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sense been explored in that all combinations of basic design decisions have at least one
representative algebra. Coverage of the remaining criteria provides one measure of the

quality of each algebra We argue that all of the criteria are independent and that the
criteria identified as compatible are indeed so, Finally, we list plausible properties
proposed by others that are either subsumed by other criteria, are not well defined, or
have no objective basis for being evaluated. The algebras realize many different

approaches to what appears initially to be a straightforward design task.
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INTRODUCTION time. The ability to model this temporal

dimension of the real world is essential

Time is an important aspect of all real- to many computer system applications,

world phenomena. Events occur at such as econometrics, banking, inventory

specific points in time; objects and the control, accounting, law, medical records,

relationships among objects exist over cartographic data, and airline reserva-
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Yet the relational data model [Codd

1970, 1990] does not support the ‘time-
varying aspect of real-world phenomena.
Conventional databases can be viewed
as snapshot databases in that they rep-

resent the state of an enterprise at one
particular time, generally now. As a
database changes, out-of-date informa-
tion, representing past states of the
enterprise, is discarded. Although tech-
niques for encoding time-varying infor-
mation in conventional databases have
been developed in many application
areas, these techniques are nevertheless
ad hoc and application specific.

The need for application-independent
database management system (DBMS)
support for time-varying information is
receiving increasing attention, primarily
for two reasons. First, as the research
and business communities became com-
fortable with relational database theory
and practice, a plethora of new appli-
cations for databases emerged, among
them temporal applications. Second, the
advent of optical storage technology pro-
vided an answer to the question of where
to store all the historical data. In the last
decade alone, more than 320 articles
relating time to information processing
have been published [McKenzie 1986; Soo
1991; Stare and Snodgrass 1988].

One area of continuing research inter-
est is the development of a temporal data
model capable of representing the tempo-

ral dimension of real-world phenomena.

Such a model would store, along with

information on entities and relation-

ship, both when that information was

va~d’ in the real world being modeled
and when that information was recorded
in the database. The primary focus has

been extending the relational data model

to support time-varying information. In-

eluded in that effort is the extension of

the relational algebra.

An algebra is a set of objects and a

collection of owerations over those ob -

jects. In the r~lational algebra, the ob-

jects are relations, and the operations
take as ar~uments one or two relations
and produce a relation. An example is
the selection operator that yields a rela-

tion whose components, supplied by the

underlying relations, satisfy a specified
predicate.

The relational algebra was originally
defined as an operational equivalent of a
calculus-based declarative relational
query language such as SQL. The DBMS
translates SQL queries into an algebraic
expression, which is then optimized and
executed. Implementation issues, such as
query optimization and physical storage
strategies, can best be addressed in terms
of the algebra. In fact, one of the reasons
for the success of the relational model is
that it lends itself to an algebraic execu-
tion paradigm [Elmasri and Navathe
1989; Vandenberg and DeWitt 1991].

Example

Let R be a relation specifying the courses

each student is taking (see Figure 1). A

simple query on this relation, “what

courses are offered,” is expressed in SQL

as follows:

SELECT course
FROM R

This may be translated into the algebraic
projection operation, rCOu,,,( R). The
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R= sname course

‘$Phil>! “English”

“Norman” “English”

“Norman” kMa~h79

Figure 1. Snapshot relation example.

wtours e

“English”

“Math”

Figure 2. Result of a snapshot query.

resulting relation is shown in Figure 2.
In Figure 3 we record time-varying in-

formation by augmenting each row with
the starting and stopping semesters. For

this and all later examples, assume that
the granularity of time is a semester rel-
ative to the fall semester 1980. Hence, 1
represents the fall semester 1980, 2 rep-
resents the spring semester 1981, and so
on. Note that two tuples are needed to

record Phil’s enrollment in English, as

his enrollment was not continuous. We

can now query “when was each course
taken,” with the result shown in Figure
4. If Norman had not taken English dur-
ing semesters 1 and 2, the result relation
would contain two tuples with a course of

English, as in Figure 3. D

Such a query on a time-varying rela-
tion cannot be translated into the re-

lational algebra. Time-oriented aspects,
such as the fact that consecutive but oth-

erwise identical intervals should be coa-

lesced into a single interval, as in the

example for “English,” are not provided

for in the relational algebra. The alter-

native, not coalescing consecutive inter-

vals, is undesirable because it allows

multiple, equivalent representations for

each temporal relation, which is not

faithful to the conventional relational

model and can complicate the semantics

of the operations or require inefficient

implementations. Hence, even this very

simple query raises difficulties with the

relational algebra. Also, new operations,

such as the ability to apply a temporal

predicate, such as ouerlap, or to compute

a time-varying aggregate, such as count,
are required. What is needed is a tempo-

ral algebra that incorporates these

aspects and operations. An extended al-

gebra can serve as an appropriate target

for a temporal query language transla-

tor, an appropriate structure on which to

perform optimization, and an appropriate

executable formalism for the DBMS to

interpret to execute queries. A temporal

algebra is thus a critical part of a

DBMS if it is to support time-varying

information.

Desirable characteristics for a tempo-

ral algebra derive from the uses just

listed and include being a consistent ex-

tension of the relational algebra, sup-

porting time as an additional dimension,

supporting existing optimization strat-

egies, and having the expressive pow-

er of a temporal calculus-based query

language. These and many other

characteristics will be explored below.

In this paper we examine algebras that

are extensions of the conventional rela-

tional algebra and that support manipu-

lation of the temporal dimension of

real-world phenomena. In the next sec-

tion, we first review the conventional re-

lational algebra, then briefly describe the

temporal algebras that have been pro-

posed, emphasizing the types of objects

that each defines and the operations on

objects that each provides. Some alge-

bras use as objects snapshot relations

with additional time-stamp attributes,

with the time notion appearing primarily

in new algebraic operators and/or new

semantics of the existing operators. Other

algebras are defined on objects that less

closely resemble conventional relations.

To evaluate these algebras, we identify

26 criteria, each of which is well defined,

has an objective basis, and is arguably

beneficial. We separate these criteria

into 7 conflicting and 19 compatible
criteria. We show that no algebra can

simultaneously satisfy all conflicting

.4CM Computing Surveys, Vol 23, No 4, December 1991
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R= sname course start stop

“p~i~>> “English” 1 1
.’P]Ii]>> “English” 3 4

“Norman” “English” 1 2

“Norman” “Math” 5 6

Figure 3. Relation with time example,

-

Figure 4. Result of a temporal query

criteria. EIence, there can be no perfect

algebra, which is perhaps why so many

temporal algebras have been defined. We

argue that all algebras should be ex-

pected to satisfy the compatible criteria.

The conflicting criteria give rise to four

major “approaches,” each identifying the

(generally implicit) mindset of the alge-

bra’s designer(s) as to which of the con-

flicting criteria are most important to

satisfy. We show that this design space

has in some sense been explored, in that

each approach has at least 1 (in actual-

ity, at least 2) representative algebras.

We also touch on 10 plausible properties

that have been previously proposed that

we do not include as criteria because they

have no objective basis for being evalu-

ated or are subsumed by other criteria.

Hence, we provide a comprehensive

means of evaluating a temporal algebra:

First, determine to which approach it ad-

heres, and, second, determine which com-

patible criteria it satisfies. We evaluate

12 algebras using this strategy.

In the next section we first examine

the kinds of time the algebras support

and the conceptual model of time em-

ployed. We summarize the temporal

algebras, considering the objects each

defines and the operations on those ob-

jects that each provides. We then explain

the criteria and show how seven are mu-

tually incompatible. We evaluate the al-

gebras on the conflicting and compatible

criteria. Finally, we argue informally and

empirically that the criteria are indepen-

dent; specifically, that they are not pair-

wise logically equivalent and that the

criteria termed compatible are not pair-

wise incompatible.

Those interested in databases in gen-

eral will find Sections 1.1 (aspects of

temporal modeling), 1.3 (summary of

temporal algebras), and 4 (summary) and

Table 3 and Figure 13 most relevant.

Those interested in temporal databases,

whether concerning modeling and logical

design, query optimization, or implemen-

tation should read Sections 2 (criteria)

and 3 (evaluation). Those interested in a

specific temporal algebra should at least

peruse Section 2.1 and should read Sec-

tions 3.1 (conflicting criteria) and 3.2

(compatible criteria). We recommend that

those designing a new temporal algebra

study the entire paper carefully to under-

stand the many subtle issues at play.

There are three contributions of this

paper, in addition to the survey itself:

providing an objective basis for evaluat-

ing a temporal algebra, demonstrating

that an algebra that satisfies all desir-

able criteria cannot be defined, and

showing that the major areas of the de-

sign space (termed “approaches” above)
have all been explored.

1. TEMPORAL ALGEBRAS

In Codd’s [1970] relational algebra, the

only type of object is the relation. As-

sume that we are given a set .z =

{Al,. ... A~}, where each A,, 1 s i s n,
is called an attribute name, or simply an

attribute. Also assume that there is an

ACM Computing Surveys, Vol 23, No 4, December 1991



Evaluation of Temporal Algebras o 505

arbitrary, nonempty, finite, or denumer -

able set, 9,, 1 s i s n, called a domain
corresponding to each attribute A, [Maier

19831. Then a relation on these n do-

mains is a set of n-tuples, where each

tuple is itself a set of ordered pairs ( A,,
D,), DL E 9,, 1 s i s n [Date 19861.

Hence, each element of a tuple maps an

attribute name onto a value in its associ-

ated domain. The set of attributes Ji for

a relation is called the relation schema.
Because relations are sets, tuples with

duplicate attribute values are not per-

mitted. If the domains are sets of atomic

values, then a relation is said to be in

first normal form. Relations are most of-

ten displayed as tables in which the rows

correspond to tuples and the columns

correspond to attributes.

Example

Assume we are given the relation schema

Student = {sname, course) and corre-

sponding domains of student names and

college courses. Then R is a relation

on the schema Student, as shown in

Figure 1. 0

There are five basic operations in the

relational algebra: union, set difference,
Cartesian product, selection, and projec-
tion [Unman 1988]. The union of two

relations is the relation containing tu-

ples that are in either of the two input

relations. The set difference of two rela-

tions is the relation containing tuples

that are in the first input relation but

not in the second. Union and difference

require argument relations over the same

schema. The Cartesian product ( x ) of a

relation of n-tuples and a relation of m-
tuples is the relation containing (n + m)-
tuples that have n elements from a tuple

in the first input relation and m ele-

ments from a tuple in the second input

relation. We assume, without loss of gen-

eralit y, that the relation schemas of the

input relations are disjoint [Maier 1983].

The last two are unary operations. Selec-
tion (0) maps an input relation to an

output relation containing only those tu-

ples in the input relation that satisfy a

specified predicate. Hence, selection re -

duces a relation “horizontally” by re-

moving tuples. Projection (m) maps each

tuple in its input relation to a tuple in its

output relation having only a specified

subset of the attributes of the input tu-

ple. Hence, projection reduces a relation

“vertically” by removing attributes.

Other operations (e. g., intersection, di-

vide, join) can be defined in terms of

these five basic operations,

1.1 Aspects of Temporal Modeling

Before discussing specific temporal ex-

tensions to the relational algebra, we

must consider two aspects of time that

apply to all such extensions. The first

aspect concerns the kinds of time the

algebras concern. There are three or-

thogonal kinds of time that a data model

may support: valid time, transaction

time, and user-defined time [Snodgrass

and Ahn 1985, 1986], Valid time con-

cerns modeling a time-varying reality.

The valid time of, say, an event is the

clock time at which the event occurred in

the real world, independent of the record-

ing of that event in some database. Other

terms found in the literature that have a

similar meaning include intrinsic time

[Bubenko 19771, effective time [Ben-Zvi

19821, and logical time [Dadam et al.

1984; Lum et al. 19841. Transaction time,
on the other hand, concerns the storage

of information in the database. The

transaction time of an event (perhaps

represented as an integer) identifies

the transaction that stored the informa-

tion about the event in the database.

Other terms found in the literature that

have a similar meaning are extrinsic time

[Bubenko 197’7], registration time [Ben-

Zvi 19821, and physical time [Dadam et

al. 1984; Lum et al. 1984]. User-defined
time is an uninterpreted domain for

which the data model supports the opera-

tions of input, output, and perhaps

comparison. As its name implies, the se-

mantics of user-defined time is provided

by the user or application program.

Valid time, unlike transaction time, is

a multifaceted aspect of time. Different

times may be used in defining the

ACM Computing Surveys, Vol. 23, No 4, December 1991
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existence of a single object or relation-

ship; for example, the time a student

completes all degree requirements and

the time of the student’s graduation cere-

mony may both be used in specifying the

student’s graduation from college. Also,

the various properties of an entity or

relationship need not change at the same

time; for example, an employee’s promo-

tion may, but need not, be accompanied

by a change in salary or office address.

The relational algebra already sup-

ports user-defined time because it is sim-

ply another domain, such as integer

or character string [Overmyer and

Stonebraker 19821. The relational alge-

bra, however, supports neither valid time

nor transaction time. PJo record of the

evolution of either the relation or the

enterprise that it models is maintained.

Only one version, the current version, of

the relation exists, and its contents rep-

resent the state of the enterprise being

modeled at a single time. The application

programmer can, however, encode time-

varying information in a conventional

database by using attributes with the

domain of user-defined time, but the

DBMS does not interpret such attributes

differently from attributes of other do-

mains, as illustrated with the SQL query

given previously. Hence, we refer to the

relational algebra hereafter as the snap-
shot algebra, since it captures only a
single snapshot in time of both a relation

and the enterprise that the relation

models.

An algebra, data model, or relation

supporting only valid time is termed his-
torical; one that supports only transac-

tion time is termed rollback; and one

that supports both valid and transaction

time is termed tarnporal [Snodgrass and

Ahn 1986]. Most of the algebras and their

underlying data models surveyed here

are historical. Transaction time was in-

troduced later than valid time and is

easier to support in an algebra. Most of

the hard problems are encountered

in supporting valid time, so that is the

aspect addressed in most algebras.

Figure 5 illustrates a single temporal

relation composed of a sequence of histor-

ical states indexed by transaction time.

It is the result of four transactions start-

ing from a null relation: (1) three tuples

were added, (2) one tuple was added, (3)

one tuple was added and an existing one

terminated, and (4) the starting time of a

previous tuple [the middle one added in

transaction (l)] was changed to a some-

what later time (presumably the original

starting time was incorrect) and a re

cently added tuple (the bottom one) was

deleted (presumably it should not have

been there in the first place.) Each up-

date operation involves copying the his-

torical state, then applying the update to

the newly created state. Of course, less

redundant representations than the one

shown are possible.

Example

Assume there exists a temporal relation,

with the explicit attributes sname and

course, recording the courses each stu-

dent has taken. One possible temporal

query on this relation is, “What courses

was Phil enrolled in at the start of the

fall 1991 semester, as known on July 1,

1991?” This query, relevant if preregis-

tration is allowed, specifies a rollback to

the historical state current at a transac-

tion time of July 1, 1991, then an histori-

cal selection on the valid time of fall

1991. n

In addition to the kinds of time sup-

ported, we must also consider the concep-

tual model of time employed. Two time

models have been proposed: the contin u -
ous model, in which time is viewed as

being isomorphic to the real numbers,

and the discrete model, in which time is

viewed as being isomorphic to the natu-

ral numbers (or a discrete subset of the

real numbers) [Clifford and Tansel 1985].

In the continuous model, each real num-

ber corresponds to a “point” in time; in

the discrete model, each natural number

corresponds to a nondecomposable unit of

time having an arbitrary duration. Al-

though the two time models represent

time differently, they share one impor-

tant property: They both require that

time be ordered linearly. Hence, for two

ACM Computmg Surveys, Vol 23, No 4, December 1991
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(1) (2) (3) (4)

tink? time time time

transaction
&

time

Figure 5. A temporal relation

nonequal times, tl and t2,either tl is
before t2 or t2 is before tl [Anderson

1982; Clifford and Tansel 1985].

“instant” [Gadia 19861, “moment”

[Allen and Hayes 1985], “time quantum”

[Anderson 1982], and “time unit”

[Navathe and Ahmed 1987; Tansel 19861

are terms used in the literature to de-

scribe a nondecomposable unit of time in

the discrete model. To avoid confusion

between a point in the continuous model

and a nondecomposable unit of time in

the discrete model, we refer to a nonde -

composable unit of time in the discrete

model as a ch-onon [Ariav 1986; Clifford

and Rao 1987] and define an interval to
be a set of consecutive chronons. Al-

though the duration of each chronon in a

set of times need not be the same, the

duration of a chronon is usually fixed by

the granularity of the measure of time

being used (e.g., semester, hour, second).

A chronon typically is denoted by an in-

teger, corresponding to a single granu-

larity, but it may also be denoted by a

sequence of integers, corresponding to a

nested granularity. For example, if we

assume a granularity of a day relative to

January 1, 1980, then the integer 1901

denotes March 15, 1985. If, we assume a

nested granularity of (year, month, day),

then the sequence (6, 3, 15) denotes

March 15, 1985.

Although time itself is generally per-

ceived to be continuous, most proposals

for adding a temporal dimension to the

relational data model are based on the

discrete time model. Several practical ar-
guments are given in the literature for
the preference of the discrete model over
the continuous model. First, measures of

time are inherently imprecise [Anderson
1982; Clifford and Tansel 1985]. Clock-
ing instruments invariably report the oc-
currence of events in terms of chronons,
not time “points.” Hence, events, even
so-called “instantaneous” events, can at
best be measured as having occurred
during a chronon. Second, most natural
language references to time are compati-
ble with the discrete time model. For
example, when we say that an event oc-
curred at 4:30 p.m., we usually do not
mean that the event occurred at the
“point” in time associated with 4:30 p.m.,
but at some time in the chronon (perhaps
minute) associated with 4:30 p.m.

[Anderson 1982; Clifford and Rao 1987].

Third, the concepts of chronon and inter-
val allow us to naturally model events
that are not instantaneous but have
duration [Anderson 19821. Finally, any
implementation of a data model with a
temporal dimension will of necessity have
to have some discrete encoding for time

[Snodgm= 19871. All the temporal alge-

bras surveyed in this paper are compati-
ble with the discrete time model.

Four basic design decisions charac-
terize the types of objects a temporal
algebra defines. These decisions arise
because both valid and transaction time
must be recorded in some way in
relations. There is more latitude in rep-
resenting valid time because it is inde-
pendent of data storage.

o Is valid time associated with tuples
(usually as additional implicit or ex-
plicit attributes) or with the attributes’
values?

ACM Computing Surveys, Vol. 23, No. 4, December 1991
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e

e

e

How is valid time represented? Time-
stamps, which represent valid time,
may be either chronons, intervals, or
sets of intervals, where a set of inter-
vals is denoted with a set of chronons,
not all of which are consecutive.

Are attribute values required to be
atomic valued, or are they allowed to
be set valued? Although first normal
form dictates that attributes be atomic
valued in a snapshot relation, at-
tribute values that are atomic valued
at all points in time may nonetheless
be set valued when their behavior over
time is recorded.

Is transaction time associated with at-
tribute values, tuples, or sets of tuples?

Two basic design decisions character-

ize the different kinds of operations each

algebra provides. The first design deci-

sion represents a choice of one of only
two possible alternatives; the second con-
cerns the four basic operations concern-
ing time that should be supported by a
temporal algebra.

e

●

i..

Does the algebra retain the set-

theoretic semantics of the five basic
relational operators and introduce new
operators to deal with time, or does the
algebra extend the semantics of the
existing relational operators to account
for the temporal dimension directly?

How does the algebra handle temporal
selection (i. e., tuple selection based on
valid time-stamps), rollback (i. e., tuple
selection based on transaction time-
stamps), temporal projection (i. e., com-
putation of a new time-stamp for a
tuple or attribute from its current
time-stamp), and temporal aggregation
(i. e., computation of a distribution of
aggregate values over time)— oper-
ations that are unique to a temporal
a!gebra?

2 Overview of Algebras

We now review briefly 12 algebras that
extend the snapshot algebra to support
valid time and in some cases also trans-
action time. These algebras differ in the

types of objects they define and in the
kinds of operations they provide. Be-
cause some of the algebras have similar
names and others are unnamed, we iden-
tify each algebra with the name of the
first author of the paper in which the
algebra is presented, except for the het-
erogeneous algebra discussed in Gadia
and Yeung [1988] and Yeung [1986],
which we will identify as Yeung’s alge-
bra to avoid confusing it with Gadia’s

[19881 homogeneous algebra. We did not
include TERM [Klopprogge 1981], PDM

[Manola and Dayal 19861, or the account-
ing data model (ADM) algebra [Thomp-
son 1991], all of which include support
for time, in this evaluation since they are
temporal extensions of other data mod-
els. TERM is an extension of the entity-
relationship model [Chen 1976]; PDM is
an extension of the entity-oriented
Daplex functional data model [Shipman
1981j; and the ADM is an extension of
the relational model incorporating sets of
synchronized time-varying relations.
Also, in passing we will mention three
variants of the algebras we do study.

A detailed examination and justifica-
tion of all of the decisions made with
each algebra is outside the scope of the

paper. Rather, this section introduces

each algebra as a prelude to a detailed

comparison, where certain aspects of each
algebra that relate to the specific criteria
are discussed in detail.

We first examine the models that
time-stamp tuples, then discuss those
that time-stamp attribute values, and
finish with Tuzhilin’s algebras, which are
largely independent of data model. We
proceed chronologically.

1.2.1 Jones

LEGOL 2.0 [Jones et al. 1979] is a lan-
guage designed to be used in database
applications, such as legislative rules
writing and high-level system specifica-
tion, in which the temporal ordering of
events and the valid times for objects are
important. It was the first time-oriented
algebra defined; it introduced many of
the features found in later algebras,
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Objects in the LEGOL 2.0 data model
are relations as in the relational data
model, with one distinction. Tuples in
LEGOL 2.0 are assigned two implicit
time attributes, start and stop. The val-
ues of these two attributes are the
chronons corresponding to the (inclusive)
end points of the interval of’ existence
(i.e., valid time) of the real-world entity
or relationship represented by a tuple;
these values are specified during data
entry by the user.

Example

R is a historical relation in LEGOL 2.0
over the explicit attributes { sname?
course}, shown in Figure 3. Later ex-
amples in this section will show the se-
mantically equivalent representation of
R in the other algebras. Because the
algebras all define relations differently
and, in some cases, require implicit at-
tributes, we show all relation examples
in tabular form for both clarity and con-
sistency of notation. This relation shows
that Phil was a student in the English
course for the fall 1980 semester and for
the fall and spring 1981 semesters. ❑

LEGOL 2.0 retains the standard set-
theoretic operations and introduces sev-
eral time-related operations to handle the
temporal dimension of data. Operations
in LEGOL 2.0 are not defined formally;
the more important operations are de-
scribed using examples. The new time-
related operations are time intersection,

time-related operations are left unspeci-
fied, these operators appear to support a
limited form of temporal selection as well
as a temporal join using union semantics
(i.e., the valid time of each output tuple
is the union of the valid times of two
overlapping input tuples).

1.2.2 Ben-Zvi

The Time Relational Model [Ben-Zvi
1982] supports both valid time and trans-
action time; it was the first to do so. Two
types of objects are defined: snapshot re-
lations, as defined in the snapshot alge-
bra, and temporal relations. Temporal
relations are sets of tmples, with each
tuple having five implicit time at-
tributes. The attributes effective-time-
start and effective-time-stop are the end
points of the interval of existence of the
real-world phenomenon being modeled;
registration-time-start is the transac-
tion time of the transaction that stored
the effective-time-start; registration-
time-stop is the transaction time that
stored the effective-time-stop; and dele -
tion-time records the time when erro-
neously entered tuples are logically
deleted. An erroneous attribute value
may be corrected by deleting that tuple
and inserting a corrected one.

Example

R is a temporal relation in the Time
Relational Model over the explicit at-
tributes {sname, course} containing
four tuples.

R= effective effective registration registration deletion
snmne course time-start time-stop time-start time-stop time

“Phil” “English” 1 1 423 427
“Phil” “English” 3 4 444 452
“Norman” “English” 1 2 423 438
“Norman” “Math” 5 6 469 487

—.
one-sided time intersection, time union,
time difference, and time-set member-
ship. Time intersection acts as a tempo-
ral join, where the valid time of each
output tuple is computed using intersec-
tion semantics (i.e., the valid time of each
output tuple is the intersection of the
valid times of two overlapping input tu-
pies). Although the semantics of the other

Note that none of the tuples has been
(logically) deleted. ❑

A new Time-View operator, TV = ( te,
t,) that maps a temporal relation in-
stance onto a snapshot relation instance
is introduced. The Time-View operator
can be thought of as a limited form of
temporal selection that selects from the
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relation those tuples with a valid time
containing te and a transaction time con-
taining t,.Once the specified tuples are
selected, however, the Time-View opera-
tor discards their implicit time attributes
to construct a snapshot relation.

Example

If we let TV = (1, 425), then

TV(R) = sname course

“Phil” “English”
“Norman” “English”

❑

The semantics of the five relation-

al operators—union, difference, join, se-

lection, and projection—is extended to

handle both the valid time and the trans-

action time of tuples directly. These op-

erators, like the Time-View operator, are

all defined in terms of a transaction time

t. and a valid time t,.Input tuples are
restricted to those tuples in an input re-
lation instance at valid time t,having a
transaction time of t.;the valid times of
all tuples that participate in an opera-
tion are thus guaranteed to overlap at
time te.Each operator computes the valid
time of its output tuples from the valid
times of qualifying tuples in its input
relations using union or intersection se-
mantics. For example, the union opera-
tor is defined using union semantics, and
the join operator is defined using inter-
section semantics. These two operators
cannot be simulated by the conventional
relational operators. What would be
needed is a projection operator that al-
lowed expressions using the two simple
functions first( a, b) ( = if a >6 then b
else a) and last(a, b). The valid time of
tuples resulting from the difference oper-
ator is left unspecified.

1.2.3 Navathe

The Temporal Relational Model [Navathe
and Ahmed 1987] and its associated alge-
bra were defined primarily to support
TSQL [Navathe and Ahmed 1989], a
time-oriented extension to SQL defined

in the same paper. The model allows both
non-time-varying and time-varying at-
tributes, but all of a relation’s attributes
must be of the same type. Objects are
classified as snapshot relations, whose
attributes are all nontime varying, and
historical relations, whose attributes are
all time varying. The end points of the
interval of validity of tuples in historical
relations are recorded in two mandatory
time attributes—time-start and time-
end. (The name of this model is mislead-
ing, because only valid time is supported. )
The structure of a historical relation in
the Temporal Relational Model is the
same as that of a historical relation in
LEGOL 2.0 (Figure 3), with one addi-
tional restriction. Value-equivalent tu-

ples (whose values on the nontime-stamp
attributes are identical), although al-
lowed, are required to be coalesced (i. e,

adjacent intervals replaced with a single
interval) so contiguous intervals are not
represented by two value-equivalent tu-
pies. The set-theoretic operators are re-
tained, and five additional operators on
time-varying relations are introduced.
The operators Time-Slice, Inner Time-
View, and Outer Time- View are all forms
of temporal selection. TCJOIN and TC-

NJOIN are both join operators defined
using intersection semantics. Two other
join operators, TJOIN and TNJOIN, are
discussed. They retain the (multiple)
time-stamps of underlying tuples in their
resulting tuples and are, therefore, out-
side the algebra because they produce
illegal tuples. These various selection and
join operators produce differing valid
times in the resulting relation.

1.2.4 Sadeghi

Sadeghi’s [1987] algebra is similar in
many ways to Navathe’s. It was designed
to support the calculus-based historical

query language HQL [Sadeghi et al.
1987], which in turn is based on DEAL

[Ileen 19851. In Sadeghi’s algebra, all
objects are historical relations. Two im-
plicit attributes, start and stop, record
the end points of each tuple’s interval of
validity. Hence, the structure of a histor-

ACM Computing Surveys, Vol 23, No 4, December 1991



Evaluation of Temporal Algebras ● 511

ical relation in Sadeghi’s algebra is also
the same as that of the historical relation
in LEGOL 2.0 (Figure 3). Sadeghi’s alge-
bra requires that value-equivalent tuples
be coalesced. Temporal versions of the
snapshot operators union, difference,
Cartesian product, selection, projection,
and join are defined. Both Cartesian
product and join are defined using inter-
section semantics. A new operator,
WHEN, is introduced to perform tempo-
ral selection. It maps a historical rela-
tion instance onto the intervals that are
the time-stamps of tuples in the instance.
Whether the result of this operation
is another type of object of a historical.
relation without explicit attributes is
unclear.

The next algebra, along with those of
Tansel and Lorentzos, incorporates oper-
ators to switch between an interval rep-
resentation, which is space efficient and
more appropriate for presentation, and a
single chronon-based representation,
which is effectively a union of time slices
that may be manipulated simultaneous-
ly with conventional relational opera-
tors but which are also highly space
inefficient.

1.2.5 Sarda

Sarda’s [1990] algebra associates valid
time with tuples, Objects can be either
snapshot or historical relations. Unlike
the algebras mentioned previously,
Sarda’s algebra represents valid time in
a historical relation as a single, non-
atomic, implicit attribute named period.
Also, unlike the other algebras, a tuple
in Sarda’s algebra is not considered valid
at its right-most boundary point; that is,
the interval is closed on the left and open
on the right.

Example

R is a historical relation instance in
Sarda’s algebra containing four tuples:

R= sname course period

“Phil” “English” 1 ..2
“Phil” “English” 3 ...5
“Norman” “Enghsh” 1 ..3
“Norman” “Math” 5’7. . .

The first two tuples signify that Phil was
enrolled in English during fall semester
1980 and fall semester 1981 but not
during the spring semester 1981. D

Sarda’s algebra retains the basic
semantics of some of the set-theoretic op
erators, extends the definition of one op -
erator to handle valid time directly, and
introduces several new operators. Projec-
tion and Cartesian product are defined to
treat the implicit attribute period the
same as they would an explicit attribute
rather than associating special time-
oriented semantics with this attribute as
do most of the other algebras. Projection
maps a historical relation instance onto
either a snapshot or a historical relation
instance, depending on whether the im-
plicit attribute period is a projection at-
tribute. Similarly, Cartesian product
simply combines tuples from two histori -
cal relations, without discarding or
changing their time-stamps. Hence, the
result of a Cartesian product is not a
historical relation, which by definition
contains one implicit period attribute,
but rather a snapshot relation with two
nonatomic attributes, one containing the
period of validity of a tuple from the first
argument relation and one containing the
period of validity of a tuple from the
second argument relation. The semantics

of the selection operator is extended to
allow for temporal as well as nontempo-
ral predicates. Whether the algebra re-
tains the set-theoretic semantics of union
and difference is left unspecified.

EXPAND, CONTRACT, PROJECT-
AND-WIDEN, and CONCURRENT
PRODUCT are the new operators. EX-
PAND produces, for each chronon in the
time-stamp of each tuple in a historical
relation, a value-equivalent tuple with
that chronon as its time-stamp, CON-
TRACT, the inverse of EXPAND,
coalesces value-equivalent tuples. PRO-
JECT-AND- WIDEN is a form of tempo-
ral projection that coalesces value-equiv-
alent tuples, and CONCURRENT
PROD UCT is Cartesian product defined
using intersection semantics.
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The remaining algebras use distinct
non-first normal form (non-lNF) data
models, with attribute value time-stamp-
ing and perhaps with multiple values per

attribute. The nonatomicity of attribute
values is due to their time-varying na-
ture; any time-slice will usually be in
first normal form. Hence, the data model
of these algebras is an extension of the
conventional (lNF) relational model. The
representation, viewed as a normal rela-
tion, is certainly not in lNF, but then
the algebra does not operate on conven-
tional relations; it operates on historical
relations, which are extensions of con-
ventional relations.

1.2.6 Clifford

Clifford [1982] was the first to suggest
incorporating the temporal dimension at
the attribute level. This idea appeared in
the Historical Database Model [Clifford
and Warren 1983] and its associated al-
gebra [Clifford and Tansel 1985]. The
Historical Relational Data Model [Clif-
ford and Croker 1987], a refinement of
that model, is unique in that it associates
time-stamps with both the tuple and with
each attribute value. The data model al-
lows two types of objects– a set of
chronons, termed a lifespan, and a his-

torical relation, where each attribute in
the relation schema and each tuple
in the relation is assigned a lifespan. A
relation schema in the Historical
Relational Data Model is an ordered
four-tuple containing a set of attributes,
a set of key attributes, a function that
maps attributes to their lifespans, and a
function that maps attributes to their
value domains. A tuple is an ordered
pair containing the tuple’s value and its
lifespan. Attributes are not atomic val-

ued; rather, an attribute’s value in a
given tuple is a partial function from the
domain of chronons onto the attribute’s
value domain, defined for the attribute’s
valid time (i. e., the intersection of the
attribute and tuple Iifespans). Relations
have key attributes, and no two tuples in
a relation are allowed to match on the
values of the key attributes at the same
chronon.

Example

R is a historical relation instance in the
Historical Relational Data Model, where
(~nam~ + {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
~ourse + {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}} is
the function assigning lifespans to
attributes.

R= Tuple Vulue Tupk Lifespan

sname course

1 +<’phil” 1 +“English” {1.3.4}
3 +’<Phil” 3 + “Enghsh”
4 +“phil” 4 +“Enghsh”

1 + “Norman” 1 + “Engllsh” {1.2,5,6}
2 +“Norman” 2 +“English”
5 ~“Norman” 5 +“Math”
6 +“Norman” 6 “’Math”

Because tuple lifespans are sets and be-
cause both Phil and Norman were never

enrolled in more than one course at the
same time, we are able to record each of
their enrollment histories in a single tu-
ple. If someone had been enrolled in two

or more courses at the same time, how.
ever, his total enrollment history could

not have been recorded in a single tuple

since attribute values are ftmctions from

a lifespan onto a value domain. Note also
that we have chosen the most straight-

forward representation for an attribute

whose value is a function. Because at-

tribute values in both Clifford’s algebra

and Gadia’s algebras, which we describe

later, are functions, they have many

physical representations. D

The semantics of the relational oper-

ators union, difference, intersection,

projection, and Cartesian product is
extended to handle lifespans directly. For
example, the lifespan of each tuple out-
put by Cartesian product is the union of
the lifespans of the two tuples in the

input relations that contribute to the

output tuple. A null value is assigned to

an attribute in the output tuple for each

chronon that is in the lifespan of the

output tuple but not in the lifespan of the

input tuple associated with that at-

tribute. Also, temporal versions of G-join,

equi-join, and natural join are defined

using intersection semantics, and several
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new time-oriented operations are intro-
duced. WHEN maps a relation instance
onto its lifespan, where the lifespan of a
relation is defined to be the union of the
lifespans of its tuples (e.g., {1,2,3,4,5,6}
in the above example). SELECT-IF is a
form of temporal selection that selects
tuples that are both valid and satisfy a
given selection criterion at a specified
time, and TIME-SLICE is a form of tem-
poral projection that restricts the tuple
Iifespans of its resulting tuples to some
portion of their original lifespans. The
operator SELECT-WHEN possesses fea-
tures of both temporal selection and tem-
poral projection; it is a variant of
SELECT-IF that restricts the tuple life-
spans of its resulting tuples to the times
when they satisfy the selection condition.
Finally, a TIME-JOIN operator is de-
fined that restricts the tuple lifespans of
its resulting tuples to the value of a
time-valued attribute.

1.2.7 Tarisel

Tansel’s historical algebra [Clifford and
Tansel 1985; Tansel 1986] allows only
one type of object—the historical rela-
tion. Four types of attributes are, how-
ever, supported: Attributes may be either
non-time-varying or time-varying, and
they may be either atomic-valued or set-
valued. The attributes of a relation need
not be the same type, and attribute val-
ues in a given tuple need not be homoge-
neous. The value of a time-varying,
atomic-valued attribute is represented as
a triplet containing an element from the
attribute’s value domain and the bound-
ary points of its interval of existence,
whereas the value of a time-varying, set-
valued attribute is simply a set of such
triplets. This data model makes this
algebra a convenient target for interpret-
ing queries expressed in the Time-by-
Example language [Tansel et al. 19891
and in HQuel [Tansel and Arkun 19861.

Example

R is a historical relation instance in
Tansel’s algebra, where sname is a non-
time-varying, atomic-valued attribute

and course is a time-varying, set-valued-
attribute.

R= sname course

“Phil” {( [1, 2), “English”),
( [3, 5), “English”)}

“Norman” {([1, 3), “English”),
( [5, 7), “Math”)]

The enrollment history of a student can
be recorded in single tuple, even if the
student was enrolled in two or more
courses at some time. Note, however, that
each interval of enrollment, even for
the same course, must be recorded as a
separate element of a time-varying,
set-valued attribute. ❑

The conventional relational operators
are extended to account for both the tem-
poral dimension of data and presence of
set-valued attributes, and several new
time-related operations are introduced.
The PACK operators combines tuples
whose attribute values differ for one
specified attribute but are otherwise
equal. Conversely, UNPACK replicates
a tuple for each element in one of its
set-valued attributes. T-DEC decomposes
a time-varying, atomic-valued attribute
in a historical relation into three non-
time-varying, atomic-valued attributes,
representing the three components of the
time-varying, atomic-valued attribute.
Conversely, T-FORM combines three
nontime-varying, atomic-valued at-
tributes, representing a value and the
boundary points of the value’s interval of
validity into a single time-varying,
atomic-valued attribute. DROP- TIME
discards the time components of a
time-varying attribute. Finally, SLICE,
USLICE, and DSLICE are limited forms
of temporal projection in which the time-
stamp of a time-varying attribute is re-
computed as the intersection, union, and
difference, respectively, of its original
time-stamp and the time-stamp of an-
other specified attribute. If the recom-
puted time-stamp is empty, the tuple is
discarded. Finally Tansel introduces a
new operation, termed enumeration, to
support aggregation [Tansel 19871. The
enumeration operator derives, for a set of
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chronons or intervals and a historical ensures that a snapshot of a historical
relation, a table of data to which aggre-
gate operators (e.g., count, avg, rein) can
be applied.

Example

Let Rz be the
stance resulting

historical relation in-
from the unpacking of

R= sname

[1,2) U [3,5) *“Phil”

relation at time t always produces a con-
ventional snapshot relation without
nulls.

Example

R is a historical relation instance in
Gadia’s homogeneous model.

course

[1, 2) U [3,5) ~“Enghsh”

[1,3) U [5,7) +“Norman” [1,3) +“English”
[5, 7) +“Math”

attribute course of R in the previous
example containing four tuples.

R2 = sname course

“Phil” ( [1, 2), “English”)
“Phil” ( [3, 5), “English”)
“Norman” ( [1, 3), “English”)
“Norman” ( [5, 7), “Math”)

Now, let R~ be the historical relation
instance resulting from the decomposi-
tion (T-DEL’) of attribute course of rela-
tion Rz, where sname, course, course L?
and course ~, are all non-time-varying,
atomic-valued attributes, the latter two
computed by the T-DEC operator.

Ra = sname course course~ courser,

“Phil” “English” 1 2
“Phil” “English” 3 5
‘<Norman” “English” 1 3
“Norman” “Math” 5 7

1.2.8 Gadia

Gadia’s [19881 homogeneous model
allows two types of objects: temporal
elements and historical relations. A tem-
poral element is a finite union of disjoint
intervals (effectively a set of chronons),
and attribute values are functions from
temporal elements onto attribute do-
mains [Gadia and Vaishnav 1985]. Tem-
poral elements are closed under union,
intersection, and difference, unlike inter-
val time-stamps. The model requires that
all attribute values in a given tuple be
functions on the same temporal element.
This property, termed homogeneity,

Here the interval [ tl, t2) is the set of
chronons { tl, . ,t2– 1}.Again, we are

able to record the enrollment histories
of Phil and Norman in single tuples
only because they were never enrolled in
more than one course at the same time
(otherwise multiple tuples are required).

n

A historical version of each of the five
basic conventional relational operators is
defined using snapshot semantics. For
each historical operator, the snapshot of
its resulting historical relation at time t
is required to equal the result obtained
by applying the historical operator’s re -
lational counterpart to the snapshot of
the underlying historical relations at
time t.Two new operators are also intro-
duced. One, tdom, maps either a tuple or
a relation instance onto its temporal do-
main, where the temporal domain of a
tuple is its temporal element and the
temporal domain of a relation is the
union of its tuples’ temporal elements.
For example, the temporal domain of R
above is [1, 7). The other operator, termed
temporal selection, is a limited form of
both temporal selection and temporal
projection; it selects from a relation those
tuples whose temporal elements overlap
a specified temporal element and re-
stricts attribute values in the resulting
tuples to the intersection of their tempo-
ral elements and the specified temporal
element.

Bhargava’s two-dimensional model
[Bhargava and Gadia 1990, 1991] is an
extension of Gadia’s homogeneous model;
it supports both valid and transaction
time. Many of the criteria concerning
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transaction time that are satisfied by
Yeung’s algebra, discussed below, are
also satisfied by Bhargava’s algebra.

1.2.9 Yeung

Gadia’s [1986] multihomogeneous model
and Yeung’s heterogeneous models

[Gadia and Yeung 1988; Yeung 19861 are
all extensions of the homogeneous model.
They lift the restriction that all attribute
values in a tuple be functions on the
same temporal element, in part to be
able to perform Cartesian product with-
out loss of temporal information caused
by merging two time-stamps into one.
Here we consider only the latest [Gadia
and Yeung 1988] of these extensions. In
this (termed Yeung’s) algebra, temporal
elements may be multidimensional to
model different aspects of time (e. g., valid
time and transaction time). Attribute
values are still functions from temporal
elements onto attribute value domains,
but attribute values need not be func-
tions on the same temporal element. Ex-
pressed a different way, some time-slices
may contain nulls. Relations are as-
sumed to have key attributes, with the
restriction that such attributes be single
valued over their interval of validity.
Also, no two tuples may match on the
ranges of the functions assigned to the
key attributes. Hence, in the previous
example the attribute sname would
qualify as a key attribute in the hetero-
geneous model. The semantics of union,
Cartesian product, selection, projection,
and join are extended to account for tem-

with a nested granularity and to support
periodic events. As with the algebras dis-
cussed above, this algebra associates
time-stamps with individual attribute
values rather than with tuples. Although
a time-stamp is normally associated with
each of the attribute values in a tuple, a
time-stamp may be associated with any
nonempty subset of attribute values in a
tuple. Furthermore, no implicit or
mandatory time-stamp attributes are as-
sumed. Time-stamps are simply explicit,
numeric-valued attributes to be viewed
and updated directly by the user. They
represent either the chronon during
which one or more attribute values are
valid or a boundary point of the interval
of validity for one or more attribute
values. A time-stamp in the Temporal
Relational Algebra, like one in Sarda’s
algebra, does not include its rightmost
boundary point. Several time-stamp at-
tributes may also be used together to
represent a chronon of nested granular-
ity. This algebra is also misnamed, as it
only supports valid time.

Example

Let R be a historical relation instance in
the Temporal Relational Algebra over the
attributes { sname, course, semester-
start, semester-stop, week-start,
week-stop}, where all four time-stamp
attributes are associated with both
sname and course. Assume the granu-
larity for the time-stamp attributes
week-start and week-stop is a week rel-
ative to the first week of a semester.

R= sname course semester-start semester-stop week-start week-stop

“Phil” “English” 1 2 1 9
“Phil” “English” 3 5 1 17
“Norman” “English” 1 3 1 9
“Norman” “Math” 5 7 9 17

porally” heterogeneous attribute values-. In this example, we specify the weeks
Also, temporal variants of selection and during a semester when a student was
join are introduced. The semantics of dif- enrolled in a course. For example, Phil
ference and intersection, however, are left was enrolled in English during fall
unspecified. semester 1980 for only the first eight

1.2.10 Lorentzos weeks of the semester. Note that the
meaning of the week-start and week-

The Temporal Relational Algebra stop attributes is relative to the
[Lorentzos 1988; Lorentzos and Johnson semester-start and semester-stop
1988] was the first to support time-stamps attributes. ❑
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The standard set-theoretic operations
remain unchanged in the Temporal Rela-
tional Algebra. Although no new time-
oriented operations are introduced, three
new operators, EXTEND, UNFOLD, and
FOLD, which are defined in terms of the
conventional relational operators, are
introduced. These operators allow con-
version between relations whose tuples
contain two time-stamp attributes, repre-
senting the end points of the interval of
validity of one or more attributes, to
equivalent relations whose tuples con-
tain a single time-stamp attribute repre-
senting a chronon during which the same
attributes are valid. Relations whose tu-
ples contain only time-stamp attributes
representing the end points of intervals
of validity are considered to be folded,
whereas relations whose tuples contain
only time-stamp attributes representing
individual chronons of validity are con-
sidered to be unfolded. Relation R in the
above example is folded.

Example

Rz shown below, is an equivalent repre-
sentation of R in which the two time-
stamp attributes semester-start and
semester-stop have been unfolded onto
a single time-stamp attribute semester.
Note that every value in the original
interval defined by the values of the orig-
inal time-stamp is found in a separate
tuple, with a single time-stamp for the
semester attribute.

algebra, the user must first UNFOLD
each underlying relation, then manipu-
late the resulting relations using conven-
tional algebraic operators, then FOLD
the result back into a relation represent-
ing intervals. The data model thus dif-
fers from the normal relational model
only in that certain columns are given a
specific interpretation as representing
the period of validity of other column(s)
in the relation. The operations are de-
fined in terms of the conventional rela-
tional algebra but serve to manipulate
these particular columns to convert be-
tween an interval-based representation
and a chronon-based representation.

1.2.11 McKenzie

McKenzie’s temporal algebra [McKenzie
1988; McKenzie and Snodgrass 19911

time-stamps attribute values but retains
the requirement that attributes be single
valued in an effort to achieve the bene-
fits of attribute-value time-stamping
(e. g., the ability to perform a Cartesian
product) without the implementation
complexities of set-valued attributes. The
two types of objects in this algebra are
the snapshot and historical relations. A
rollback relation is a sequence of snap-
shot relations; a temporal relation is a
sequence of historical relations, both in-
dexed by transaction time. The value of
an attribute in a historical relation is
always an ordered pair whose compo-

Rz = sname

“Phil”
“Phil”
“Phil”
“Norman”
“Norman”
“Norman”
“Norman”

cource

“English”
“English”
“English”
“English”
“Engllch”
“Math”
“Math”

semester week-start
—

1 1
3 1
4 1
1 1
~ 1
5 9
6 9

week-stop

9
17
17

9
9

17
17

We could now apply UNFOLD once more
to unfold the attribute week-start and

nents are a value from the attribute’s

the attribute week-stop onto a single
domain and a set of chronons. There is

time-stamp attribute week. The result-
no requirement that the time-stamps of

ing relation would have 72 tuples. n
any of the attribute values in a relation
be homogeneous, but relations are not

In order to do such things as temporal allowed to have two tuples with the same
selection and temporal projection in this value component for all their attributes;
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that is, value-equivalent tuples are
disallowed.

Example

R is a historical relation instance in
McKenzie’s algebra containing three
tuples.

R= sname course

(“Phil”, [1, 3, 4}) (“English”, {1, 3, 4})
(“Norman”, {1, 2}) (“English”, {1, 2})
(“Norman”, {5, 6}) (“Math”, {5, 6})

In McKenzie’s algebra, Phil’s enrollment
in English must be recorded in a single
tuple; otherwise the value-equivalence
property would be violated. Norman’s
enrollment history, however, cannot be
recorded in a single tuple; an attribute
may be assigned only one value from its
value domain. ❑

The conventional re~ational opera-
tors are extended to account for the temp-
oral dimension of data directly and pre-
serve the value-equivalence property of
historical relations. One new operator,
historical derivation (8), is introduced
specifically to handle temporal selection
and temporal projection. Two operators,
snapshot and historical rollback (P and
D), are available to extract a snapshot or
historical state from a rollback or tempo-
ral relation, respectively. Finally, two
operators are available to perform
nonunique and unique aggregation and
two to convert between historical and
snapshot relations.

1.2.12 Tuzhilin

Tuzhilin proposes two algebras, termed
TA and TA, as bases for temporal re-
lational completeness [Tuzhilin and
Clifford 19901. When discussing proper-
ties satisfied by both, we will refer sim-
ply to Tuzhilin’s algebra. The operators
in these algebras were designed to be
powerful yet simple and to be based on a
well-accepted formalism of temporal logic
[Rescher and Urquhart 1971]. Tuzhilin’s
algebras apply to historical relational ob-
jects supporting discrete, linear-bounded

valid time and a time slice operator that
produces first normal form relations
without nulls. Hence, it could be applied
to any of the objects associated with the
other algebras discussed in this paper.

The conventional relational operators
are given a time-slice consistent seman-
tics, ensuring that the algebra reduces to
the relational algebra for each time slice.
In Tuzhilin’s TA algebra, two additional
binary operators are proposed, the future
linear recursive operator L ~ and the past
linear recursive operator IL ~. The expres-
sion C = L ~ (A, l?) computes tuples
valid at time t+ 1 from tuples of C, A,
and B valid at time t.C is valid at time
t + 1 if C and A were valid at time t or
if B was valid at time t.LP analogously
computes tuples at time t–l. In
Tuzhilin’s TA’ algebra, future and past
versions of three unary operators are
proposed, sequential union (SU~ and
SUP), which “compresses” future or past
history into a single time (i.e., every-
thing true at time t or at some time
t’> t of the argument relation is consid-
ered true at time t in the result relation),
sequential intersection (S1 ~ and S1 ~),
which gives those tuples that remained
constant in the past or future to now, and
shift (SH~ and SH ~), which “shifts” tu -
ples forward or backward one time unit.

1.3 Summary

The following summary oversimplifies
the algebras in an effort to differentiate
them.

●

●

●

●

●

Jones was the first to define a time-
oriented algebra.

Ben-Zvi was the first to add transac-
tion time.

Navathe defined his algebra primarily
to support his extension to SQL called
TSQL.

Sadeghi’s algebra was defined primar-
ily to support his extension to DEAL
called HQL.

Sarda. Lorentzos, and Tansel all incor-
porate operators “to switch between an
interval representation and a single
chronon representation. Lorentzos’
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e

*

*

algebra, closest to the conventional re-
lational data model, supports nested
granularity time-stamps and periodic
time.

Clifford, Gadia, Yeung, and Tansel all
employ non-lNF data models. Clifford
emphasizes associating time-stamps
with both the attribute value and with
the tuple; Gadia emphasizes the homo-
geneity property; Yeung emphasizes
the multihomogeneous property; and
Tansel includes four types of attribute
values.

McKenzie time-stamps attribute val-
ues but retains the requirement that
attributes have only a single value
within a tuple.

Tuzhilin defined his algebras as a met-
ric for temporal completeness.

Tables 1 and 2 summarize the features
of the 12 algebras mentioned above.
These tables show the range of solutions
chosen by the developers of the algebras
to 5 of the basic design decisions intro-
duced in Section 1.1. The sixth design
decision is not included since only Ben-
Zvi’s, Yeung’s, and McKenzie’s algebras
support transaction time. Table 1 cate-
gories the algebras according to their
representation of valid time. Clifford’s
algebra also associates time-stamps with
attributes in a relation schema as well as
with tuples in a relation (i. e., the tuple’s
lifespan). Yeung associates transaction
time with attribute values; Ben-Zvi asso-
ciates transaction time with tuples, and
McKenzie associates transaction time
with snapshot and historical states.

Table 2 describes other basic features
of the types of objects defined and opera-
tions allowed in the algebras, The fourth
column indicates whether each algebra
retains the set-theoretic semantics of the
five basic relational operators or extends
the operators to deal with time directly.
The final column lists new operators in-
troduced specifically to handle the tem-
poral dimension of the phenomena being
modeled.

In the next section we discuss a collec-
tion of criteria for evaluating temporal
extensions of the snapshot algebra. In

Section 3 we evaluate these 12 algebras
against the criteria.

2. CRITERIA

Although several historical and temporal
algebras have been proposed, previous
research has not focused on defining cri-
teria for evaluating the relative merit of
these algebras. Only Clifford presents a
list of specific properties desirable of a
temporal extension of the snapshot alge-
bra [Clifford and Tansel 19851. He identi-
fies five fundamental, conceptual goals,
which will be discussed in detail shortly.
These goals alone are insufficient to
evaluate the relative merit of the pro-
posed algebras. A more comprehensive

collection of specific, objective criteria is
needed. In this section, we identify 26
such criteria for evaluating temporal ex-
tensions of the snapshot algebra. First,
we introduce the criteria. With each cri-
terion, we indicate its source, if relevant.
We identify the important aspects to con-
sider when defining a temporal algebra.
We argue that each is well defined, has
an objective basis for being evaluated,
and is arguably beneficial. Next, we
discuss our reasons for not including as
criteria several other properties of histor-
ical and temporal algebras. We use the
terms criteria and property to delineate
what is included in our evaluation of the
algebras and what is not, respectively.
Then, we examine in compatibilities
among the criteria. For clarity, we repre-
sent a historical or temporal operator
(either defined on an extension of the
relational model or having a different
semantics) as 0$ to distinguish it from
its snapshot algebra counterpart op.

2.1 Adopted Criteria

The criteria appear in alphabetical or-
der. Most are relevant to both valid and
transaction time. We identify those few
criteria relevant to only one kind of time.
We also indicate where each criterion
first appeared.

Criterion 1. All attribute values in a
tuple are defined for the same interual(s)

[Gadia 19861. This requirement, termed
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Table 1. Representation of Valld Time m the Algebras

Single chronon Interval Set of chronons
(two chronons) (temporal element)

Ben-Zvi
Time-stamped Jones

tuples Navathe
Sarda

Sadeghi

l’ime-stamped
Clifford

Lorentzos
Gadia

attribute Tansel
McKenzie

values Yeung

Table 2. Objects and Operations m the Algebras

~,., . .

Algebra Objects
btanaaru lx ew

Attributes operations operations

Atomic-valued

Functional

Extended

Extended

Time-view

When, Select-If,
Select-When,
Time-Slice,
Time-Join
tdom,
Temporal selection
Time intersection,
One-sided

time intersection,
Time union,
Time difference,
Time-set membership
Extend, Fold, Unfold
Historical derivation,
Historical

aggregation,
Rollback, conversion
Time-Slice,
Inner Time-View,
Outer Time-View,
TCJOIN, TCNJOIN
Time Join,
When
Expand,
Contract,
Project-And-Widen,
Concurrent Product
Pack, Unpack,
T-Dee, T-Form,
Drop-Time,
Slice, Uslice, Dslice,
Enumeration

Seq. Union, Shift,
Seq. Intersection,
Linear Recursive
Temporal Selection,
Temporal Join

Ben-Zvi

Clifford

Snapshot relation,
temporal relation

Lifespan,
historical relation

Temporal element,
historical relation

Historical relation

Functional

Atomic-valued

Snapshot
semantics

Retained

Gadia

Jones

Lorentzos
McKenzie

Snapshot relation
Snapshot relation,

historical relation

Atomic-valued
Ordered pairs

Retained
Extended

Navathe Snapshot relation,
historical relation

Atomic-valued Retained

ExtendedSadeghi

Sarda

Historical relation

Snapshot relation
historical relation

Atomic-valued

Atomic-valued
and
non-atomic-
valued

Atomic-valued,
Set-atomic

valued,
Triplet valued,
Set-triplet

valued
Independent

Some
retained

Others
extended

ExtendedTansel Historical relation

Historical relation ExtendedTuzhilin

Yeung

of representation

Functional ExtendedTemporal relation,
temporal element
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homogeneity by Gadia, applies when at-
tributes are set valued, rather than
atomic valued, and when valid time is
associated with attribute values, rather
than tuples; the criterion is trivially sat-
isfied if tuples are time-stamped. Al-
though attributes may change value at
different times, this criterion requires
that, for each chronon for which some
attribute has an associated value in a
tuple, every attribute in that tuple has a
value for that chronon. If this is ensured,
the algebra is simplified. In particular,
operators need not be redefined to handle
valid time directly. Rather, the algebra
can be defined in terms of the con-
ventional relational operators using
snapshot semantics even if set-valued at-
tributes are allowed. Also, problems that
arise when disjoint attribute time-stamps
are allowed (e. g., how to handle non-
empty time-stamps for some, but not all,
attributes) need not be considered.

Criterion 2. Consistent extension of the
snapshot algebra [Clifford and Tansel
19851. The algebra should be at least as
powerful as the snapshot algebra so that
queries possible when time was not mod-
eled are not forbidden when time is
added. Any relation or algebraic expres-
sion that can be represented in the snap-
shot model should have a counterpart in
the temporal model. Thus the algebra
should provide, as a minimum, a time-
oriented counterpart for each of the
five operators that serve to define the
snapshot algebra: union, difference,
Cartesian product, projection, and selec-
tion [Unman 1988al. If we assume the
function Transform converts a snapshot
relation instance into its temporal coun-
terpart (with valid and transaction times
of tl and t~, respectively), then Figure 6
illustrates the structure of the proof of
this criterion for the unary snapshot op-
erators T and o to show that Tz (the
transformed version of the result of ap-
plying the snapshot operator to S) is in-
deed equal to the result of applying the
analogous temporal operator to the
transformed version of S. The structure
of the proof for the binary operators U,
—, and x is similar.

Criterion 3. Data periodicity is sup-
ported [Anderson 1981, 1982; Lorentzos
1988; Lorentzos and Johnson, 1988]. Pe-
riodicity is a property of many real-world
phenomena. Rather than occurring just
once in time or at randomly spaced times,
these phenomena recur at regular inter-
vals over a specific interval in time. For
example, a person may have worked from
8:00 a.m. until 5:00 p.m. each day, Mon-
day through Friday, for a particular
month. Ideally, a temporal data model
should be able to represent such periodic
phenomena without having to specify the
time of each of their occurrences, and
temporal operators should be able to ma-
nipulate such periodic data directly.

Criterion 4. Each collection of legal
attribute valaes, drawn from the appro-
priate domain(s), is a legal tuple. In the
snapshot model, the value of an attribute
is independent of the value of other at-
tributes in a tuple, except for key and
functional dependency constraints. The
same should be true of the temporal
model to retain the simplicity of the
snapshot model by not imposing arbi-
trary extensions. If we extend the snap-
shot model so valid time is assigned to
each attribute, we should extend the con-
cept of attribute independence to include
the valid-time component of the attribute
as well as the value component of the
attribute. Within a tuple, the value or
valid-time component of one attribute
should not restrict arbitrarily the value
or valid-time component of another at-
tribute. Limiting legal tuples to some
subset of the possible tuples (such as re -
stricting the time-stamp of one attribute
to be identical to the time-stamp of an-
other attribute, given attribute-value
time-stamping) adds a degree of complex-
ity to the temporal model not found in
the snapshot model. The same considera-
tions should hold for transaction time.

Criterion 5. Each set of legal tuples is
a legal relation. In the snapshot model,
every set of tuples composed of values
from appropriate domains is a legal rela-
tion. The same should be true of the
temporal model. Imposing additional in-
tertuple constraints (such as not allow-
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Figure6. Outline ofanequivalence proof.

ing two tuples with identical attribute
values but different attribute time-
stamps or requiring coalescing) adds
another degree of complexity to the
temporal model not found in the
snapshot model.

Criterion 6. Formal semantics are well
defined. Concise, mathematical defini -
tions for all object types and operations
are needed. Without such definitions, the
meaning of algebraic operations is un-
clear. The snapshot algebra already has
a formal semantics [Klug 19821.

Criterion 7. It has the expressive power
of a historical or temporal calculus [Gadia
1986]. There should exist a historical or
temporal declarative calculus-based
query language to be used as the pri-
mary user interface to the temporal
DBMS, whose expressive power is sub-
sumed by that of the algebra, which can
then serve as the underlying evaluation
mechanism. Calculus-based query lan-
guages are generally easier to use by
novices than algebraic-based languages

[Reisner 1981; Reisner et al, 1975]. It
should be possible to prove that every
statement in the calculus-based query
language can be converted into an ex-
pression in the temporal algebra having
an equivalent semantics.

Criterion 8. Includes aggregates. The
temporal algebra should provide formal

Analogous
Temporal
Operator

O-P

semantics for versions of standard aggre-
gate operations (e.g., sum, count, rein),
which already appear in several ex-
tensions of the relational algebra

[Klug 19821.
Criterion 9. Incremental semantics are

defined. Studies have shown that it may
be more efficient to implement some re-
curring snapshot queries as incremen -
tally maintained materialized views
rather than recomputing the queries each
time they are asked [Hanson 1987, 1988;
Jensen et al. 1991; Roussopoulos 19911.
Because this strategy will likely be
applicable to an even larger subclass
of temporal queries [McKenzie 19881, an
incremental version of the algebra is
desirable.

Criterion 10. Intersection, Cl-join, nat-
ural join, and quotient are defined. In
the snapshot algebra, intersection, O-join,
natural join, and quotient are defined in
terms of the difference, selection, projec-
tion, and Cartesian product operators
[Unman 1988al. In a temporal algebra,
analogous definitions may, but need not,
hold. For example, if the historical ver-
sions of the basic operators do not retain
the properties of their snapshot counter-
parts (e.g., satisfy algebraic equiva-
lences), it may not be possible to define
historical versions of these operators ex-
actly as they are defined in the snapshot
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algebra. Hence, formal definitions should
be given of these additional operators.

Criterion 11. Is, in fact, an algebra

[Clifford and Tansel 19851. This criterion
is fundamental. Any algebra should de-
fine the types of objects supported and
the allowable operations on objects of
each defined type. This subsumes the
property that the algebra be closed.

Criterion 12. Model does not require
null attribute values. Restriction of
attribute values to nonnull values is
consistent with the snapshot model and
simplifies the semantics of the algebra. If
missing or unknown information needs
to be recorded, then nulls are one such
representation, but the algebra should
not use nulls as a matter of course.

Critericm 13. Multidimensional time-
stamps are supported [Gadia and Yeung
1988]. It may be desirable to associate

more than one aspect of time with an
object or relationship being modeled. Be-
cause valid time, in particular, is a mul-
tifaceted aspect of time, time-stamps of a
single dimension may be inadequate for
recording time in temporal databases.
For example, it maybe desirable to record
both when a train was scheduled to

depart and when it actually departed

[Lindgreen 19821. Hence, a temporal data
model should support multidimensional
time-stamps. Note that this criterion dif-
fers from the earlier one concerning peri-
odicity. Satisfaction of the periodicity

criterion only requires that the algebra
support structured time-stamps that
record a single aspect of time. This crite-
rion is relevant only to valid time.

Criterion 14. Reduces to the snapshot
algebra [Snodgrass 1987]. The semantics
of the algebra should be consistent with
the intuitive view of a snapshot relation
as a two-dimensional slice of a four-
dimensional temporal relation at a valid
time tl and transaction time t2.Hence,
for all temporal operators, the snapshot
relation obtained by applying a temporal
operator to a temporal relation then tak-
ing a snapshot should be equivalent to
the relation obtained by taking a snap-
shot of the temporal relation and apply-
ing the analogous relational operator to
the resulting snapshot relation. Figure 7
illustrates this reduction proof. Infor-
mally, this criterion differs from trite -
rion 2 (consistent extension of the snap-
shot algebra) in that it starts from a
temporal relation rather than a snapshot
relation. The concern here is that opera-
tions on such relations, which may not be
transformations of any snapshot rela-
tions, may be irreducible to the snapshot
counterparts.

Criterion 15. Restricts relations to first

normal form. The snapshot algebra owes

much of its simplicity to the restriction of
relations to first normal form, which re-
quires that all attribute values be atomic.
Any extension of the snapshot algebra
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should retain this property, unless doing
so will compromise other, equally impor-
tant properties.

Criterion 16. Supports a three-
dimensional conceptual visualization of
historical relations and operations [Ariav
1986; Ariav and Clifford 1986; Clifford
and Tansel 1985]. Brooks [1956] was the
first to observe that database relations
recording changes to real-world objects
over time can be visualized conceptually
as three-dimensional objects. This spatial
metaphor represents historical relations
as three-dimensional objects, whose first
two dimensions are tuple (row) and at-
tribute (column) and whose third dimen-
sion is valid time. Although these spatial
objects are not true cubes, they do pos-
sess geometric properties similar to those
of cubes.

Example

Consider the historical relation instance
R shown below with attribute-value
time-stamping containing three tuples.

R= sname course

(“Phil”, {1,3,4}) (“English”, {1, 3, 4})
(“Norman”, {1,2}) (“English”, {1,2})
(“Norman”, {5,6)) (“Math”, {5,6})

Figure 8 is a graphical representation
of this relation. Hence, this representa-
tion of R can be viewed as a three-
dimensional object with geometric
properties similar to that of a cube. ❑

If we accept this three-dimensional
representation as a user model of histori-
cal relations, then each operation defined
on historical relations should have
an interpretation, consistent with its
semantics, in accordance with this con-
ceptual framework. The definitions of op-
erations should be consistent with the
visualization that these operations ma-
nipulate spatial objects. For example, the
difference operator should take two spa-
tial objects (i.e., historical relations) and
produce a third spatial object that repre-
sents the volume (i. e., historical informa-
tion) present in the first spatial object

but not present in the second spatial ob-
ject. Likewise, the Cartesian product op-
erator should take two spatial objects and
produce a third spatial object such that
each unit of volume (i. e., historical tuple)
in the first spatial object is concatenated
with a unit of volume in the second spa-
tial object to form a unit of volume in a
third spatial object. This description of
operations on historical relations as
“volume” operations on spatial objects is
consistent with the semantics of the indi-
vidual snapshot algebraic operations as
“area” operations on two-dimensional
tables extended to account for the addi-
tional dimension represented by valid
time.

This criterion subsumes the property
that the algebra supports historical
queries concerning valid time [Snodgrass
1987]. An algebra supports historical

queries if information valid over a
chronon can be derived from information
in underlying relations valid over other

chronons, much as the snapshot algebra
allows for the derivation of information
about entities or relationships from in-
formation in underlying relations about
other entities or relationships. This
implies that the algebra allows units of
related information, possibly valid over
disjoint chronons, to be combined into a
single related unit of information possi-
bly valid over some other chronon. Sup-
port for such a capability requires the
presence, in the algebra, of a Cartesian
product or join operator that concate-
nates tuples, independent of their valid
times, and preserves, in the resulting tu-
ple, the valid-time information for each
of the underlying tuples.

This criterion also subsumes the prop-
erty that the algebra supports a valid-
time snapshot operator (cf., criterion 19).

This criterion has an important impli-
cation: If it is satisfied, then historical
data loss [McKenzie 1988] is not an oper-
ator side effect. Historical data are lost if
an operator removes valid-time informa-
tion, contained in underlying relations,
from its resulting relation. Data loss be-
comes an operator side effect if the re-
moval of that valid-time information is
not the purpose of the operator.
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/

VALID TIME

d

Figure 8. Graphical representation of a historical relatlon

Example

Suppose a historical algebra allows at-
tribute-value time-stamping but requires
closure under Gadia’s homogeneous re -
striction (i. e., the valid times associated
with each attribute value in a tuple must
be identical). To ensure closure under
Cartesian product, assume that Carte -
sian product is defined using intersection
semantics (where the interval of the re-
sulting tuple is defined to be the inter-
section of the intervals of the underlying
tuples). Now consider the Cartesian
product of two historical relations with
attribute-value time-stamping: relation
instance A, recording when students took
courses, and relation instance B, record-
ing when each student resided in a
particular state.

A= sname course

(“Phil”, {1,3,4]) (“Enghsh”, {1. 3,4})

B= hname state

(“Phil”, {1,2, 3)) (“Kansas”, {1, 2, 3})

AxB= sname course

(c’Phd”, {1, 3}) (“Engllsh”, {1,3})

Criterion 17. Supports basic algebraic
equmulences. The following commuta-
tive, associative, and distributive equiva-
lences, which hold for and in some sense
define the snapshot operators, should also
hold for their historical counterparts. As
most optimization strategies for conven-
tional relational databases are based on

these equivalences, a temporal algebra
that also satisfies them will be easier to
optimize. Implementation efficiency is
arguably the most important feature of
an algebra. If an algebra cannot be im-
plemented efficiently, it will have no
practical application for the development
of temporal DBMSS.

QUR=RUQ

Q~R=R~Q

%(%(R)) = %(%(R))

hname state

(“phiI”, {1, 3}) (“Kansas”, {1, 3})

Note the loss of valid-time information QU(RUS)=(QUR)US

associated with Phil’s enrollment in
English at time 4 and his residency in

Q~(Rx S)=(Q~R)~S

Kansas at time 2. n Q;(RUS) -( QXR)U(QXS)
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Q;(RV+(Qh?~(Qi S)

6F(Q U R) = ciF(Q) () 6F(R)

UF(Q = 1?)= 6F(Q) – %(R)

iix(Q U 1?) ==fix(Q) U ;X(R)

Qfi REQQ(Q~R)

Included in this list are the commuta-
tive, associative, and distributive equiva-
lences involving only union, difference,
and Cartesian product in set theory
[Enderton 1977]. Also included in this
list are the nonconditional commutative
laws involving selection and projection

[Smith and Chang 1975; Unman 1988bl.
Finally, the definition of the intersection
operator in terms of the difference opera-
tor, which holds for the snapshot algebra,
should also apply.

Criterion 18. Supports relations of all
four classes [Snodgrass and Ahn 1985,
1986]. Relations may be classified, de-
pending on their support for valid time
and transaction time, as either snapshot,
rollback, historical, or temporal rela-
tions. Any temporal extension of the
snapshot algebra that supports both valid
time and transaction time should allow
for relations of all four classes.

Criterion 19. Supports rollback opera-
tions [Ben-Zvi 1982; Snodgrass 19871. In
many database applications, there is
sometimes a need to pose queries in the
context of past database states. Hence,
the algebra should allow relations to be
rolled back to past states for query evalu-
ation. The algebra should allow a query
unrestricted access to tuples in past
database states. Also, the algebra should
allow a query access to multiple database
states rather than access to a single
database state. This criterion is relevant
only to transaction time.

This criterion subsumes the property
of supporting a three-dimensional visual-
ization of rollback relations and opera-
tions. Incorporating transaction time
should conceptually add ~ third dimen-
sion, just as incorporating valid time
does. Given the special semantics of
transaction time discussed above and the
fact that support for transaction time re-
quires that all modifications be treated

physically as appends [Snodgrass and
Ahn 1986], however, we must interpret
this criterion with care. Specifically, sup-
porting a three-dimensional visualization
of rollback relations implies that modifi-
cations conceptually make a copy of the
most recent snapshot state (a two-
dimensional slice), modify it, then ap-
pend this to the three-dimensional roll-
back relation. Additionally, rollback as
an operation should involve extracting a
two-dimensional (snapshot) slice from a
three-dimensional rollback relation or a
three-dimensional (historical) slice from
a four-dimensional temporal relation.

Criterion 20. Supports multiple stored
schemas [Ben-Zvi 1982; McKenzie and
Snodgrass 19901. Because a relation’s
structure, as well as its contents can
change over time, a data model incorpo-
rating transaction time needs to support
multiple stored schernas and to support
retrieval via rollback of data consistent
with the schema in effect when that data
were originally stored.

Criterion 21. Supports static attributes
[Clifford and Tansel 1985; Navathe and
Ahmed 1987]. The algebra should allow
for attributes whose role in a tuple is not
restricted by time in concert with other
time-varying attributes. This feature al-
lows the temporal model to be applied to
environments in which the values of cer-
tain attributes in a tuple are time depen-
dent while the values of other attributes
in the tuple are not time dependent. This
criterion is relevant only to valid time.

Criterion 22. Treats valid and trans-
action time orthogonally [Snodgrass and
Ahn 1985, 19861. Valid tilme and transac-
tion time are orthogonal aspects of time.
Valid time concerns the time when events
occur and relationships exist in the real
world. Transaction time, on the other
hand, concerns the time when a record of
these events and relationships is stored
in a database. Because the two aspects of
time are orthogonal, their treatment also
should be orthogonal. The valid time as-
signed to an object in the database should
not be restricted by or determined by the
transaction time assigned that object.
The algebra should allow both retro-
active and postactive changes to be
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recorded. Also, operations involving one
aspect of time should not arbitrarily
affect the other aspect of time.

Criterion 23. Tuples, not attribute val-
ues, are time-stamped. Time-stamping
tuples, rather than attribute values, sim-
plifies the semantics of the algebra. Op-
erators need not be defined to handle
disjoint attribute time-stamps but rather
can be defined in terms of the con-
ventional relational operators using
snapshot semantics.

Criterion 24. Unique representation for
each temporal relation. In the snapshot
model, there is a unique representation
for each valid snapshot relation. Like-
wise, there should be a unique represen-
tation for each valid temporal relation.
Failure of an algebra to satisfy this crite-
rion can complicate the semantics of the
operators, require inefficient implemen-
tations, and possibly restrict the class of
database retrievals that can be
supported.

Examples

To illustrate the potential problems of
nonunique representations, consider the
relation instances shown below.

Al = sname course

(“Phil”, {1,2}) (“English”, {1,2})
(“Phil”, {3,4}) (“English”, {3, 4})

A, = sname course

(“Phil’”, {1,2,3,4}) (“English”, {1,2, 3,4})

El= sname course

(“Phil”, [5,6}) (“Enghsh”, {5,6})

c= sname course

(’<Phil”. /2.3}) (“Enuli~h”, (2.3})

Clearly, the information content of rela-
tion instances Al and Az is identical;

the information content of relation
instance B is a continuation of the infor-
mation in both Al and Az; and the in-
formation content of relation instance C
is a subset of that contained in both Al
and Az. What, however, is the semantics
of Al U B? Does the output relation con-
tain three tuples, two tuples, or just one

tuple? Is it identical to the result of Az
U B? Similarly, what is the semantics of
Al U C? Is the single tuple in C repre-
sented in the output relation, or is it
absorbed by the two tuples in Al? Also, if

we want to retrieve the name of all stu-
dents who were enrolled in English from
time 2 to time 4, do we get the same
result if we apply this query to relation
instances Al and Az? Retrieval of
“Phil,” which is the intuitively correct
result when applying this query to Al,
requires tuple selection based on infor-
mation contained in more than one tuple,
a significant departure from the seman-
tics of the selection operation in the
snapshot algebra. ❑

Our conclusion is that a selection oper-
ator with significantly more complicated
semantics would be required to produce
results that are correct intuitively. Al-
though the above example assumes
attribute-value time-stamping, the same
problems arise with tuple time-stamping.
Moreover, the implementation of such a
selection operator may be impractical be-
cause of the many cases that would have
to be considered during the selection
process.

This criterion subsumes the property
that tuples with all duplicate attribute
values be disallowed, as illustrated in
the above example.

Criterion 25. Unisorted (not multl -
sorted). In the snapshot algebra all oper-
ators take as input and provide as output
a single sort of object, the snapshot rela-
tion. If possible, a temporal extension of
the snapshot algebra should also be
unisorted. A multisorted algebra, such as
one with an operation that took a histori-
cal relation and a snapshot relation and
produced a historical relation, would in-
troduce a degree of complexity in the
temporal model not found in the snap-
shot model.

Criterion 26. Update semantics are
specified [Snodgrass 1987]. Concise,
mathematical definitions for update op -
erations, allowed on a relation’s schema
as well as its content, should be present
and well defined. Without such defini-
tions, the meaning of update operations
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such as tuple insertion and tuple deletion
is unclear.

2.2 Properties Not Included

The following properties are either sub-
sumed in concert by several criteria just
presented or do not yet have an objective
basis for being evaluated. Hence, they
are not included as criteria.

The property that the algebra include
the concept of key does not have an objec-
tive basis. There have been several defi-
nitions of temporal key proposed [Ariav
1986; Bhargava and Gadia 1991; Clifford
and Croker 1987; Gadia and Yeung 1988;
Navathe and Ahmed 19871; no consensus
has yet arisen as to which is the defini-
tion. Additionally, although keys are cer-
tainly essential during the design of a
relational schema, whether snapshot
or temporal, it is unclear whether

keys should enter into the definition of a
relational algebra. The conventional re-
lational algebra does not include the con-
cept of key (e. g., the algebra allows the
union operator to be applied to any two
relation instances with identical
schemas, even if the result may violate
externally defined key constraints).
Hence, we do not include this property as
a criterion.

The property that the algebra should
serve as a standard for defining temporal
completeness (i. e., an extension of Codd’s
notion of completeness in the snapshot
model) [Clifford and Tansel 19851 cur-
rently has no objective basis for evaluat-
ing models si~ce there is no consensus
definition of temporal completeness, al-
though several have been proposed
[Croker and Clifford 1989; T_uzhilin and
Clifford 19901.

If the algebra is closed and supports
historical queries, it must support non-
homogeneous relations (i.e., relations
having tuples whose attribute values are
allowed to have different valid times).
Therefore, this property that the algebra
support nonhomogeneous relations
[Gadia 19861 is subsumed by the criteria
that the algebra be an algebra, that the
algebra be a consistent extension of the
snapshot algebra, and support a three-

dimensional view of historical relations
and operators.

The property that the algebra supports
transaction time [Snodgrass and Ahn
1986] is subsumed by supports relations
in all four classes, supports schema evo-
lution, supports rollback operations,
and treats valid and transaction time
orthogonally.

Although some argue that the algebra
should treat valid and transaction time
uniformly [Gadia and Yeung 19881, we
feel that transaction time, being a con-
cern of the stored data rather than real-
ity, is sufficiently different that it cannot
be treated identically to valid time
[McKenzie 1988; McKenzie and Snod-
grass 1990]. In particular, uniform treat-
ment of valid time and transaction time
cannot be extended to include update op -
erations. Transaction time has a specific
semantics, very different from that of
valid time, that requires special han-
dling on update. Valid time is specified
by the user and its value can be derived,
via an algebraic expression, from values
in underlying relations. Transaction
time, however, is simply the time, as
measured by a system clock, when up-
date occurs. Its value cannot be specified
by the user or derived from underlying
relations. For update, therefore, it would
seem impossible to treat valid time and
transaction time uniformly and still re-
tain a consistent semantics for transac-
tion time.

2.3 Incompatibilities

Not all the criteria
are compatible. There
sets of criteria that
satisfv. In this section.

discussed above
are certain sub-
no algebra can
we examine the.

incompatibilities among criteria.
The criterion that the algebra support

a three-dimensional visualization (trite -
rion 16) is incompatible with the criteria
that

o Tuples, not attribute values, be time-
stamped (23)

@ All attribute values in a tuple be de-
fined for the same interval(s) (1)
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“ The equivalence Q ~ (R ~ S) = (Q ~ Example

R) ~ (Q x S) hold (17). (The remaining Consider the following single-tuple his-
equivalences do not conflict. ) torical relations with attribute-value

First, no algebra can support a three-
dimensional model (16) and also time-

stamp tuples (23). For the algebra to
support such a model, its Cartesian prod-
uct or join operator must concatenate
tuples independent of their valid times
and preserve, in the resulting tuple, the
valid-time information for each of the
underlying tuples. The alternative is his-
torical data loss (c f., the example in cri-
terion 16). Yet, if the Cartesian product
operator assigns different time-stamps to
attribute values in its output tuples, the
criterion that tuples, not attribute val-
ues, be time-stamped cannot be satisfied.

Ax(BJ C’)= sname

time-stamping.

A= sname course

(“Phil”, {1,2,3)) (“Enghsh”, {1,2, 3})

B= hname state

(“Norman”, {1,2}) (“Iowa”, {1,2})

c= hname state

(“Norman”, {2}) (“Iowa”. {2})

Figure 9 illustrates the representation
of historical relations as spatial objects
in calculating A x (B ~ C) and (A x B)
~ (A x C), respectively. The results of
these calculations are shown below.

course hname state

(“Phil”, {1,2,3}) (“Math”, [1,2,3}) (“Norman”, {1}) ($’Iowa”, {1])

(Ax B) Q(Ax C)= sname course hnane state

(“Phd”, @) (“Math”, ~) (’cNorman”, {1}) (“Iowa”, {1})

Second, no algebra can support a
three-dimensional model (16) and also re-
quire that all attribute values in a tuple
be defined for the same interval(s) (l). If
the Cartesian product operator required
that all attribute values in a resulting
tuple be defined over the same interval(s),
arbitrary valid-time information associ-
ated with the attribute values of the un-
derlying tuples could not be preserved,
and the criterion that the algebra sup -
port a three-dimensional model could not
be satisfied. Yet, if the Cartesian product
operator preserved the valid-time infor-
mation for the attribute values of the
underlying tuples in the resulting tuple,
attribute values in the resulting tuple
would be defined for different intervals
and the criterion that all attribute val-
ues in a tuple be defined for the same
interval(s) could not be satisfied.

Third, no algebra can support a three-
dimensional model (16) and also support
the distributive property of Cartesian
product over difference (17).

Note that the results are different, con-
trary to the standard relational model

where the results are always identical.

n

This example shows that the criterion
that the distributive property of Carte-
sian product over difference hold is in-
compatible with the criterion that the
algebra support a three-dimensional
visualization (16).

There are two other incompatibilities

among the criteria. First, the criterion
that each set of legal tuples be a legal
relation (5) is incompatible with the cri-
terion that there be a unique representa-
tion for each relation (24). If every set of
legal tuples were allowed to be a legal
relation, the algebra could not have a
unique representation for each relation.

Example

The following are only two of several
equivalent representations of a rela-

tion instance A over the attributes
{hname, state} and attribute-value time-
stamping.
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&iiiiii7’””
B“C A A;(B=C)

........ ... . .. ... .......

Fp[ggye

‘-”-”-”--”-”’’’’’’’”-a~d~zz:y=.

TIME

Figure 9. Ax(B~C) and(A~B)~(A~C)

Al = hname state To define difference so that A ~ B can

(“Norman”, {1, 2,3, 4}) (“Utah”, {1, 2,3, 4}) be calculated consistent with the user

AZ =
model of historical operators as “volume”

lmame state operators on spatial objects, the algebra

(“Norman”, {1,2}) (“Utah”, {1,2}) must allow tuples with duplicate
(“Norman”, {3, 4}) (“Utah”, {3,4}) attribute values in a relation

Yet, if the algebra allowed only one of
these representations, say Al, to ensure
that there be a unique representation for
each relation, there would be sets of legal
tuples (e.g., AZ) that would not be legal
relatiom3. ❑

Finally, the criteria that the algebra
restrict relations to first normal form
(15), support a three-dimensional visual-
ization (16), and have a unique represen-
tation for each historical relation (24) are
incompatible. An algebra can be defin-
ed that satisfies any two of these crite-
ria, but no algebra can be defined that
satisfies all three criteria.

Consider the following two single-tuple
relation instances.

A= hname state

C’Phil”, {1,2,3}) (“Kansas”, {1, 2, 3})

A~B= hname state

(“Phil”, {1,2}) (“Kansas”, {1,2})
(“Phil”, {3,4}) (“Kansas”, {3, 4})

(thereby violating the criterion that there
be a unique representation) or allow the
time-stamp associated with a tuple to be
nonatomic (i. e., a set of intervals rather
than a single interval).

A~B= hname state

(“Phil”, [1,3}) (’Kansas”, {1, 3})

Thus, to support a three-dimensional
visualization and disallow tuples with
duplicate attribute values, which is im-
plied by the criterion that the algebra
have a unique representation for each
historical relation (if attribute values are
time-stamped), the algebra must allow
non-first normal form relations.

B= Imame state The five incompatibilities described

(“Phil”, {2]) (“Kansas”, {2})
above all involve at least one of these
two criteria.
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Supports a three-dimensional view of historical states and operations?
No Yes

All attributes In a tuple must not be
defined over the same interval(s)

No restrictions The distributive property of CartesIan
product over difference cannot hold

Tuple time stampmg cannot be used

All attributes in a tuple must not be
defined over the same Interval(s)

The distributive property of Cartesian
product over difference cannot hold

All sets of legal tuples cannot be
legal relations Tuple time stampmg cannot be used.

All sets of legal tuples cannot be
legal relations

Relatlon states cannot be restricted
to first-normal-form

Figure 10. Incompatibilities among criteria

e Supports a three-dimensional visual-
ization (16)

e Unique representation for each histori-
cal relation (24)

Figure 10 summarizes the effect satisfac-
tion of these two criteria has on the alge-
bra’s ability to satisfy other criteria. Note
that if the algebra satisfies neither of
these criteria, it can satisfy all the other
criteria. If, however, the algebra satisfies
both of these criteria, there are five crite-
ria that it cannot satisfy. Because no
algebra can satisfy all seven of these cri-
teria, we term these criteria conflicting
criteria.

3. EVALUATIC)N

In this section we evaluate the 12 alge-
bras reviewed in Section 1.2 against the
criteria presented in the previous sec-
tion. Table 3 summarizes the evaluation
of these 12 proposals against the criteria.
Note that Tuzhilin’s algebras are not tied
to a particular temporal data model. His
algebras are meant ordy to provide an
objective measure of the expressive power
of algebras and calculi. Hence, many of
the criteria can be satisfied or not satis-

fied depending on the data model chosen.

For such criteria, we simply indicate “not
applicable. ”

3.1 Conflicting Criteria

We first evaluate the algebras against
the seven criteria introduced in the pre-
vious section that are not all compatible.

Criterion 1. All attribute values in a
tuple are defined for the same interval(s).
Gadia’s homogeneous model and those
that time-stamp tuples satisfy this crite-
rion. In Tuzhilin’s algebras, representa-
tion restrictions are not imposed on base
relations. All-derived relations will, how-
ever, associate identical intervals with
all attribute values. The other algebras
allow attribute time-stamps in a tuple to
be disjoint.

Criterion 5. Each set of legal tuples is
a legal relation. The algebras proposed
by Ben-Zvi, Gadia, Jones, Lorentzos,
Sarda, and Tansel all satisfy this crite-
rion. Clifford’s algebra fails to satisfy
this criterion because a relation may not
contain two tuples that match on the
values of the key attributes at the same
chronon. Yeung’s algebra, likewise, fails
to satisfy this criterion: It does not allow
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a relation to contain two tuples that Lorentzos’ algebra fails to satisfy this
match values on the key attributes. In criterion when relations have multiple
Tuzhilin’s algebras, representation re - attribute time-stamps.
striations are not imposed. Finally, the

Example
algebras proposed by McKenzie, Navathe
and Sadeghi also fail to satisfy this crite- Consider the following single-tuple rela-

rion. Their algebras require that tuples tion instances legal in Lorentzos’

with identical values for the explicit algebra.

A= sname n-start n-stop course c-start c-stop

“Marilyn” 2 4 “Math” 2 4

B= sname n-start n-stop course c-start c-stop

“Marilyn” 1 3 “Math” 1 3

attributes (termed value-equivalent) be
coalesced; hence, tuples with identical
values for the explicit attributes can nei-
ther overlap nor be adjacent in time.

Criterion 15. Restricts relations to
first-normal form. The algebras proposed
by Ben-Zvi, Jones, Lorentzos, Navathe,
and Sadeghi restrict relations to first
normal form. In Tuzhilin’s algebras, rep-
resentation restrictions are not imposed,
The other algebras all fail to satisfy this
criterion since they allow set-valued at-
tributes, or set-valued time-stamps, or
both.

Criterion 16. Supports a three-dimen-
sional visualization of historical relations
and operations. McKenzie’s algebra sup -
ports the user-oriented visualization of a
historical relation as a three-dimensional
object in that it supports nonhomoge -
neous attribute-value time-stamping and
avoids historical data loss as an opera-
tor side effect. Operators in Clifford’s
algebra, with the exception of the join
operators, do not satisfy this criterion.
Although lifespans are associated with
tuples, Cartesian product is defined to
prevent historical data loss as an opera-

In Lorentzos’ algebra, historical differ-
ence is defined in terms of the Unfold, set
difference, and Fold operators. If we un-
fold both A and B, first on the n at-
tribute and then on the c attribute, we

get the following relations:

A’ = sname n-time course c-time

“Marilyn” 2 “Math” 2
“Marilyn” 2 “Math” 3
“Marilyn” 2 “Math” 4
“Marilyn” 3 “Math” 2

“Marilyn” 4 “Math” 4

BI = sname n-time course c-time

“Marilyn” 1 “Math” 1

“Marilyn” 3 “Math” 3

We then apply set difference to the un-
folded relations, with the following re-
sults:

A–B’= sname n-time course c-time

“Marilyn” 2 “Math” 4
“Marilyn” 3 “Math” 5
“Marilyn” 4 “Math” 2
“Marilyn” 4 “Math” 3
“Marilyn” 4 “Math” 4

If we then fold the result, again first on n
and then on c, we get

A~B= sname n-start n-stop course c-start c-stop

“Marilyn” 2 4 “Math” 4 4
“Marilyn” 4 4 “Math” 2 3

tor side effect through the introduction of This result is inconsistent with the visu -

nulls into the Cartesian product’s output alization of historical relations as three-

tuples. It is unclear whether Yeung’s al- dimensional objects and operations on

gebra and Tansel’s algebra satisfy this historical relations as “volume” opera-
criterion since all operations are not de- tions on spatial objects, as shown in

fined formally. Figure 11. ❑
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Table 3. Evaluation of Algebras against Crlterlaa

Ben-Zvi Clifford Gadia Yeung Jones Lorentzos

Conflicting CrzterLa
1 All attr~butes in a tuple are defined

for same interval(s)
5 Each set of legal tuples is a legal relation

15. Restricts relations to first normal form
16 Supports a 3-D view of historical

state and operations
17 Supports basic algebraic equivalences
23 Tuples are time-stamped
24. Unique representation for each temporal

relation
Cornputible Criteria

2. Consistent extension of the snapshot algebra
3 Data periodicity is supported
4. Each collection of legal attribute

values is a legal tuple
6. Formal semantics are well defined
7. Has the expressive power of a

temporal calculus
8. Includes aggregates
9. Incremental semantics defined

10. Intersection, (3-~oin, natural join, and
quotient are defined

11, Is, in fact, an algebra
12. Model doesn’t requu-e null attribute values
13 Multidimensional time-stamps are supported
14. Reduces to the snapshot algebra
18 Supports relations of all four classes
19. Supports rollback operations
20 Supports multiple stored schemas
21 Supports static attributes
22 Treats valid time and transaction

time orthogonally
25. Unisorted (not multisorted)
26 Update semantics are specified

The algebras proposed by Ben-Zvi,
Gadia, Jones, IYavathe, Sadeghi, and
‘Tuzhilin also fail to satisfy this criterion.
None of these algebras provides a Carte-
sian product operator that allows for the
concatenation of two tuples containing
arbitrary historical information without
the 10SS of historical information. In
Gadia’s homogeneous model, attribute
values are time-stamped, but the time-
stamps of individual attribute values in
each tuple are required to be identical.
This requirement necessitates the defini-
tion of Cartesian product using intersec-
tion semantics. In 13en-Zvi’s algebra, tu-
ples rather than attribute values are
time-stamped, and a Time Join operator
is defined using intersection semantics.
Likewise, in iNavathe’s algebra, tuples
rather than attribute values are time-

stamped, and two operators, TCJOIN and

TCNJOIN, are defined using intersec-
tion semantics. Navathe also defines two
operators, TJOIN and TNJOIN, that al-

low for the concatenation of tuples with-
out loss of historical information. These
operators, however, are not closed; they

uroduce tuDles with two time-stam~s. In
~ones’s alg;bra, tuples are time-stamped,
and Cartesian m-oduct o~erators are de-
fined using bo<h intersection and union
semantics. Finally, in Sadeghi’s algebra,
tuples are time-stamped, and the join and
Cartesian product operators are both de-
fined using intersection semantics.

Example

Consider the following single-tuple rela-
tion instances:
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Table 3. (Continued)

McKenzie Navathe Sadeghi Sarda Tansel Tuzhilin

1.

5.
15.

16.

17,
23,
24,

2.
3.
4.

6.
7.

8.

9.
10

11.
12
13.

14,
18
19.
20.
21.
22.

25.

Conflicting Criteria
All attributes in a tuple are defined

for same interval(s)
Each set of legal tuples is a legal relation
Restricts relations to first normal form
Supports a 3-D view of historical

states and operations
Supports basic algebraic equivalences
Tuples are time-stamped
Unique representation for each temporal

relation
Compatible Cr~ter~a

Consistent extension of the snapshot algebra
Data periodicity is supported
Each collection of legal attribute

values is a legal tuple
Formal semantics are well defined
Has the expressive power of a

temporal calculus
Includes aggregates
Incremental semantics defined
Intersection, e-join, natural join, and

quotient are defined
Is, in fact, an algebra
Model doesn’t require null attribute values
Multidimensional time-stamps are

supported
Reduces to the snapshot algebra
Supports relations of all four classes
Supports rollback operations
Supports multiple stored schemas
Supports static attributes
Treats valid time and transaction

time orthogonally
Unisorted (not multisorted)

26. Update semantics are specified

ad, Satisfies criterion; P, partial compliance (see text); A, criterion not satisfied; N.A , not applicable;
?, not specified in papers; <1, see text.

A
A

;:~g(;

--------------------------------------

MAFJLYN MATH

VALID TIME

Figure 11. Conceptual view of the difference operator applied to historical relations
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Figure 12. Cartesian product of historical relations,

A= sname course

(“Marilyn”, {2, 3,4}) (“Math”, {2, 3,4})

B= hname state

(“Mardyn”, {1,2, 3}) (Texas, {1,2,3})

Using intersection semantics, the Carte-
sian operator produces the following
relation:

Cartesian product over difference. All the
equivalences, except the distributive
property of Cartesian product over differ-
ence, also hold for both Clifford’s and
McKenzie’s algebras. Tuzhilin’s algebras
satisfy this criterion. Tansel’s algebra
does not support the commutative prop-
erty of selection with union and differ-
ence. It is unclear whether Tansel’s
algebra satisfies the other equivalence

AxB= sname course hname state

(“Marilyn”, {2,3}) (“Math”, {2,3]) (“Marilyn”, {2, 3}) (Texas, {2, 3))

If, however, Cartesian product is repre- since union and difference are not de-
sented conceptually as a “volume” oper - fined formally. Similarly, it is unclear
ation on spatial objects, we would expect whether all the equivalences hold for

AxB= sname course hname state

(“Marilyn”, {2, 3,4}) (“Math”, [2,3,4}) (“Marilyn”, {1,2, 3}) (Texas, {1,2, 3})

as illustrated in Figure 12. n

Sarda, in addition to defining a Carte-
sian product operator using intersection
semantics, allows the relational Carte-
sian product operator to be applied to
historical relations. Although tuples in
the result retain the time-stamps of their
underlying tuples, the result is not a his-
torical relation. Its semantics are left
unspecified.

Criterion 17. Supports basic alge-
braic equivalences. Ben-Zvi’s, Gadia’s,
Lorentzos’, Sadeghi’s, and Tuzhilin’s al-
gebras satisfy this criterion. Jones’ alge-
bra supports the equivalences, with one
exception. The Cartesian product opera-
tor defined using union semantics fails to
support the distributive property of

—
Yeung’s, Navathe’s, and Sarda’s algebras.

Criterion 23. Tuples, not attribute val-
ues, are time-stamped. Ben-Zvi, Jones,
Navathe, Sadeghi, and Sarda all time-
stamp tuples. Clifford also time-stamps
tuples but requires that the partial func-
tion from the time domain onto a value
domain, representing an attribute’s
value, be further restricted to the at-
tribute’s time-stamp in the relation
schema. Tuzhilin does not impose repre
sentation restrictions. The other
algebras all time-stamp attribute values.

Criterion 24. Unique representation for
each historical relation. Yeung’s algebra
supports a unique representation for each
temporal relation because it does not al-
low two tuples to match values on the
key attributes. Because McKenzie’s alge-
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bra allows set-valued time-stamps and

disallows value-equivalent tuples, it too

supports a unique representation for each

temporal relation. Because Navathe and

Sadeghi require that value-equivalent

tuples be coalesced, their algebras also

satisfy this criterion. In Tuzhilin’s alge -

bras, representation restrictions are not

imposed. None of the other algebras sat-

isfy this criterion. They all allow multi-

ple representations of identical temporal

information within a relation, usually by

not requiring value-equivalent tuples to

be coalesced. Note that Clifford’s algebra

fails to satisfy this criterion because it

only requires that no two tuples in a

relation match values on the key at-

tributes at the same chronon; a relation

may contain value-equivalent tuples,

even value-equivalent tuples adjacent in

time, as long as they do not overlap in

time. Hence, there are still multiple ways

to represent a historical relation.

3.2 Compatible Criteria

we now evaluate the algebras against

the remaining 19 criteria. Because these

criteria are compatible, there is no a pri-

ori reason why an algebra cannot be

defined that satisfies all these criteria.

Criterion 2. Consistent extension of the
snapshot algebra. The algebras proposed

by Ben-Zvi, Clifford, Gadia, Jones,

Lorentzos, McKenzie, Sadeghi, and

Tuzhilin satisfy this criterion. Although

formal definitions for all operators are

not provided for the other algebras, they

too are likely to satisfy this criterion.

Criterion 3. Data periodicity is sup-
ported. Only Lorentzos’ algebra satisfies

this criterion. His algebra allows multi-

ple time-stamps of nested granularity,

which can be used to specify periodicity.

Criterion 4. Each collection of legal
attribute values is a legal tuple. Tansel’s

and Yeung’s algebras time-stamp at-

tribute values without imposing any

inter-attribute dependence constraints.

Sarda’s algebra encodes a tuple’s time-

stamp within a single attribute value

without imposing any inter-attribute de-

pendence constraints. In Tuzhilin’s alge -

bras, representation restrictions are not

imposed.

The algebras proposed by Ben-Zvi,

Jones, Navathe, and Sadeghi fail to sat-
isfy this criterion because they use im-

plicit attributes to specify the end points

of a tuple’s time-stamp, requiring that

the value of the start-time attribute be
less than (or s) the value of the stop-

time attribute in all valid tuples. Lorent-

ZOS’ algebra also requires that the values

of attributes representing the boundary

points of intervals be ordered. Clifford’s

algebra does not satisfy this criterion be-
cause the value of each attribute in a
tuple is defined as a partial function from

the time domain onto a value domain,

where the function is restricted to times

in the intersection of the tuple’s time-

stamp and the attribute’s time-stamp in

the relation schema. Hence, the

interval(s) for which an attribute value

is defined depends on both the tuple’s

time-stamp and the attribute’s time-

stamp in the relation schema. Gadia’s

homogeneous model fails to satisfy this

criterion because all attribute values in a

tuple are required to be functions on the

same temporal element. Yeung’s algebra

also fails to satisfy this criterion because

relations are restricted to nonnull tuples.

Finally, McKenzie’s algebra fails to sat-

isfy this criterion because it does not

allow the time-stamps of all attribute

values in a tuple to be empty.

Criterion 6. Formal semantics are well
defined. Clifford, Gadia, Lorentzos,

McKenzie and Tuzhilin provide a formal

semantics for their algebras. Jones, how-

ever, provides no formal semantics for

the time-oriented operations in LEGOL;

she provides only a brief summary of

time-oriented operations available in the

language, along with examples illustrat -

ing the use of some of these operations.

Ben-Zvi and Tansel provide formal se-

mantics for their algebras but provide

incomplete definitions for certain opera-

tors. For example, Ben-Zvi’s definition of

the difference operator does not include a
definition of the Effective-Time-Start and

Effective-Time-End of tuples in the re-

sulting relation, and Tansel does not
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provide formal definitions for his histori-

cal union and difference operators. Like -

wise, Yeung does not provide formal

definitions for the historical difference

and intersection operators, Navathe pro-

vides formal semantics for three new his-
torical selection and four new historical

join operators. He retains the five basic

snapshot operators, although his model

requires that value-equivalent tuples be

coalesced. The semantics of these opera-

tors are left unspecified. Sadeghi also

requires that value-equivalent tuples be

coalesced. He provides formal semantics

for all operators, but the semantics of

some operators (e. g., union) do not pre-

serve this value-equivalence property of

historical relations, Sarda provides for-

mal semantics for five new historical op-

erators and selection and projection when

applied to historical relations. Although

he allows the Cartesian product operator

to be applied to historical relations, the

result is not a historical relation. He also

does not provide formal definitions for

Cartesian product, historical union, and

difference.

Criterion 7. Has the expressive power
of a historical or temporal calculus.
Cladia has defined an equivalent calculus

for his homogeneous model. McKenzie’s

algebra has the expressive power of the

TQuel [Snodgrass 19871 calculus

[McKenzie 19881. Likewise, Tansel has

defined an equivalent calculus for his

algebra [Tansel and Arkun 1985]. Ben-

Zvi has augmented the SQL query lan-

guage with a Time-View operator and

has shown that the resulting language

has expressive power equivalent to that

of his algebra [Ben-Zvi 19821. Rather than

modify the semantics of the SQL query

language to handle the temporal dimen-

sion, Ben-Zvi uses the Time-View oper-

ator as a temporal preprocessor to
construct snapshot relations that can
then be manipulated the same way as
any other snapshot relations. Yeung has

defined an equivalent calculus for an
earlier version of his algebra [Yeung

1986]. Navathe has defined the historical

query language TSQL [Navathe and

Ahmed 1987], which is a superset of SQL,

for use in his model. He has not shown,

however, that his algebra has the expres-

sive power of TSQL. Sadeghi has defined

a historical query language HQL as an
extension of the query language DEAL

[Sadeghi 19871 and has shown how to
map queries in HQL onto expressions in
his algebra. Sarda has extended SQL to
handle historical queries and has shown

how to map sample queries in this lan-

guage onto expressions in his algebra

[Sarda 19901. Tuzhilin uses a temporal

logic [Rescher and Urquhart 19711, TC,
which he proves is equivalent in expres-

sive power to Tuzhilin’s TA temporal al-
gebra, and a somewhat less expressive

temporal logic, TC’, which he proves is

equivalent to his TA’. The other algebras

have not been proven to have equivalent

expressive power of a historical or tempo-

ral calculus.

Criterion 8. Includes aggregates.
Ben-Zvi and McKenzie define historical

aggregate operators formally as part of

their algebras. Tansel also defines his-

torical aggregate functions in his algebra

in terms of a new operator, termed enu-
meration, and an aggregate formulation

operator [Tansel 1987]. Aggregate func-

tions, defined for the snapshot algebra,

can be used to compute historical aggre-

gates in Lorentzos’ algebra. The algebra
proposed by Jones includes aggregate op-
erators, but these operators are not de-
fined formally. Although Gadia does not
include aggregates in his models, he does
introduce “historical navigation” opera-
tors (e. g., First), which act similarly to
other historically oriented aggregates.
The other algebras do not include any
aggregate operators.

Criterion 9. Incremental semantics are
defined. An incremental version of all
operators in McKenzie’s algebra has been
defined [McKenzie 1988]. An incremen-
tal version of none of the other algebras
is provided.

Criterion 10. Intersection, @join, nat-
ural join, and quotient are defined. His-
torical versions of these four operators
are defined for McKenzie’s algebra. Ben-
Zvi defines a join operator, and Clifford
defines intersection, @-join, and natural
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join operators. Gadia defines intersec-
tion, ~-join, and natural join in his ho-
mogeneous model. Yeung defines all four
operators in an earlier version of his al-
gebra [Yeung 1986], but they are not
defined in the later version [Gadia and
Yeung 1988]. Finally, Navathe defines
historical versions of join and natural
join. None of the other algebras defines
historical versions of these operators.

Criterion 11. Is, in fact, an algebra.
Clifford’s algebra fails to satisfy this cri-
terion because it is not closed under
union, difference, or intersection. The
historical versions of these binary opera-
tors are defined for two relations only if
they are merge compatible (i.e., tuples
from the two relations that match on the
values of the key attributes at some
chronon must also match on all their
attribute values at each chronon in the
intersection of their lifespans). Likewise,
Yeung’s algebra does not satisfy this cri-
terion because it is not closed under
union. The union of two relation in-
stances is undefined if there are tuples in
the instances that match on the values of
the key attributes but have different val-
ues at some time for some attribute. It is
unclear whether Sarda’s proposal satis-
fies the closure property since Cartesian
product of historical relations, although
allowed, produces a result that is not a
historical relation. Its semantics, how-
ever, are left unspecified. Sadeghi does
not specify the semantics of the WHEN
operator or indicate whether this opera-
tor is closed. Two of Navathe’s operators,
TJOIN and TNJOIN, are not closed.
Each of the other proposals satisfies this
criterion.

Criterion 12. Model does not require
null attribute values. Clifford’s algebra
fails to satisfy this criterion. The Carte-
sian product operator assigns null values
to attributes in an output tuple for each
chronon that is in the lifespan of the
output tuple but not in the lifespan of the
input tuple ~smeiated with that ~t-
tribute value. The other algebras being
evaluated all satisfy this criterion.

Criterion 13. Multidimensional time-
stamps are supported. Only Yeung’s al-

gebra satisfies this criterion. In
Tuzhilin’s algebras, representation re-
strictions are not imposed. None of
the other algebras supports multi-
dimensional time-stamps. Extension of
McKenzie’s algebra to support multidi-
mensional time-stamps, however, has
been considered [iMcKenzie 1988].

Criterion 14. Reduces to the snapshot
algebra. Gadia’s homogeneous model sat-
isfies this criterion; operators are defined
using a snapshot semantics thus guaran-
teeing that the algebra reduces to the
snapshot algebra. Likewise, the descrip-
tions of the algebras proposed by Ben-Zvi,
Jones, and Tuzhilin imply that the oper-
ators are defined using snapshot seman-
tics. Because Navathe, Sadeghi, and
Sarda all assume tuple time-stamping,
their algebras also satisfy this criterion.
Although formal definitions have not
been provided for all operators in Yeung’s
algebra, it can satisfy this criterion only
through the introduction of distinguished
null’s when taking snapshots. Because
the algebras of McKenzie, Tansel, and
Lorentzos allow nonhomogeneous at-
tribute time-stamps, they also satisfy this
criterion only through the introduction of
distinguished null’s when taking snap-
shots. Likewise, because Clifford does not
require that all attribute values in a tu-
ple be defined for the same lifespan (i.e.,
an attribute’s value in a tuple is speci-
fied only for chronons in the intersection
of the tuple’s lifespan and the attribute’s
lifespan in the relational schema), his
algebra also satisfies this criterion only
through the introduction of distinguished
null’s when taking snapshots.

Criterion 18. Supports relations of all
four classes. Yeung’s algebra, because it
allows multidimensional time-stamps,
can support relations of all four classes.
McKenzie’s algebra also satisfies this cri-
terion. Ben-Zvi’s model, although it sup-
ports both valid time and transaction
time, can support rollback and historical
relation~ only by embedding them in
temporal relations. The other algebras,
since they do not support transac-
tion time, cannot support rollback or
temporal relations.
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Criterion 19. Supports rollback opera-
tions. McKenzie’s algebra satisfies this
criterion. The rollback operators allow
queries to be posed on one or more arbi-
trary relations. Yeung’s algebra also sat-
isfies this criterion; transaction time is
treated simply as another dimension in a
multidimensional temporal element.
Ben-Zvi’s algebra, although it allows
rollback, achieves only partial satisfac-
tion of this criterion because it requires
that the tuples participating in a query
all have a specified valid time in com-
mon. All operations in Ben-Zvi’s algebra
are defined in terms of a transaction time
tband a valid time t,.During expression
evaluation, rollback occurs to the rela-
tion at t,,but only tuples valid at t.are
accessed. None of the other algebras
supports rollback operations.

Criterion 20. Supports multiple stored
schemas. McKenzie’s algebra satisfies
this criterion. Ben-Zvi, while describing

an approach for representing an evolving
schema as a temporal relation, does not
include provisions for schema evolution
in the formal semantics of his algebra.
Hence, his algebra fails to satisfy this
criterion. Yeung, although supporting
transaction time, does not address the
problem of schema evolution. An ap-
proach for handling schema changes in
Navathe’s formalization has been devel-
oped [Martin et al. 19871, but the algebra
was not extended to support schema evo-
lution. Because the other algebras do not
support transaction time, they too fail to
satisfy this criterion.

Criterion 21. Supports static at-
tributes. Lorentzos’, Navathe’s,
Sadeghi’s, and Tansel’s algebras satisfy
this criterion by allowing both time-
dependent and non-time-dependent
attributes. McKenzie’s and Yeung’s
algebras also support static attributes. In
these two algebras, the time-stamp of an
attribute value can be defined indepen-
dently of the time-stamps of any of the
other attribute values in a tuple. A static
attribute would be represented in
McKenzie’s algebra as an attribute as-
signed the entire time domain. Clifford’s
algebra fails to satisfy this criterion be-
cause an attribute’s value in a tuple can-

not be specified for chronons that are not
in the tuple’s lifespan. In Tuzhilin’s alge-
bras, representation restrictions are not
imposed. The other four algebras all
require that the same valid time be asso-
ciated with all attributes in a tuple;
therefore, none of these algebras can sup-
port static and time-dependent attributes
within the same tuple.

Criterion 22. Treats valid and trans-
action time orthogonally. Ben-Zvi’s and
Yeung’s algebras satisfy this criterion:
They support retroactive and postactive
changes and allow independent assign-
ments of valid time and transaction time
without restrictions. McKenzie’s algebra
imposes the restriction that rollback be
performed first, followed by historical se-
lection, on temporal relations. The other
algebras all fail to satisfy this criterion
because they do not support transaction
time.

Criterion 25. Unlsorted (not multi-
sorted). The algebras proposed by Jones,
Lorentzos, Sadeghi, Tansel, Yeung, and
Tuzhilin are unisorted in that they de-
fine only one object sort. All the other
algebras are multisorted. McKenzie de-
fines algebraic operators on snapshot re-
lations and historical relations. Gadia’s
homogeneous model is a multisorted al-
gebra; its sorts are historical relations
and temporal expressions. Clifford de-
fines a multisorted algebra whose sorts
are historical relations and lifespans.
Ben-Zvi allows both snapshot and tempo-
ral relations, whereas Navathe allows
both snapshot and historical relations.
Finally, Sarda defines a projection opera-
tor that is allowed to map a historical
relation instance onto a snapshot

relation instance.
Criterion 26. Update semantics are

specified. McKenzie>a proposal satisfies
this criterion. Ben-Zvi defines the se-
mantics of tuple insertion, deletion, and
modification but does not extend the for-
malization to include schema evolution.
The other proposals do not consider up-
date semantics in their formalizations.

3.3 Criteria Metaproperties

In Section 2.2, we identified several cri-
teria that were subsumed by other, more
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important criteria. It is desirable that
the remaining criteria are independent
in that no combination of criteria (logi-

cally) imply another criteria. Given the
number of criteria, a complete analysis is
infeasible. Instead, we have taken a more
empirical approach, examining whether
any (single) criterion logically implies
any other criterion, as indicated by
the satisfaction or unsatisfaction by the
algebras surveyed here.

First, to detect criteria that were logi-
cally equivalent to other criteria, we
attempted to identify, for each pair of
criteria, an algebra in which the two cri-
teria differ, that is, where one was satis-
fied while the other was not satisfied.
The presence of such an algebra proves
by example that the two criteria are not
logically equivalent; the absence of such
an algebra suggests a logical relation-
ship between the pair. Seventeen out of a
total of 325 pairs did not have such an
algebra. Eleven of these pairs were elim-
inated because the criteria were obvi-

ously not related. The other six have a
partial counterexample in that for each
pair there exists an algebra in which one
of the criteria was satisfied and the other
was partially not satisfied.

Second, to detect criteria that were
“negatively equivalent” (i. e., where the
satisfaction of one criterion logically
implies that the other criterion cannot
possibly be satisfied), we attempted to
identify, for each pair of criteria, an alge -
bra in which the two criteria agree, that
is, where both were either satisfied or
were not satisfied. As before, the pres-
ence of such an algebra provides a proof
by example that the two criteria are not
negatively equivalent; the absence of
such an algebra indicates the possibility
of negative equivalence. Such an algebra
was identified for all but four out of 325
possible pairs. Concerning consistent ex-
tension of the snapshot algebra (2) and
each collection of legal attribute values is
a legal tuple (4), it appears that Sarda’s,
Tansel’s, and Yeung’s algebras satisfy
both criteria, although a definitive state-
ment must await formal definitions for
all operators. Since there is little experi-
ence with multidimensional time-stamps

(13), its observed negative correlation
with two other criteria is uncertain. Fi-
nally, one pair was rejected because the
criteria were obviously not related.

In Section 2.3, we argued that seven of
the criteria, labeled conflicting, were not
mutually satisfiable. We conjecture that
the remaining criteria are compatible in
that it is theoretically possible for all to
be satisfied by an algebra. As a partial
test of this conjecture, we considered
pairwise satisfiability. Specifically, we
attempted to identify, for each pair of
compatible criteria, an algebra that si-
multaneously satisfied both. The absence
of such an algebra indicates that perhaps
the two criteria cannot be simultane-
ously satisfied and hence are incompati-
ble. Out of 171 pairs possible, 27 pairs
suggested incompatibilities, of which 14
were rejected on first principles. Data
periodicity (3) appears to be incompatible
with five other criteria; insufficient expe
rience with this aspect prevents a defi-
nite characterization. The same holds for
each collection of legal attribute values is
a legal tuple (4) (four criteria) and multi-
dimensional time-stamps (13) (also four
criteria).

Our conclusion from this informal
analysis is that, with the exception of
three criteria [ data periodicity (3), each
collection of legal attribute values is a
legal tuple (4), and multidimensional
time-stamps (13)], for which there is little
experience (each is satisfied by at most
two algebras), the criteria are not pair-
wise logically equivalent (in either direc-
tion), and the compatible criteria are not
pairwise incompatible.

4. SUMMARY

In this paper, we examined 12 temporal
algebras, considering the objects each
defines and the operations on those ob-
jects each provides. We identified seven
conflicting criteria that cannot simul-
taneously hold in any algebra and 19
compatible criteria. We then evaluated
the algebras on these criteria. As was
shown in Figure 10, the subset of con-
flicting criteria that an algebra can sat-
isfy is necessarily dependent on whether
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Supports a three-dimensional view of historical states and operations
No

Ben-Zvl

Gadla

Jones

Lorentzos

Sarda
.“

z Tuzhillng

Yes

Clifford

Tansel

I

Navathe
Yeung

Sadeghl
McKenzie

Tuzhdin

Figure 13. Classification of algebras according to criteria satisfied

the algebra supports a three-dimensional
visual model and whether each historical
relation in the algebra has a unique rep-
resentation. Based on these two criteria,
we can identify the “approach” of each
algebra, as shown in Figure 13. The
quadrant an algebra occupies indicates
those aspects the algebra’s designer(s)
chose to emphasize. For example, Yeung
chose to satisfy both criteria, at the cost
of not being able to satisfy the remaining
five conflicting criteria listed in Figure
10. Ben-Zvi made exactly the opposite
decision: His algebra satisfies the five
criteria, but not the other two. In
Tuzhilin’s algebras, representation re-
strictions are not imposed. Hence, there
may or may not be a unique representa-
tion for each historical state, and thus
his algebras appear in two quadrants.
There is obviously no consensus as to
which approach is superior; each has sev-
eral proponents. The design space has
been explored in the sense that all com-
binations of basic design decisions have
at least one representative algebra.

Concerning the compatible criteria,
there is no a priori reason all cannot be
simultaneously satisfied (Section 3.3 con-
tains a partial argument to that effect).
One measure of the quality of an algebra
is the extent to which it satisfies these
criteria. All algebras surveyed here are
deficient, some more so than others.

We have attempted to identify as many
criteria as possible (we uncovered a total
of 36). We characterize criteria as con-
flicting (7), consistent (19), and rejected
(10), based on logical and empirical argu-
ments. We assign the algebras to four
possible approaches based on the conflict-
ing criteria to determine the quality
of the algebras based on the consistent
criteria.

We view the comparison methodology
to be as important a contribution as the
analysis of the individual algebras. Since
no algebra was identified as being objec-
tively superior, future research must first
prove one of the four approaches to be
the most appropriate, then define an al-
gebra taking this approach that satisfies
all of the consistent criteria.

ACKNOWLEDGMENTS

We thank James Clifford, Nikos Lorentzos, and
Abdullah Uz Tansel for their critique and sug-

gested improvements to an earlier version of our
list of criteria for evaluating temporal algebras
The reviewers, Gregory Andrews and Chrmtian S,
Jensen provided detailed suggestions that im-
proved this paper. Salvatore March’s very thorough
subsequent critique inspired many further
improvements.

Research by the first author was sponsored
m part by the United States Air Force. Research

by the second author was sponsored in part by an
IBM Faculty Development Award. The work was

ACM Computing Surveys, Vol 23. No 4, December 1991



Evaluation of Temporal Algebras “ 541

also supported by NSF grants DCR-8402339 and

IRI-8902707 and ONR grant NOO014-86-K-0680.

REFERENCES

ALLEN, J. F., AND HAYES, P. J. 1985. A common-
sense theory of time, in Proceedings of the
International Joinf Conference on Artificial
Intelligence. (Los Angeles, Calif. Aug. 1985),
pp. 528-531.

ANDERSON, T. L. 1981. The database semantics
of time. Ph. D. dissertation, University of
Washington.

ANDERSON, T. L. 1982. Modeling time at the con-
ceptual level, in Proceedings of the Interna-
tional Conference on Databases: Improving
Usabd@ and Responsiveness. P. Scheuer -
mann, Ed. (Jerusalem, Israel, June 1982),
Academic Press, pp. 273-297.

AIUAV, G 1986. Atemporally oriented datamodel,
ACM Trans. Database Syst. 11, 4 (Dee),
499-527.

ARIAV, G., AND CLIFFORD, J. 1986. Temporal data
management: Models and systems, in New Di-
rections for Database Systems. Ablex Publish-
ing Corporation, Norwood, N. J., Chap 12, pp.
168-185.

BEN-ZVI, J. 1982. The time relational model.
Ph. D. dissertation, Computer Science I)epart-
ment, Univ California, Los Angeles.

BHAIWAVA, G , AND GADIA, S. K. 1990. The con-
cept of error in a database: An application of
temporal databases, in Proceedings of 1990

COMAD International Conference on Manage-
ment of Data. N. Prakash, Ed. Tata McGraw-
Hill, New Delhi, pp. 106-121.

BHARGAVA, G., AND GADIA, S. K. 1991. Relational
database systems with zero information-loss,
IEEE Trans. Knowledge Data Eng., To be pub-
lished.

BROOKS, F. F’. 1956. The analytic design of auto-
matic data processing systems. Ph. D. disserta-
tion. Harvard Univ.

BUBENKO, J. A., JR. 1977, The temporal dimen-
sion in information modeling, in Architecture
and Models in Data Base Management Systems.

North-Holland Publishing, The Netherlands,
pp. 93-118.

CHEN, P. P-S. 1976. The entity-relationship model:
Toward a unified view of Data ACM Trans.
Database Syst. 1, 1 (Mar.), 9-36.

CLIFFORD, J. 1982. A model for historical
databases, in Proceedings of Workshop on LogL-
cal Bases for Data Bases. (Toulouse, France).

CLIFFORD, J., AND CROKER, A 1987. The historical
relational data model (HRDM) and algebra
based on lifespans, in Proceedings of the Zntei--
natzonal Conference on Data Engineering. (Los
Angeles, Calif.). IEEE Computer Society Press,
pp. 528-5.37.

CLIFFORD, J , AND RAO, A. 1987 A simple, general
structure for temporal domains, in Proceedings

of the Conference on Temporal Aspects in Infor-
mation Systems. (France). AFCET, pp. 23-30.

CLIFFORD, J., AND TANSEL, A. U. 1985. On an
algebra for historical relational databases: Two
views, in Proceedings of ACM SIGMOD Inter-
national Conference on Management of Data. S.

Navathe, Ed. (Austin, Texas, May), ACM Press,
pp. 247-265.

CLIFFORD, J., AND WARREN, D. S. 1983. Formal
semantics for time in databases. ACM Trans.
Database Syst. 8, 2 (June), 214-254.

CODD, E. F. 1970 A relational model of data for
large shared data banks. Commun. ACM 13, 6
(June), 377-387.

CODD, E. F. 1990. The Relat~onal Model for
Database Management: Vers~on 2. Addison-
Wesley Publishing Company, Reading, Mass.

CROKER, A., AND CLIFFORD, J. 1989. On complete-
ness of historical relational data models. Tech.
Rep. New York University.

DADAM, P., LUM, V., AND WERNER, H.-D. 1984
Integration of time versions into a relational
database system, m Proceedings of the Confer-

ence on Very Large Databases. U. Dayal, G.
Schlageter, and L.H, Seng, Eds. (Singapore,
Aug.), pp. 509-522.

DATE, C J, 1986. An informal definition of the
relational model, in Relational Database: Se-

lected Writings. Addison-Wesley, Reading,
Mass., Chap. 2. pp. 21-31.

DEEN, S. M. 1985. DEAL: A relational language
with deductions, functions and recursions. Data
and Knowledge Englneermg, 1.

ELMASRI, R,, AND NAVATHE, S, B, 1989, Funda-

mentals of Database Systems. Benjamin/Cum-
mings Pub. Co., 1989.

ENDERTON, H. B. 1970. Elements of Set Theory.

Academic Press, New York.

GADIA, S. K. 1986. Toward a multlhomogeneous
model for a temporal database, in Proceedings
of the International Conference on Data Engi-
neering. (Los Angeles, Calif. ). IEEE Computer
Society Press, pp. 390-397.

GADIA, S. K. 1988. A homogeneous relational
model and query languages for temporal
databases. ACM Trans. Database Syst. 13, 4
(Dee), 418-448.

GADIA, S. K., AND VAISHNAV, J. H. 1985. A query
language for a homogeneous temporal
database, in 1+-oceedmgs of the ACM Sympo-
sium on Principles of Database Systems (Mar.),
ACM Press, pp. 51-56.

GADIA, S. K., AND YEUNG, C S. 1988 A general-
ized model for a relational temporal database,
in Proceedings of ACM SIGMOD Interaatzon al
Conference on Management of Data. (Chicago,
111.,June 1988). ACM Press, pp 251-259.

HANSON, E. N. 1987. A performance analysis of
view materialization strategies, in Proceedings
of the ACM SIG’MOD Interaatlonal Conference
on Management of Data. U. Dayal and
1. Traiger, Eds. (San Francisco, Calif., May
1987). ACM Press, pp. 440-453.

ACM Computing Surveys, Vol. 23. No. 4, December 1991



542 ● L. E. McKenzie and R. Snodgrass

HANSON, E. N. 1988. Processing queries against
database procedures: A performance analysls,
in Proceedings of ACM SIGMOD International

Conference on Management of Data. H. Borol
and P.-A. Larson, Eds., (Chicago, 111., June
1988) ACM Press, pp 295-302.

JENSEN, C S , MARK, L , AND ROUSSOPOULOS,N,
1991. Incremental implementation model for
relational databases with transaction time,
IEEE Transactions on Knowledge and Data
Engineering. To be published

JONES, S., MASON, P , AND STAMPER, R. 1979.
LEGOL 2.0: A relational specification lan-
guage for complex rules. Inf Syst. 4, 4, (Nov),
293-305.

KLOPPROGGE,M. R, 1981, TERM: An approach to
include the time dimension in the entity-
relationship model, in Proceedings of the Sec-

ond Intern at~onal Conference on the Entity
Relationship Approach. (Washington, D.C
Ott). pp. 477-512.

KLU~, A. 1982. Equivalence ofrelatlonal algebra
and relational calculus query languages hav-
ing aggregate functions, J. ACM 29, 3 (July),
699-717.

LINDGREEN, P, 1982. The information graph, in
Proceedings of the 1st Scandinavian Research

Seminar on Information Modelling and
Database Management. (University of
Tampere, Jan ), pp. 103-127.

LORENTZOS,N. A 1988. A formal extension of the
relational model for the representation and
mampulatlon of generic intervals Ph.D.
dissertation, Birkbeck College. Umversity of
London.

LORENTZOS,N. AND JOHNSON, R. 1988. Extending
relational algebra to manipulate temporal data
Infi Syst, 13, 3, 289-296.

LUM, V., DADAM, P., ERBE, R., GUENAUER, J ,
PISTOR, P., WALCH, G., WERNER, H., AND
WOODFILL, J 1984. Desigmng DBMS support
for the temporal dimension, in Proceedings of
ACM SIGMOD International Conference on
Management of Data. B, Yormark, Ed. (Boston,
Mass , June), ACM Press, pp. 115-130.

MAIER, D. 1983. The Theory of Relational
Databases. Computer Science Press, Rockvllle,
Md.

MANOI.A, F., AND DAVA., U 1986 PDM: An ob-
ject-oriented data model, in Proceedings of the

International Workshop on Object-OrLented
Database Systems

MARTIN, N. G., NAVATHE, S. B., AND AHMED, R
1987. Dealing with temporal schema anoma-
lies in history databases, in Proceedings of the
Conference on Very Large Databases. P. Ham-
mersley, Ed (Brighton, England, Sept. ) pp.
177-184.

MCKENZIE, E. 1986. Bibliography: Temporal
databases, ACM SIGMOD Record 15, 4 (Dee),
40-52,

MCKENZIE, E. 1988 An algebraic language for
query and update of temporal databases, Ph.D.
dissertation. Computer Sc]ence Department,
Univ. of North Carolina at Chapel Hill,

MCKENZIIL E., AND SNODGRASS,R. 1990. Schema
evolutlon and the relational algebra. Infi Syst.
15, 2 (June), 207-232

MCKENZIE, E , AND SNODGRASS,R. 1991. Support-
ing valid time in an historical relational alge
bra: Proofs and Extensions. Tech. Rep. TR
91-15 Dept. of Computer Science, Univ. of
Arizona

NAVATHE, S. B,, AND AFUMED,R. 1987. TSQL–A
language interface for history databases, in
Proceedings of the Conference on Temporal As-
pects zn Informat~on Systems. (France, May)
AFCET, pp. 113-128.

NAVATHE, S. B., AND AHMED, R. 1989. A temporal
relational model and a query language. Inf

Sci. 49, 147-175

OVERMYER, R., AND STONEBRAKER, M. 1982. Im-
plementation of a time expert in a database
system. ACM SIGMOD Record 12, 3 (Apr ),
51-59

REISNER, P. 1981. Human factors studies of
database query languages: A survey and as-
sessment ACM Comput, Suru. 13, 1 (Mar.),
13-31.

REISNER. P., BOYCE, R F., AND CHAMBERLAIN,D. D,
1975. Human factors evaluation of two data
base query languages: Square and sequel, m
Proceedings of the AFIPS National Computer

Conference (Arlington, Va ) AFIPS Press, pp
447-452,

RESCHER, N. C., AND URQUHART, A, 1971. Tempo-
ral Logic. Springer-Verlag, New York,

ROUSSOPOULOS,N 1991. The incremental access
method of view cache: Concept, algorithms, and
cost analysis. ACM Trans Database Syst. To
be published.

SADEGHI, R .1987 A database query language for
operations on historical data Ph D. disserta-
tion, Dundee College of Technology.

SADEGHI, R., SAMSON, W. B,, AND DEEN, S M, 1987.
HQL: A historical query language. Tech. Rep.
Dundee College of Technology,

SARDA, N. 1990. Algebra and query language for
a historical data model Comput. J. 33, 1 (Feb ),
11-1%

SHIPMAN, D W. 1981 The functional data model
and the data language DAPLEX. ACM Trans.
Database Syst. 6, 1 (Mar.), 140-173

SMITH, J. M., AND CHANG, P. Y.-T 1975 Optimiz-
ing the performance of a relational algebra
database interface, Commun ACM 18, 10 (Ott),
568-579.

SNODGRASS, R. 1987. The temporal query lan-
guage TQuel. ACM Trans. Database S-yst, 12,
2 (June), 247-298

SNODGRASS,R , AND AHN, 1. 1985 A taxonomy of
time in databases, in Proceedings of ACM SIG-

ACM Computing Surveys, Vol. 23, No. 4, December 1991



Evaluation of Temporal Algebras ● 543

MOD International Conference on Management
of Data. S, Navathe, Ed, (Austin, Tex, May),
ACM Prees, pp. 236-246.

SNO~GRASS, R , AND AHN, I. 1986. Temporal
databases. IEEE Comput. 19, 9 (Sept.), 35-42.

SOO, M. D. 1991. Bibliography on temporal
databases. ACM SZGMOD Record 20, 1 (Mar,),
14-23

STAM, R., AND SNODGRASS,R. 1988. A bibliogra-
phy on temporal databases. Database Eng. 7, 4
(Dec.), 231-239

TANSEL, A, U, 1986. Adding time dimension to
relational model and extending relational alge-
bra. In/ Syst. 11, 4, 343-355,

TANSEL, A. U. 1987. A statistical interface for
historical relational databases, in F%oceedirzgs
of the International Conference on Data
Engineering (Los Angeles, Calif., Feb). IEEE
Computer Society Press, pp. 538-546,

TANSEL, A. U., AND ARKUN, M. E. 1985 Equiva-
lence of historical relational calculus and his.
torical relational algebra. Tech. Rep. Bernard
M, Baruch College, City Univ. of New York.

TANSEL, A U., AND AR~UN, M. E. 1986. HQUEL:
A query language for historical relational
databases, in Proceedings of the 3rd Interna-

tional WorkshoD on Statistical and Scientific
Databases.

Recewed October 1987, final revlslon accepted July 1991.

TANSEL, A. U., ARKUN, M. E., AND OZSOYOGLU, G.
1989. Time-by-example query language for
historical databases, IEEE Trans. Softzo. Eng.
15, 4 (Apr.) 464-478.

THOMPSON, P. M. 1991. A temporal data model
based on accounting principles. Ph D disserta-
tion. Dept. of Computer Science, Univ. of
Calgary.

TUZHJLIN, A , AND CLIFFORD, J 1990 A temporal
relational algebra as a basis for temporal rela-
tional completeness, in Proceedings of the Con-

ference on Very Large Databases. (Brisbane,
Australia).

ULLMAN, J. D, 1988b. Database and Knowl-
edge – Base Systems. Vol. II. Computer science
Press, Rockville, Md

ULLMAN, J. D. 1988a. Principles of Database and
Knowledge-Base Systems Vol I Computer Sci-
ence Press, Rockville, Md , Vol 1.

VANDENBERG, S. L., AND DEWITT, D. J. 1991. Al-
gebraic support for complex objects with ar-
rays, identity, and inheritance, in Proceedings
of ACM SIGMOD Internat~onal Conference on

Management of Data. J, Clifford and R. King,
Eds. (Denver, Col., May). ACM Press, pp
158-167.

YEUNG, C. S. 1986 Query languages for a hetero-
geneous temporal database. Master’s Thesis,
EE/CS Dept. Texas Tech. Univ.

ACM Computmg Surveys, Vol 23, No 4, December 1991


