
CSc 422 — Homework 2

Due Tuesday, February 19, 2002

This assignment is again worth 40 points.There are only four problems, but they are longer than
the problems on the first homework, so get started sooner rather than later!

The first two problems are worth 5 points each; the third problem is worth 10 points; the
program is worth 20 points.Append a commented listing of your program to your answers to all
the questions.Also submit your program electronically as described at the end of the assignment.
Be sure to follow the programming style described in the handout for Homework 1.

You may discuss the meanings of questions with classmates, but the answers and program you
turn in must be yours alone.Again explain your answers clearly and succinctly.

1. MPDbook, Exercise 3.2.Your solution should use the cache efficiently and have the level of
detail of the program in Figure 3.4.

2. MPD book, Exercise 4.3. By a simulation I mean an implementation of the semaphore
operations as they are defined at the top of page 155.Your implementation of theP(s) operation
should use busy waiting.

3. MPD book, Exercise 4.31.For part (a), your answer should be similar to the readers/writers
solution in Figure 4.10; be sure to give a global invariant. For part (b), a good way to make your
solution fair is to alternate directions for cars (as in real life):first let all waiting northbound cars
cross the bridge, then all southbound cars, and so on.

4. Write a parallel program that uses the bag-of-tasks paradigm to solve the following problem.
Use C and Pthreads or use MPD.Develop your program on Lectura and test it on Parallel. Run
the timing tests described below, and turn in (on paper) a table of results.

There is an online dictionary in/usr/dict/words on both Lec and Par. It contains 25,143
words (and is used by thespell command). Recallthat apalindrome is a word or phrase that
reads the same in either direction, i.e., if you reverse all the letters you get the same word or
phrase. Your task is to find allpalindromic words in the dictionary. A word is palindromic if its
reverse is also in the dictionary. For example, "noon" is palindromic, because it is a palindrome
and hence it’s rev erse is trivially in the dictionary. A word like "draw" is palindromic because
"ward" is also in the dictionary. Your program should output the total number of palindromic
words in the dictionary and the number found by each worker. It should also write the
palindromic words to a results file.

I suggest that you first write a sequential program and then modify it to use the bag-of-tasks
paradigm. However, do some things in the sequential program that you will need in the parallel
program, such as finding where each letter begins in the dictionary (see below for more on this).

Your sequential program should have the following phases:

• Read the file/usr/dict/words into an array of strings.You may assume that each word
is at most 25 characters long.You should also have a second array of the same length that
will be used to indicate which words are palindromic; initialize this array to zeros.

• Examine every word, one at a time.For each, first compute its reverse. Thendo a linear
search of the dictionary to see if the reverse of the word is in the dictionary. (If the word



itself is a palindrome, you will find it!)If so, mark the word and increment your counter of
the total number of palindromic words.

• Write the palindromic words to a file namedresults and write the total number of
palindromic words to standard out.

The first few words in the dictionary start with numbers (take a look!); you can either skip over
them or process them, as you wish.(None are palindromic, so this choice will not affect your
total count.) Some words start with capital letters (and hence the dictionary is not sorted in
ASCII order). Leave the capitals alone and do case-sensitive comparisons. (Onemight ideally
like to convert capitals to lower-case, but it will simplify your program to ignore this.)

After you have a working sequential program, modify it to use the bag-of-tasks paradigm.
Your parallel program should useW worker processes, whereW is a command-line argument. Use
the workers just for the compute phase; do the input and output phases sequentially. Each worker
should count the number of palindromic words that it finds.Sum theseW values during the ouput
phase. (Thisavoids a critical section during the compute phase!)

Use 26 tasks in your program, one for each letter of the alphabet.In particular, the first task is
to examine all words that begin with "a" (and numbers), the second task is to examine all words
that begin with "b", and so on. During the input phase you should build an efficient
representation for the bag of tasks; I suggest using an array, where the value intask[1] is the
index of the first "a" word, task[2] is the index of the first "b" word, and so on.You can also
use this array during the search phase to limit the scope of your linear searches.

Your parallel program should also time the compute phase.If you use Pthreads, use the
times function as in the programclock.c. If you use MPD, use theage function as in the
programfind.mpd. Read the clock just before you create the workers; read it again as soon as
they hav efinished. Thereturn value fromtimes() is in hundredth’s of seconds; the return value
from age() is in milliseconds.Write the elapsed time for the compute phase to the standard
output.

To summarize, your program should have the following output: total number of palindromic
words, the number found by each worker, the elapsed time for the compute phase, and the
palindromic words. Writethe first three items to standard out; write the words to a file named
results in the directory that contains your program.

Timing Tests. Execute your parallel program on Par using 2, 3, and 4 workers. Runeach test 3
times. Includea table of results with your homework answers; it should contain all the values
written to standard output (but not the words themselves) for all 9 test runs.If you use MPD, be
sure to set the MPD_PARALLEL environment variable to 4 just before you run the timing tests.

Electronic Turnin. Use the turnin program on Lectura to submit your program.The
assignment name ishw2.palindrome. The file name should bepalindrome.c or
palindrome.mpd.


