CSc 422 — Rrallel Programming Project

Programs dueudesdayMarch 5 (by midnight)
Reports due TlesdayMarch 26 (in class)

In this project you will deelop eficient parallel programs for a grid computation, conduct timing
experiments to analyze the performance of your programs, and write a report describing your
results and what you he learned. Theroject is vorth 60 points.| will award up to 6 bonus
points (10%) for outstanding projects and reports.

You may work with a classmate on this project, and | encourage you to ddmeever, you
may do this project on yourwm if you prefer Be aure to read and understand the entire
assignment before you dpe programming.There are lots of details, and yral matter!

Your programs must be turned in electronically by midnight on Marc¥ob. will be doing
timing experiments the week after Spring bredkwill set up a schedule for the use a@r&llel;
each group will get seeral hours of stand-alone testing tim¥our reports are due the second
Tuesday after Spring break.

Programs

The starting point for the project is the felimg four programs.You may write the programs in
MPD or in C with the Pthreads libraryDevdop your programs on Lectura or at homet tun
experiments on &rallel.

Sequentialacobi iteration program
Parallel Jacobi iteration program
Sequentiaiultigrid program
Parallel multigrid program

PonpE

Jacobi iteration is described in Sections 11.1.2 and 11.1.3 ofxtheAte outline of a sequential
program is gren in Hgure 11.2; an outline of a parallel program igegiin Fgure 11.3.You will
need to covert these to MPD or C plus Pthreads and to fill in all the details.

Multigrid methods are described in Section 11.118,1bdo not gve actual code.lt is up to
you to figure out the details for the sequential program and then to parallelize that program.

Your task is to writeefficientprograms. Sethe discussion on pages 539-40 of the ter the
kinds of programming "tricks" that help majrograms &st.

Initialize the boundary points of the grids to 1.0 and the interior points tol@i6.will make
it easy for you to check the correctness of your programs and the quality of the results for
different algorithms.

For the parallel programs, \dde the grid into horizontastrips of rows of points. This
includes all the grids in the multigrid programdse one wrker process per stripEach strip
should contain about the same number @fsr@o as to balance the computational loéthe
largest strip should contain at most one mowve ttean the smallest strip.)

In the parallel programs, implement afficént disseminatiorbarrier and use it when you
need barrier synchronizatiotJse counter ariables and sy waiting, as described at the end of
Section 3.4.Make aure your barrier is corect!

For the multigrid programs, use a felawvel V cycle as illustrated in Figure 11.8Jse the
restriction and interpolation operators described on pages 550-51 aftth&/seJacobi iteration
for the iterations on eachvid. Useexactly four iterations on each of the finer grids, and use the
command-line ayjumentnum ters (see belw) for the number of iterations on the coarsest
(smallest) grid.

Input and Output
Your programs should kia three command-line gnmentsn the following oder.

meshSi ze — the mesh size of the finest @ast) grid
num t er s — the number of iterations to use on the finest grid
numaor ker s — the number of wrker processes for the parallel programs

Assume that all grids are squaréou may assume thateshSi ze is a multiple of 16 times the
number of varkers. (Thissimplifies restriction and interpolation in the multigrid progranmo
should check this in your main function andgt evith an error message if this is not the case.

For the parallel Jacobi iteration program, the numberindérior rows in the grid is
meshSi ze- 1, and the total number of ravs counting the top and bottom boundaries is
neshSi ze+1.

For the multigrid programsyeshSi ze- 1 is the number of interior ves in thefinest(largest)
grid. Themesh sizes of the coarser (smaller) grids should thuedeSi ze/ 2, neshSi ze/ 4,
andmeshSi ze/ 8. As illustrated in Figure 11.7, the yical boundaries of all grids are the same,
but the mesh sizearies, and hence the distance between points aff@sy You may use separate
grids for each mesh size or do restriction and interpolation in place, wéichmi prefer (I
believe it is easier to do restriction and interpolation in place, and henceveotina grids stack up
on top of each othgr

The output from your programs should be:

the command-line guments

the eecution time, in seconds, for the computational part
the maximum error in finalalues on the finest grid

the final \alues on the finest grid

Write the first three items to standard outpWfrite the data alues to filedat a. out . The final
data alues are mainly for your purposes whenutging the program(You may wish to output
additional \alues while degloping your programs, such as subsets of thes fia various grids.)

To calculate the xecution time of the computational part, read the clafier you hae
initialized all variables. 6u should initialize gridén parallel in the parallel programsHence,
you should hee a larrier at the end of initialization (see Figure 11.3), and you should read the
clock right after this barrier

Read the clock an after you hee finished the iterations and the calculation of the maximum
error, but before you write the output.Again, male are there is a barrier before you read the
clock the second time.

The maximum error in finalalues should be the maximum fdience between the final
values of points on the finest grid and 10One does not normally kmowhat the final alues
should be, of course,ubthe maximum error is more interesting than th&e ofepsi | on
described in Section 11.1.

Timing Experiments

Your second task (during or after Spring break) is to run a series of timpagirments. In
particular you are to recute your programs for the follang combinations of command-line
arguments:

program 1 for mesh sizes of 192 and 384

program 2 for mesh sizes of 192 and 384 and for bikew processes
program 3 for mesh sizes of 192 and 384@at grid)

program 4 for mesh sizes of 192 and 384 and for Dikew processes

There are a total of 20 fi#frent timing tests.

For eachsequentiapbrogram and grid size, first figure out what thadue ofnuni t er s should
be so that thexecution time of the program is about 30 seconds for that grid $izen use the
samevalue of num t er s for the parallel ersions of that sequential prograrvou will thus be
using four diferent \alues for thenuni t er s agument.

If you write your programs in MPD, use thge() function to calculatex@cution times.The
return \alue from each call ohge() is the time inmillisecondssince the program ken
execution. Henceyou will need to diide the elapsed time by 1000 to gem it to secondsBe
sure to set th&PD_PARALLEL ervironment \ariable to the appropriate number of processors for
each test.Do not setMPD_PARALLEL just once; change itsalue &ery time you change the
number of processors you are using in a test.

If you write your programs in C and Pthreads, usetihees function, as illustrated in the
cl ock. c andmat ri x. mul t. ¢ programs | handed out in clasé/ou can vigv the man page by
executing 'man -s 2 tinmes") Thereturn alue fromti mes is the number of "clock ticks"
since some time in the past (when the GfS Vast booted)The walue of CLK_TCK is 100, hence
you will need to diide the elapsed time by 100 to gert it to seconds.

Compiler Optimization Experiments

Compilers such agcc andnmpd by defwult produce code that is correctt Imot terribly eficient.
These compilers will produce much better code if you turn on optimizatiih npd, this is
done using the Oflag. Wth gcc, you hare three choices=- O, - @2, and - 8, where- G is the
highest leel of optimization.

In addition to doing the basic timing tests describedvgbyou are also to determine wo
much fster your programs are if you turn on compiler optimizatidngarticular compile your
programs with- Ofor npd or with - @3 for gcc. Then repeat some or all of the timing testeu
do not need to repeat all 20 timing tesis, you do need to repeat enough of them to be able to
reach conclusions aboutwaenuch impravement one can get by Yiag the compiler optimize the
code that it produces.

Important Point: If you use C and Pthreads, be sure to declare shared synchronization
variables such as barrier flags\ad at i | e variables. Wth the - O3 level of optimization,gcc
tries to put frequently usedasables in rgisters. Thisis fine for sequential programsutbit
usually breaks parallel programbn particular if a barrier flag is put in a gester then a change
to the flag made by one process will not be seen pyter process!

Reports

Once you hee dne the timing and othexpgeriments, write a report to@ain what you hee
done and what you ke learned. Yur report should be aviepages of tet plus tables and

-3-

figures. Itshould hae five fctions, as follos:
* Introduction. Give a biief introduction to your report and a briefapview of your results.

e Programs. Summarize ha each program wrks, and describe in reasonable detail all the
program-l@el optimizations you hee implemented to makyour programsédst.

« Timing ExperimentsPresent the results from the timingperiments. Us#ables to present
the rav data and graphs to shospeedups and comparison¥ou do not have o use a
graph-draving program; it is fine to dvagraphs by hand if you wishAlso eplain your
results. What do the results sh@ Why?

e Compiler Optimization Experiment€Explain the &periments you conducted to measure
the efect of turning on compiler optimizations and the results you obderv

e Conclusion. Briefly summarize what your report has wsimg and describe what you have
learned fom this poject.

Electronic Turnin and Reports

By midnight on March 5 useurnin to submit your programsThe assignment name is
paral | el . The programs should be nam@dogl, pr og2, prog3, and pr og4. Also submit a
Makefile that we can use to compile your progratmsparticular if we execute

make progl

your malefile should compilgr ogl (sequential Jacobi iteration) and produce xat@table file
that resides ira. out. We should then be able taxecute the program with the command-line
arguments specified abbea You might also wish to turn in a README file.

We &pect you to hee completed dfcient, working versions of your four programs for the
timing experiments by March 5When you run the timingx@eriments, you may find that you
made mistags and hence need to modify your programsfore you turn in your report on
March 26, turn in final @rsions of your four programs and Mgdile. Usethe same assignment
name. (V¢ will make a lackup copg of the turnin area on March 6, and we will look at the
differences between the original and finralsions of your programs.)

Your reports are dugn classon March 26.Please append commented listings of the final
versions of your four programs to your repoiftyou changed your programgour report should
also plain what you lsanged and why You do not need to turn in the actual output frony anh
your tests, bt you should hee it available or readily be able to reproduce lih short, your report
should contain all the information someone elsalle need to reproduce your results.

