
CSc 422 — Homework 4

Due Tuesday, April 23, 2002

This assignment is again worth 40 points.The first problem is worth 10 points; the programs are
worth 15 points each.

Please turn in paper copies of your programs along with your answers.Also submit your
programs electronically as described at the end of the assignment.

1. Replicated Files. Consider the replicated files example in Figure 8.15 (Section 8.4.2).The
FileServer module in that figure is programmed using the multiple primitives notation
described in Section 8.3; this is essentially the same as the full MPD language.

(a) Thecode in thewrite procedure usescall to update remote copies.Suppose thecall of
remote_write were replaced by asynchronoussend. Would the solution still work? If so,
explain why. If not, explain why not.

(b) Thecode in the file server has one lock for each copy of the file. A reader needs to get only
the local read lock; a writer needs to getn write locks, one for every copy of the file. Show how
to modify the code to useweighted voting, which is defined at the end of Section 8.4.Assume
readWeight andwriteWeight are the values of the read and write weights.

(c) Supposeyou were asked to recode the file server using only remote procedure call, such as
Java RMI or the RPC notation defined in Section 8.1.In other words, you cannot usesend or
rendezvous. Show how you would change the code.You may assume you have synchronized
methods, monitors, or semaphores for any synchronization you might need within the
FileServer module.

2. Odd Person Wins Game. Suppose you have three people and need a fair way to pick one of
the three to win some prize or do some task.A common method is for each of them to flip a coin.
If one coin comes up differently that the other two, that person wins.If all coins come up the
same, you keep flipping until there is a winner. We can make a game out of this by repeating the
contest a number of times and seeing who wins the most times.

Write a distributed program that uses processes and message passing to simulate the above
game. You may write your program in Java with sockets, in MPD, in C with the MPI library, or
in C with sockets. Test your program on either Lectura or Parallel. I suggest Parallel for MPI,
Lectura for Java, and either machine for MPD or C plus sockets.

Use one process for each player, and have the players play several games. Usea random
number generator to flip coins.The playersmust interact directly with each other using message
passing. Donot use an additional coordinator process, and do not share any variables except for
constants and the command-line argument. Thecommand-line argument should benumGames,
the number of games to play. After this many games have been played, print the total number of
coin flips won by each player and the total number of ties.

In addition to your program listing, please turn in output from a few tests, including ones
wherenumGames is 800 and 1600.



3. Distrib uted File Server. Develop a distributed program that has multiple clients and a file
server. The file server manages a single file and allows clients to reador write that file. The file
can be accessed by at most one client at a time.A client first opens the file for reading or writing.
A fi le reader client reads the entire file and writes its contents to standard output.A fi le writer
client reads lines from standard input up until a line that contains only a single dot "." and writes
the lines to the file.After reading or writing the file, a client closes the file; at this time it can be
opened by another client (or the same one).

Write your program in Java or MPD. If you use Java, you must use RMI.If you use MPD,
you must use virtual machines.Each client and the server should be capable of executing on
different machines.You do not actually have to use multiple machines, but it should be easy to
modify your program to do so.

The text describes three Java programs that you will find useful; see Sections 5.4, 7.9, and 8.5.
If you use Java, I suggest that you also take a look at Exercise 7.23, which describes experiments
with the remote file reader program in Section 7.9.You may also wish to take a look at exercises
5.27 and 8.21, which deal with the other Java programs in the text.

The MPD tutorial describes a concurrent grep program that uses virtual machines, and I also
handed out a distributed exchange program in class.The programs in Section 8.4 are also very
similar to ones in MPD.

Hand in a listing of your programand a one or two page explanation of your design decisions,
the tests you ran, and the results you observed.

Electronic Turnin. Use theturnin program on Lectura to turn in your programs.The
assignment names arehw4.prob2 andhw4.prob3. Use whatever file names you wish.Either
put a "usage" comment at the top of each program, or turn in README files explaining how to
compile and execute the programs.


