CSc 422/522 — Homewrk 2
due TuesdayFebruary 22

The first four problem are avth 10 points eachThe last problem is @rth 20 points.Graduate
students are to sadvdl problems (60 points).Undegraduates are to sa@weny combination of
problems that adds to 40 points.

Again, the vork you turn in must be youmm. Besure to gplain clearly and succinctly what
you are doing; domjust give an answer

1. Critical sections using spin locks.

(@) MPD book, Exrcise 3.2.DEC and | NC are machine instructions, so theigaments are
passed by reference (addres)you wish you can assume tHaEC andl NC are functions that
return the walue ofsi gn.

(b) Discussthe performance of your solution on a shared-memory multiprocessorNvith
processors. AssuntbatN processes, one per processoive & the critical section at the same
time. Whatwill happen?

(c) Modify your solution so that it performs better on a multiprocesBgplain what you wuld
change and discuss the performance of your ssdution assuming thatl processes akre & the
same time as in part (b).

2. Critical sections using a coordinator pocess.
(&) MPDbook, Exercise 3.12.Just sole part (b); namelydevdop a fir solution.

(b) Discussthe performance of your solution on a shared-memory multiprocessorPwith
processors. Assumnthat there ar@- 1 regular processes and one coordinatizat each process
executes on its wn processqrand that the rgular processes avd & the critical section at the
same time.What will happen?

3. Barrier synchronization.

(&) Assumehat there aréN worker processes in a parallel program; each has a unique identity
betweenl and N. Devdop a procedurébarri er (int id) that the verkers can call for
barrier synchronization.In particular after all N workers hae alled barri er —but not
before—then each call should returyour procedure should implement a reusable dissemination
barrier Use theawai t statement onhi | e loops within the body of the procedure in order to
delay processesirite your procedure in SR or in the pseudo-C notation in #ibdek.

(b) Supposdhat each assignment to a flagriable taks 1 unit of time and that eaalai t
statement or spin loop tek 3 units of timeWhat is thebest case execution time for the barrier?
In particular if all workers callbarri er at the same time, kolong will it take before eery
call has returned’Do not count procedure callerhead; just count the code in the body of the
procedure.

4. Concurrent execution in Ptheads.

The purposes of this problem are to introduce you to the Pthreads library and to let you see the
effects of not protecting critical section¥he Pthreads library is described in Section 4.6 of the
text. You might also wnt to look at the manual pages forhr eads and for the arious

functions used in the four sample programs handed out in qf&sese programs are stored in
/ hone/ cs522/ Sanpl ePr ogr ans.)

Assume thatx, y, and z are global intger \ariables that are all initially zeroConsider the
following three statements:

S1: X = x+1;
S2. y = y+l;
S3: z = x+ty;

(a) Write a Rhreads program that hasdwprocesses. Eachrocess xecutes the abae three
statements 1000 time#it the end of the program, write out the finalues of the threeaviables.
Repeat this test farimes. Compileyour programs ohec, but run your tests opar .

(b) Repeapart (a), lnt nov make each assignment statement atomithus, the body of the loop
in each process will look lek

B1; O0%2; O&E3; O

Use Pthreads semaphores to protect critical sections.

(c) Repeapart (a), ot this time combine all three assignment statements into a single atomic
action:

[B1: S2; S3:; 0O

Hand in commented listings of your programs together with the output from ¢hestwuns of
each programPlease also udeur ni n to provide us with copies of your programSee belas
for details.

5. Prime number generation using a bag of tasks.

Write a parallel program that generates prime numbers usirgpghe tasks paradigm described
in Section 3.6. There should baVworker processes, wheM/is a command-line gument

betweenl and 4. The program should calculate all primes up to a limitwhich is also a
command-line gument. Yu may write your program in SR or in C plus Pthreatdse

semaphores to implementyaatomic actions you need,ub use lbisy waiting (spin loops) to
program delaysAlso use static arrayslp not use dynamic memory allocation.

One vay to sole this problem is to mimic the sie d Eratosthenes in which you V& an array
of L integers and repeatedly cross out multiples of prinfes3, 5, ...In this case the bagowld
contain the na prime to use.This approach is easy to programof it uses lots of storagdn
particular you need to hae an array ofL integers.

A second approach is to check all odd numbers, one after the dtleece, the bag euld
contain odd numberdg-or each candidate, see whether it is prime, and if so, add the number to a
growing list of knavn primes. The list of primes is used to check future candidaldss second
approach requiresaf less space than the first approadtiowever, it has a trick little
synchronization problem tceekp the list of kneon primes sorted.

(a) Writea program that implements the second approd&®épresent the bag by a single gee
whose walue is the na odd candidateWhen a verker needs a metask, it atomically reads the
value of the ngt candidate, then increments thatlue by two. If the worker finds that the
candidate is prime, it atomically inserts it into the sorted list olvknprimes. Initialize the bag

to the \alue9 and initialize the list of knon primes td3, 5, and 7. At the end of your program,
print the eecution time for the computational part, then print the last 10 primes you found.

(b) Modify your program to makit faster Your goal is to find the lgest prime that you can in
20 seconds.The bag is a bottleneck, because tloekars compete for access to ¥ou can get
rid of all contention for the bag by usinybags, one per erker. It is dso possible to separate
the list of knavn primes intdWseparate lists,u this is trickier to do because eacbrker needs
to be sure it has cheett all possible primeattors before concluding that a candidate is prime.

Compile your programs ohec and run timing tests opar . Test your programs foravious
values ofWandL. Use up to four wrkers. Ty small alues ofL when you are doing dabging,
then trylarge values ofL.

Hand in a commented listings of youraywograms. Alsdurn them in electronically

Electronic Turnin.

Use thet ur ni n program on Lectura to turn in copies of your prograrfe: problem 4, the
assignment name to usehig2. pr obl end. The file names should gart a. c, partb. c,
andpartc.c.

For problem 5, the assignment name to uséwg®. pr obl enb. The file names should be
primes.corprinmes.sr andfastprines.corfastprines.sr.

