real grid[0:n+1,0: n+1], new O: n+l1, 0: n+1];
i nt HEl GHT = n/ PR # assume PR evenly divides n
real maxdi ff[1: PR] = ([PR] 0.0);

procedure barrier(int id) {
efficient barrier algorithmfrom Section 3.4

}

process worker[w =1 to PR {
int firstRow = (w 1) *HElI GHT + 1;
int lastRow = firstRow + HEI GHT - 1;
real nydiff = 0.0;
initialize my strips ofgr i d andnew, including boundaries
barrier(w);
for [iters =1 to MAXITERS by 2] {
conpute new values for ny strip
for [= firstRowto lastRow, j = 1 to n]
newi,j] = (grid[i-1,j] + grid[i+1,j] +
grid[fi,j-1] + grid[i,j+1]) * 0.25;
barrier(w);
conpute new val ues again for ny strip
for [= firstRowto lastRow, j = 1 to n]
grid[i,j] = (neWi-1,j] + neWfi+1,j] +
newfi,j-1 + newi,j+1]) * 0.25;
barrier(w);

}
conmpute maxi mum di fference for ny strip
for [= firstRowto lastRow, j = 1 to n]

mydi ff = max(mydi ff, abs(grid[i,j]-newi,j]));
maxdi ff[w = mydiff;
barrier(w);
maxi mum di fference is the max of the maxdiff[*]

Figure 11.3 Jacobi iteration using shared variables.

Copyright © 2000 by Addison \&sley Longman, Inc.

