
Strategic Directions in Database Systems—Breaking Out of the
Box
AVI SILBERSCHATZ

Bell Laboratories, Murray Hill, NJ ^avi@bell-labs.com&

STAN ZDONIK ET AL.1

Brown University, Providence, RI 02912 ^sbz@cs.brown.edu&

1. INTRODUCTION

The field of database systems research
and development has been enormously
successful over its 30-year history. It
has led to a $10 billion industry with an
installed base that touches virtually ev-
ery major company in the world. It
would be unthinkable to manage the
large volume of valuable information
that keeps corporations running with-
out support from commercial database
management systems (DBMSs).

Today, the field of database research
is largely defined by its previous suc-
cesses, and much current research is
aimed at increasing the functionality
and performance of DBMSs. A DBMS is
a very complex system incorporating a
rich set of technologies. These technolo-
gies have been assembled in a way that
is ideally suited for solving problems of
large-scale data management in the cor-
porate setting. However, a DBMS, like
any large tool, places some require-
ments on the environment in which it is
being used. The DBMS imposes some

execution overhead, often requires a
fairly high level of expertise to install
and maintain, and only manages data
that is in fairly specific file formats.

At the same time, the data that needs
managing is changing radically and is
being stored in places other than data-
base systems (e.g., files). It is also ob-
tained in large volumes from external
sources, like sensors. While the trend of
building more powerful database man-
agement systems has a place, there is
also a need for data management in
contexts that cannot cope with the over-
head of a full-blown DBMS; many envi-
ronments call for a much lighter-weight
solution.

Sometimes, instead of using an exist-
ing tool in a new application, it is better
to embed reusable components in order
to make the resulting system more re-
sponsive. In some cases, it is the tech-
niques that a tool embodies that are
most reusable. We argue that this ob-
servation is true in many new data-
intensive applications. We would like to
reuse database system components, but
when that is inappropriate we must be
willing to reuse our techniques and our
experience in new ways.

If we look around at information that
people use, we see many examples in
which database systems are conspicu-
ous by their absence. One of the most

1 Participants in this workshop were José Blake-
ley, Peter Buneman, Umesh Dayal, Tomasz Imi-
elinski, Sushil Jajodia, Hank Korth, Guy Lohman,
Dave Lomet, Dave Maier, Frank Manola, Tamer
Ozsu, Raghu Ramakrishnan, Krithi Ramam-
ritham, Hans Schek, Avi Silberschatz (co-chair),
Rick Snodgrass, Jeff Ullman, Jennifer Widom,
and Stan Zdonik (co-chair).

Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1996 ACM 0360-0300/96/1200–0764 $03.50

ACM Computing Surveys, Vol. 28, No. 4, December 1996

compelling examples is the World Wide
Web. While it is true that DBMS ven-
dors are making their products web-
enabled, their approach is to provide
better web servers. This capability is
only a very small step in the direction of
managing the huge volume of nonstand-
ard data that exists on the Web. It is
doubtful that this move will cause the
hundreds of thousands of web sites to
shift to the use of a full-featured data-
base system whose target market is
business data processing.

Other examples of applications that
could benefit from data management
techniques, but typically do not make
heavy use of database products include
personal information systems, news ser-
vices, and scientific applications. In the
case of personal information systems,
one only has to think about the informa-
tion found on the typical PC. Electronic
mail is of great personal value to many
users, but when messages are saved,
they are most often stored in the file
system. It would be extremely useful to
have DBMS facilities such as indexing
and querying available for use on email.
While some support for a more orga-
nized approach to storage and retrieval
of email is emerging (e.g., Lotus Notes),
sophisticated querying is not well devel-
oped.

Other recent reports [Gray 1995; Sil-
berschatz et al. 1991; Silberschatz et al.
1995] have charted the course of data-
base research, and have done an excel-
lent job prioritizing current research
topics and delineating new influences
with respect to their impact on the data-
base system industry. This report takes
a somewhat different tack. Our theme is
that database research should be de-
voted to the problems of data manage-
ment no matter where and in what form
the data may be found. We should not
be defined strictly by the current prod-
uct space or by the commonly held no-
tion that our job is to manage very large
collections of structured records within
a controlled environment. Instead, we
should apply our skills to new data-
management environments that poten-

tially require radically new software ar-
chitectures.

2. BACKGROUND

The database field was born in the late
1960s with the release of IMS, an IBM
product that managed data as hierar-
chies. While hierarchies later proved too
restrictive, the key contribution of IMS
was the widespread revelation that data
has value and should be managed inde-
pendently of any single application. Pre-
viously, applications owned private data
files that often duplicated data from
other files. With a DBMS, data need not
be logically replicated, making it easier
to maintain. Creating shared databases
required analysis and design that bal-
anced the needs of multiple applica-
tions, thereby improving the overall
management of data resources.

Both the IMS data model and its best
known successor, CODASYL, were
based on graph-based data structures.
While the idea of traversing links was
intuitively attractive, it made it difficult
to express database interactions inde-
pendently of the actual algorithms that
are needed to implement them.

In 1970, Ted Codd published a land-
mark paper [Codd 1970] that suggested
that data could be managed at a much
higher level by conceptualizing it in terms
of mathematical relations. Throughout
the 1970s, this paper sparked a great
deal of interest within the research
community to make this notion practi-
cal. The relational model is now most
commonly supported among commercial
database vendors.

Because of the relational model’s sim-
plicity and clean conceptual basis, an
active theoretical community developed
around it. This community has contrib-
uted many important results including
database design theory, a theory of
query language expressibility and com-
plexity, and an extension to relational
languages called Datalog. Theoretical
work continues in many forms, includ-
ing constraint databases and queries
with incomplete information.

Database Systems • 765

ACM Computing Surveys, Vol. 28, No. 4, December 1996

In the early 1980s, a new data model
emerged, based on object-oriented pro-
gramming principles. The object-ori-
ented data model was the first attempt
at providing an extensible data model.
Data abstraction was used to let users
create their own application-specific
types that would then be managed by
the DBMS. In the last five or six years,
several object-oriented database compa-
nies have emerged, and a committee
made up of vendor representatives has
produced a standard (ODMG). More re-
cently, a hybrid model, commonly
known as the object-relational model,
has emerged that embeds object-ori-
ented features in a relational context.

The use of objects has also been dem-
onstrated as a way to achieve both in-
teroperability of heterogeneous data-
bases and modularity of the DBMS
itself. The object model provides very
powerful tools for creating interfaces
that do not depend on representational
details. Heterogeneity in object repre-
sentations can be paved over by overlay-
ing an object-oriented schema on top of
the actual stored data. DBMS modules
can be described in object-oriented
terms, making them easier to export to
other systems.

3. OUR SKILLS

Database management systems have
been largely concerned with the prob-
lems of performance, correctness, main-
tainability, and reliability. High perfor-
mance must be achievable even when
the volume of data is far greater than
what fits in physical memory, and even
when the data is distributed across mul-
tiple machines. Correctness is achieved
by the enforcement of integrity con-
straints (e.g., referential integrity) and
by serializable transactions. Maintain-
ability is achieved by separation of logi-
cal and physical data structures, as well
as by a large collection of tools to facili-
tate such functions as database design
and system performance. Reliability is
typically provided by combining a mech-
anism such as write-ahead logging with

transactions that can maintain data
consistency in the face of hardware and
software failures.

Database research and development
has explored these problems from the
point of view of relatively slow-memory
devices that must be shared by multiple
concurrent users. Database systems
have also developed in contexts where
there is no control over the execution of
their clients. This approach has led to a
particular set of skills and techniques
(described below) that can be applied
and extended to other problems.

Data modeling. A data model consists
of a language for defining the struc-
ture of the database (data definition
language) and a language for manipu-
lating those structures (data manipu-
lation language, e.g., a query lan-
guage). A schema defines a particular
database in terms of the data defini-
tion language. By requiring that all
data be described by a schema, a
DBMS creates a separation between
the stored data structures and the
application-level abstractions. This
data independence facilitates mainte-
nance, since stored structures can be
changed without any impact on appli-
cations.
A good data model should be suffi-
ciently expressive to capture a broad
class of applications, yet should be
efficiently implementable. While the
relational model has dominated the
field for the last decade, there is clear
indication that more powerful and
flexible models are required. The de-
sign and use of data models are im-
portant topics of study within the da-
tabase community, and the extension
of these models to incorporate more
challenging types such as spread-
sheets and videostreams is an impor-
tant line of study for future applica-
tions.

Query languages. A query is a pro-
gram written in a high-level language
to retrieve data from the database.
The structure of a database query is

766 • A. Silberschatz et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

relatively simple, making it easy to
understand, generate automatically,
and optimize. Many modern query
languages (e.g., SQL) are declarative,
in that they express what should be
returned from the database without
any reference to storage structures or
the algorithms that access these
structures. Since implementation
choices cannot show through at the
query level, the query processor is
free to choose an evaluation strategy.
Moreover, the separation of request
from implementation means that the
storage structures can change with-
out invalidating existing query ex-
pressions.

Query optimization and evaluation. Re-
lational databases became a commer-
cial reality because of the maturation
of optimizers for relational query lan-
guages and the development of effi-
cient query-evaluation algorithms.
The ability to compile queries into a
query execution plan based on the
form of the query as well as the cur-
rent storage structures on the disk is
an important part of database system
development. Optimization technol-
ogy is particularly important for data
retrieval and manipulation whenever
the stakes of picking an inefficient
strategy are high and the environ-
mental conditions on which the execu-
tion plan are based may change.

State-based views. It is possible to de-
fine a restricted and possibly reorga-
nized view of the database using the
query language. These state-based
views are often used to limit the ac-
cess to data. For example, we can
limit use to a view containing the
average salary by departments, ex-
cluding departments with fewer than
three employees. In file systems, au-
thorization is typically handled by ac-
cess privileges associated with each
file independent of its contents.

Data management. Database systems
have always paid special attention to
the automatic maintenance of data

structures like indices and the effi-
cient movement of data to and from
system buffers. Typically these data
management techniques are highly
tuned for the particular storage de-
vices involved. This approach to care-
ful resource usage can be extended to
other areas in which the devices in-
clude things like communication links
and tertiary storage.

Transactions. The database commu-
nity developed the notion of transac-
tions as a response to correctness
problems introduced by concurrent
access and update. By adopting a cor-
rectness criterion based on atomicity,
transactions simplify programming—
since the programmer need not worry
about interference from other pro-
grams.
The transaction has also been used as
the unit of recovery. Once a transac-
tion is committed, it is guaranteed to
be permanent even in the presence of
any hardware or software failure.
Recently, other looser notions of
transaction have been investigated.
These typically are based on a user-
supplied notion of correctness.

Distributed systems. Database systems
must deal with the problems intro-
duced by having data distributed
across multiple machines. The two-
phase commit protocol allows systems
to retain the advantages of atomic
transactions in the face of distributed
and possibly failure-prone activities.
Other areas that have been studied in
the distributed context include query
processing, deadlock detection, and
integration of heterogeneous data.

Scalable systems. Database have al-
ways been concerned with very large
data sets. For the most part, database
systems have been tuned to efficiently
and reliably handle data volumes that
exceed the size of the physical mem-
ory by several orders of magnitude. It
is primarily for this reason that data-
base systems have been successful in
real commercial environments.

Database Systems • 767

ACM Computing Surveys, Vol. 28, No. 4, December 1996

This list is not meant to be exhaus-
tive, but rather illustrates some of the
major technologies that have been de-
veloped by database research and devel-
opment. Researchers have investigated
other areas as well, including active da-
tabases and data mining.

4. SCENARIOS

In this section we describe two applica-
tions of database technology that illus-
trate the directions we are advocating
in this report. These are meant to be
suggestive only. We believe the capabil-
ities represented here point the way for
future data management systems, and
that the technology to support these
scenarios constitutes a research agenda
for the next decade.

4.1 Instant Virtual Enterprise

An “instant virtual enterprise” (IVE) is
a group of companies that do not rou-
tinely function as a unit, coming together
to respond to a customer order or re-
quest for proposal. Computer-integrated
manufacturing (CIM) is a prominent ex-
ample of an environment requiring IVE
cooperation. The CIM environment en-
compasses many dedicated departments
and subsystems. The engineering side
includes computer-aided design, produc-
tion, and quality assurance, while the
administrative side includes product
planning, production control, and re-
source management. Dedicated sub-
systems belong to different organiza-
tions, each with its own user interface,
data model, specialized operations, and
storage organization.

In many business areas, it will be
necessary for the companies in an IVE
to exchange and cooperatively manage
large amounts of data. It is unlikely
that the information systems will be
integrated with each other at the time a
decision is made to collaborate on an
offer or a bid. Even within one CIM
company, many heterogeneous data-
bases will exist. Yet sharing and ex-
changing data between the participat-

ing organizations and coordinating this
information is critical.

In the following we present an exam-
ple scenario of a CIM IVE. We then use
examples from this scenario to illus-
trate areas where database functional-
ity is needed for data that is not neces-
sarily under the aegis of a DBMS.

Company A is building an oil pipeline
and needs 600 large-diameter valves for
the project. They solicit bids by issuing
an RFP specifying dimensions, coupling
mechanism, operating temperatures,
pressure ranges, corrosion resistance,
and so forth. Company Q, an engineer-
ing firm, wants to put together an IVE
to respond to the RFP. Engineers at
Company Q use the Internet to search
for companies that already have a de-
sign for a similar valve that can be
used. It turns out that Company R is
willing to license such a design. Com-
pany Q plans to do the design modifica-
tion work itself, but will contract with
Company S to do an engineering analy-
sis of the resulting design and convert
the design to manufacturing plans.
Company T is brought in to do the ac-
tual fabrication, but will contract out to
Company U for die-making and casting.
Finally, Company V and Company W
will also cooperate: Company V provides
a design file conversion service to be
used for converting design files for the
CAD package that Company R uses into
the format for the CAD system that
Company Q plans to use. Company W
provides a documentation and archiving
service for documents such as instruc-
tion and maintenance manuals.

We now give examples of the kinds of
database capabilities needed here, both
in putting together the bid and in fulfill-
ing the contract (if awarded).

When Company Q looked for an exist-
ing design of a valve, they were execut-
ing a query. A number of aspects of this
query are particularly challenging:
parts of it are based on closest match
rather than exact match; the query asks
about designs from many companies
that presumably reside in many differ-
ent repositories; and the design from

768 • A. Silberschatz et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

Company R may be stored not in a
DBMS but in individual files for which
there might not be the analog of a data-
base schema. Similarity search requires
sophisticated indexing, based on many
descriptors and high-dimensional fea-
ture vectors. This aspect is already chal-
lenging. Moreover, the interesting point
here is that we must provide query and
indexing support on external objects.
Whatever sophisticated index support
we invent must keep track of changes of
external objects and keep the index con-
sistent with them.

For Company S to estimate a cost for
engineering analysis and manufactur-
ing plans, it needs to see the original
design, but in a form compatible with
its tools. Thus, in putting together a
bid, there is a need for data translation
services such as those provided by Com-
pany V. However, Company V needs to
know the format of Company R’s design
files. It is possible those files are in a
self-descriptive data interchange for-
mat, but it is also possible that descrip-
tive information will have to be added.
Often standards such as STEP/EX-
PRESS are used for the description and
for the exchange of CIM product data.
However, additional mechanisms must
be provided in order to let Company R
restrict the information given out to a
“need-to-know” subset of the schema:
we can hardly imagine that Company R
will give away all the details just for the
purpose of putting together a bid.

If the bid is awarded to the IVE led by
Company Q, there will be a need for
coordination and configuration manage-
ment, as the original design is initially
modified to meet specifications and then
further modified based on analysis by
Company S and feedback on manufac-
turability by Company T and Company
U. Various dependencies between data
in the different IVE companies must be
coordinated (i.e., coordination between
objects in different subsystems). Rela-
tionships and (referential) integrity con-
straints must be modeled and main-
tained without requiring a traditional
global database. Changes to an object in

one subsystem require changes to one or
more related objects in other sub-
systems. Changes in external systems
need to be monitored and potentially
propagated to other systems. For exam-
ple, if Company U changes the spindle
of the valve, the related documentation
about the valve must be changed by
Company W. Access to the spindle in
Company U might be restricted until
the documentation is updated by Com-
pany W. Again, only “need-to-know” in-
formation (i.e., information necessary to
update the documentation) is exported
by Company U.

Assume that Company Q decides to
replace the spindle t provided by Com-
pany T by a spindle t9 of another com-
pany T9 because t9 is equivalent in some
sense but cheaper. This change may
cause changes in all valve type designs
where t was used, resulting in a conflict
between the marketing decision of Com-
pany Q and the design activities of
Company S. Supporting actions to re-
solve such conflicts is critical to the
IVE. For example, in this case, a deci-
sion must be made to determine
whether all valve type designs must
change to use t9 instead of t, or whether
some valve designs might continue
without change, making renegotiations
necessary with T. Monitoring relevant
changes and detecting conflicts is the
DB functionality to be used here.

While the IVE operates, there is also
a need for security and access control
over the information. For example, it
may be the case that Company R and
Company T are competitors, so R is
willing to let Q and S see the original
design, but does not want T to have
access.

Finally, Company A needs assurance
that information on design and manu-
facturing of the valves is available even
after the IVE disbands. Thus, there is a
need to archive information that is pos-
sibly independent of any of the IVE
companies. Such archiving is a data-
base.

Database Systems • 769

ACM Computing Surveys, Vol. 28, No. 4, December 1996

4.2 Personal Information Systems

A personal information system provides
information tailored to an individual
and delivered directly to that individual
via a portable, personal information de-
vice (PID) such as a personal digital
assistant, handheld PC, or a laptop. The
PID can be either carried by the individ-
ual or mounted in an automobile, and
will be equipped with a wireless net-
work connection. It will also have net-
work ports for “plugging in” when a
stationary network connection is avail-
able.

A user equipped with a PID will, in
the near future, have access to the In-
ternet from anywhere at any time. How-
ever, the physical link will vary widely
in terms of characteristics such as band-
width (several kilobits/sec to several
megabits/sec) and prevailing error
rates. Tariffs and charging schemes for
information will also vary widely; some
providers may charge per packet while
others may charge by connection time.
In addition, the method of information
delivery will cover a wide spectrum of
possibilities from periodic broadcast
(satellite networks, pointcast, etc.) to
standard, request-driven, client-server
scenarios. Also, global positioning sys-
tems will be widely available, and there
is every reason to assume that in a few
years every laptop will have a GPS
card. Thus, location will become an im-
portant parameter in selecting informa-
tion, especially for location-dependent
information services.

We envision a personal information
service as tightly integrated with an
individual’s activities from the time of
waking up in the morning, through the
person’s daily activities, up to bedtime.
These services would work on behalf of
the person even while he or she is
asleep.

In the morning, the services could
include a local weather report, a list of
reminders about special events of the
day (such as birthdays or anniversaries
of friends and relatives), a list of morn-
ing work meetings and appointments

(e.g., dentist), and suggested diet for the
day from a personal health advisor.

Delivery of personal information ser-
vices will continue as the person com-
mutes to work. The PID can provide the
best route from home to work based on
up-to-date traffic conditions, with ex-
pected delays displayed on a city map
(the best route may include a combina-
tion of private as well as public trans-
portation). It may provide personalized
news headlines from national newspa-
pers such as the New York Times and
the Wall Street Journal as well as inter-
national headlines from papers such as
The Globe and Mail; on Mondays, the
report will include a summary of inter-
national weekend sporting events (e.g.,
Italian soccer league). It could provide a
personalized investment report, with
recommended investments for that day
provided by a personal financial advi-
sor. By the time the person arrives at
work, he or she is completely up to date
on the events and news of interest.

Personal information services will
continue throughout the day. Upon ar-
rival at the office, the services could
deliver a list of tasks for the day, a list
of customers to contact, a reminder to
set up an appointment for a periodic
dental examination, a summary of
breaking news of interest, information
about the start of a sale from a local
furniture store on a particular piece of
home furniture, and a notification about
the best airplane ticket to purchase for
an upcoming vacation. If the person
drives anywhere during the day, the
services will provide best driving routes,
always based on up-to-date traffic infor-
mation.

At the end of the day, the personal
information service will provide a pre-
view of the next day’s activities and the
person’s daily diet balance statement
from the personal health advisor, as
well as appointments and activities for
the next day.

The PID must continuously query re-
mote databases and monitor broadcast
information. Thus, personalized infor-
mation systems will magnify today’s cli-

770 • A. Silberschatz et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

ent-server performance, scalability, and
reliability problems. Servers that both
disseminate (push) information to cli-
ents and respond to (pull) client re-
quests will play an important role in the
delivery of personalized services. The
load on these servers will potentially be
much higher and the requests will
likely be more sophisticated. Among the
architectural problems that arise in an
environment like this are questions of
whether data should reside on the PID
or on the server, and which tasks should
be performed on the PID as opposed to
the server.

5. BARRIERS

A DBMS provides a tightly controlled
and highly uniform environment. All ac-
cess to data passes through the upper
levels of the system, making it rela-
tively easy to control all occurrences of
certain classes of event. For example,
updates can be detected easily, thus
making index maintenance manageable.
The layout of data in files is known, the
contents of data buffers is under strict
control of the DBMS, and all stored data
corresponds to an explicit schema.

Life becomes more complex when we
try to provide database functionality
outside of the confines of a DBMS. We
are talking about moving to an environ-
ment in which there may be no central
point of control and in which there may
not be a great deal of uniformity. Thus,
conventions and assumptions that held
in a DBMS and could be exploited by its
components now need to be negotiated.
Similarly, uniformity either must be
discovered post facto or new ways of
providing functionality that can cope
with variance must be devised.

In order to adequately address the
vision in our scenarios, a number of
technical barriers that typically result
from new application requirements not
yet addressed or from the need for new
DBMS architectures must be removed.
In this section we outline some of these
barriers.

5.1 Overhead

A modern DBMS is a software engineer-
ing tour de force. It represents hundreds
of person-years of effort and a very ma-
ture technology base. Managing a corpo-
rate information system without such a
device would be folly. Creating a spe-
cial-purpose DBMS is an unjustifiable
investment.

However, many application builders
are ignoring this industry because the
modern database system is a heavy-
weight resource. The overhead in terms
of system requirements, expertise, plan-
ning, data translation, and monetary
cost is too great for many emerging ap-
plications. For example, a builder of a
personalized newspaper service might
choose not to use a DBMS because she
or he has no need for many of the ad-
vanced features but is interested only in
filtering stream-oriented data (as, for
example, in the wire services).

A subset of the traditional database
services is needed, though, by many
new applications. An ideal world would
offer a collection of database modules
that one could mix and match to pro-
duce a configuration that is as lean or
as full-featured as needed. For example,
a wire service only needs a common
data model and stream-based querying.

5.2 Scale

The database environments of interest
to us require rethinking expectations
concerning size. Some applications man-
age quite small databases for which the
management overhead of a full DBMS is
overkill. Indeed, in many instances the
benefits of a DBMS are not used simply
because the overhead of the DBMS is
too large.

At the other end of the spectrum, the
volume of data in future applications
may be many orders of magnitude
greater than what database applica-
tions routinely deal with today. If we
are going to locate information on the
Internet, we must be prepared, at least
conceptually, to handle many petabytes
of data growing at unpredictable rates.

Database Systems • 771

ACM Computing Surveys, Vol. 28, No. 4, December 1996

The number of client and server sites
is also many times greater than in any
corporate network. In current client-
server systems, there are typically a
very small number of servers (often one)
to supply data to a modest client popu-
lation. In our scenarios, there could be a
hundreds of thousands of servers and
the client population could be even
larger.

Distribution patterns in this new
world are more geographically dis-
persed than anything we are used to.
Information suppliers could be any-
where in the world. The unrestricted
use of sites in distant places means that
the cost of accessing an information
source can depend on the available
bandwidth into and out of those sites.
This effective bandwidth can vary de-
pending on the time of day and the
popularity of the site.

Since all of these parameters create
an optimization nightmare, it will be-
come imperative to avoid large unre-
stricted searches of many sites. Instead,
it must be possible to precompute much
of the information and store it in a few
more convenient places.

In the personal information system
scenario, it is clear that servers will
need to handle several orders of magni-
tude more requests than today’s serv-
ers. Consider a personal information
device in every car continuously re-
questing information from a server or
servers geographically distributed in a
city. Robust and scalable server designs
will be needed in which the volume of
requests handled increases with the
amount of server resources available.

Occasionally, servers will become hot
spots, such as the 911 emergency ser-
vice or a server close to a football or
baseball stadium (overloaded when
there is a game). In such cases, broad-
cast rather than point-to-point commu-
nication may be an alternative in satis-
fying commonly expected requests
thereby reducing the workload on the
server. Understanding when to broad-
cast, how to organize a broadcast, and

how best to use local client memories
become important issues.

5.3 Schema Organization

The standard database paradigm in-
volves first creating a schema to de-
scribe the structure of the database and
then populating that database through
the interface provided by the schema.
The DBMS maps the input data to ac-
tual storage structures.

Increasingly, we will no longer have
the luxury of an a priori schema. Many
applications currently create data inde-
pendently of a database system2 (e.g.,
scientific applications), and as informa-
tion gets easier to collect, transmit, and
store, this mismatch will only get worse.
Thus, there is a need to map externally
generated data to a schema (and possi-
bly to new storage structures) after the
fact. This bottom-up approach to popu-
lating databases is not often supported
in current systems. It is crucial, how-
ever, to provide simple mechanisms for
making foreign data sources available
to database systems in order to realize
something like the IVE scenario. Such a
facility involves complex mapping pro-
cedures. We are talking about creating
what is, in effect, a database view of the
foreign data, but the view must be con-
structed over data in arbitrary formats.

The data that is received from a
source like a Web site may appear to
have some structure. Pieces of text are
coded with tags describing their role.
Unfortunately, the use of these tags
may be quite varied. The fact that one
page uses an H3 tag for headings does
not necessarily carry across to other
pages, perhaps even from the same site.
This variation in the use of text coding
makes it difficult to construct some-
thing we normally think of as a schema
to describe things like web pages.

Moreover, as new data is added to
these data sources, we may find that a

2 This is a major reason why a large fraction of
these applications do not use database systems
today.

772 • A. Silberschatz et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

schema is incomplete or inconsistent.
Thus, the current rigidity of database
schemas becomes an impediment to us-
ing database systems to address the
needs of many information systems. We
need schema management facilities that
can adapt gracefully to the dynamic na-
ture of foreign data. Moreover, the
schema must allow different formats
and different sets of properties for the
data as it appears in the DBMS.

5.4 Data Quality

Information accessed from a wide-area
network may be of varying quality.
Quality relates to the timeliness, com-
pleteness, and consistency of the data.
Future information systems must be
able to assess and react to the quality of
the data source. Often the source of the
data will give clues regarding data qual-
ity. Quality-related metadata must be
captured and processed in a way that is
as transparent as possible to the user.

Current database technology provides
little support for maintaining or assess-
ing data consistency. Constraint main-
tenance in commercial systems is lim-
ited to a few simple constraint types
such as the uniqueness of keys and ref-
erential integrity. Even if there were a
way to include a quality metric with
data values, there is no way in current
systems to include it in processing the
data from disparate sources. For exam-
ple, we might not want to have two
values participate in a join if their qual-
ity metrics are significantly different.

5.5 Heterogeneity

The database community has long rec-
ognized that data exists in many forms.
Dissimilar formats must be integrated
to allow applications to access combined
data sources in a high-level and uniform
way. The autonomy of information sites
makes it impossible for any centralized
authority to mandate standardization.

Imagine an archive of newspaper sto-
ries that covers the last 20 years. The
archive also contains descriptive infor-

mation about when and where the sto-
ries appeared, the source of the articles,
the author, and other related articles. It
would be very difficult to provide a sin-
gle interface to all of this information
because of its semistructured nature.
Semistructured means that the struc-
ture of the data is less uniform than
what we might find in a conventional
DBMS (e.g., files may routinely be miss-
ing or have varying semantics).

While there has been a great deal of
research in integrating data and opera-
tions from heterogeneous sources, prod-
ucts are only just beginning to emerge.
Distributed object management as man-
ifested in products such as CORBA,
SOM, and OLE seems to be the domi-
nant approach. Each of these provides
an object-oriented model as the common
language for describing distributed ob-
ject interfaces. While these standards,
and the systems that support them, go a
long way towards integrating different
software systems, they are best suited
for providing uniform syntactic inter-
faces to new or existing applications.
They provide a common protocol for
passing messages between objects in a
distributed environment, but do not
tackle the difficult problem of resolving
semantic discrepancies. They cannot be
used directly to integrate or create uni-
formity of data from different sources.
In general, sophisticated tools for deal-
ing with data heterogeneity still need to
be layered above CORBA, SOM, or OLE
interfaces.

5.6 Query Complexity

In future environments, query optimiza-
tion takes on some very different char-
acteristics, making conventional opti-
mizers inadequate. First, the types that
must be considered include diverse bulk
types such as sequences, trees, and mul-
tidimensional arrays. Second, other
types that are stored will be highly ap-
plication-specific; they will be instances
of arbitrary abstract data types.

Conventional query optimization tries
to minimize the number of disk ac-

Database Systems • 773

ACM Computing Surveys, Vol. 28, No. 4, December 1996

cesses. Network optimization might be
based on quite different criteria. For
example, a user might be more inter-
ested in getting an answer in a way that
minimizes the total “information bill”
for that request. Given two sources that
can handle a request, the optimizer
should pick the one that will result in a
lower charge. This charge can include
cost components from processing, data
usage, and communication.

Also, optimizers will need to employ
different strategies to account for the
new forms of data and the characteris-
tics of new computing environments.
Standard query optimization techniques
have little to offer for a query over a
large time series or for a query that may
have to translate several data sets into
a canonical form before producing a re-
sult. Situations like these are very
likely to arise in the IVE scenario.

If we consider the personal informa-
tion systems scenario, for example, we
see a need for more flexible query opti-
mization techniques that will consider
changes in the cost of available broad-
cast medium (e.g., radio, cellular) as the
PID moves. The degree of detail or accu-
racy provided by the server may be
based on the amount of money the per-
son is willing to pay. Thus, query opti-
mization models must take into account
not only the formulation of the requests
but also a description of optimization
goals. These goals might be couched in
terms of resource consumption (e.g., op-
timize for minimum memory consump-
tion and maximum network use) or as
execution limits based on accuracy of
answer or allowable resource consump-
tion.

5.7 Ease of Use

Even though there has been tremen-
dous improvement in ease of installa-
tion, management, and use of DBMSs,
especially those that run on personal
computers or workstations, many appli-
cations still prefer to use a file system
rather than a DBMS. There is an im-
plicit assumption that a DBMS will be

managed by a highly trained, full-time
staff, yet most database users have no
training in database technologies. Users
still find it difficult to connect to a
DBMS, to find the right catalog or data-
base name space where data is stored,
and to formulate queries and updates to
the database.

The file system connection and access
paradigm are easier to understand, and
database systems that are easier to use
would present an opportunity for their
more pervasive use.

If a complex and time-critical applica-
tion, like the one presented in the IVE
scenario, required a complex program-
ming activity, it would never be work-
able. Instead, a simple set of interfaces
is required to allow managers of the
IVE to specify high-level requirements
on things like the design of the needed
valve. The mapping and matching of
data from many distributed sources
needed to locate relevant designs must
all occur transparently.

A database systems would be easier to
use, for example, if it were to adapt to
individual user interests. For a personal
information system, there could be a
way for the server to handle different
personal profiles. The personal profiles
could include travel itineraries within a
city at various times of the day, week,
or month (e.g., home to work in the
morning and evening, visiting client A
on Wednesday, etc.), bank branch loca-
tions, cash machine locations, favorite
restaurants, or movie theaters. The
server could send the PID time-varying
information that is relevant to the user
profile, and this information could be
displayed on a map of the city. This
makes a view of the database available
to users in a form that is easy to apply
to managing their schedules.

5.8 Security

The World Wide Web (WWW) supports
quick and efficient access to a large
number of distributed, interconnected
information sources. As the amount of
shared information grows, the need to

774 • A. Silberschatz et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

restrict access to specific users or for
specific use arises. The non-uniformity
of WWW documents, and the physical
distribution of related information,
make such protection difficult.

Authorization models developed for
relational or object-oriented database
management systems cannot be adapted
to securing hypertext documents for a
number of reasons. First, in defining a
suitable authorization model, the se-
mantics of the data elements must be
clearly defined and the possible actions
that can be executed on them must be
identified. The definition and semantics
of the conceptual elements of a hyper-
text document are not uniform and vary
from system to system. A second diffi-
culty derives from the fact that the
“data elements” of a hypertext docu-
ment are not systematically structured,
as is the data in a database manage-
ment system. As noted earlier (Section
5.3), there is no equivalent of the “data-
base schema,” making it more difficult
to administer authorizations. Third, an
authorization model for hypertext needs
to support different levels of granularity
for both performance and user conve-
nience. For example, it should be possi-
ble to assign authorizations not only for
a single hypertext node, but also for a
part of a node, without being forced to
break the node unnaturally into multi-
ple pieces.

5.9 Guaranteeing Acceptable Outcomes

Transaction management provides
guarantees that user activities will
leave the database in an acceptable
state. Committed transactions take a
database from one acceptable state to
another. Otherwise, an aborted transac-
tion is guaranteed to leave the database
in its pretransaction state. Only accept-
able states are made visible to concur-
rent users.

Transaction management is an ex-
tremely successful field with a well un-
derstood and sound theory and sophisti-
cated techniques for high-performance
implementations. Its success is docu-

mented by the impressive transaction
rates in existing database products.

Despite its success, transaction man-
agement can become a barrier to both
system performance and the ability to
specify acceptable outcomes. Today’s
transactions link together atomicity,
isolation, and persistence; this linkage
imposes both performance overhead and
rigidity in what it requires of transac-
tion outcomes. Moreover, transaction
management is currently database-cen-
tric; that is, most transactional data is
“in the box.”

New applications and system environ-
ments require new or enhanced transac-
tion technology. Long-running applica-
tions need to define acceptable outcomes
that are weaker than serializability be-
cause making data unavailable (isolation)
for long periods of time is unacceptable.
Further, aborting entire transactions in
the face of potentially unacceptable out-
comes is draconian. We need to avoid
losing useful work and free the end user
from dealing with unsuccessful transac-
tion outcomes, e.g., those requiring re-
submission.

Today, wide-area networks, of which
the Internet is the prime example, are
making it possible for widely separated
individuals and organizations to do
business. However, today’s standard
protocol for distributed transaction pro-
cessing (two-phase commit) imposes a
barrier to the participation of compo-
nent systems because it is a blocking
protocol that compromises the auton-
omy of the participants. Thus, posing an
even larger problem when the compo-
nent systems are only intermittently
connected or are of highly variable reli-
ability and trustworthiness. For these
reasons, today’s transaction manage-
ment facilities are often considered in-
appropriate for modern distributed ap-
plications such as those discussed in
Section 4.

5.10 Technology Transfer

In addition to the specific barriers listed
above, there is also a barrier between

Database Systems • 775

ACM Computing Surveys, Vol. 28, No. 4, December 1996

research and industry. There is insuffi-
cient knowledge by researchers of the
techniques and solutions needed by in-
dustry, and insufficient utilization of
the results of research by industry. The
monolithic structure of a DBMS contrib-
utes to the problem. Each improvement
has an impact on many portions of the
code base, rendering vendors hesitant to
apply insights generated by the aca-
demic community. Researchers gener-
ally have little understanding of these
complex interactions. Finally, much of
the database technology available com-
mercially is dictated by standards that
have had little input from the research
community.

6. RESEARCH

In order to achieve our vision and over-
come barriers, a number of central re-
search topics must be addressed. We
enumerate the most prominent of these:

Extensibility and componentization.
While this report has argued that da-
tabase components be used for light-
weight support of new applications,
there is also a related need to ap-
proach the construction of DBMS in a
modular way. We are beginning to see
the emergence of lighter-weight data-
base engines from some vendors that
begin to address this concern. Even in
applications that need the full func-
tionality of a database management
system, there is often a need to ex-
tend that functionality with applica-
tion-specific support.
Even though extensible DBMSs today
allow the definition of new data types
(ADTs) or provide native support for
new types such as text, spatial data,
audio, and video, these extensions
and services are available in closed,
proprietary ways. We need to create
systems that make it easier for devel-
opers to incorporate new data types,
developed outside the DBMS, that can
be manipulated inside a database as
first-class native types. Similarly, we
need to look for ways to open the

architecture of DBMSs in such a way
that new services can be incorporated
and that database functionality can
be configured in more flexible ways
according to application needs.
Research is also required to find ways
for DBMS components to cooperate or
be integrated with non-DBMS compo-
nents such as operating systems, pro-
gramming languages, and network in-
frastructures. For example, query
processing and data movement com-
ponents should be able to take advan-
tage of, and cooperate with, advanced
network facilities in order to negoti-
ate quality-of-service and bandwidth
allocation.

Imprecise results. In today’s DBMSs,
we expect 100% accurate results; that
is, we assume that there is a single
correct and complete answer to a
query. In the Web or other large infor-
mation sources, this level of accuracy
may not be possible or desirable. In
fact, many search engines for text and
multimedia types do not provide 100%
accuracy. Research has been done on
similarity queries, but in general
these results are isolated and are
based on peculiarities of specific data
types (e.g., images, text). There is
nothing to tie the type-specific tech-
niques together; we need to develop a
general theory of imprecision.

Schemaless database. In order to ap-
ply database facilities to data created
outside of a DBMS, we will need so-
phisticated data mapping facilities.
Ideally, these mapping tools would be
declarative, and thus combinable with
a query language, as is done in SQL.
When the structure of data is dynam-
ically evolving, it is difficult to cap-
ture it with a fixed schema. The Web
is a good example of such data. Never-
theless, extensions to existing data-
base techniques can be used to query
and transform this kind of unstruc-
tured data.

Ease of use. Better database interfaces
are required if we are to get the kind

776 • A. Silberschatz et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

of penetration into personal comput-
ing that other tools like spreadsheets
and word processors have had. We
cannot expect users to write SQL.
Similarly, it is important to translate
theoretical notions to usable tech-
niques. For example, functional de-
pendencies were developed in rela-
tional database theory. They underlie
many of the PC DBMS design aids
without users needing to be expert in
the theory.

New transaction models. New transac-
tion models permit user-defined no-
tions of correctness and allow transac-
tions to be nested. Often they
decouple atomicity from isolation.
They typically allow notions like se-
mantic serializability and semantic
atomicity. The models make it possi-
ble to specify compensation/rollback
that is local to a scope. We need to
design mechanisms for these models
to support partial rollbacks followed
by an ability to go forward to an ac-
ceptable state that not only leaves the
database consistent but also accom-
plishes useful work for the end user.
New transaction models also try to
overcome blocking in the 2PC protocol
in that they allow more autonomy by
early commits at the cost of potential
compensation. We need to investigate
requirements on the properties of a
subsystem in order to include it in
such a distributed transaction. We
also need to study the scheduling and
correctness requirements that can be
taken “outside the box.”

Query optimization. Query processing
will have to be extended to cover more
data types than those handled in to-
day’s database products. For example,
queries involving sequences (e.g.,
time series) are becoming more im-
portant. Optimization over these
structures will require new indexing
methods and new query processing
strategies.
Also, optimization criteria may
change. In the past, optimizers tried

to reduce overall response time by
reducing the total resource consump-
tion (possibly dominated by the num-
ber of disk accesses) required to pro-
cess the query. Users may wish to
minimize their overall information
bill by using sources that are cheaper
but may give slower response time.
Alternatively, a user may care more
about accuracy and completeness
than cost, thus requiring that the op-
timizer find the most reliable and up-
to-date sources.
In addition, in nomadic or wireless
computing, query optimization must
be sensitive to band width and power
considerations. Satellite broadcast
might be required in order to achieve
the necessary bandwidth to deliver
large amounts of data in a mobile
environment. In addition, query pro-
cessing algorithms must be sensitive
to battery consumption issues on the
mobile computer.

Data movement. In a highly distrib-
uted environment, the cost of moving
data can be extremely high. Thus, the
optimal use of the communication
lines and caches on various interme-
diate nodes becomes an important
performance issue. While these con-
siderations are related to distributed
query optimization, we must consider
overall system access patterns as op-
posed to the processing of a single
request. We must also consider exis-
tence of asymmetric communication
channels introduced by low-band-
width lines and/or highly loaded serv-
ers.

Security. Issues related to access con-
trol in distributed hypertext systems
include (1) formulation of an authori-
zation model; (2) extension of the
model to take distribution aspects
into consideration; (3) interoperability
between different security policies;
and (4) investigation of credential-
based access control policies.

Database mining. Database mining is
another rapidly growing research

Database Systems • 777

ACM Computing Surveys, Vol. 28, No. 4, December 1996

area that can also be thought of as
“out of the box.” It is a synergy of
machine learning, statistical analysis,
and database technologies. Discovery
tasks such as rule (association) gener-
ation, classification, and clustering
can be viewed as ad hoc queries lead-
ing to new families of query lan-
guages. Evaluation of such queries re-
quire running inductive machine-
learning algorithms on large databases.
Research challenges include the de-
sign of an adequate set of simple
query primitives and a new genera-
tion of query optimization techniques.

Solutions in some of the above areas
will also have the positive effect of mak-
ing possible the transfer of newer tech-
nologies. For example, extensibility will
permit novel, as yet undeveloped index-
ing approaches to be incorporated into a
database system, without affecting the
other components of the existing DBMS.
Moreover, the research community
needs to participate more fully in stan-
dardization efforts and to form a closer
partnership with industry.

7. CONCLUSIONS

In this report we argued that database
research must be more broadly defined
than in the past. We discussed the idea
that the database community must ap-
ply its experience and expertise to new
problem areas that will likely require
new solutions packaged in ways that
may not resemble existing database sys-
tems.

The long-term view is that the data-
base community can contribute a great
deal to the very general problem of scal-

able, efficient, and reliable information
systems. Information must be defined in
the broadest of terms to include a large
variety of semantic types that are ob-
tained in many forms. The vision is an
integration that supports the applica-
tion of database functionality in small
modules that give us just the right ca-
pability. These modules should also rep-
resent a unified theory of information
that allows for the querying information
of all types, without having to switch
languages or paradigms.

ACKNOWLEDGMENTS

The editors would like to emphasize
that this report was developed through
discussions, comments, and direct con-
tributions from the members of the
working group. We would also like to
thank David DeWitt, Jim Gray, Gail
Mitchell, and Peter Wegner for helpful
comments on earlier drafts of this re-
port.

REFERENCES

CODD E. F. 1970. A relational model for large
shared databanks. Commun. ACM 13, 6,
(June 1970), 377–387.

GRAY, J. http://www.cs.washington.edu/homes/
lazowska/cra/database.html.

SILBERSCHATZ, A., STONEBRAKER, M., AND ULLMAN,
J. 1991. Database systems: Achievements
and opportunities. SIGMOD Rec. 19, 4, pp.
6–22. Also in Commun. ACM 34, 10 (Oct.),
110–120.

SILBERSCHATZ, A., STONEBRAKER, M., AND ULLMAN,
J. 1995. Database systems: Achievements
and opportunities into the 21st century. http:
//www.cs.stanford.edu/pub/papers/lagii.ps.

TOOLE, J., AND YOUNG, P. 1995. http://www.hpcc.
gov/cic/forum/CIC_Cover.html.

778 • A. Silberschatz et al.

ACM Computing Surveys, Vol. 28, No. 4, December 1996

