexContent>

<xsd:extension

base="AccessionObjectClass">

<xsd:sequence>

...

<xsd:element name="sampleSetXref"

type="XrefClass"

minOccurs="0" maxOccurs="unbounded"/>

...

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Fig. 3. <ExperimentClass> element in version 4.0

not described as time-varying are static and must have the same content and
existence across every XML document in box 8.

The schema for the temporal annotations document is given by TXSchema
(box 2), which in turn utilizes temporal values defined in a short XML Schema
TVSchema included in the TXSchema. (Due to space limitations, we won’t
describe in detail these annotations—more detail can be found elsewhere [9]—
but it should be clear what aspects are specified there.)

The next design step is to create the physical annotations (box 7). In gen-
eral, the physical annotations specify the timestamp representation options
chosen by the user. Physical annotations may also be nested, inheriting the
specified attributes from their parent; these values can be overridden in the
child element. Physical annotations play two important roles. They help to
define where in the document tree the physical timestamps will be placed
(versioning level). The location of timestamps is largely independent of which
components vary over time. Timestamps can be located either on time-varying
components (as specified by the temporal annotations) or somewhere above
such components. Two documents with the same logical information will look
very different if we change the location of their physical timestamps. The
physical annotations also define the kind of timestamp (for both valid time
and transaction time). Changing an aspect of even one timestamp can make a
big difference in the representation. The schema for the physical annotations
document is PXSchema (box 3).

τXSchema supplies a default set of physical annotations. (Again, space limita-
tions do not allow us to describe these annotations in detail, for more see [9].)
We emphasize that our focus is on capturing relevant aspects of physical repre-
sentations, not on the specific representations themselves, the design of which
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is itself challenging. Also, since the temporal and physical annotations are
orthogonal and serve two separate goals, we choose to maintain them inde-
pendently. A user can change where the timestamps are located, independent
of specifying the temporal characteristics of a particular element. In the fu-
ture, when software environments for managing changes to XML files over
time are available, the user could specify temporal and physical annotations
for an element together (by annotating a particular element to be temporal
and also specifying that a timestamp should be located at that element), but
these would remain two distinct aspects from a conceptual standpoint.

9. Temporal Data
10. Representational

Schema

5. Temporal Bundle

4. Base Schema

3. PXSchema

0. XML Schema

8. Non−Temporal Data

2. TXSchema

6. Temporal Annotation 7. Physical Annotation

Legend of Arrows

Input/Output References Namespace

SCHEMA
MAPPER

SQUASH

1. TBSchema

Fig. 4. Architecture

The base schema, temporal annotations, and physical annotations, which are
all XML documents, are referenced by a temporal bundle. An example bundle
for PharmGKB is shown in Figure 6. The <format> element provides infor-
mation about how timestamps are formatted; here we use XML Schema dates,
but other formats are possible, e.g., SQL datetimes. A <bundleSequence> con-
tains a sequence of <schemaAnnotation> elements, each referencing a snap-
shot (base) schema, a temporal annotation, and a physical annotation. Note
that any of these three documents referenced by a <schemaAnnotation> ele-
ment can include other schemas. For example, a base schema, root.xsd, can
include a gene sequence schema, sequence.xsd, which itself includes a schema
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for experiment data, experiment.xsd.

At this point we can contend with time-varying data. Box 8 of the archi-
tecture shows a sequence of non-temporal documents, each an instance of the
PharmGKB schema (root.xsd). The temporal XML document (box 9) is es-
sentially a timestamped representation of this sequence of non-temporal XML
data files (box 8). The timestamps are based on the characteristics defined
in the temporal and physical annotations (boxes 6 and 7). The sequence of
non-temporal documents can be Squashed into a temporal document (box
9, which is the representational document rep.xml), with its XML schema
shown as box 10, generated by SchemaMapper from information in the
temporal bundle. The schema of the temporal document is its associated rep-
resentational schema (an XML Schema document). The tools are described in
greater detail elsewhere [9].

The defining schema of the temporal document (box 9) is the temporal bundle
(bundle.xml). However, the conventional XML validator does not understand
time-varying documents nor their schema, so we have developed τValidator,
a stand-in for the regular validator (see Figure 5). Within τValidator, val-
idation is divided into two separate analyses. In one analysis, the conven-
tional validator is applied to the document to check the temporal document
against the representational schema. That schema is generated internally by
the SchemaMapper, then handed to the conventional validator. However,
there are limitations of XML Schema in checking temporal constraints. For
example, a regular XML Schema validating parser has no way of checking
something as basic as “the time boundaries of a parent element must en-
compass those of its child.” These temporal checks are implemented during a
second analysis by the time-varying data checker, operating over the temporal
document.

τValidator, by checking the temporal data, effectively checks the non-temporal
constraints specified by the base schema simultaneously on all the instances of
the non-temporal data (box 8), as well as the constraints between snapshots,
which cannot be expressed in a conventional schema. To reiterate, using the
conventional approach, the user would start with the daunting task of man-
ually generating a representational schema (box 10); our proposed approach
is to have the user add two sets of annotations to a base schema, with the
representational schema automatically generated.

4 Supporting Versioned Schemas

We now generalize the architecture to also support versioned schemas. As
noted previously, the PharmGKB schema has undergone a series of changes.

9



Document
Messages

Bundle Schema

Temporal 

Representational

Conventional
Validator

Error

Checker
Data

Time−Varying
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Fig. 5. Validating a Document with Time-Varying Data

This implies that box 4 is actually a sequence of base schemas, three of which
are excerpted in Figures 1–3. Not only do these base schemas change over time,
but the schemas included by them (e.g., sequence.xsd, experiment.xsd)
can vary over time. Similarly, the temporal annotations (box 6) and those
annotations included by them and the physical annotations (box 7) and those
annotations included by them all can vary over time, resulting in multiple
versions.

This versioning is handled by timestamping the <schemaAnnotation> element
in the bundle. To each such element is added a <tTime> element that specifies
when that annotation element became applicable. So our PharmGKB schema
would have many annotation elements, with version 3.1 becoming applicable
on April 25, 2003, version 3.2 on May 21, 2003, and version 4.0 on May 12,
2004.

The schema annotation elements reference individual base schemas. One ap-
proach is to have a different document (file) for each version, similar to what
is shown in box 8. So we might have files named root.4.25.03.xsd, etc.,
or perhaps root.3.1.xsd. etc. Each of these files would reference subsidiary
schemas, such as sequence.v3.1.xml.xsd or experiment.4.25.03.xsd. As
one can imagine, this becomes rather cumbersome. The problem with this
approach is that whenever a subsidiary schema changes, a new version is pro-
duced, with its own URI, which requires the referencing schema document to
be changed. So a new version of experiment.xsd requires a new version of
sequence.xsd, which requires a new version of root.xsd.

While this approach is allowed, τXSchema also permits temporal schemas, in
place of multiple versions of conventional schemas. Consider the sequence of
root schemas: root.1.0.xsd, root.2.0.xsd, ... We write a simple tempo-
ral bundle for these and invoke the Squash utility, which produces a single
temporal document, tv snapshot.xml which is then referenced by multiple
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<?xml version="1.0" encoding="UTF-8"?>

<temporalBundle

xmlns="http://www.cs.arizona.edu/tau/tauXSchema/TBSchema"

xmlns:tv="http://www.cs.arizona.edu/tau/tauXSchema/TVSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.cs.arizona.edu/tau/tauXSchema/TBSchema">

<format plugin="XMLSchema" granularity="date"/>

<bundleSequence defaultTemporalAnnotation="defaultTA.xml"

defaultPhysicalAnnotation="defaultPA.xml">

<schemaAnnotation

snapshotSchema="root.xsd"

temporalAnnotation="temp_anno.xml"

physicalAnnotation="phy_anno.xml">

</schemaAnnotation>

</bundleSequence>

</temporalBundle>

Fig. 6. A Temporal Bundle for PharmGKB: bundle.xml

schema annotation elements. Similarly, we use Squash to generate temporal
schemas for sequence.xsd and experiment.xsd.

This rather involved state of affairs, with time-varying documents and time-
varying schemas, is illustrated with a T Diagram in Figure 7. In this nota-
tion, first described over forty years ago [4], the input of a translator is given
on the left arm of the “T” (for example, for SchemaMapper in the up-
per right-hand-side of the figure, the input is the logical schema document,
bundle.xml), the name of the translator is given at the base of the “T” (here,
“Schema Mapper”), and the output of the translator is given on the right arm
of the “T” (here, a representational schema, rep.xsd). The name of these
diagrams was to the best of our knowledge given by McKeeman, Horning, and
Wortman in their classic compiler book [17].

We extend these diagrams to allow multiple inputs, which unfortunately com-
plicates them somewhat. As shown in Figure 7, Squash takes both a bundle
and a sequence of snapshot documents and produces a temporal document,
and Unsquash does just the opposite (this is illustrated for the temporal
annotations, which are Squashed into a single tv temp anno.xml document,
then Unsquashed back into their constituent time slices).

In this figure we show a bundle (bundle.xml, right in the middle of the fig-
ure, with the arrows pointing left) referencing two temporal schemas, one of
the base schema and one of the physical annotations; the bundle also refer-
ences several temporal annotation documents. Note that the base schema for
the base schema (!) is XSchema bundle.xml, which has as its base schema
XMLSchema.xsd.
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Fig. 8. Validating a Document with a Time-Varying Schema

5 Validating Against a Time-Varying Schema

To validate a time-varying document associated with a time-varying schema,
τValidator applies the conventional validator to the document, using the
representational schema produced by SchemaMapper (see Figure 8). It then
determines the times when the schema changes, thus determining the periods
when the schema is constant, termed the schema-constant periods. These pe-
riods will be non-overlapping and continuous; between the periods are schema
change walls. For each such period, the time-varying data checker is invoked
to check the temporal integrity constraints over the time-varying data, with
the single base schema, temporal annotation, and physical annotation.

During this process, τValidator treats each URI it encounters as the specifi-
cation of a temporal timeslice operation to select the appropriate version. The
timeslice is as of the time of the document or context that contains the URI.
For example, consider the excerpt in Figure 9. root.xsd is a time-varying
document, containing several schema versions. In this context, τValidator

will utilize the temporal context of “May 21, 2003” to extract a single ver-
sion of the root schema. To do so, it calls Unsquash, passing it (a) the
bundle, (b) the temporal document, and (c) a timestamp. It passes the same
information for all the schemas included by that schema, such as sequence

and ExperimentClass. The underlying semantics ensures that at any point in
time, there is a single base schema, a single temporal annotation, and a single
physical annotation.

Of course, one can carry this further. Because the base schema is versioned, it
is associated with a temporal bundle which could itself have multiple schema
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<schemaAnnotation

snapshotSchema="root.xsd"

temporalAnnotation="temp_anno.xml"

physicalAnnotation="phy_anno.xml">

<tTime>May 21, 2003</tTime>

</schemaAnnotation>

Fig. 9. An excerpt from the time-varying Temporal Bundle for PharmGKB

annotation elements. τValidator recursively calls Unsquash so that at any
point in time, there is a single schema in effect.

Let’s examine how τValidator depicted in Figure 8 could handle the ver-
sioned schema for PharmGKB. Recall that prior to Version 3.2, the <ExperimentClass>
element of PharmGKB contained nested <sampleSet> elements (cf. Fig-
ure 1). In Version 3.2, this was replaced with a <sampleSetXref> element
(cf. Figure 2), that just mentioned the unique identifier of the sample set,
which was moved to the top of the document, with a pharmgkbId attribute.

This change is reflected in two versions of experiment.xsd, one for ver-
sion 3.1 and one for version 3.2, as well as moving the definition of the
<sampleSet> element to a new sampleset.xsd subschema document and
changing root.xsd to also include the new sampleset subschema. We could
write a very short experimentBundle.xml, then use Squash to create a tem-
poral experiment.xml schema, and do the same for the root schema.

What do we do with an actual XML document (such as 3.1.xml, version 3.1 of
PharmGKB), whose schema is the original root schema (root.3.1.xsd)? We
take each instance of the <sampleSet> element out of its enclosing <ExperimentClass>
element and move it up to beneath the root of the document (the <pharmgkb>
element), replacing it with a <sampleSetXref> element. Then we take the
two documents, the first using the old schema (3.1.xml) and the second the
updated document (3.2.xml) and Squash them into a temporal document
(rep.xml). (Even better, we could use a temporally-aware XML editor to
make these changes to the document. Such an editor would output the tem-
poral document. This is the managed environment mentioned earlier.)

What would the representational schema look like for this temporal docu-
ment? We could see that schema directly by running SchemaMapper on
our bundle. A portion of the temporal document is shown in Figure 10. Note
that every change of the base schema (which is what occurred here) or in
the physical annotation results in a new <tv version i> element within the
time-varying root (with these names being generated by SchemaMapper).
The conventional validator can thus check to ensure that prior to the schema
change on May 25, <ExperimentClass> elements contained an <sampleSet>

element, and afterward, an <sampleSetXref> element. (Squash will ensure
that the appropriate <version> is used in the generated temporal document;
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<?xml version="0.1" encoding-"UTF-8"?>

<time-varying-root bundle="bundle.xml" ...>

<tv_version_1>

<tTime>May 1, 2004</tTime>

<pharmGKB>

...

<ExperimentClass>

...

<sampleSet> ... </sampleSet>

...

</ExperimentClass>

</pharmGKB>

</tv_version_1>

<tv_version_2>

<tTime>May 29, 2004</tTime>

<pharmGKB>

...

<ExperimentClass>

...

<sampleSetXref>...</sampleSetXref>

...

</ExperimentClass>

<sampleSet>

...

</sampleSet>

</pharmGKB>

</tv_version_2>

</time-varying-root>

Fig. 10. A portion of a temporal document (rep.xml)

τValidator will also check this.)

Continuing with the example, in Version 4.0 an <ExperimentClass> can now
cross-reference more than one <sampleSet> (cf. Figure 3: note unbounded for
maxOccurs). Additionally, a <sampleSet> is now a set of <sample> instead
of a set of <subject>. The latter change can be checked by the conventional
validator because such sub-elements would themselves be enclosed in a new
<tv version 3> element. The former change, however, possibly cannot be
checked by the conventional validator.

A temporal constraint is termed as sequenced with respect to a similar snapshot
constraint in the schema document, if the semantics of the temporal constraint
can be expressed as the semantics of the snapshot constraint applied at each
point in time [19]. Given a snapshot XML Schema constraint, we can define
the corresponding temporal semantics in τXSchema in terms of a sequenced
constraint. In the earlier schema, with a maxOccurs of 1, the temporal seman-
tics of this integrity constraint is the sequenced constraint, “at every point in
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time, there can be a maximum of one such element.” However, depending on
the physical annotations, it may be that the <sampleSet> element is itself ver-
sioned, which implies that an <ExperimentClass> element could have several
<sampleSet> elements, each resident at non-overlapping periods, so that at
any one time, there wouldn’t be more than one. In this case, this integrity con-
straint would need to be checked separately by the time-varying data checker
component in τValidator, which knows the temporal extent of the integrity
constraint (from the bundle), and thus could check for a maximum of one only
before Version 4.0 went into effect. In some cases, the representational schema
can be designed such that many sequenced constraints can be checked directly
by the conventional validator.

τValidator is a direct replacement for the conventional validator. If it is pro-
vided with a conventional schema and a conventional XML document (such
as root.1.0.xsd and 1.0.xml), it simply invokes the conventional validator.
The Unsquash tool is similarly configured. If it is given a temporal doc-
ument (e.g., rep.xml) that references a temporal bundle (versioned or not;
here, bundle.xml), it will produce a conventional XML document by taking a
timeslice at now (4.0.xml); this conventional document will reference a con-
ventional XML Schema (root.4.0.xsd), formed by slicing the bundle at now.
If Unsquash is given a static XML document, it simply returns that docu-
ment. Hence Unsquash can be invoked before any conventional XML tools.
In this way, temporal upward compatibility [2] is ensured.

This arrangement works very well. However, there are four remaining aspects
that do not show up with time-varying data, but rather are unique to ver-
sioned schemas: (1) an evolving definition of keys, (2) accommodating gaps
in lifetimes, (3) the semantics of mixed data and schema changes within a
single transaction, and (4) checking non-sequenced constraints across schema
changes. We examine each in turn.

6 Accommodating Evolving Keys

When documents vary over time, it is important to identify which elements in
successive snapshots are in actuality the same item, An item is an element that
exists in one or more snapshots. Each change to an item creates a new version

of that item. We refer to the process of associating elements that persist across
various snapshots as gluing the elements. So the elements are glued to create
an item. Squash must do this gluing; the time-varying data checker within
τValidator must also on occasion glue elements.

Determining which elements should be glued into an item depends on two
factors: the type of the element, and the item identifier for that element’s
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type. Elsewhere we describe in detail how item identifiers are specified and
how the gluing is accomplished [11].

When a schema-change wall is encountered, items across the wall need to
be associated. This process is called cross-wall gluing, or bridging. Figure 11
depicts the concepts of gluing and bridging.

Gluing
  two

Versions Versions
  two

Gluing

  Item A

  Wall

Bridging

v1

v2

v3
v1

v2

v3

Item A1 Item A2

Fig. 11. Gluing and Bridging

In this figure, individual elements in individual versions of an XML document
are depicted as small circles in the center of the figure. Here we see six elements,
three of which are determined to be versions of the same item (A1) and three of
which are determined to be versions of another item (A2). The wall indicates
that the schema was changed between the third and fourth version of the
document.

Gluing uses the item identifier to associate the first three elements with an
item and likewise the second three elements. Bridging determines that the
element that is version 3 of item A1 and the element that is version 1 of item
A2 are actually versions of the same item, item A. So in fact item A has
six versions, the three elements before the schema change (indicated in the
figure as the wall) and the three elements after the schema change. Gluing
and bridging occur in different stages within the validator; both conspire to
realize an item across schema changes, which is the first step in checking the
temporal constraints associated with that item’s definition in the schema.

What is relevant for our purposes here is that each item identifier is specified
in the temporal annotations. Usually the item identifier is the same as the
(snapshot) key of the corresponding element type [5] as given in the base
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schema. The identifier is used by τValidator to extract the items from the
temporal document and to check the temporal constraints on those items.

What if either the snapshot key (specified in the base schema) upon which
an item identifier is defined, or if the item identifier itself (specified in the
temporal annotation) changes? This is a particularly insidious kind of quick-
sand. Even worse is when the underlying element type of an item changes.
For example, in Version 3.3 of PharmGKB schema, the <assay> element
was replaced with <sequencingAssay> and <genotypingAssay> elements. An
item that was a particular <assay> element before the schema change could
be associated with a particular <sequencingAssay> element in the snapshot
document associated with the latter schema.

Our solution is to put in the <schemaAnnotation> element, which signals a
change in some aspect of the schema, an <itemIdentifierCorrespondence>

element, specifying how old item identifiers are to be mapped to new item
identifiers. This element has four attributes: oldRef, a string naming an item
that appears in the old schema, newRef, a string naming an item that ap-
pears in the new schema, mappingType, an XML Schema enumeration, and
optionally a mappingLocation, which is a URI. We have defined four mapping
types.

(1) useNew: The new identifier must also be present in the old element.
(2) useOld: The old identifier must also be present in the new element.
(3) useBoth: An attribute’s name is changed, but its value isn’t.
(4) replace: Use an externally-defined mapping.

This is best described with an example. Say that in March the item identifier
is the assayNumber attribute of the <assay> element. In May, this attribute
is renamed assayID; we specify a mapping type of useBoth. In May, the item
identifier is changed to the name attribute, with a mapping type of useNew.
(This attribute has been around since March, but it wasn’t used as a key until
May.) In June we add a new attribute, assayKey, and specify that as the
item identifier, with a mapping type of useOld. Finally, in July we replace the
<assay> element with a <genotypingAssay> element, with a genoID attribute
as the item identifier and a mapping type of replace.

The gluing of elements into items is then done the following way. Before May,
the assayNumber is used for gluing. When the schema change occurs sometime
in May, we glue across the schema change by matching the assayNumber value
of the element before the schema change with the assayID value after the
change: these (integer) values must match for the two elements to be glued.
In May, we glue across the schema change by matching up old elements and
new elements that have the same (string) value for their name attribute, the
new item identifier. The only difference is that before the schema change, that
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attribute (name) was present but wasn’t being used as a key. In a consistent
fashion, in June we also glue using the name attribute, which was the old item
identifier.

July is the most complex. We need to glue an assay element with an item
identifier of assayKey with a genotypingAssay element with an item identifier
of genoID. For this, the MappingLocation attribute in the bundle points to
a mapping table that provides a list of pairs, each with an assayKey and a
genoID value.

This list of pairs is termed a replace mapping list. As it is instance-based,
containing as it does a list of key values, the replace mapping list should
only be used as a last resort. Its role is to allow bridging for all cases in
which the other three mapping types, which have no need for storing instance
information in the schema, are inappropriate.

Of course, the mapping location document can also be time-varying; τValidator

extracts the relevant timeslice with Unsquash. We will see shortly how this
is useful in the presence of gaps.

7 Accommodating Gaps

Bridging is more involved when there are gaps in the lifetime of an item.
Gaps make the process of finding the correspondence between the items from
consecutive schema-constant periods more difficult. If there are gaps in the
lifetime of an item, bridging becomes even more complex.

Figure 12 shows three cases that may arise while bridging the items from
consecutive schema-constant periods. It shows the data and schema changes
along the transaction-time dimension, from left to right. The schema-change
walls are shown as bold vertical lines. The horizontal lines depicts the evolution
of a particular item (in this case, three separate items). The bridging process
is shown by the jumpers over schema change walls. A dotted line indicates
when the item did not exist in the database. The first item existed during the
entire transaction time period depicted in this figure. There is a single gap
in the existence time of the second item: it ceased to exist sometime during
P1 but reappeared in P2. The third item had a much longer gap, reappearing
only in P3.

We now now examine each item in turn.

1. The item A (the first horizontal line) is present throughout schema-constant
periods P1 and P2. Thus the last snapshot of P1 and the first snapshot of
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Fig. 12. Cross Wall Gluing

P2 contains versions of item A. Here, no extra work is needed as the items
can be bridged directly using one of the above four methods.

2. The item B (the second horizontal line) disappeared for some time in P1

and reappeared about halfway through in P2. Thus the last snapshot of P1

and first snapshot of P2 will not contain versions of item B. Bridging these
two items in this case involves virtually extending period of item B’s last
version until the end of P2 as if it were present during the last snapshot;
and virtually extending its first version’s period until the start of P3; and
then performing the bridging using one of the above four methods. Each
virtual extension is depicted as a dashed line with an arrow indicating the
direction the extension was made. In an implementation, this could be done
by simply checking item’s last version from P1 and first version from P2.

3. An item could also disappear for one or more schema-constant periods and
then reappear again. Item C (the bottom horizontal line) was present for
initial part of P1. It then disappeared over entire period P2 and again ap-
peared in the later half of P3. For such cases, bridging involves virtually
extending the period of the item C’s last version from P1 over multiple
schema-constant periods followed by bridging using one of above methods.
So P1’s version is extended to the wall, then bridged to a virtual element
over all of P2, then bridged to the extended element in P3.

Figure 13 illustrates the most complex situation of cross-gap gluing over mul-
tiple schema-constant periods. Documents in the top right part of the figure
show the temporal bundle documents corresponding to schema-change walls
in March, May and July respectively. The two time lines correspond to an
<assay> item. The top time line is that contained in the March document;
the bottom one is that contained in the July document. The replace and
useNew methods are used for item correspondences in July and September, re-
spectively. The item identifier during this period is the attribute ‘assayKey’ of
<assay>. In July we replace the <assay> element with a <genotypingAssay>
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element, with a genoID attribute as the item identifier and a mapping type
of replace. In September the item identifier is changed back to the name

attribute, with a mapping type of useNew.

The item is present during the initial part of schema-constant period P1, but
is removed sometime during June, as indicated by a terminated line in the
middle of P1. A schema change takes place in July. Since this item is absent
during P2, no item correspondence is necessary in the replace mapping list.

Transaction Time

P 1

P 1 P 2 P 3
Replace Use New

Replace

July

July

March

March

assayNumber
Item Identifier is

Item Identifier is Item Identifier is

genoID assayID

assayNumber genoID

Item Identifier is Item Identifier is

Time Varying
Temporal Bundle
Document

July
September

March

September December

Fig. 13. Cross-Gap Gluing

A second schema-change takes place in the month of September. An <genotypingAssay>

element that is in fact a version of the old <assay> element present in January
reappears sometime in November. At this point the user wants to associate
this new element with the old one from P1 since both represent the same
assay. In order to perform this association, the user will need to add a pair
of identifiers to the old replace mapping list for the month of July to han-
dle this virtually extended element. Multiple versions of the replace mapping
list could also be maintained as a temporal document; the temporal validator
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would then extract the relevant snapshot from it.

8 Transaction Semantics

A data change in XML documents can co-exist with schema changes within
a single transaction, and hence can occur at exactly the same (transaction
commit) time. With schema changes coming into picture, we also need to
consider other factors like name and relative path changes for item identifier
fields and other elements that constitute the content of an item, complicating
the process of bridging and hence validation.

We considered three ways to handle this situation.

1. Disallow all data change in any transaction containing a schema change.
This is the most stringent option and makes the user’s job more difficult,
forcing her to split the task into multiple transactions. This may not be
always feasible from real world point of view. Consider a situation where
an element is modified to have a new ‘required attribute’, data change is
mandatory in this case and hence cannot be separated from schema change.
It could be argued that this is achievable with the addition of a new ‘op-
tional’ attribute, followed by required data changes and then making the
attribute required. But the burden of work falls on the user.

2. Allow schema changes to coexist with data changes, except for schema
changes to item identifier fields. This will eliminate the need to have a
replace mapping list since the bridging could always be done using one of
the three options ‘useNew’, ‘useOld’, or ‘useBoth’.

3. Allow data changes to coexist with schema changes within a transaction
without any restrictions.

We decided to go with the third approach, as it is the most general. In doing
so a refined transaction management semantics was needed. Specifically, we
consider any data change in the first snapshot of a schema-constant period to
have taken place after any schema changes within that same transaction. Thus,
even if the the timestamps for the schema change and the data change are
identical (as both changes occurred in the same transaction), an assumption
is made that the data change took place following the schema change.

9 Non-Sequenced Constraints

A constraint is non-sequenced if it is applied to a temporal item as a whole
(including the lifetime of the data entity) rather than to individual time slices.
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Non-sequenced constraints are defined in the temporal annotation as an ex-
tension of snapshot XML Schema constraints. An example of a non-sequenced
(cardinality) constraint is: “An item cannot change more than three times in a
year.” This type of constraint cannot be validated using the conventional val-
idator and thus needs to be validated using the ‘Temporal Constraint Checker’
module of τValidator.

As mentioned in Section 2, schemas vary only over transaction time. Hence,
non-sequenced constraint validation is easier in valid time, as schema changes
cannot occur.

We considered two alternatives for the applicability of a non-sequenced con-
straint across schema changes.

(1) The constraint is applicable only within the schema-constant period in
which it is defined.

(2) The constraint once defined becomes applicable to the entire document.

As per the first approach, any violation of a constraint during previous schema-
constant-periods is ignored, while in the second approach, the constraint may
be violated even when first defined.

Consider a situation shown in Figure 14. It maintains the same conventions
as Figure 12. Changes to an item are shown by X’s. A new non-sequenced
constraint is introduced during third schema-constant period P3 stating that
“An item cannot change more than three times in a year.” But the item has
already undergone four changes during previous schema-constant periods P1

and P2.

According to first alternative listed above, the constraint is not violated as
long as the item does not change more than three times in the third schema-
constant period. Until there are four changes made after the schema change,
the constraint is not considered to be violated.

According to the second alternative semantics, there is immediately a violation
of the constraint, due to activity during the previous two schema-constant
periods. This situation could be handled in at least two possible ways.

(1) Flag an error and do not perform any further validations.
(2) Flag a warning saying that the item has violated the constraint over

previous schema-constant-periods. No further changes would be allowed.

We decided on the second alternative in both cases: to apply a non-sequenced
constraint to all previous schema-constant periods, as it is a more general ap-
proach. If such a situation is encountered, the validator would show a warning
and would not allow any further changes to that item. Users can find out about
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Fig. 14. Non-Sequenced Constraints

the reasons for the violation using some query language (e.g., XQuery) over
the previous versions of data. The first approach can be simulated by restrict-
ing the applicability period of the constraint to a particular schema-constant
period.

9.1 Summary

This completes the picture. For each schema-constant period, the time-varying
data checker is invoked to check the temporal integrity constraints over the
time-varying data, with the single base schema, temporal annotation, and
physical annotation. Then the temporal constraint checker glues across the
schema change walls and performs the temporal checks across these walls.
For example, if a temporal annotation states that there can be at most three
such values within a year (a rather complex kind of temporal constraint), the
temporal constraint checker will ensure that the number of unique values be-
fore the wall and the number of unique values after the wall do not together
exceed three. For most temporal constraints, it suffices to just check inde-
pendently before and after the wall. Only for certain kinds of non-sequenced

constraints [19] does the temporal constraint checker get involved.
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The pseudo-code is shown in Figure 15. Here, variables are in italics and helper
functions are in boldface. The timeVaryingDataChecker returns items en-
countered in each constant period p. These items are bridged by the tem-

poralConstraintChecker to coalesce into items that cross schema change
walls.

τValidator ( temporalDocument )
temporalSchema ← extractSchema ( temporalDocument )
repSchema ← schemaMapper ( temporalSchema )
Validator ( temporalDocument, repSchema )
schemaConstantPeriods ← extractSCP ( temporalDocument )
items ← ∅

for each p ∈ schemaConstantPeriods do
items ← items ∪ timeVaryingDataChecker (

timeSlice ( temporalDocument , p),
timeSlice ( temporalSchema, p) )

temporalConstraintChecker ( temporalDocument, temporalSchema, schemaConstantPeriods, items )

Fig. 15. Pseudo-code for τValidator

10 Related Work

Methods to represent temporal data and documents on the web have been ac-
tively researched. This research has covered a wide range of issues that include
architectures for collecting document versions (cf. [10,16]), data modeling of
time-varying data (cf. [1]), strategies for storing versions (cf. [6]), studies on
the frequency of data change (cf. [7]), and temporal query languages (cf. [13]).
Grandi has created a bibliography of previous work in this area [14].

There our only two previous papers on validation of time-varying XML docu-
ments: our paper that introduced τXSchema but did not discuss schema ver-
sioning [9] and our paper that introduced cross-schema-change validation [12].
The present work extends the latter paper by discussing how to accommodate
gaps in the existence time of an item, transaction semantics, and how to ac-
commodate non-sequenced integrity constraints and augments the discussion
with additional figures and pseudocode.

Schema versioning has been previously researched in the context of tempo-
ral databases [18]. But an XML schema is a grammar specification, unlike a
(relational) database schema, so new techniques are required. Though vari-
ous XML schema languages have been proposed in the literature and in the
commercial arena (cf. [15]) for a summary), none model schema changes nor
provide for versioning. We chose to base our research on XML Schema because
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it is backed by the W3C and is the most widely-used schema language.

Recently there has been interest in the incremental validation of XML doc-
uments [3] using static schemas, which has application in the area of data
streaming. To the best of our knowledge, the effect of changes to the schema
during incremental validation is an open area of research. We do not address
incremental validation in this paper.

11 Conclusion

This paper shows how schema versioning can be integrated with support for
time-varying documents in a fashion consistent and upwardly-compatible with
XML, XML Schema, and conventional XML validators. Schema versioning in
its full generality is supported, including (time-varying) schemas that include
or reference other (time-varying) schemas. Bundles are used uniformly to de-
note the schema of a temporal document; SchemaMapper is used to generate
a representational schema when needed.

By identifying when schema changes occur, the schema-constant periods can
be identified. Such periods have the very useful property that there is an
unchanging schema (comprised of a single base schema, a single temporal an-
notation document, and a single physical annotation). The dance between the
conventional validator, the time-varying data checker, and the temporal con-
straint checker ensures that most of the checking is done by the conventional
validator, with most of the remaining checking done by the time-varying data
checker.

In the future, we plan to integrate τXSchema with a schema-aware XML-
based editor like XMLSpy. Schema-aware editors generate easy-to-use tem-
plates for updating each type of element defined in a schema. But they do
not track changes to either the schema or the data. Enabling versioning for
both will support unlimited undo/redo, improve change tracking, and aid in
cooperative editing. Another direction of future work is to add versioning to
XUpdate. XUpdate is a language for specifying changes to an XML docu-
ment. By specifying how the evaluation of an XUpdate statement on an XML
Schema document modifies a bundle, we should be able to support schema
versioning in XUpdate.
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[2] Bair, J., M. Böhlen, C. S. Jensen, and R. T. Snodgrass, “Notions of
Upward Compatibility of Temporal Query Languages,” Business Informatics
(Wirtschafts Informatik) 39(1):25–34, February, 1997.

[3] Barbosa, D., A. Mendelzon, L. Libkin, L. Mignet,and M. Arenas, “Efficient
Incremental Validation of XML Documents.” in ICDE, pp. 671–682, 2004.

[4] Bratman, H., “An Alternate Form of the “UNCOL Diagram”,” CACM 4(3):142,
1961.

[5] Buneman, P., S. Davidson, W. Fan, C. Hara, and W. Tan, “Keys for XML,”
Computer Networks 39(5): 473–487, 2002.

[6] Chien, S., V. Tsotras, and C. Zaniolo, “Efficient schemes for managing
multiversionXML documents,” VLDB Journal, 11(4): 332–353.

[7] Cho, J. and H. Garcia-Molina, “Estimating Frequency of Change,” ACM
Transactions on Internet Technology, 3(3): 256–290, 2003.

[8] De Castro, C., F. Grandi, and M. R. Scalas, “Schema Versioning for
Multitemporal Relational Databases,” Information Systems. 22(5): 249-290,
1997.

[9] Currim, F., S. Currim, C. Dyreson and R. T. Snodgrass, “Effecting Data
Independence for Temporal XML Schemas,” in Proceedings of the International
Conference on Extending Data Base Technology, Crete, pp. 348–365, 2004.

[10] Dyreson, C., and H.-L. Lin and Y. Wang, “Managing Versions of Web
Documents in a Transaction-time Web Server,” in WWW, New York, NY,
pp. 422–432, 2004.

[11] Dyreson, C., R. T. Snodgrass, F. Currim, and S. Currim, “Schema-mediated
Exchange of Temporal XML Data,” Technical Report, November, 2005.

27



[12] Dyreson, C., R. T. Snodgrass, F. Currim, S. Currim, and S. Joshi. “Validating
Quicksand: Schema Versioning in τXSchema,” in Proceedings of the Third
International Workshop on XML Schema and Data Management (XSDM 2006),
Atlanta, Georgia, April, 2006.

[13] Gao, D. and R. T. Snodgrass, “Temporal Slicing in the Evaluation of XML
Queries,” in VLDB, pp. 632–643, 2003.

[14] Grandi, F., “A Bibliography on Temporal and Evolution Aspects in the World
Wide Web,” TimeCenter TR-75, 2003.

[15] Lee, D. and W. Chu, “Comparative Analysis of Six XML Schema Languages,”
SIGMOD Record 29(3):76–87, September 2000.

[16] Marian, A., S. Abiteboul, G. Cobena and L. Mignet, “Change-Centric
Management of Versions in an XML Warehouse,” in VLDB, Roma, Italy,
pp. 581–590, 2001.

[17] McKeeman, W. M., J. J. Horning, and D. B. Wortman, A Compiler

Generator, Prentice-Hall, Englewood Cliffs, NJ., 1970.

[18] Roddick, J. F., “Schema Evolution in Database Systems—An Annotated
Bibliography,” SIGMOD Record, 21(4), pp. 35–40, 1992.

[19] Snodgrass, R. T., Developing Time-Oriented Database Applications

in SQL, Morgan Kaufmann Publishers, Inc., San Francisco, CA, July, 1999,
504+xxiv pages.

[20] Snodgrass, R. T. and I. Ahn, “Temporal Databases,” IEEE Computer 19(9):35–
42, September, 1986.

[21] Snodgrass, R. T., S. Gomez and E. McKenzie, “Aggregates in the Temporal
Query Language TQuel,” IEEE Transactions on Knowledge and Data
Engineering 5(5):826–842, October, 1993.

28


