
real grid[0:n+1,0:n+1], new[0:n+1,0:n+1];
int HEIGHT = n/PR; # assume PR evenly divides n
real maxdiff[1:PR] = ([PR] 0.0);

procedure barrier(int id) {
efficient barrier algorithm from Section 3.4

}

process worker[w = 1 to PR] {
int firstRow = (w-1)*HEIGHT + 1;
int lastRow = firstRow + HEIGHT - 1;
real mydiff = 0.0;
initialize my strips ofgrid andnew, including boundaries;
barrier(w);
for [iters = 1 to MAXITERS by 2] {
compute new values for my strip
for [i = firstRow to lastRow, j = 1 to n]
new[i,j] = (grid[i-1,j] + grid[i+1,j] +

grid[i,j-1] + grid[i,j+1]) * 0.25;
barrier(w);
compute new values again for my strip
for [i = firstRow to lastRow, j = 1 to n]
grid[i,j] = (new[i-1,j] + new[i+1,j] +

new[i,j-1] + new[i,j+1]) * 0.25;
barrier(w);

}
compute maximum difference for my strip
for [i = firstRow to lastRow, j = 1 to n]
mydiff = max(mydiff, abs(grid[i,j]-new[i,j]));

maxdiff[w] = mydiff;
barrier(w);
maximum difference is the max of the maxdiff[*]

}

Figure 11.3 Jacobi iteration using shared var iables.

Copyright © 2000 by Addison Wesley Longman, Inc.

