
CSc 422/522 — Homework 4

due Tuesday, April 24

The first three problems are worth 10 points each.The last problem is worth 20 points.As usual,
graduate students are to solve all problems (50 points), and undergraduates are to solve a
combination that adds to 40 points.

1. MPDbook, Exercise 7.6.You solution should be fair.

2. MPDbook, Exercise 7.14.

3. MPDbook, Exercise 7.17.

4. Writea distributed parallel program to solve one of the problems below. You may write your
program in MPD, in C using the MPI library, or in Java using sockets. Develop your program on
Lectura. Ifyou choose the grid or primes problems, run your program on Par with 1, 2, 3, and 4
worker processes to see what kind of speedup you get.You do not have to beat on your program
to get the best possible speedup (although you are welcome to do so :-).It is sufficient to write
what you think is a good program.

Turn in (1) a commented listing of your program, (2) output from a representative set of runs, and
(3) a brief explanation of your results.Also useturnin to submit a copy of your program.The
assignment name ishw4.prob4. Just turn in the source file(s).Be sure your program reads its
command-line arguments in the order specified below for each problem.

Problem 1: Distrib uted Grid Computation. Modify your parallel red/black program from the
last project so that it uses message passing rather than shared variables. Try to do sends early and
receives late so as to maximize the potential overlap between computation and communication.
The command-line arguments are the same as for the shared program:gridSize, numIters,
andnumWorkers. The output should also be the same as before.

Problem 2: Primes using a Distributed Bag of Tasks. Write a parallel program to compute
primes using the manager/workers paradigm described in Section 9.1 of the text. The two
command-line arguments arenumWorkers andL, the largest number to check.Your program
should thus employ numWorkers+1 processes. Eachworker should use the standardsequential
algorithm for checking whether an odd number is prime.The manager process should implement
the bag and gather results from the workers. Atthe end of the program, print the total number of
primes you found (don’t forget2!), the last 10 primes, and the execution time of the program.

Problem 3: Rock/Scissors/Paper. Write a distributed program to simulate a three-person
rock/scissors/paper game. Eachplayer randomly chooses one of rock, scissors, or paper. Then
the players compare their choices to see who "won." Rocksmashes scissors, scissors cut paper,
and paper covers rock. Aw ard a player 2 points if it beats both the others; award two players 1
point each if they both beat the third; otherwise award no points.Then the players play another
game.

Use one process for each player. The players must interact directly with each other; donot use an
additional coordinator process.The command-line argument should benumGames, the number
of games to play. At the end print the total points won by each player.



Problem 4: Roller Coaster Problem. Write a distributed program to solve the roller coaster
problem you considered earlier in Homework 3. However, usetwo car processes and use message
passing for all communication.The car processes should go around the track one after the other.
One of your challenges is to figure out how to get passengers loaded onto the correct car.

The command-line arguments should beC, the capacity of a car;n, the number of passengers;
numTrips, the number of trips eachcar takes; andrideTime, the time it takes for the car to go
around the track.Note that the third argument is now numTrips, not numRides as before.You
may assume thatn is greater than2*C.

The output of your program should again be a trace of significant events that illustrate the order in
which things happen.


