Name:

CSc 422, Spring 2002 — Examination 2

You may use up tdawo pages of notes for thixam, lut otherwise it is closed boolRlease put
your name on the top of your notes and turn them in with yaammmation. Doyour work on
these sheets, using additional sheets if necessary

This exam is worth 60 points. The first three problems areowth 8 points each; the last three
problems are wrth 12 points eachYou must show your work and/or explain your answers. This
is required for full credit and is helpful for partial credit.

1. [8 points] With asynchronous message passiagnd is nonblocking andrecei ve is
blocking. With synchronous message passing, both statements are blocking.

Develop an implementation of synchronous message passing that uses a singleatabledfor
the huffer and three semaphores for synchronizatidhese ariables are declared as shmo
below. For simplicity, there is just one channel, so it does not need to be hamed.

int buffer;
semenpty = 1, full = 0, done = O;
send(val ue int nsg): # synchronous send of val ue nsg

receive(result int nmsg): # receive nsg as a result paraneter

2. [8 points] Remote operations can be implemented using RPC (RMI) or rendezVhg are
commonly used to program client/seninteractions in distrited systems.

(a) Definethe syntax and semantics of the priwasi that are used with RPC.

(b) Definethe syntax and semantics of the priv@si that are used with rendeays.

(c) Assumethat you are using only RPC to program interactions between modules in a
distributed systemHow can deadlock occurMow do you avoid it?

(d) Assumethat you are using only rendems to program interactions between modules in a
distributed program He can deadlock occurMow can you &oid it?

3. [8 points] Consider the folleing monitor which is proposed as a solution to the shortest-job-
next (SJIN) allocation problemClient processes callequest and thermr el ease. The resource
can be used by at most one client at a tilen there are twor more competing requests, the
one with the minimumalue for agumentt i me is to be serviced ¢

moni tor SJIN {
bool free = true;
cond turn;

procedure request(int tinme) {
if (not free)
wai t (turn, tine);
free = fal se;

}

procedure rel ease() {
free = true;
signal (turn);
}
}

(a) Definethe Signal-and-Continue (SC) signaling discipline.

(b) Definethe Signal-and-\ait (SW) signaling discipline.

(c) Doesthe abw@e nonitor work correctly for the SC disciplineClearly ut briefly explain why
or why not.

(d) Doesthe ab®e nonitor work correctly for the SW disciplineZlearly tut briefly explain
why or why not.

4. [12 points] Consider the folising problem, which | will call theHungry Birds Problem.
Given are n baby birds and tarparent birds.The birds shared a common dish, which can contain
at mostB bugs. Thedish is initially empty

Each parent bird flies Hffinds one bg, flies back to the nest,aits until there is room in the
dish, and puts theulg in the dish—then repeats these actidgach baby bird chirps for a while,
wakes Up, waits for the dish to contain aify, tales one, and eats it—then repeats these actions.

Develop amonitor to synchronize the actions of the birdsssume that each bird is represented
by a process.The dish is a critical ariable that can be accessed by at most one bird at a time.
The monitor should h& Wwo gperations: deposi t Bug(), which is called by the parent birds,
andf et chBug() , which is called by the baby birds.

5. [12 points] Recall that in the roller coaster problem therengpassenger processes and one
car process.The car has a capacity @f passengers, whereé < n. In Homework 3 you
developed a monitor to synchronize the actions of the passengers and the cars.

This problem is easier to selif you use message passing, because the passengers can interact
directly with the car You are gien the folloving channel declarations:
chan takeRi de(int passengerID), rideOver[1l:n]();

Every time passengérwants to talk a ide, it executes:

send takeRide(i);
receive rideOver[i]();

(a) Develop an implementation of the car procesou may use high-leel pseudo code for
sequential parts,ub shav exactly hav the abee dannels are used.

(b) Supposeve add a second coaster,a@nich also has a capacity Ofpassengers. CAarloads
first, then Car 2, then Car 1, and so @escribe hw you would change your answer to (a) to
add a second caAssume that theakeRi de channel is shared, so both cars can veckeom it.
You may use one or more additional channeld ywu maynot change the passenger intarné.

6. [12points] Consider a distrilted program witlm processes, numbered 1rto Each process
has a local aluev. Process 1 wishes to compute the sum ofi athlues. Havever, process 1 has
only a fav neighbors; namelyprocess 1 is able to communicate with only a subset of the other
processes. Similarhgach process has only aMaeighbors with which it can communicatin
short, the interconnection netvk forms an undirected graphythbt is not a complete graph.

Assume that each process has a wector nei ghbors[1:n] that is initialized so that
nei ghbors[j] == 1 if j is a neighbor ofi andnei ghbors[j] == 0 otherwise. The
processes communicate using the array of channels declared bhélare declared these as full
arrays to simplify your programmingubprocess$ can send only to its neighbors.

The code for process 1 isvgn below. Devdop code for the other processé%u may use high-
level pseudo code for sequential partat bhav exactly hav the channels are use&ach process
should eecute the same program,thof course thealues ofv andnei ghbor s are diferent in
each process[Hint: Consider hav you could sole this problem for a tree, and then generalize
your approach to handle a graph wijitles.]

chan Chan[1:n](int kind, int value);
kind is one of ASK or ANSVWER and value is an additional field
dependi ng on the kind of nessage

process Nodel {

int v, neighbors[1l:n]; initialize v and nei ghbors;

int sum= v, nunNei ghbors = 0, kind, newSum

for [=2 to n st neighbors[j] == 1] {
send Chan[j] (ASK, 1); # ask neighbor j for what it knows
nuniNei ghbor s++;

}

for [=1 to numNeighbors] { # collect answers in any order
recei ve Chan[1] (ki nd, newSum ; # ki nd shoul d be ANSVWER
sum += newsumn # newSumis a partial sum

}

}

process Node[i = 2 to n] {

