
CSc 422 — Homework 1

Due Tuesday, February 5, 2002

This assignment is worth 40 points.The first four problems are worth 5 points each; the two
programs are worth 10 points each.Turn in written answers to the first four problems.Also turn
in nicely-commented listings of your programsas well as answers to the questions I ask about
each program.In addition, submit your programs electronically. See the end of this assignment
for information on programming style and electronic turnin.

You may discuss the meanings of questions with classmates, but the answers and programs you
turn in must be yours alone.For the exercises from the book, explain your answers clearly and
succinctly.

1. MPDbook, Exercise 2.5.

2. MPDbook, Exercise 2.12.

3. MPDbook, Exercise 2.18.

4. MPDbook, Exercise 2.25.

5. Atomic vs. Nonatomic Execution.The purpose of this problem is to let you see the effects of
not protecting critical sections of code.Write your programs either in C with the Pthreads library
or in the MPD language.Compile your programs on Lectura but run your tests on Parallel so that
threads execute concurrently. Parallel (par) has 6 processors; details are on the class Web page.

Assume thatx, y, and z areshared integer variables, and that all are initially zero.Consider the
following three statements:

S1: x = x + 1;
S2: y = y + 1;
S3: z = z + x - y;

(a) Writea program that hasnumWorkers processes (threads).Each process executes the above
three statementsnumIters times. BothnumWorkers andnumIters should be command-line
arguments, in that order. At the end of the program, write out the final values of the three
variables. Execute your program for one, two, and three workers, and for 1000, 2000, and 5000
iterations. Whatdo you observe? Why?

(b) Modify your program to use two atomic actions, as follows:

〈S1; S2;〉
〈S3;〉

Use a semaphore or a mutex lock to protect the two critical sections in each process.(They are
not disjoint, so you need to protect them with the same semaphore or lock to make them appear to
be atomic.) Repeat the same set of experiments you used for part (a) and answer the same
questions.



6. Unix Tee Command. Write Pthreads or MPD programs to solve the problem described in
Exercise 2.3 of the text. Do just parts (a) and (c); namely, write a sequential program, and then
write a concurrent program that uses the "while inside co" style.Your concurrent program will
have three processes:one for reading standard input, one for writing to standard output, and one
for writing to a file. As specified in the exercise, you are to use two buffers.

Use busy waiting (flag variables) to synchronize use of the buffers. Becareful programming the
synchronization, because both output processes need to write from a buffer before the input
process can refill it.Do not use semaphores for this assignment.(If you already know how to use
semaphores, you might want to use them for initial debugging, and then replace them by flags.)

The buffer size should be a command-line argument. Itcan be either the number of bytes or
number of lines, whichever you prefer. Again develop your programs on Lectura, then try
running them on Parallel. Test your program with both small and large files and with a few
different buffer sizes. What do you observe? Why? (You will not get any performance
improvement for this problem; most likely your programs will run quite a bit slower because of
synchronization overhead.)

Programming Style. Your programs should be easy to read and self-contained.At a minimum
you should:

(1) Includea descriptive header comment with your name, a brief description of the program,
and the command-line arguments.

(2) Give short but descriptive comments for each variable, process, procedure, and significant
block of code.

(3) Usea reasonable level of indentation but not too much.I think 3 or 4 spaces is plenty; 8 is
usually too many. Your printed listing should not have huge amounts of white space and
should not have long lines that get wrapped around when printed.

Be sure to include your name in the header comment.

Electronic Turnin. Use theturnin program on Lectura to submit electronic versions of your
program so that we can run some tests.See the man page forturnin for details.

For problem 5, the assignment name ishw1.prob5. The file names should benolocks.c and
locks.c (or nolocks.mpd andlocks.mpd) for parts (a) and (b), respectively.

For problem 6, the assignment name ishw1.prob6. The file names should be
tee.sequential.c (or .mpd) andtee.concurrent.c (or .mpd).


