
CSc 422/522 — Homework 2

due Tuesday, February 22

The first four problem are worth 10 points each.The last problem is worth 20 points.Graduate
students are to solve all problems (60 points).Undergraduates are to solve any combination of
problems that adds to 40 points.

Again, the work you turn in must be your own. Besure to explain clearly and succinctly what
you are doing; don’t just give an answer.

1. Critical sections using spin locks.

(a) MPD book, Exercise 3.2.DEC andINC are machine instructions, so their arguments are
passed by reference (address).If you wish you can assume thatDEC andINC are functions that
return the value ofsign.

(b) Discussthe performance of your solution on a shared-memory multiprocessor withN
processors. AssumethatN processes, one per processor, arrive at the critical section at the same
time. Whatwill happen?

(c) Modify your solution so that it performs better on a multiprocessor. Explain what you would
change and discuss the performance of your new solution assuming thatN processes arrive at the
same time as in part (b).

2. Critical sections using a coordinator process.

(a) MPDbook, Exercise 3.12.Just solve part (b); namely, dev elop a fair solution.

(b) Discussthe performance of your solution on a shared-memory multiprocessor withP
processors. Assumethat there areP-1 regular processes and one coordinator, that each process
executes on its own processor, and that the regular processes arrive at the critical section at the
same time.What will happen?

3. Barrier synchronization.

(a) Assumethat there areN worker processes in a parallel program; each has a unique identity
between1 and N. Dev elop a procedurebarrier(int id) that the workers can call for
barrier synchronization.In particular, after all N workers have called barrier—but not
before—then each call should return.Your procedure should implement a reusable dissemination
barrier. Use theawait statement orwhile loops within the body of the procedure in order to
delay processes.Write your procedure in SR or in the pseudo-C notation in the textbook.

(b) Supposethat each assignment to a flag variable takes 1 unit of time and that eachawait
statement or spin loop takes 3 units of time.What is thebest case execution time for the barrier?
In particular, if all workers callbarrier at the same time, how long will it take before every
call has returned?Do not count procedure call overhead; just count the code in the body of the
procedure.

4. Concurrent execution in Pthreads.

The purposes of this problem are to introduce you to the Pthreads library and to let you see the
effects of not protecting critical sections.The Pthreads library is described in Section 4.6 of the
text. You might also want to look at the manual pages forpthreads and for the various



functions used in the four sample programs handed out in class.(These programs are stored in
/home/cs522/SamplePrograms.)

Assume thatx, y, and z are global integer variables that are all initially zero.Consider the
following three statements:

S1: x = x+1;
S2: y = y+1;
S3: z = x+y;

(a) Write a Pthreads program that has two processes. Eachprocess executes the above three
statements 1000 times.At the end of the program, write out the final values of the three variables.
Repeat this test five times. Compileyour programs onlec, but run your tests onpar.

(b) Repeatpart (a), but now make each assignment statement atomic.Thus, the body of the loop
in each process will look like:

〈S1;〉 〈S2;〉 〈S3;〉

Use Pthreads semaphores to protect critical sections.

(c) Repeatpart (a), but this time combine all three assignment statements into a single atomic
action:

〈S1; S2; S3;〉

Hand in commented listings of your programs together with the output from the five test runs of
each program.Please also useturnin to provide us with copies of your programs.See below
for details.

5. Primenumber generation using a bag of tasks.

Write a parallel program that generates prime numbers using thebag of tasks paradigm described
in Section 3.6. There should beW worker processes, whereW is a command-line argument
between1 and 4. The program should calculate all primes up to a limitL, which is also a
command-line argument. You may write your program in SR or in C plus Pthreads.Use
semaphores to implement any atomic actions you need, but use busy waiting (spin loops) to
program delays.Also use static arrays;do not use dynamic memory allocation.

One way to solve this problem is to mimic the sieve of Eratosthenes in which you have an array
of L integers and repeatedly cross out multiples of primes:2, 3, 5, ... In this case the bag would
contain the next prime to use.This approach is easy to program, but it uses lots of storage.In
particular, you need to have an array ofL integers.

A second approach is to check all odd numbers, one after the other. Hence, the bag would
contain odd numbers.For each candidate, see whether it is prime, and if so, add the number to a
growing list of known primes.The list of primes is used to check future candidates.This second
approach requires far less space than the first approach.However, it has a tricky little
synchronization problem to keep the list of known primes sorted.

(a) Writea program that implements the second approach.Represent the bag by a single integer,
whose value is the next odd candidate.When a worker needs a new task, it atomically reads the
value of the next candidate, then increments that value by two. If the worker finds that the
candidate is prime, it atomically inserts it into the sorted list of known primes. Initialize the bag



to the value9 and initialize the list of known primes to3, 5, and7. At the end of your program,
print the execution time for the computational part, then print the last 10 primes you found.

(b) Modify your program to make it faster. Your goal is to find the largest prime that you can in
20 seconds.The bag is a bottleneck, because the workers compete for access to it.You can get
rid of all contention for the bag by usingW bags, one per worker. It is also possible to separate
the list of known primes intoW separate lists, but this is trickier to do because each worker needs
to be sure it has checked all possible prime factors before concluding that a candidate is prime.

Compile your programs onlec and run timing tests onpar. Test your programs for various
values ofW andL. Use up to four workers. Try small values ofL when you are doing debugging,
then trylarge values ofL.

Hand in a commented listings of your two programs. Alsoturn them in electronically.

Electronic Turnin.

Use theturnin program on Lectura to turn in copies of your programs.For problem 4, the
assignment name to use ishw2.problem4. The file names should beparta.c, partb.c,
andpartc.c.

For problem 5, the assignment name to use ishw2.problem5. The file names should be
primes.c or primes.sr andfastprimes.c or fastprimes.sr.


